47 research outputs found

    Pertanika Journal of Science & Technology

    Get PDF

    Pertanika Journal of Science & Technology

    Get PDF

    Texture and Colour in Image Analysis

    Get PDF
    Research in colour and texture has experienced major changes in the last few years. This book presents some recent advances in the field, specifically in the theory and applications of colour texture analysis. This volume also features benchmarks, comparative evaluations and reviews

    Graph Neural Networks for Molecules

    Full text link
    Graph neural networks (GNNs), which are capable of learning representations from graphical data, are naturally suitable for modeling molecular systems. This review introduces GNNs and their various applications for small organic molecules. GNNs rely on message-passing operations, a generic yet powerful framework, to update node features iteratively. Many researches design GNN architectures to effectively learn topological information of 2D molecule graphs as well as geometric information of 3D molecular systems. GNNs have been implemented in a wide variety of molecular applications, including molecular property prediction, molecular scoring and docking, molecular optimization and de novo generation, molecular dynamics simulation, etc. Besides, the review also summarizes the recent development of self-supervised learning for molecules with GNNs.Comment: A chapter for the book "Machine Learning in Molecular Sciences". 31 pages, 4 figure

    Review : Deep learning in electron microscopy

    Get PDF
    Deep learning is transforming most areas of science and technology, including electron microscopy. This review paper offers a practical perspective aimed at developers with limited familiarity. For context, we review popular applications of deep learning in electron microscopy. Following, we discuss hardware and software needed to get started with deep learning and interface with electron microscopes. We then review neural network components, popular architectures, and their optimization. Finally, we discuss future directions of deep learning in electron microscopy

    Towards Artificial General Intelligence (AGI) in the Internet of Things (IoT): Opportunities and Challenges

    Full text link
    Artificial General Intelligence (AGI), possessing the capacity to comprehend, learn, and execute tasks with human cognitive abilities, engenders significant anticipation and intrigue across scientific, commercial, and societal arenas. This fascination extends particularly to the Internet of Things (IoT), a landscape characterized by the interconnection of countless devices, sensors, and systems, collectively gathering and sharing data to enable intelligent decision-making and automation. This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the IoT. Specifically, it starts by outlining the fundamental principles of IoT and the critical role of Artificial Intelligence (AI) in IoT systems. Subsequently, it delves into AGI fundamentals, culminating in the formulation of a conceptual framework for AGI's seamless integration within IoT. The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education. However, adapting AGI to resource-constrained IoT settings necessitates dedicated research efforts. Furthermore, the paper addresses constraints imposed by limited computing resources, intricacies associated with large-scale IoT communication, as well as the critical concerns pertaining to security and privacy

    Additive Manufacturing Research and Applications

    Get PDF
    This Special Issue book covers a wide scope in the research field of 3D-printing, including: the use of 3D printing in system design; AM with binding jetting; powder manufacturing technologies in 3D printing; fatigue performance of additively manufactured metals, such as the Ti-6Al-4V alloy; 3D-printing methods with metallic powder and a laser-based 3D printer; 3D-printed custom-made implants; laser-directed energy deposition (LDED) process of TiC-TMC coatings; Wire Arc Additive Manufacturing; cranial implant fabrication without supports in electron beam melting (EBM) additive manufacturing; the influence of material properties and characteristics in laser powder bed fusion; Design For Additive Manufacturing (DFAM); porosity evaluation of additively manufactured parts; fabrication of coatings by laser additive manufacturing; laser powder bed fusion additive manufacturing; plasma metal deposition (PMD); as-metal-arc (GMA) additive manufacturing process; and spreading process maps for powder-bed additive manufacturing derived from physics model-based machine learning
    corecore