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Abstract 

Geospatial technology is still facing a lack of “out of the box” distributed processing 
solutions which are suitable for the amount and heterogeneity of geodata, and 
particularly for use cases requiring a rapid response. Moreover, most of the current 
distributed computing frameworks have important limitations hindering the 
transparent and flexible control of processing (and/or storage) nodes and control 
of distribution of data chunks. We investigated the design of distributed processing 
systems and existing solutions related to Geospatial Big Data. This research area 
is highly dynamic in terms of new developments and the re-use of existing solutions 
(that is, the re-use of certain modules to implement further specific developments), 
with new implementations continuously emerging in areas such as disaster 
management, environmental monitoring and earth observation. The distributed 
processing of raster data sets is the focus of this paper, as we believe that the 
problem of raster data partitioning is far from trivial: a number of tiling and stitching 
requirements need to be addressed to be able to fulfil the needs of efficient image 
processing beyond pixel level. We attempt to compare the terms Big Data, 
Geospatial Big Data and the traditional Geospatial Data in order to clarify the 
typical differences, to compare them in terms of storage and processing 
backgrounds for different data representations and to categorize the common 
processing systems from the aspect of distributed raster processing. This 
clarification is necessary due to the fact that they behave differently on the 
processing side, and particular processing solutions need to be developed 
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according to their characteristics. Furthermore, we compare parallel and 
distributed computing, taking into account the fact that these are used improperly 
in several cases. We also briefly assess the widely-known MapReduce paradigm 
in the context of geospatial applications. The second half of the article reports on 
a new processing framework initiative, currently at the concept and early 
development stages, which aims to be capable of processing raster, vector and 
point cloud data in a distributed IT ecosystem. The developed system is modular, 
has no limitations on programming language environment, and can execute scripts 
written in any development language (e.g. Python, R or C#). 
 
Keywords: Distributed computing, Geospatial Big Data, Geo Big Data, Raster 

data tiling, Data assimilation, Remote sensing data analysis 
 

1. INTRODUCTION 

In recent years, distributed computing has reached many areas of computer 
science, including geographic and remote sensing information systems (Di, 2004; 
Yang, 2008; Yang et al., 2008; Wang et al., 2015). However, distributed data 
processing solutions have primarily been focused on processing simple structured 
documents rather than complex geospatial data. Hence, migrating current 
algorithms and data management to a distributed processing environment may 
require a great deal of effort. 
 
The volume and variety of the available data are evolving in an unprecedented 
way, exceeding the capabilities of traditional algorithm performance and 
hardware/software environments in terms of data management and computation 
(Manyika et al., 2011; IDC, 2012; Evans and Hagen, 2013). Higher efficiency is 
therefore required in order to exploit the available information derived from 
Geospatial Big Data (Eldawy and Mokbel, 2015; Hoersch, 2016; Doherty, 2016). 
Consequently, geospatial analysis needs to be reformed to exploit the capabilities 
of current and emerging computing environments via new data management and 
processing concepts (Lee and Kang, 2015; Li et al., 2016). In this paper, we focus 
on the gap between the possibilities offered by current computing capabilities and 
the available geospatial solutions, in the specific context of the joint processing of 
big raster, vector and point cloud data sets in a distributed environment. The 
currently available solutions require highly-trained software engineers (with a 
geospatial background) to maintain them, and have high levels of complexity. Our 
goal is to develop a solution for the processing of Geospatial Big Data in a 
distributed ecosystem which provides an environment for running algorithms, 
services, various data partitioning strategies and processes, without limitations in 
terms of programming language or distribution among computational nodes. Our 
principal motivation is that spatio-temporal data requires an approach to partition 
and distribution among processing nodes which is different from “ordinary” Big 



International Journal of Spatial Data Infrastructures Research, 2017, Vol.12, 85-111 

87 

Data. Our aim is to provide a tool which enables the supervision of data distribution 
and association according to the type of analysis used. Moreover, we aim to 
include basic distribution and association strategies for common geospatial 
analytical tasks. To be able to provide this functionality, further investigation is 
needed into the common image analysis processes and which distribution 
techniques are appropriate for these. 

In the remainder of this paper, we introduce the relevant definitions, describe the 
theoretical background to the research and phrase the research challenges in 
more detail. We include this investigation since it forms a basis for the fundamental 
decisions involved in our work. For instance, we identified the limitations of existing 
solutions in terms of data formats, distribution methods and other aspects, and 
made decisions on the development environment based on these. Following this, 
the development concept and architectural model is introduced and illustrated. We 
give a clear description of the problems faced in both the theoretical composition 
of the framework and the implementation of the modules. 
 
In the last section, we provide an outline of the concept of the implementation in 
terms of four different aspects. These are as follows: the requirements and 
intended functionality of the framework, namely the Data Catalogue module; the 
Tiling and Stitching module responsible for data distribution (tiling) and association 
(stitching) between the processing nodes; the Distributed Processing module, with 
a description of system requirements; and the Data Distribution module. In the final 
section, we provide some experimental details of an application example focusing 
on common data access patterns using a case study on the detection of 
waterlogging. We conclude our paper with an overview of the experience gained 
through our study, including the challenges faced, related methodology and first 
results for each focus area, and a description of future goals and implementation 
plans. 

2. PREVIOUS AND RELATED WORK 

In the following paragraphs, we present some definitions related to our research 
for the sake of clarity and common understanding. We provide summaries of the 
definitions used throughout our work and their existing widely known solutions. 
This is of particular importance, as their differences in terms of processing 
characteristics require different approaches during analysis. The difference 
between the terms “parallel” and “distributed” processing is highlighted, since in 
many cases their usage is misunderstood or confused. We introduce the definition 
of distributed geospatial computing and the MapReduce programming model; 
these methods are included because they are frequently used in the more recent 
application developments, and because it is essential to take into account their 
advantages and disadvantages in the area of geoscience. We also share our 
thoughts about the geospatial scientist’s requirements for a distributed processing 
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system. 

2.1. Definition of Geospatial Big Data  

There are many definitions of Geospatial Data (also known as spatial data or 
geodata, among other terms), depending on the professional background of the 
author. However, all of these share a unique characteristic: the geographic location 
of the phenomena is of principal importance. Based on the nature of the digital 
representation of continuous space, four different data types can be distinguished: 
vector, raster, point clouds and networks. Of these, the vector and raster 
representations of Geospatial Data were introduced following the early 
development of Geospatial Information Systems (Gomarasca, 2009). Due to the 
developments in information and geospatial technology, we can now have a higher 
abstraction of representations such as point clouds or graph networks (Karimi, 
2014). An additional location-aware data type also examined by GIS analysts is 
geo-tagged, text-based social media data, which requires a specific approach for 
collection and processing (Ivan et al., 2017). Like Big Data (Laney, 2001; Jewell et 
al., 2014; Karimi, 2014; Sivarajah et al., 2016), Geospatial Big Data is defined by 
its volume, variety and velocity exceeding the capability of spatial computing 
technology (Lee and Kang, 2015; Li et al., 2016). In Table 1 below, we illustrate 
the difference between the terms “Big Data”, “Geospatial Big Data” and “Geospatial 
Data”, in order to clarify what we consider these designations to be. Although some 
authors introduce numerical limitations for those categories in terms of million 
instructions per second (MIPS) needed for processing, we refrain from providing 
exact numbers to distinguish between them. The reason for this is the fuzziness of 
category margins, which depend on a number of variables such as the amount and 
variety of processed data, the actual use case, the extent and density of data, and 
the capabilities of the hardware and software environment, among others. The 
content of the following table is valid for a user environment with the average 
computational capacity of 2016. 

Table 1: Characteristics of Big Data, Geospatial Big Data and Geospatial Data with 
a comparison of the most common solutions 

 Big Data Geospatial Big Data Geospatial Data 

R
e
p

re
s
e
n

ta
ti

o
n

 

ra
s
te

r 

Photos, graphics, security 
surveillance images, traffic 
sensor images, medical 
records (x-ray, retinal 
scans, fingerprints, etc.) 

Time series of satellite images, 
orthophotos, global, country-
wide, regional or local coverage, 
required by spaceborne, 
airborne or UAs, global 
topography data, etc. 

Thematic cartographic maps, 
topographical maps, 
orthophotos, satellite images, 
hyperspectral images, DEMs 
in raster format 

v
e
c
to

r 

2D, 3D graphics in vector 
format 

Global land cover, earth 
observation data, environmental 
data, national cadastral data, 
watercourse, utility and 
transportation networks with 
attributes etc. 

National, regional, local 
administrative data, earth 
observation data, 
socioeconomic data, 
environmental data 
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p
o
in

t 

c
lo

u
d
 3D scans of objects (in 

robotics, medical, 
automotive, art, 
archaeology, geology, etc.) 

Terrestrial MMS data, LiDAR 
data, 

Classified, filtered point clouds 
(subset of LiDAR or MMS 
data) 

te
x
t 

b
a
s
e
d

 

Social networks, 
comments, text messages, 
business data, logs, 
administrative data, 
sensors text data, 
transportation/travel/trade 
data, life science data 

Text-based big data 
complemented with geolocation, 
geosocial data, (coordinates, 
address, geographical names, 
etc.) 

Track logs, coordinates, 
attributes, indices stored in text 
files 

S
to

ra
g

e
 a

n
d

 p
ro

c
e
s
s

in
g

 

b
a
c
k
g

ro
u

n
d

 

ra
s
te

r Wide column store, 
distributed file system,  

Array database/key-value store, 
RDD, wide column store  

OB-RDBMS with extension to 
raster or traditional file-based 
image storage processing 
software 

v
e
c
to

r 

Relational DBMS, wide 
column store 

Distributed file system, relational 
DBMS complemented with 
spatial extensions, or wide 
column store and key-value 
store with GIS functions 

OB-RDBMS 

p
o
in

t 
c
lo

u
d
 Key-value store Key-value store, RDD OB-RDBMS with extension to 

point cloud storage and 
processing or conventional 
software solutions 

te
x
t 

b
a
s
e
d
 Distributed file system, 

document store DBMS, 
wide-column store,  

Distributed file system, 
document store DBMS, wide-
column store, RDD  

Conventional GIS processing 
applications (often with format 
conversion) 

C
o

m
m

o
n

 s
o

lu
ti

o
n

s
 ra

s
te

r 

Apache Accumulo, 
Cloudera 

Rasdaman, SciDB, GeoTrellis, 
GeoMesa, Geowave operating 
on the top of various DB-engines 

Grass GIS, Saga GIS, Orfeo, 
OSSIM, gvSIG, QGIS, 
PostGIS Raster etc. 

v
e
c
to

r Cassandra, 
HBase,Distributed file 
system 

Apache Hadoop, Hive, HBase, 
Accumulo, MongoDB, Neo4j with 
extension for spatial functions 
and existing libraries (e.g. MapR) 

PostGIS, SpatiaLite, MySQL, 
QGIS, 

p
o
in

t 
c
lo

u
d
 Distributed file system Apache Spark with extension for 

spatial functions (e.g. Spark 
LiDAR) 

PostGIS, LasTools, rLiDAR, 
Geo-Plus, Grass GIS- LiDAR 
Tools 

te
x
t 

b
a
s
e
d
 Cassandra, Cloudera, 

HBase, Neo4j, CouchDB, 
MongoDB, Hortonworks, 
MillWheel 

Apache Storm, S4, Spark, Hive Desktop software (GPS 
tracklog processing etc.) 

2.2. Definitions of Parallel Computing  

A parallel computing environment may be a single computer with multiple 
processors. In general, parallel computing infrastructure is located within a setting 
where several processors are installed in a server rack or separate interconnected 
servers, with multiple CPUs sharing information with each other, achieved in a 
shared-memory environment, that is, the processors operate separately but 
access the same memory resources. The variables, objects and data structures in 
that environment are accessible to all the processes. The application server sends 
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requests distributed over small chunks or components, which are concurrently 
executed on each processor/server. Parallel computation can be grouped into bit-
level, instructional level, data and task parallelism. The processes need to be 
parallelizable workflows, meaning that they must be independent services 
executed in parallel and processed simultaneously. There is a widely-used 
classification called Flynn’s taxonomy (Flynn, 1966) where two independent 
dimensions, namely “Instruction” and “Data”, are distinguished in a multiprocessor 
computer architecture; both of these have two possible cases: Single or Multiple. 
Their possible combinations determine four classes: (1) SISD - Single Instruction, 
Single Data, (2) SIMD - Single Instruction, Multiple Data, (3) MISD - Multiple 
Instruction, Single Data, (4) MIMD - Multiple Instruction, Multiple Data. SISD 
corresponds to the conventional mono-processor architecture (the von Neumann 
computer) where a single data stream is processed by one instruction stream or a 
single-processor computer where a single instruction is generated by a program. 
SIMD architecture processors execute the same instruction, and each processing 
unit can operate on a different data element. This architecture is particularly 
suitable for graphics and image processing, where a higher level of regularity is 
represented. In the MISD computing environment, each processor independently 
executes a different sequence of instructions on the data, and a single data stream 
is fed into a multiple processing unit. This concept has not been widely used; only 
one case is known, from Mellon University (1971). MIMD means that each 
processor has a separate program and operates on different data. Execution can 
be synchronous or asynchronous. Most of the modern parallel computing 
environments (such as supercomputers) are based on this logic. 

2.3. Distributed Computing  

A distributed computing environment is a software and hardware system in which 
computational and storage components are located on networked computers, 
which communicate and coordinate their actions by passing messages through 
“network socket” endpoints within the network. Components interact with each 
other to achieve a common goal. Three significant characteristics of distributed 
systems are the concurrency of components, the lack of a global clock and the 
independent failure of components (Hwang et al., 2011; Lopes and Menascé, 
2016). It is clear that a distributed system is a collection of computers within the 
same network, working together as one larger computer. Network parameters 
connecting the processing nodes are determinative. Massive computational power 
and storage capacity have been gained due to this architecture. It should be noted 
that processes running in a distributed system do not share memory with each 
other in the same way as parallel computing systems; processes in a distributed 
system communicate via message queues. Two architectural models are 
suggested for distributed computing systems (Goldsmith, 2010; Anjomshoa et al., 
2015): 
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 The Client-Server model, where clients initiate communication or processing 
job(s) to the server, which distributes that request(s) to all processing and 
storage units, if necessary, to do the work and return the results to client. 

 The Peer-to-Peer model, where all units involved in the distributed system act 
as a client and server at the same time, with no distinction between client or 
server processes. 

In this environment, the computers can have heterogeneous operating systems, 
memory sizes, storage sizes, computing capacities etc. The environment allows 
for different numbers of available processing nodes, in order for the system to be 
scalable. The number of connected nodes can be increased with the desired 
volume of the data, or multiple nodes can work on the same job simultaneously; 
hence, this capability is an appropriate solution for achieving scalability and 
handling Big Data. If one of the processing nodes is disabled due to a failure, this 
will not cause the process as a whole to fail. 

2.4. Parallel Computing vs. Distributed Computing 

We found no clear distinction in the literature between the concepts of parallel and 
distributed computing, with several studies using these definitions interchangeably. 
Some studies find that differences in many features can be observed in a number 
of areas, such as the underlying architecture of memory sharing, the connection 
interfaces between multiple processes and in higher levels of abstractions of areas 
in terms of resources and management, functionality, location of services, node 
architecture etc. (Riesen et al., 1998). Exact distinctions are necessary to create 
specific operating systems for massively parallel systems and to fully exploit their 
advantages. The original goal was to use the vacant resources of an existing 
working environment in the implementation of a distributed computing concept, and 
to handle the different features of processing nodes by establishing a tightly 
coupled form of connection. However, in massively parallel computing, there are 
several restrictions on this. In general, the term ‘parallel’ refers to a memory-shared 
multiprocessor, whereas distributed refers to multiple private-memory computers, 
or a geographically distributed network of computers. Distributed computing 
involves less coupling, and thus better fault tolerance and more availability at the 
cost of less performance. Hence, there is a trend towards the convergence of 
parallel computing and distributed computing approaches, whereby a number of 
workstations are coupled to form a single computer with requirements which 
overcome those restrictions (Kambatla et al., 2014). Another possible solution 
consists of workstations integrating with the network interface to access shared 
memory directly. The appropriate choice of a computer environment to address a 
given problem is critical in terms of cost, performance and available resources. 

2.5. Distributed Geospatial Computing 

In the Encyclopedia of GIS, Phil Yang (2008) defines distributed geospatial 
computing (DGC) as “geospatial computing that resides on multiple computers 
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connected through computer networks”. Thus, “geospatial computing 
communicates through wrapping applications, such as web server and web 
browser”. According to this definition, distributed geospatial computing occurs 
when geoprocessing is carried out within a distributed computing environment. In 
the Handbook of Research on Geoinformatics (Karimi, 2009) Yu et al. focus on a 
multi-agent system with an ontology for performing distributed processing of 
geospatial data (Yu et al., 2009). The distributed processing of geospatial data is 
continuously evolving along with the evolution of computer networks, although the 
details of the historical evolution of DGC are outside the scope of this work. 
However, one milestone of this evaluation process we would like to emphasize is 
the issue of Google Earth (https://www.google.com/earth/) in 2004 (and release in 
2005) (Rosenberg, 2004; Kilday, 2005), the reason for this being that it had a 
significant effect on citizens’ everyday life and made geospatial applications 
extremely popular via wide accessibility. Furthermore, Google’s solutions still lead 
the processing of massive data sets, along with the development of easy-to-use 
interfaces (e.g. Google BigTable (Chang et al., 2006)) and also play an important 
role in open-source community developments. The abovementioned advances 
catalysed the development of cloud-based solutions, i.e. distributed systems 
supporting heterogeneous networks and infrastructural background, to exploit the 
advantages of distributed systems and to provide services on this basis for 
geospatial computing. 

2.6. The MapReduce Model 

We include a description of this recent method, which is widely used in Big Data-
related research, in order to present the context and to clarify the reasons for our 
decision to develop a different solution. MapReduce is a programming paradigm 
and implementation background in a distributed processing environment for 
handling Big Data problems (Dean and Ghemawat, 2004; Lämmel, 2008; Berlińska 
and Drozdowski, 2011; Nghiem and Figueira, 2016). The programming model is 
divided into two phases: “Mapping” and “Reducing”. The “Map” phase is 
responsible for filtering or sorting data based on given keys, while the “Reduce” 
phase collects all the partial results and combines them to provide a final result. 
 
However, in the context of GIS processing for real applications, the “Map” phase 
is not fit for purpose. One of the reasons for this is that in most cases, incoming 
data must be pre-processed and converted into a suitable representation and 
format to be used by certain algorithms. In order to process data within the “Map” 
phase, we need to distribute data across processing nodes. However, the 
MapReduce paradigm was created to handle data that can be partitioned in an 
arbitrary manner (i.e. text), and does not take into account intrinsic characteristics 
such spatial dimensions or temporal conditions. For example, a large collection of 
satellite imagery stored in GeoTIFF files is chunked into a collection of meaningless 
digital file fragments, with no header and no neighbourhood information. Most of 

https://www.google.com/earth/
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the image processing methods are pointless in these circumstances (we give a 
further explanation for this in Section 4.5). In comparison to a calculation of word 
occurrences in a certain source, for example, the required image processing task 
involves far more complex solutions. Moreover, the “Reduce” phase, whereby 
partial results are combined into a consistent set of final results, can be extremely 
complex when the spatial and temporal characteristics and possible 
inconsistencies in the partial results are taken into account. 
 
To summarize, the MapReduce model in GIS processing consists of a separate 
“Map” phase for data pre-processing, distribution and processing, and a “Reduce” 
phase which is responsible for collecting partial results into the final result(s) and 
storing them. However, both the currently available “Map” and “Reduce” 
implementations fail to fulfil the requirements for geospatial data processing. In 
view of the abovementioned limitations and the lack of available alternative 
solutions, we introduce IQLib, dedicated specifically to the distribution and 
processing of geospatial data in a distributed environment. 
 

Figure 1: Framework processing phases in MapReduce (according to Hornung 
et.al) 

 

2.7. Comparison of Existing Solutions for Raster Data Processing 

In a previous study, we collected requirements for distributed processing 
environments from the user’s perspective, for raster data processing tasks (Olasz 
et al., 2016). An attempt was made to draw a technical comparison of the existing 
solutions in terms of the following aspects: GIS data types supported for input and 
output data, case studies for which the solution has been used, GIS processing 
tasks (executable scripts) supported, database model (if applicable), processing 
language supported, data management flexibility, scalability, MapReduce support, 
operating systems supported, and programming language used in development. 
Most of the systems in this survey are built on existing systems for text-based Big 
Data processing; therefore they support their architecture and other programming 
features. We would like to emphasize that the above information was collected 

https://www.lucidchart.com/documents/edit/78d67961-fcda-4697-8da2-5c7a3c8cb0b3/0?callback=close&v=690&s=595.4399999999999
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mainly for the purpose of raster processing; hence, other GIS solutions capable of 
vector and point cloud processing were not included in the comparison.  
 
Here, we would like to highlight two main aspects that are important as they 
determine the developed framework. Firstly, support for the execution of existing 
scripts written in any language is important, since from the user’s point of view it is 
difficult to rewrite existing geospatial processing scripts and workflows capable of 
running in distributed way for another language environment. Secondly, the 
flexibility of data management is crucial, so that the user can have full control over 
data partitioning and the mechanism of distribution among processing nodes (such 
as the data partitioning of raster representations in specific formats). In practice, 
this means that users can specify, for example, the extent and environment for 
data processing; furthermore, they can specify the distribution method according 
to the nature of the job. However, it is also reasonable to hide this functionality and 
to provide default values depending on the use case or level of expertise. 

3. INTRODUCTION OF THE NEW DISTRIBUTED PROCESSING 
FRAMEWORK  

3.1. The IQLib Concept 

IQLib was initiated by three project partners within the IQmulus project (FP7 
research and development project involving a “High-Volume Fusion and Analysis 
Platform for Geospatial Point Clouds, Coverages and Volumetric Data Sets”; 
http://iqmulus.eu). These are the Institute of Geodesy, Cartography and Remote 
Sensing (FÖMI), Hungary; the Institute for Applied Mathematics and Information 
Technologies of the National Research Council (CNR-IMATI), Italy; and the Institut 
National de l’Information Géographique et Forestiere (IGN), France. The main 
outcome of the project is the IQmulus platform. The consortium-level framework 
selection was based on a previous study of the most appropriate frameworks 
satisfying the requirements of the project as a whole (IQmulus Architecture Design, 
2015). 
 
During the first two years of development in the IQmulus project, it transpired that 
some of our GIS services were not compatible with the Hadoop 
(http://hadoop.apache.org; White, 2012) infrastructure, including the Hadoop File 
System (Borthakur, 2013), which was selected as a basis for the IQmulus platform 
by the consortium. Apache Hadoop is a distributed processing framework which 
allows the processing of large data sets across computer clusters 
(http://hadoop.apache.org; White, 2012). It contains various core modules which 
support large data storage (HDFS), job scheduling, resource management 
(Hadoop YARN), parallel processing using Hadoop MapReduce and several 
Hadoop-related project products (Cassandra, Spark, HBase, Hive, etc.). The 
Hadoop File System breaks a file into a set of individual blocks and stores these 

http://iqmulus.eu/
http://hadoop.apache.org/
http://hadoop.apache.org/
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blocks in various slave nodes in the Hadoop cluster. HDFS is not concerned with 
the contents of the file, so the raw files are incomprehensible to humans. HDFS 
requires information about the predefined block size for Hadoop. 
 
In the development of IQLib, the goal is to implement a new framework which 
supports various input and output data types (raster, vector and point cloud) 
independently from Apache Hadoop or any other module based on HDFS. The 
detailed requirements for IQLib are explained in the following sections. In fact, most 
current processing frameworks follow the same methodology as Hadoop and 
utilize the same data storage concept as HDFS. One of the main disadvantages 
from a processing point of view involves the data partitioning mechanism used by 
the HDFS file system and the distributed processing programming model. In most 
cases, the user would like to have full control over the data partitioning and 
distribution mechanism. Our existing processing services often cannot be 
redesigned to fit the MapReduce programming model due to the nature of the 
underlying processing logic. In this paper, we focus on the Data Catalogue module 
and the Tiling and Stitching module of the IQLib conceptual framework. 
Furthermore, emphasis is put on the distribution, processing and association of 
raster data, and parallel developments in distributed point cloud processing 
achieved by the other consortium partners (IGN France, CNR-IMATI Italy). Figure 
2 describes the architectural concept. In terms of the implementation environment, 
our future intention is to create a framework supporting distributed processing in R, 
Python or any other language used for geospatial analysis. 

Figure 2: High-level concept of the IQLib processing framework
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3.2. Introduction of IQLib 

In a previous study, we carried out a feasibility study of the technological and 
conceptual aspects of this system. The outcome was presented in our previous 
paper (Nguyen Thai and Olasz, 2015), in which we described the architecture of 
this demo application as well as the processing results of calculating the NDVI 
(Normalized Difference Vegetation Index) index using Landsat 8 satellite images 
of  Hungary. Since the processing results (in terms of response time) seemed 
convincing, we began to design and implement the IQLib framework. This 
framework aims to support the following functionalities: 
 

 storing metadata information in different data sets (containing the 
properties of the data itself, metadata on the distribution and association 
steps, and also metadata about the processing and tracking of partitioned 
data chunks among the nodes); 

 distributing data without limitations and deploying existing processing 
services on processing nodes; 

 providing different partitioning methods according to the algorithms used 
for image processing (for instance, image segmentation or image 
classification methods); and 

 executing the processing RS/GIS scripts in parallel. 
 

One of our goals is to provide a data management tool to enable future users to 
supervise and track where and how their input data is processed and distributed, 
including the composition of results if required. The main IQLib modules have been 
designed and developed according to these requirements, and in recent months 
we have introduced a new module to supplement these concepts. Each module is 
responsible for one of the four major steps in data processing: Data Catalogue; 
Tiling and Stitching; Data Distribution; Distributed Processing. 
 
The Data Catalogue module is responsible for storing metadata corresponding to 
survey areas. A survey area contains all the data sets that are logically related to 
the inspection area (or area of interest), regardless of their data format and purpose 
of usage. We aim to store all the available, known and useful information about 
these data for processing. This module is fully implemented and waiting for final 
approval.  
 
The Tiling and Stitching module does exactly what its name suggests. Tiling 
algorithms are usually performed on raw data sets before running a specific 
processing service. Stitching is generally run after processing services have been 
successfully completed. Tiling algorithms usually process raw data, after these 
tiled data have been distributed across processing nodes by the data distribution 
component. The metadata of the tiled data set are registered in the Data Catalogue 
module. In this step, the parents and the lineage of tiled data are always known. 
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The initial conceptual plan is available for this module and the details of the 
implementation are being planned.  
 
The Data Distribution module distributes data among the nodes and provides 
features to the users for the supervision of the data distribution, containing the 
functionality of the predefined distribution methods. This module is fully specified 
and the conceptual model is available. 
 
The Distributed Processing module is responsible for running processing services 
on the tiled data set. This module is fully specified, the conceptual model is 
available and its implementation is ongoing. 
 
All modules are important in the distributed processing and tracking of the lifecycle 
of the data. 
 

4. IMPLEMENTATION DETAILS OF THE IQLIB MODULAR PROCESSING 
FRAMEWORK 

4.1. Introduction of the Data Catalogue Module 

Based on the needs of users and developers, we collected requirements and 
created a specification document for the data model. The first version of this 
document contains the specification of the data structures, i.e. how we intend to 
store metadata so that it is accessible by both users and processing services. 
Initially, we intended to use Geonetwork (http://geonetwork-opensource.org) for 
metadata storage; however, as we continued in defining and refining our data 
model, it became evident that it would be necessary to implement our own 
metadata store. 

4.1.1. Design of the Data Model  

In order to organize our data, we have assembled the most common use cases in 
data processing along with the existing tiling algorithms. As a result, the following 
terms need to be introduced: “survey area”, “data set” and “data file”. A survey area 
has at least one data set, depending on processing requests. Each data set has at 
least one data file, which may vary in size and format (Figure 3.) 

Figure 3: Relationship between data types in IQLib 

http://geonetwork-opensource.org/
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Processing services access each data file using different strategies depending on 
their type and content. These strategies are called data access patterns (DAP) (de 
Smith et al., 2015; Gimond, 2016). Data access patterns can be grouped into 
different categories based on their locality. These groups are as follows: local (L); 
focal (F); zonal (Z); a combination of zonal and focal (ZF, a combination of 
topological and coordinate neighbourhood operations); and global (G). Along with 
data access patterns, we have also categorized data formats into three groups: 
Meshes (M), Point Clouds (P) and Raster Data (R). Table 2 shows the relationship 
between data access patterns and file format groups. 

Table 2: Relationship between data access patterns and file groups 

DAP File 
Type 

Description 

L MPR Each sample is processed independently 

F M Requires access to the vertex attributes within a given edge distance N 

F R Squared centred window in raster e.g. for convolutions 

Z P Requires all data within a given 1D range around one coordinate of the 
output vertex 

Z MPR Requires all data within a more general given range around the output 
vertex (e.g., 1 m spherical neighbourhood) or requires all vertices within 
an identical attribute. 
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G MPR Takes the whole file and processes it. 

 

We also store the status of each data file, i.e. whether this is “raw”, “processed”, 
“tiled” or “buffer-zone”. The “tiled” and “buffer zone” categories are explained in the 
next section. 

4.1.2. Implementation Details 

The Data Catalogue module is platform-independent and available for most of the 
clients. The most convenient solution was to implement a web application providing 
RESTful web service endpoints, to which client applications can connect and utilize 
its functionalities. The web application itself should be as simple as possible, 
meaning that it should be easy to install, maintain and use. 
 
After examining mainstream programming languages and the corresponding 
frameworks, we decided to use the Java programming language and the Spring 
MVC framework to implement the Data Catalogue module. For data storage, we 
considered using a graph database; the main reason for this was the speed of 
these solutions. The Data Catalogue module will be migrated from a relational 
database to a graph database when the Tiling and Stitching module is completed; 
until then, PostgreSQL will be used as the data storage medium.  
 
The web application itself can be deployed on almost any Java application server. 
For simplicity and testing purposes, we recommend the use of Tomcat as a default 
application server. 
 

4.1.3. Data Catalogue Module Operations 

The Data Catalogue module is available as a standalone processing-oriented 
application, in which end users may store their metadata and search for them; it is 
specifically designed for GIS processing. During the design of the data model, we 
collected the most common usage patterns applied by the IQmulus project partners; 
the Data Catalogue module will therefore suffice for most users’ needs. One of the 
most powerful features of the Data Catalogue module is that users may store their 
data in a graph structure, meaning that a search for tiles and end results is very 
fast. 
 
The Data Catalogue module plays a central role in the IQLib processing framework, 
since all other modules communicate with it and use its services. The tiling and 
data distribution tasks inform the Data Catalogue module about which data set has 
been tiled and the location of newly created tiles. The Distributed Processing 
module also informs the Data Catalogue module about the ongoing processing 
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tasks on the data set and the location of partial results; later, these partial results 
are collected into the final result(s) and stored by the Tiling and Stitching module. 
 
Based on the data model specification and technical solutions, two applications 
have been developed within the Data Catalogue module. One of these is 
responsible for data collection, and is called the “Data Collector”; the other is 
responsible for metadata storage and querying, and is called the “Metadata 
Catalogue”.  
 
The Data Collector is a simple Java application, which can be run on a server 
where all the data are located or on any set of personal computers containing input 
data sets. The main goal of this component is to collect all the GIS files recursively 
within a specified folder and then obtain spatial metadata information on each file. 
As a result, a JSON metadata file is created containing all the metadata information 
on each file. This file is both machine- and human-readable; users should therefore 
only modify the hostname and survey area, as well as the data set to which they 
wish to add these metadata. At the end, users may upload collected metadata into 
the Metadata Catalogue.  
 
The Metadata Catalogue is a web application which uses PostgreSQL for data 
storage. This web interface provides two approaches for applications or users; 
“external” applications can access its services through the REST API, while users 
can access its functionalities via a web-based user interface. The user interface 
itself also uses the REST API as an application. Figure 4 illustrates the architecture 
of the Data Catalogue module using the previously mentioned two components. 

Figure 4: Architecture of the Data Catalogue module 
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4.2. Tiling and Stitching Module 

Tiling and Stitching is a composite module. As a prerequisite to processing large 
data sets in a distributed manner, the processing services require their input data 
to be tiled. There are many cases where intermediate or end results need to be 
stitched together. This step is done by stitching algorithms; these are closely 
related to the preceding tiling algorithm, and thus an integrated tiling and stitching 
module takes care of preparing and distributing data for processing services. 
Based on preliminary user and processing service developer requirements, we 
propose the following data structures for modelling the tiling aspects. The aim of 
tiling and stitching is to distribute a raster data set by taking into account the 
algorithm to be applied; as mentioned before, these algorithms may be local, focal, 
zonal or global, as commonly used in map algebra methods in GIS and remote 
sensing applications. The concept is also valid for vector and point cloud data types, 
but uses different implementation criteria. 
 

4.2.1. Data Model   

Firstly, we describe the data structure of a Tile. A Tile is a single area of the original 
data set; however, from a processing point of view, a set of Tiles does not contain 
all the necessary information on its neighbours and the surrounding areas. 
Therefore, we define the data structure in terms of buffering zones. A Buffer zone 
is a collection of data around a tile, which can be used in read-only mode by a 
processing algorithm to edit/process the current tile related to this buffer zone. A 
Buffer zone can be empty, for instance when the processing algorithm does not 
require any data from the area surrounding the tile (e.g. the service algorithm has 
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a local data access pattern). Together, a Tile and a Buffer zone form a logical entity 
called a Patch. A Patch may contain two components, a Tile and its related Buffer 
zone, depending on the tiling algorithm. As described above, there are some cases 
where Buffer zones are unnecessary; therefore, a simple Patch has a Tile, 
whereas a compound Patch contains both a Tile and a Buffer zone. As shown in 
Figure 5, the red tiles represent the area of interest (‘o’ and ‘x’), and the Buffer zone 
is represented by the grey tiles (‘h,i,j,n,u,p,q,s,y,c,d,e,k’). Together, the red and 
grey areas represent a Patch. 
 

Figure 5: Data model logic of the Tiling and Stitching module 
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4.2.2. Tiling and Stitching module operations 

A tiling algorithm creates Tiles, Buffer zones and the corresponding Patches. After 
the original data set has been tiled, newly created Patches are registered in the 
Data Catalogue module and distributed among processing nodes. Our intention is 
to provide a useful tool where the user can define both the tiling method for their 
purpose and the distribution process, if required. For example, independent tiles 
can be processed in different processing nodes, but dependent patches need to 
be processed together. The processing logic largely depends on the nature of the 
applied algorithm and the purpose of processing. A tiling algorithm usually takes 
three input parameters: the input data set(s) (the location of data files); the data 
access pattern; and the domain decomposition method (the geometry of the tiles 
is explicitly given, or additional parameters are provided to help the Tiling algorithm 
compute the decomposition). Currently, the Tiling and Stitching module supports 
the distribution of data via the SMB and SFTP protocols. 
 
The IQLib Tiling and Stitching module provides a set of predefined tiling algorithms, 
developed by IQmulus project partners for service developers. It also supports 
third-party developers in joining and adding their own tiling algorithms to the 
system. 
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4.2.3. Implementation Details 

Like the Data Catalogue module, the Tiling and Stitching module is also platform-
independent. Our intention was to avoid setting any limitations on Tiling and 
Stitching algorithm developers in terms of programming language, so that they 
could use the language they are familiar with (Figure 6). 

Figure 6: Architecture of the Tiling and Stitching module. 

 

4.3. Distributed Processing Module 

Our system meets the user’s goals if the existing algorithms and scripts are 
executable in a distributed way, i.e. the system should support their execution 
without any requiring any further programming or adaptation. Our goal is to support 
the user and develop a flexible and easy-to-use interface for supervising data 
processing at a level of granularity which fits the user’s intention. This means 
putting these tools into the users’ hands, to control the distributed processing if 
they wish; if not, they are assisted with typical default settings based on the data 
type and distribution methodology. Within the IQmulus project, the partners have 
various services that they would like to run on a distributed system using tiled data 
sets.  
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Figure 7: Architecture of the Distributed Processing module 

 

Currently, the Distributed Processing Module is still in the design phase with the 
following requirements: all services should be easily deployable and maintainable 
on processing nodes; each processing node should be able to inform users about 
the currently available and running services; a logging and notification system 
should be developed for both error and status reports (Figure 7). 

4.4. Introduction of the Data Distribution module 

In recent months, we have introduced a new module which is intended to carry out 
the data distribution and data assimilation tasks after performing an analysis of the 
distributed processing nodes. This module is responsible for supervising the data 
distribution and provides a tool for users that includes the possible functionality of 
modifying the distribution. Our intention is to provide the available distribution 
methods as a default for the most widely used image processing tasks; however, 
we also take into account the further possibility of change. In the near future we 
intend to create an architectural concept for this module. 

4.5. Example Application  

As an example of a theoretical application, we describe a use case inspired by real 
life. The goal is the detection of buildings across an entire country, based on visible 
and near-infrared digital aerial imagery, a digital surface model (DSM) and a digital 
elevation model (DEM). The imagery is stored in collections of GeoTIFF files 
according to yearly survey areas, with a size of between several hundreds of 
gigabytes and terabytes. The DSM is stored in LAS point clouds with different tiling, 
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summing up the volume of the data similar to imagery (or even bigger). The 
geospatial processing scheme is as follows: 
  

1. Calculate spectral indices and perform masking of possible built-up areas 
based on thresholds; 

2. Calculate relative heights based on DSM and DEM, to perform masking 
based on height; 

3. Carry out image segmentation on possible (pre-filtered) built-up areas; 
4. Integrate spectral indices and relative heights into image segments 

(building candidates); 
5. Carry out further filtering and iterative refinement based on the above 

information; 
6. Provide final building outlines as a single vector layer. 

  
During execution in the IQLib framework, the physical location and metadata of all 
data sets are registered in the Data Catalogue module. Then, the details of each 
processing step are taken into account to determine the tiling and distribution 
strategies. For instance, the calculation of spectral indices, calculation of relative 
heights and masking are local algorithms, and can therefore be run on non-
overlapping, arbitrary chunks. However, segmentation is a zonal procedure 
requiring neighbourhood information, and the best strategy is therefore to use 
overlapping chunks, with the overlap determined by the reasonable building size. 
Stitching is then easy and straightforward for the local methods. However, 
segmentation will find the same building several times, and this is likely to be in a 
slightly different way in overlapping chunks. These multiple representations must 
then be merged into the same object during stitching. All these rules are described 
and registered in the Data Catalogue module along with the data, and are used 
during processing. Then, the distribution of data among the processing nodes is 
carried out by the Data Distribution module, according to the logic contained in the 
Data Catalogue module. The Distributed Processing module takes care of 
execution and timing, taking into account the logical order of processing steps and 
the input and output needs of each step in the workflow. Each processing step is 
registered in the Data Catalogue module for each data partition. Finally, the result 
is stitched together by the Tiling and Stitching module by reversing the Tiling step, 
as recorded in the Data Catalogue module. 

5. CONCLUSIONS AND FUTURE WORK 

5.1. Conclusion 

In this paper, we study the existing distributed processing ecosystem for handling 
Big Geospatial Data. We find this research area to be very active in terms of the 
review, development and usage of existing solutions, with many implementations 
for predefined specific cases and application areas such as disaster management, 
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environmental monitoring, and earth observation data analysis and distribution. We 
attempt to compare the terms Big Data, Geospatial Big Data and Geospatial Data, 
in order to clarify the possible differences, to compare them in terms of storage and 
processing background for different data representations, and to collect and 
categorize the existing common solutions. Furthermore, we compare the 
characteristics of parallel and distributed computing, and include our thoughts on 
the MapReduce paradigm in a geospatial context. The second part of the paper 
provides an overview of our previous work and the implementation details of a new 
framework called IQLib. We introduce the main motivations leading to the decision 
to implement a new framework rather than using an existing solution. The main 
modules are introduced and briefly described, along with their technical 
implementation. Of these, the Data Catalogue module is currently at the highest 
level of implementation; hence, we provide details of the data model and data 
access patterns. 
 
IQLib documentation, including the tiling and stitching methods and the Data 
Catalogue module, is available on Github at https://github.com/posseidon/iqlib. We 
have decided not to publish the source code of the Data Catalogue module until it 
has been reviewed and finalized by the IQmulus partners. However, the RESTFUL 
API is available on Heroku cloud infrastructure for all to test; feedback and 
suggestions are welcome and should be submitted at http://iqlib.herokuapp.com.  

5.2. Future Developments  

In future work, we intend to focus on further development of the framework and the 
processing executables for spatial analysis and the experimental benchmarking of 
throughput. The finalization of the Data Catalogue module and installation for 
testing will be completed shortly. As a next step, we intend to focus on the 
Distributed Processing module and GIS raster processing scripts. Existing 
algorithms will be used, with minor changes, to enable running in a distributed 
environment. Furthermore, testing of IQlib is planned, using the following steps: 

 Running existing algorithms on the framework (Python, R, etc.). This 
means collecting and investigating raster processing algorithms for 
distributed processing.   

 Experimental execution on Big Geospatial Data (raster, vector, point cloud). 
We intend to create a collection of Big Geospatial Data from various 
sources and of different data types, to be loaded into our Data Catalogue 
module using their complex metadata. Tests will also be applied to 
algorithms in the collection. 

 Benchmarking (in terms of processing time). We will first establish a case 
study to benchmark the available non-distributed open-source and 
commercial frameworks. The measurement mechanism focuses on 
processing time. During the establishment of the benchmark, we take into 
account   Amdahl´s law (Amdahl, 1967) which enables us to calculate the 

https://github.com/posseidon/iqlib
http://iqlib.herokuapp.com/
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theoretic speedup of parallelization of an algorithm to get idea where can 
be applied optimization. We will further investigate on the parallelization 
paradigms and other speed up models, together with the distribution 
methods for certain raster processing.  
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