24 research outputs found

    Processing Information in Quantum Decision Theory

    Full text link
    A survey is given summarizing the state of the art of describing information processing in Quantum Decision Theory, which has been recently advanced as a novel variant of decision making, based on the mathematical theory of separable Hilbert spaces. This mathematical structure captures the effect of superposition of composite prospects, including many incorporated intended actions. The theory characterizes entangled decision making, non-commutativity of subsequent decisions, and intention interference. The self-consistent procedure of decision making, in the frame of the quantum decision theory, takes into account both the available objective information as well as subjective contextual effects. This quantum approach avoids any paradox typical of classical decision theory. Conditional maximization of entropy, equivalent to the minimization of an information functional, makes it possible to connect the quantum and classical decision theories, showing that the latter is the limit of the former under vanishing interference terms.Comment: Review article, 49 pages, Latex fil

    Preference reversal in quantum decision theory

    Get PDF
    We consider the psychological effect of preference reversal and show that it finds a natural explanation in the frame of quantum decision theory. When people choose between lotteries with non-negative payoffs, they prefer a more certain lottery because of uncertainty aversion. But when people evaluate lottery prices, e.g. for selling to others the right to play them, they do this more rationally, being less subject to behavioral biases. This difference can be explained by the presence of the attraction factors entering the expression of quantum probabilities. Only the existence of attraction factors can explain why, considering two lotteries with close utility factors, a decision maker prefers one of them when choosing, but evaluates higher the other one when pricing. We derive a general quantitative criterion for the preference reversal to occur that relates the utilities of the two lotteries to the attraction factors under choosing versus pricing and test successfully its application on experiments by Tversky et al. We also show that the planning paradox can be treated as a kind of preference reversal.Comment: Latex file, 15 page

    Reframing Convergent and Divergent Thought for the 21st Century

    Get PDF
    Convergent thought is defined and measured in terms of the ability to perform on tasks where there is a single correct solution, and divergent thought is defined and measured in terms of the ability to generate multiple different solutions. However, this characterization of them presents inconsistencies, and despite that they are promoted as key constructs of creativity, they do not capture the capacity to reiteratively modify an idea in light of new perspectives arising out of an overarching conceptual framework. Research on formal models of concepts and their interactions suggests that different creative outputs may be projections of the same underlying idea at different phases of this kind of 'honing' process. This leads us to redefine convergent thought as thought in which the relevant concepts are considered from conventional contexts, and divergent thought as thought in which they are considered from unconventional contexts. Implications for the assessment of creativity are discussed.Comment: 7 pages; 2 figures

    Inconclusive quantum measurements and decisions under uncertainty

    Get PDF
    We give a mathematical definition for the notion of inconclusive quantum measurements. In physics, such measurements occur at intermediate stages of a complex measurement procedure, with the final measurement result being operationally testable. Since the mathematical structure of Quantum Decision Theory has been developed in analogy with the theory of quantum measurements, the inconclusive quantum measurements correspond, in Quantum Decision Theory, to intermediate stages of decision making in the process of taking decisions under uncertainty. The general form of the quantum probability for a composite event is the sum of a utility factor, describing a rational evaluation of the considered prospect, and of an attraction factor, characterizing irrational, subconscious attitudes of the decision maker. Despite the involved irrationality, the probability of prospects can be evaluated. This is equivalent to the possibility of calculating quantum probabilities without specifying hidden variables. We formulate a general way of evaluation, based on the use of non-informative priors. As an example, we suggest the explanation of the decoy effect. Our quantitative predictions are in very good agreement with experimental data.Comment: Latex file, 16 page

    How brains make decisions

    Full text link
    This chapter, dedicated to the memory of Mino Freund, summarizes the Quantum Decision Theory (QDT) that we have developed in a series of publications since 2008. We formulate a general mathematical scheme of how decisions are taken, using the point of view of psychological and cognitive sciences, without touching physiological aspects. The basic principles of how intelligence acts are discussed. The human brain processes involved in decisions are argued to be principally different from straightforward computer operations. The difference lies in the conscious-subconscious duality of the decision making process and the role of emotions that compete with utility optimization. The most general approach for characterizing the process of decision making, taking into account the conscious-subconscious duality, uses the framework of functional analysis in Hilbert spaces, similarly to that used in the quantum theory of measurements. This does not imply that the brain is a quantum system, but just allows for the simplest and most general extension of classical decision theory. The resulting theory of quantum decision making, based on the rules of quantum measurements, solves all paradoxes of classical decision making, allowing for quantitative predictions that are in excellent agreement with experiments. Finally, we provide a novel application by comparing the predictions of QDT with experiments on the prisoner dilemma game. The developed theory can serve as a guide for creating artificial intelligence acting by quantum rules.Comment: Latex file, 20 pages, 3 figure
    corecore