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Abstract Spatial Data Infrastructure (SDI) is an important framework for sharing geospatial big data using the web. Integration

of SDI with cloud computing lead to emergence of Cloud-SDI as a tool for transmission, processing and analysis of geospatial

data. Fog computing is a paradigm where embedded devices are employed to increase the throughput and reduce latency at

the edge of network. In this study, we developed and evaluated a Fog-based SDI framework named GeoFog4Health for mining

analytics from geo-health big data. We built a prototype using both Intel Edison and Raspberry Pi for performing a comparative

study. We performed a case study on Malaria vector borne disease positive maps of Maharastra state in India. The proposed

framework had provision of lossless data compression. Also, overlay analysis of geospatial data could be performed. In addition,

we discussed energy saving, cost analysis and scalability of proposed framework for efficient data processing. We compared the

performance of proposed framework with state of the art Cloud-SDI in terms of analysis time. Results and discussions showed

the efficacy of proposed system for enhanced analysis of geo-health big data generated from a variety of sensing frameworks.

Keywords Spatial Data Infrastructure (SDI) · Geospatial big data · Fog computing · Cloud computing · Geohealth Big Data ·

Malaria.

1 Introduction

Spatial Data Infrastructure (SDI) has been facilitated by sharing geospatial data by various stakeholders from local to global

level. It has created an environment that enables users to retrieve, access and disseminate geospatial data and related meta-data

in a secured way [28]. SDI has the capability for storage, decision making on raw geospatial data, thus bringing geospatial data

and related maps to a common scale according to the need of the users. It performs querying, superimposition and analysis

of geospatial data leading to generation of final reports that could be later used by planners [53]. The Cloud-SDI framework

integrated the cloud computing technology with SDI. It was utilized for planning, environmental monitoring, natural resource
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2 Rabindra Kumar Barik1 et al.

management, healthcare, land use and urban planning, watershed management, marine and coastal management etc. [29,28,11,

10]. Cloud-SDI have became an emerging area that has the ability to integrate and analyze heterogeneous thematic layers along

with corresponding attributes for creation and visualization of various planning scenarios useful for decision making. The user

friendliness of Cloud-SDI framework has made it a preferred platform for planning at global, regional, national and local level

along with various analysis and modeling functionalities. It integrates common geospatial database operations such as query

formation, overlay analysis and statistical computations with unique visualization functionalities [29,19]. These characteristics

distinguish Cloud-SDI framework from other geospatial decision support systems. Cloud-SDI is useful for explaining events,

designing strategies and predicting outcomes for private and public enterprises [60]. The geospatial data plays an important role

in Cloud-SDI as it contains rich temporal and geospatial information [38].

In traditional setup of Cloud-SDI architecture, we send the data to the cloud server where the data is processed and analyzed.

This lead to longer processing time in addition to high bandwidth. So, to overcome this problem fog computing comes into the

picture. Fog computing provides low-power gateway leading to increased throughput and reduced latency. Consequently, the

overall cloud storage is reduced. In addition, reduction in the required transmission power results in overall efficiency. In this

work, we process geo-health data at the network edge using proposed Intel Edison, fog computer. This study made the following

contributions to health geographic information systems (GIS):

1. Proposed framework improved throughput and latency for efficient analysis and transmission of geo-health data using Intel

Edison and Raspberry Pi as Fog devices;

2. Various compression techniques were used for reducing the data size in transmission;

3. Geo-spatial overlay analysis was performed on malaria vector borne disease positive maps of Maharastra state in India from

2011 to 2014 on thick, thin and mobile clients;

4. Analysis of energy saving and computational cost of proposed architecture is performed;

5. Comparison of computation time between the state-of-the-art Cloud-SDI and proposed framework shows improvements

over existing works.

2 Related Works

2.1 Spatial Data Infrastructure

In early 80s, many national surveying and mapping agencies had planned the coordination of their activities. They felt the

need for a strategy for providing unbound access to geographical information tools and it lead to development of Spatial Data

Infrastructure (SDI) [28,37,65,13]. The fundamental components of SDI are people, data, policy, networking, and standards

as depicted in Figure 1. These core components come together depending on the nature of interaction among them in SDI

framework [48]. The people and data form one category while standards, policy and access network form the other. Policies,
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Fig. 1 The dynamic nature of SDI framework. People rely on data and policy, standards and networks have to facilitate the storage, exchange and

analysis of data [28].

standards, and access network are dynamic in nature due to the rapid developments in related technologies [45]. This suggested

that an integrated SDI has value-added services, end-users and geospatial data along with other important issues related to

policies, interoperability and networks. The dynamic SDI framework shares geospatial data at global, national, state, regional

and local levels. With the advancement of Service Oriented Architectures (SOA) and cloud computing technology, there is a

rapid growth in usage of SDI for geospatial data processing and sharing [10,11]. Confluence of cloud computing technology

with SDI led to emergence of Cloud-SDI discussed in next section.

2.2 Cloud SDI Framework

Cloud computing has provided ample storage and computational infrastructure for geospatial data analysis. It has facilitated a

transition from desktop to cloud data servers. Cloud computing along with other related web services architectures have created

an open environment with shared different variety of assets [60,59,7]. Cloud-SDI framework has delivered a robust platform

in organizations that interrelate tools, technologies and expertise to nurture production, handling and use of geographical data.

It deployed a unique instance, multi-tenant design that permitted more than one client to contribute assets without disrupting

each other. This integrated hosted service method has helped in installing patches and variety of application advancements for

the transparency of users. It features geospatial web services as an established architectural methodology [35,32,15]. Cloud

platforms uncover the application functionalities through geospatial web services [27,62]. This permits clients to query and

update different types of cloud services. It has provisions of a typical tool to assimilate different cloud applications in the

software cloud with Service Oriented Architecture (SOA) infrastructure [46,36]. Figure 2 shows the systems’ view of Cloud-

SDI architecture [26]. In client-tier layer, there are three types of clients namely mobile, thick and thin. Clients could visualize

and analyze the geospatial data. Mobile client operates though mobile devices whereas thin client works on standard web

browsers. In thin client environments, the clients do not require additional software for operations or data processing. In thick

clients environment, users process or visualize the geospatial data on desktop that requires installation of additional software

for full-phase operations [4,3]. The application-tier layer is comprised of main geospatial services executed on the servers. It is

intermediate between service providers and clients. There are different type of services such as Web Coverage Service (WCS),
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4 Rabindra Kumar Barik1 et al.

Fig. 2 Cloud-SDI architecture with three types of clients (thick, thin and mobile). It has client-tier layer, application-tier layer with different web

services and data-tier layer with geospatial and meta-data storage [26].

Web Feature Service (WFS), Web Catalog Service (CSW), Web Map Service (WMS), and Web Processing Service (WPS) that

are operating on top of dedicated servers [46]. These services include three types of server applications, namely data, catalog and

processing servers. Catalog server is an important component for data processing in cloud computing architectures. The catalog

sever has used to search the meta-data information related to stored data. In catalog service, a standard unique publish-find-bind

service model has implemented. This model is defined by the different OGC web service architectures. The data server is dealing

with WFS, WCS and WMS [17,33]. The processing server is offering the geospatial processes that allowed different clients to

smear the WPS standard geospatial data [57]. The detailed explanation of every process has done by the variety of client request,

being forward the desire processing service with the different input of several factors and offers definite region in leaping box

and feedbacks with composite standards. Data-tier layer is containing all types of geospatial data and stored in different data

formats [8].

System utilizes data-tier layer to manipulate, store, update and recover the geospatial data for long-term analysis and storage.

Data providers can store data in different open source database management packages, simple file systems or international

organizations i.e. Open Street Map, Bhuvan, USGS, Google, [58,26]. System architecture of Cloud-SDI framework has shown

the geospatial data as a key components for data analysis in data-tier layer [52,66,61,39]. It requires geospatial data from the

various components. Increasing use of cloud SDI technology for management of geospatial data led to emergence of geospatial

big data discussed in next section.

2.3 Geospatial Big Data

Generally, geospatial data has been categorized into raster, vector and graph data. Raster data include geospatial images that are

obtained by satellites, security cameras and aerial vehicles. The raster data is provided by different government agencies for using
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in various analyses. A number of feature can be extracted from these raster data. Change detection and pattern mining are two

examples in that data analysis pipeline. Vector data consist of points, lines and polygons features. For examples, in Google map,

various landmarks such as temples, bus stops and churches are marked thorough points whereas lines and polygons correspond

to the road networks. Geospatial correction pattern analysis and hot spot detection is performed on vector data. Graph data

appear in the form of road networks. Here, an edge represents a road segment while a node represents an intersection.

Big data posses diversity, distribution, scale and timeliness that require the use of new technical architectures and analytics

to enable business insights. Big data have included data sets with sizes beyond the ability of commonly used software tools to

capture, manage and process data within an acceptable time frame [6]. Big data can come in multiple forms. Most of the big

data are semi-structured, quasi-structured or unstructured, that requires numerous techniques and tools to prepare such raw data

for further processing. Analysis of big data can discover the new correlations to spot business trends, combat crime and prevent

diseases etc.. Big data sets are growing rapidly because they are increasingly gathered by the information sensing devices,

mobiles, microphones, wireless sensor networks, cameras, aerial images and software logs. Geospatial data were always been

big data with the combination of Geographic Information System (GIS), Remote Sensing (RS) and Global Positioning System

(GPS) data. Now-a-days, big data analytics for geospatial data are getting considerable attention that allows users to analyze

huge amounts of geospatial data [38,43].

The reliability, manageability and cost are the key factors that made cloud computing attractive for geo-spatial data process-

ing. However, there are some security and privacy concerns for processing of sensitive data using cloud technology. Particularly,

in health GIS systems, the medical data is sensitive and demands secure methods for storage and analysis [32]. Thus, for mini-

mizing the privacy and security risks, the data has to be released as per the user context so that limited data access occur within

a specific model to prevent unauthorized use of data. Processing geo-health data near the clients using Fog computing adds a

security benefit as now only clinical features and/or analysis reports are sent to the cloud. We describe the Fog computing in

next section.

2.4 Fog Computing

Fog computing was coined by Cisco in 2012 [21]. It is a framework that complements the cloud computing for decentralizing the

resources in data centers towards users for improving the quality of service and user experience [49]. However in fog computing

framework, processing of different services are not only concentrated in cloud data centers [44] [51] [56]. Data computation

and storage could be brought closer to the users that lead to reduced latencies and communication overheads with remote cloud

servers [63,14,20]. It refers to a computing paradigm that uses interface kept close to the devices that acquire data. It introduces

the facility of local processing leading to reduction in data size, lower latency, high throughput and power efficiency of the cloud-

based systems. Fog computing technology has been successfully implemented in smart cities [31] and healthcare [23,22,42,49,

50,51]. Fog devices are embedded computers such as Intel Edison or Raspberry Pi that acts a gateway between cloud and mobile
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6 Rabindra Kumar Barik1 et al.

Fig. 3 Fog computing as an intermediate layer between edge and cloud. Fog layer enhanced the efficiency by providing computing near the edge

devices. This framework is useful for geospatial application,healthcare, smart city, smart grid and smart home etc. [49,9].

devices such as smart phones and mobile GIS interfaces [9,67,47,41,12,54]. We consider this technology for integrating it with

health GIS for better management of geospatial health data. Fog computing helps to reduce latency and increase throughput at

the edge of different clients in cloud computing environment (See Fig. 3). The next section describes health SDI approaches for

sharing geo-health data.

2.5 GeoHealth SDI

Particularly, for health sector, disease data sharing is a significant issues with respect to collaborative preparation, recovery and

response stages of numerous disease control mechanism. Disease phenomena are strongly associated with geospatial and related

temporal factors. For tackling these situation, Cloud-SDI framework provided dynamic and real-time approach to represent

disease information through the maps on common browsers [55]. However, data integration, interoperability, data heterogeneities

and cartographic representation are still major challenges in Cloud-SDI framework for health applications. Such barriers in

extensively sharing geospatial health data restrain the effectiveness in understanding and responding to disease outbreaks. For

overcoming such challenges in health SDI, sharing and mapping of geospatio-temporal disease information in an inter-operable

framework based on OGC specifications under fog computing environment is the need of the hour [30].

From the above related work, it is clear that, it requires an efficient, reliable and scalable fog computing based SDI framework

for sharing and analysis of geospatial big data across the web. Next section describes the proposed architecture based on fog SDI

framework. Various approaches like compression techniques, overlay analysis, energy saving scheme, scalability issues, time

analysis are discussed with respect to the geospatial data of malaria vector borne disease positive maps of Maharastra, India

from 2011 to 2014.
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Fig. 4 Spiral process model for the development of GeoFog4Health starting from requirement stage, analysis, designing, coding, testing and complete

framework observation.

3 Proposed Framework

For developing the prototype of GeoFog4Health i.e. Fog-based SDI framework, the primary emphasis is on Object Oriented

Software Engineering (OOSE) method that involves the configuration of models that capture the real world actors of the system

and their unique behavior for each of the design stages with conglomerate the time critical nature and strong user focus [53].

This is a usual way to explain the environment in that the system and its actors would be groomed in an evolving manner. This

has helped in reducing the semantic gap between the developed framework and the real world applications. Figure 4 has shown

the complete spiral model for development and implementation of GeoFog4Health. In OOSE approach, the software develop-

ment process adopts a sequence of steps including requirements prerequisite plan, analysis, development strategy, operation and

testing, complete module and framework observation. The process is incremental in nature and each of implementation phase

was refined with the analysis and developing stages through evaluation and testing of a completed module. Further, the incre-

mental development strategy of the proposed framework that has allowed the constructing the framework to be tackled in smaller

parts that are more controllable portions with increasing complexity. So, there are different modules defined in GeoFog4Health.

Table 1 presents the various prototype implementations with functionality description. In addition, it is expected that each phase

would reveal a unique features related to the requirements of infrastructure and enable exploration of the interfaces between fog

SDI framework components. The requirements stage of application design aims to specify the behavior of the framework from a

user’s perspective [53]. From the above defined four phases, next section describes the details of geo-health database for malaria

vector borne disease positive maps of Maharastra, India from 2011-2014.
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8 Rabindra Kumar Barik1 et al.

Table 1 Implementation of proposed architecture.

Phases Function Description

I Geospatial database for malaria vector borne disease

positive maps of Maharastra, India from 2011-2014

II Proposed GeoFog4Health framework and Lossless

compression with overlay analysis of the geospatial

data on thin and mobile client environment

III Energy saving, cost analysis scheme and scalability

issues for GeoFog4Health framework

IV time analysis and comparison analysis for Cloud-SDI

and GeoFog4Health framework

3.1 Malaria vector borne disease positive maps of Maharastra, India

Maharashtra is a state in the western region of India and the second most populous state and third largest state by area in India.

Maharashtra is bordered by the Arabian Sea to the west, Karnataka to the south, Gujarat and the Union territory of Dadra and

Nagar Haveli to the northwest, Telangana to the southeast, Madhya Pradesh to the north, Chhattisgarh to the east and Goa to

the southwest. This state covers an area of 307,731 km2 that accounts for 9.84% of the total geographical area of India. There

are 41000 villages and 378 urban centers in Maharashtra. Maharashtra has one of the highest levels of urbanization among all

Indian states. The secondary health data positive cases of malaria and number of death due to malaria are collected from the

National Vector Borne Disease Control Program (NVBDCP), New Delhi. Climatic data includes all the surface parameters like

temperature, rainfall, humidity, wind speed etc. are collected from the National Data Centre (NDC) and India Meteorological

Department (IMD), Pune, India.

The inputs of positive cases and the deaths (number of persons) were fed in Quantum GIS software and region wise maps

with district boundaries were generated. It includes incidence of malaria with the interval of 2011-2014 to see the trends and

patterns of the incidence of Malaria in Maharashtra. Finally find out the trend with help of linear regression equation: y = a +

bx where b value shows the rate of change per decade. In this way, the trend of malaria from 2011 2014 is generated in form

of a Map. Death due to malaria from 2011-2014 is depicted in Figure 5. The creation of geospatial database are significant and

tedious assignment with respect to efficacy of SDI development and implementation. Integrated geo-health database creation

include stages such as input data such as geo-health and related attributes data, its authentication by connecting with same set

of data. Geospatial database delivers a platform in that organizations interrelate with technologies to nurture actions for spend-

ing, handling and generating geo-health data. The development of geo-health database is supported in various administrative

and political levels through decision-making functions. Quantum GIS 2.14.3 is the OS GIS software selected to examine the

competences with respect to creation of geospatial database. The procedure model of geo-health database creation is frequent or

recurring in nature. Each operation improved the study and strategy steps through assessment and testing of a complete module
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Fig. 5 Malaria positive maps of Maharastra, India from 2011-2014.

component. In module components, Open source Quantum GIS has set up malaria geo-health database using political map of

India. Quantum GIS is also used for integrated geo-health database creation. After geo-health database is created, there is a need

for process model that could perform accurate analysis of geo-health data.

3.2 Proposed Architecture

This section describes various components of the proposed GeoFog4Health framework and discusses the methods implemented

in it. The main components are hardware, software and methods used for compression of geospatial big data. We employed Intel

Edison and Raspberry Pi as fog computing device in proposed GeoFog4Health architecture [9]. Intel Edison is powered by a

rechargeable lithium battery and contains dual-core, dual-threaded 500MHz Intel Atom CPU along with a 100MHz Intel Quark

micro controller. It possess 1GB memory with 4GB flash storage and supports IEEE 802.11 a,b,g,n standards. It connects to WIFI

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
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Fig. 6 Conceptual diagram of the proposed GeoFog4Health architecture with four layers ( client-tier layer, fog layer, intermediate fog layer and cloud

layer).

and used UbiLinux operating system for running compression utilities. Raspberry Pi B Platforms have been used. Raspberry Pi

consists of a 900MHz 32-bit quad-core ARM Cortex-A7 CPU with 1GB RAM. For WiFI connectivity in Raspberry Pi, it has

been used WIFI dongle of Realtek RTL8188CUS chip set. In the proposed framework, we used both Intel Edison and Raspberry

Pi in every fog node [20] for better efficiency in time analysis discussed in later sections.

Figure 6 shows the proposed GeoFog4Health framework that consists of four layers namely, cloud, fog, intermediate fog and

client-tier layer. Cloud layer is mainly focused on overall storage and analysis of geo-health data. In cloud layer, we implemented

GeoSpark [64] for real time geospatial big data processing on the top of Hadoop Ecosystem.

Fog SDI layer works as middle tier between client-tier layer and intermediate fog SDI Layer. It has been experimentally

validated that the fog SDI layer is characterized by low power consumption, reduced storage requirement and overlay analysis

capabilities. In fog SDI layer, all fog nodes were developed with Intel Edison and Raspberry Pi processor for geo-health data

analysis. Additional intermediate fog SDI layer were added between fog SDI layer and Cloud-SDI layer for reducing load

overhead in fog SDI layer. Thus, intermediate fog SDI layer were used for refinement of processing and temporary storage of

geo-health data. In client-tier, there are three categories of users namely, thick, thin and mobile clients respectively. Processing

and analysis of geo-health data can be done using any of these clients types. In the proposed framework, the processing at each

fog node consume energy. We realized that energy should be properly managed. We experimented different overlay analysis and

lossless compression techniques within proposed GeoFog4Health framework.
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Table 2 Result of compression in proposed framework using malaria geo-health data.

Geo-health Data Original Data Size (MB) .rar Compressed Size

(MB)

.gzip Compressed Size

(MB)

.zip Compressed Size

(MB)

India boundary 2.96 2.5 2.2 1.2

Death Mapping .98 .55 .41 .32

Fig. 7 Integrated geo-health database of Malaria.

3.3 Data Compression and Overlay Analysis

In proposed framework, we used well known popular compression algorithms for reduction of data size. The concept of data

compression was used in several areas such as network and mobile SDI framework [68,16,34]. In present study, we translated

various compression techniques from mobile platform to the proposed framework [44]. After completion of compression mod-

ule, resultant compressed data at fog layer is transmitted to the cloud. Cloud layer could store the compressed data or decompress

the data before processing, analysis and visualization. We used only lossless compression techniques such as .rar, .gzip, .zip etc..

Various lossless compression techniques applied at fog Layer lead to results summarized in Table 2. Overlay analysis was per-

formed for malaria vector borne disease positive maps of Maharastra, India. Overlay analysis is a data analysis technique that

superimposed various geospatial data in a unique platform for better analysis of vector and raster geospatial data. In the present

sound, we found two shape files related to malaria information. Again, these two shape files were overlapped with Google satel-

lite layer. We used the malaria death mapping data of Maharastra from 2011-2014 was processed in GeoFog4Health. Overlay

analysis of various raster and vector data of particular areas were performed. Initially, the developed geospatial datasets are

opened with Quantum GIS and performed some join-operations with the help of these datasets [7]. Desired overlay operation

was done with standalone application and refereed as thick client operation as shown in figure 7. Figure 7 visualizes the Open

Street maps with other two shape files. These files are opened in Quantum GIS desktop environment. QGISCloud plugin was
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12 Rabindra Kumar Barik1 et al.

Fig. 8 Overlay operation on thin client environment in QGIS cloud [5].

installed and added in Quantum GIS desktop environment. This QGISCloud plugin has the unique capability of storing various

vector and raster data set. This plugin was linked with the cloud database for storing and performing overlay analysis. After

storing in desired cloud database, it generated the thin and mobile client link for visualization of both raster and vector data.

Figure 8 and Figure 9 shows the overlay analysis on thin and mobile clients respectively. In this way, the overlay analysis is an

useful and simple technique for geo-health data visualization. Next section describes better strategy for energy efficiency and

management in GeoFog4Health framework.

3.4 Energy Efficiency

In this section, an analytical model was introduced for the energy saving management of intermediate fog layer in Geo-

Fog4Health. Proposed framework investigated the energy saving management using finite buffer batch service buffering system

that can change over time and multiple vacations. We studied that the overall message delay in the uplink channel and perfor-

mance of mean number of data packets in the buffer, buffering delay and probability of blocking in the fog layer. Lots of energy

is required for handling heavy traffic of fog node data from fog and intermediate fog layer. With vacation mode operation, in-

termediate fog layer node does not listen to the node of fog layer continuously but it alternates the active state and the vacation

state. It has considered a finite buffer batch service buffering system with multiple vacation and changeover time.

Let, it has assumed a and b as the threshold values of activating the intermediate fog layer service and service capacity,

respectively. Whenever the intermediate fog layer node finished all its work, it goes to vacation, an internal timer that is expo-

nentially distributed with parameter θ is then started and the intermediate fog layer node awakes to check the buffer content of

the fog layer. When upon awaking the intermediate fog layer finds that there are still less than j(0 ≤ j ≤ a−2) data frames, it

goes to vacation again. If the number of data frames in the buffer of the fog layer is a−1 either at a service completion epoch

or at a vacation termination point, the intermediate fog layer service will wait for some more time that is called changeover
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Fig. 9 Overlay operation on mobile client environment in QGIS cloud [2].

time. The changeover time is exponentially distributed with parameter γ . If there is an arrival during the changeover time, the

intermediate fog layer service will start immediately, otherwise, it will go for a vacation period. If after a vacation period, the

intermediate fog layer finds a non-empty buffer, it serves all data frames present at that point and also all new data frames that

arrive while the intermediate fog layer service is working, until the buffer becomes empty again at the fog layer end and the

whole procedure is repeated.
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3.4.1 Analytical Model

It has considered a Markov chain with the state space {(i, j)|0≤ i≤ N, j = 0,1
⋃
(a−1,2)} where i gives the buffer size and j

represents the state of the server. The process is in the state (i,0) if there are i data frames waiting in the buffer and the server

is in sleep mode. It is in state (i,1) if there are i data frames waiting in the base station buffer and the mobile station service

unit is busy and it is in state (a−1,2) if there are a−1 data frames in the buffer and the server is waiting in the system. Using

probabilistic argument at steady state, we obtain the following system of equations

βP0,0 = αP0,1, (1)

βPi,0 = βPi−1,0 +αPi,1, 1≤ i≤ a−2, (2)

(β +θ)Pa−1,0 = βPa−2,0 + γPa−1,2, (3)

(β +θ)Pi,0 = βPi−1,0, a≤ i≤ N−1, (4)

θPN,0 = βPN−1,0, (5)

(β +α)P0,1 = βPa−1,2 +α

b

∑
s=a

Ps,1 +θ

b

∑
s=a

Ps,0, (6)

(β +α)Pi,1 = βPi−1,1 +θPi+b,0 +αPi+b,1, 1≤ i≤ N−b, (7)

Using normalization condition
N
∑

i=0
Pi,0 +

N
∑

i=0
Pi,1 +Pa−1,2 = 1 we recursively solved the equations

3.4.2 Performance Measures

The state probabilities of the incoming job request at arrival times are known, we can find out various performance measuring

parameters like average number of job requests in the buffer Lq , average time spending in the buffer Wq and the probability

of blocking (PBL). They are given by Lq = ∑
N
i=1 iPi,0 +∑

N
i=1 iPi,1 + (a− 1)Pa−1,2 . The probability of blocking is given by

PBL = PN,0 +PN,1 . The average time spending in the buffer using Little’s rule is Wq = Lq/β ′ , whereβ ′ = β (1−PBL) is the

effective arrival rate.

3.5 Cost Analysis

In this section, it has been determined that the expected cost per unit time and optimize the threshold values for activating the

server (a), batch service capacity (b) and service rate (µ) for downloading the data frame, so that the expected cost function can

be minimized. Here it has used the genetic algorithm to find out the minimized expected cost.

Let F be the total expected cost per unit slot. Using the definitions of each cost element and its corresponding system

characteristics, it has
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F =C1Lq +C2Pb +C3βPBL+C4α +C5γ +C6θ ;

C1= the cost of each slot for every incoming frame waiting in the base station buffer,

C2=fixed cost per slot when the base station buffer is blocked,

C3= fixed cost for each lost data frame when the base station is blocked,

C4= the transmission cost per slot when the mobile station is busy,

C5= fixed cost per slot when the mobile station is in change over time,

C6= fixed cost per slot when the mobile station is on sleep.

Among different technique used for optimizing, the genetic algorithm (GA) is an efficient optimization technique for find the

value based on process of natural selection process. This algorithm has implemented particular rule to minimize the parameter

based on some fit value. This algorithm was implemented by Holland in 1975. Some of the advantages of a GA has defined

below:

1. Provide efficient, effective techniques for optimization mainly in scientific and engineering application.

2. It is not using conventional derivative calculation for finding out the cost function.

3. There are many ways to speed up and improve a GA based application at the same time can search from large sampling

space.

4. Inherently parallel; easily distributed and can accommodate many number of variables.

5. Optimizes the variables values with highly complicated manner. In this algorithm best is not always picked, and worst is not

necessarily excluded.

6. Causes movement in the search space and and provides more than one optimum values. Restores lost information to the

population.

7. The optimization can be done by the genetic algorithm on encoded variables.

8. Gives satisfactory performances for engineering, scientific research and machine learning application.

9. Obtain the fitness value to determine solutions and no complicated mathematical computations are used. Mixture of greedy

exploitation and adventurous exploration.

In traditional methods have lots of disadvantages. Genetic algorithm overcome few of this and provide significantly improved

performance. Here the strings are mentioned in binary values and the bit value 0 and 1 represent the gene. The fitness value is

generated by the associated function and constraint checking has done.

From the above analysis, it has been found that suitable mathematical model has required for efficient energy management is

the need of the hours. But whenever, it will talk about processing of huge amount of real time data processing in GeoFog4Health,

it is required high batch processing infrastructure that has been discussed in the next section.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



16 Rabindra Kumar Barik1 et al.

Fig. 10 Effect of (ρ) on Wq with varying a .

3.5.1 Numerical Results

The main objective of this section is to demonstrate the relation between the different system parameters. Figure 10 shows the

effect of utilization factor(/rho) on the average number of packets waiting in the buffer or queue length (Wq) for different values

of a. From Figure 10, it can observe that for all values of a the Wq increases as utilization factor (ρ) increases and for higher

utilization factor delay in the buffer have reduced. We have observed that for higher value of a more buffer delay in the system.

The effect of buffer size(N) on loss probability for vacation and non-vacation is considered in Figure 11 . We observe that loss

probability monotonically increases with the increase of buffer size. Further, the loss probability in case of vacation is slightly

higher than the one obtained in case of non-vacation. It also illustrates dependence of the average waiting time on θ and γ .

We observe that for fixed service rate the average waiting time decreases as the arrival rate θ increases. Further with fixed θ it

increases when the service rateγ increases. Hence we can setup an admissible arrival rate and the sufficient service rate in the

system in order to have lower average waiting time.

Table 3 and 4 establish the impact of a and b on the cost function for different values of ρ , respectively. From Table 3, it can

visualize that the minimum expected cost first decreases, again it increases as ρ increases, for fixed value a. But for fixed ρ , the

minimum expected cost increases as a increases. Similarly, in Table 4 the minimum expected cost decreases as batch size (b)

increases, for fixed ρ . The minimum expected cost first decreases, again it increases as ρ increases, for fixed batch size b. Here

it has implemented the experiment by considering the batch size (b) in the range of 8 to 17 and utilization factor (ρ) from 0.1 to

0.9. We have seen that the lowest optimum cost is 459.44 at ρ = 0.5 and batch size (b = 17).

Figure 12 presents the number of iteration effect on the cost function. We find that average cost is more than minimum value
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Fig. 11 Impact of γ and α on (Wq).

Table 3 The optimal values a∗, F∗ for various values of ρ .

a

ρ 3 4 5 6 7 8 9 10

0.050000 1873.872 1886.680 1894.568 1897.380 1898.142 1898.263 1898.264 1898.271

0.100000 1021.619 1043.866 1071.289 1095.680 1112.885 1119.275 1119.339 1119.405

0.200000 642.155 682.434 728.687 780.731 837.031 874.026 875.247 876.578

0.300000 539.406 589.843 640.612 694.233 751.928 796.108 798.399 800.897

0.400000 498.252 549.769 599.219 649.409 702.090 746.139 748.970 752.037

0.500000 485.287 533.485 579.476 625.593 673.451 716.289 719.398 722.745

0.600000 490.683 533.916 575.690 617.734 661.351 702.648 705.899 709.383

0.700000 509.445 547.391 584.812 622.926 662.724 702.220 705.527 709.064

0.800000 538.259 571.186 604.427 638.827 675.128 712.605 715.910 719.444

0.900000 574.741 603.147 632.529 663.480 696.558 731.869 735.131 738.621

1.000000 617.134 641.575 667.474 695.265 725.380 758.452 761.640 765.059

for all iterations.

3.6 Scalability

Scalability is the ability of proposed GeoFog4Health architecture to handle a growing amount of geospatial big data for analysis

and visualization. In fog layer, it gives the horizontal scalability for processing of large amount of geospatial data. It also keeps

tracks of the proposed framework in cloud layer, it has implemented GeoSpark for scalability process within Hadoop Ecosys-
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Table 4 The optimal values b∗, F∗ for various values of ρ .

b

ρ 8 9 10 11 12 13 14 15 16 17

0.1 2086.34 1869.01 1695.75 1554.48 1437.16 1338.25 1253.82 1181.05 1117.92 1063.02

0.2 1117.44 1011.76 927.85 859.86 803.96 757.62 719.09 687.17 661.00 639.91

0.3 805.50 737.21 683.76 641.38 607.57 580.61 559.25 542.506 529.577 519.78

0.4 660.56 610.85 573.29 544.64 522.77 506.19 493.75 484.569 477.930 473.26

0.5 591.45 549.20 520.34 499.84 485.26 475.01 468.02 463.47 460.76 459.44

0.6 578.83 527.09 500.72 484.58 474.47 468.39 465.12 463.89 464.16 465.52

0.7 636.77 535.72 504.67 489.59 481.87 478.46 477.84 479.142 481.78 485.40

0.8 815.96 571.03 527.01 509.89 502.82 500.93 502.12 505.324 509.87 515.38

0.9 1218.08 629.03 563.98 542.13 534.25 532.91 535.23 539.82 545.87 552.92

Fig. 12 Impact of cost on number of iteration.

tem [24,40] in cloud. To handle large volume of geospatial data, we used GeoSpark as it is an in-memory cluster computing

system. It is an extension of Apache Spark that supports geospatial operations, indices and data types [25,64].

The architecture of GeoSpark consists of Geospatial Resilient Distributed Dataset Layer, Geospatial Query Processing Layer

and Apache Spark layer. Geospatial Resilient Distributed Dataset Layer extends the Spark. There are three types of Resilient

Distributed Dataset (RDD) in this layer i.e. Point, Rectangle and Polygon RDD. It contains geometrical operations library

for every RDD. Geospatial Query Processing Layer is used to perform different types of geospatial queries. Geospark uses

MapReduce framework derived from Apache Spark. Apache Spark consists of all the components present in Spark. It performs

loading and querying data. It is much faster than SpatialHadoop that is run in MapReduce framework. It is investigated that
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Fig. 13 Run time analysis comparison of SpatialHadoop and GeoSpark.

GeoSpark tool is powerful and handy to use and can efficiently handles geospatial big data analytics. It has the capability to

add more functionalities and operations in each of these tools as per the requirements. Figure 13 shows the runtime analysis

between SpatialHadoop and GeoSpark according to the cluster size. From the graph, it is clear that GeoSpark has the edge over

SpatialHadoop for geospatial big data analytics when the cluster size compared with time span for geospatial big data processing.

From the above analysis, we found that the addition of GeoSpark at Cloud-SDI layer shown greater processing power in terms of

real time geo-health data size. In GeoFog4Health, we observed that the fog node can be replace with Raspberry Pi for better run

time analysis of various data set. It reduces the analysis overhead to the cloud server as compare with Intel Edition as] discussed

in the next section.

4 Results & Discussions

4.1 Analysis of Computation Time

We used Intel Edition and Raspberry Pi as fog device in proposed GeoFog4Health architecture. Processing time of Intel Edison

is greater time than Raspberry Pi [20]. Intel Edison has processing time of order NLog(N) where N defines the size of dataset. We

found that Raspberry Pi completed the same process almost two times faster than Intel Edison. The main network was designed

in framework between the client-tier layer and the cloud layer. It is assumed that the mean arrival rate of transmitted data would

be once per minute assuming that the fog node is placed in the locations where only a small number of devices in that area

exist. The average waiting time for each fog node was calculated using the Littles Law [1]. We used malaria positive geospatial

data for the different bench-marking experiment. We calculated average memory load, CPU processing time in percentage and

power consumption (in Watt). Figure 14 shows performance comparison between Cloud-SDI and GeoFog4Health framework

using Intel Edition and Raspberry Pi processor. From the comparison analysis, it is clear that while running one set at a instant

of time, the average waiting time for Cloud-SDI framework is 189:45 seconds, and the average waiting time for GeoFog4Health

with Intel Edition processor is 73:57 seconds where as with Raspberry Pi has around 10:20 seconds. Also, the service rate with

Raspberry Pi is one third of Intel Edition in GeoFog4Health framework. We found that the GeoFog4Health framework with
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Table 5 Comparison of Cloud-SDI and proposed architecture.

Characteristics Cloud-SDI Proposed architecture

Bandwidth Requirements

and Internet Connectivity

In this framework, it requires clients

to have network connectivity to the

cloud server for the entire duration

of services and bandwidth require-

ments grow with the total amount of

geospatial data generated by differ-

ent varieties of clients.

In this framework, it operates au-

tonomously to provide uninter-

rupted services even no or intermit-

tent Internet connectivity and net-

work bandwidth requirements grow

with total the amount of data that

need to be process and sent to the

cloud server after being filtered by

the fog layer and intermediate fog

layer.

Size At cloud layer, processing has done

with large amount of geospatial

data at a time and each typically

contains tens of thousands of inte-

grated servers

At fog layer, a fog node in each lo-

cation can be small or as required to

meet another fog node for customer

or client demands.

Operation In Cloud-SDI framework, it oper-

ates in facilities and environments

selected by the specific domain with

well trained technical experts.

In GeoFog4Health framework, it

operates in environments that are

primarily determined by customers

or their requirements. The frame-

work may not be controlled or man-

aged by anyone and may not be op-

erated by technical experts.

Deployment It requires highly sophisticated and

suitable strategically planning for

deployment

It requires minimal planning for de-

ployment but challenges is to con-

nect with one fog node to other in-

termediate fog node.

Server Locations It requires centralized server in a

small number of big data centers

distributed environment

It often requires distributed servers

in many locations and over large

geographical areas, closer to users

along with fog-to-fog range or

cloud-to-thing range. Distributed

fog nodes and systems has been

controlled either in centralized

or distributed manners depending

upon the clients/fog node.
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Fig. 14 Performance comparison between Cloud-SDI and GeoFog4Health framework using Intel Edition and Raspberry Pi.

Raspberry Pi has consumed 199mW/s where as GeoFog4Health framework with Intel Edition has 522mW/s when both these

frameworks are in active states.

4.2 Comparison of Cloud-SDI and proposed architecture

Both Cloud-SDI and GeoFog4Health framework have specific meaning for a service range with in the cloud computing en-

vironment and client-tiers that provide the mutual benefit to each other and interdependent services that leads to the greater

storage capacity, control and communication possible anyplace within the specified range [18]. Table 5 outlines the comparison

characteristics of Cloud-SDI and GeoFog4Health framework.

5 Conclusions

In this study, we proposed and validated a Fog-based SDI framework for enhanced analysis of geo-spatial health data. Intel

Edison and Raspberry Pi were used as fog computers in developed prototypes of proposed architecture. Fog devices reduced the

storage requirements, transmission power leading to overall efficiency. Fog computing enhances the data analysis by increasing

the throughput and reducing the latency. Geo-health data of malaria vector borne disease positive maps of Maharastra state in In-

dia was used for case study. We analyzed the energy saving and cost analysis for proposed GeoFog4Health architecture. Further,
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the comparison of computation time showed the efficacy of proposed fog architecture over Cloud-SDI for enhanced analysis of

geo-health data. Thus, the fog devices add edge intelligence in geo-health data analysis by introducing local processing within

cloud computing environments.

In future, we would like to add intelligent processing functions and feasibility aspects of fog Layer within SDI framework

at national level in coastal, education, watershed, natural resource, energy and environmental monitoring sector. We plan to use

mist computing in proposed framework for geospatial data analysis and management.
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