1,724 research outputs found

    Simple, Fast, and Accurate Cybercrime Detection on E-Government with Elastic Stack SIEM

    Get PDF
    Increased public activity in cyberspace (Internet) during the Covid-19 pandemic has also increased cybercrime cases with various attack targets, including E-Government services. Cybercrime is hidden and occurs unnoticed in E-Government, so handling it is challenging for all government agencies. The characteristics of E-Government are unique and different from other service systems in general, requiring extra anticipation for the prevention and handling of cybercrime attack threats. This research proposes log and event data analysis to detect cybercrime in e-Government using System Information and Event Management (SIEM). The main contribution of this research is a simple, fast, and accurate cybercrime detection process in the e-Government environment by increasing the level of log and event data analysis with the SIEM approach. SIEM technology based on machine learning and big data is implemented with Elastic Stack. The implemented technique can be used as a mitigation program against cybercrime threats that often attack and target e-Government. With simple, accurate, and fast cybercrime detection, it is expected to improve e-Government security and increase public confidence in public services organized by government agencies

    Triage of IoT Attacks Through Process Mining

    Get PDF
    The impressive growth of the IoT we witnessed in the recent years came together with a surge in cyber attacks that target it. Factories adhering to digital transformation programs are quickly adopting the IoT paradigm and are thus increasingly exposed to a large number of cyber threats that need to be detected, analyzed and appropriately mitigated. In this scenario, a common approach that is used in large organizations is to setup an attack triage system. In this setting, security operators can cherry-pick new attack patterns requiring further in-depth investigation from a mass of known attacks that can be managed automatically. In this paper, we propose an attack triage system that helps operators to quickly identify attacks with unknown behaviors, and later analyze them in detail. The novelty introduced by our solution is in the usage of process mining techniques to model known attacks and identify new variants. We demonstrate the feasibility of our approach through an evaluation based on three well-known IoT botnets, BASHLITE, LIGHTAIDRA and MIRAI, and on real current attack patterns collected through an IoT honeypot

    A structured approach to malware detection and analysis in digital forensics investigation

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirement for the degree of PhDWithin the World Wide Web (WWW), malware is considered one of the most serious threats to system security with complex system issues caused by malware and spam. Networks and systems can be accessed and compromised by various types of malware, such as viruses, worms, Trojans, botnet and rootkits, which compromise systems through coordinated attacks. Malware often uses anti-forensic techniques to avoid detection and investigation. Moreover, the results of investigating such attacks are often ineffective and can create barriers for obtaining clear evidence due to the lack of sufficient tools and the immaturity of forensics methodology. This research addressed various complexities faced by investigators in the detection and analysis of malware. In this thesis, the author identified the need for a new approach towards malware detection that focuses on a robust framework, and proposed a solution based on an extensive literature review and market research analysis. The literature review focussed on the different trials and techniques in malware detection to identify the parameters for developing a solution design, while market research was carried out to understand the precise nature of the current problem. The author termed the new approaches and development of the new framework the triple-tier centralised online real-time environment (tri-CORE) malware analysis (TCMA). The tiers come from three distinctive phases of detection and analysis where the entire research pattern is divided into three different domains. The tiers are the malware acquisition function, detection and analysis, and the database operational function. This framework design will contribute to the field of computer forensics by making the investigative process more effective and efficient. By integrating a hybrid method for malware detection, associated limitations with both static and dynamic methods are eliminated. This aids forensics experts with carrying out quick, investigatory processes to detect the behaviour of the malware and its related elements. The proposed framework will help to ensure system confidentiality, integrity, availability and accountability. The current research also focussed on a prototype (artefact) that was developed in favour of a different approach in digital forensics and malware detection methods. As such, a new Toolkit was designed and implemented, which is based on a simple architectural structure and built from open source software that can help investigators develop the skills to critically respond to current cyber incidents and analyses

    Strengthening e-banking security using keystroke dynamics

    Get PDF
    This paper investigates keystroke dynamics and its possible use as a tool to prevent or detect fraud in the banking industry. Given that banks are constantly on the lookout for improved methods to address the menace of fraud, the paper sets out to review keystroke dynamics, its advantages, disadvantages and potential for improving the security of e-banking systems. This paper evaluates keystroke dynamics suitability of use for enhancing security in the banking sector. Results from the literature review found that keystroke dynamics can offer impressive accuracy rates for user identification. Low costs of deployment and minimal change to users modus operandi make this technology an attractive investment for banks. The paper goes on to argue that although this behavioural biometric may not be suitable as a primary method of authentication, it can be used as a secondary or tertiary method to complement existing authentication systems

    Applicability of clustering to cyber intrusion detection

    Get PDF
    Maintaining cyber security is a complex task, utilizing many levels of network information along with an array of technology. Current practices for combating cyber attacks typically use Intrusion Detection Systems (IDSs) to passively detect and block multi-stage attacks. Because of the speed and force at which a new type of cyber attack can occur, automated detection and response is becoming an apparent necessity. Anomaly-based detection systems, such as statistical-based or clustering algorithms, attempt to address this by analyzing the relative differences in network and host activity. Signature-based IDS systems are typically more accurate for known attacks, but require time and resources for an analyst to update the signature database. This work hypothesizes that the latency from zero-day attack to signature creation can be shortened via anomaly-based algorithms. In particular, the summarizing ability of clustering is leveraged and examined in its applicability of signature creation. This work first investigates a modified density-based clustering algorithm as an IDS, with its strengths and weaknesses identified. Being able to separate malicious from normal activity, the modified algorithm is then applied in a supervised way to signature creation. Lessons learned from the supervised signature creation are then leveraged for the development of unsupervised real-time signature classification. Automating signature creation and classification via clustering turns out satisfactory but with limitations. Density supports for new signatures via clustering can be diluted and lead to misclassification

    Characterising attacks targeting low-cost routers: a MikroTik case study (Extended)

    Get PDF
    Attacks targeting network infrastructure devices pose a threat to the security of the internet. An attack targeting such devices can affect an entire autonomous system. In recent years, malware such as VPNFilter, Navidade, and SonarDNS has been used to compromise low-cost routers and commit all sorts of cybercrimes from DDoS attacks to ransomware deployments. Routers of the type concerned are used both to provide last-mile access for home users and to manage interdomain routing (BGP). MikroTik is a particular brand of low-cost router. In our previous research, we found more than 4 million MikroTik routers available on the internet. We have shown that these devices are also popular in Internet Exchange infrastructures. Despite their popularity, these devices are known to have numerous vulnerabilities. In this paper, we extend our previous analysis by presenting a long-term investigation of MikroTik-targeted attacks. By using a highly interactive honeypot that we developed, we collected more than 44 million packets over 120 days, from sensors deployed in Australia, Brazil, China, India, the Netherlands, and the United States. The incoming traffic was classified on the basis of Common Vulnerabilities and Exposures to detect attacks targeting MikroTik devices. That enabled us to identify a wide range of activities on the system, such as cryptocurrency mining, DNS server redirection, and more than 3,000 successfully established tunnels used for eavesdropping. Although this research focuses on Mikrotik devices, both the methodology and the publicly available scripts can be easily applied to any other type of network device

    Insider Threat Detection in PRODIGAL

    Get PDF
    This paper reports on insider threat detection research, during which a prototype system (PRODIGAL) was developed and operated as a testbed for exploring a range of detection and analysis methods. The data and test environment, system components, and the core method of unsupervised detection \ of insider threat leads are presented to document this work and benefit others working in the insider threat domain. \ \ We also discuss a core set of experiments evaluating the prototype’s ability to detect both known and unknown malicious insider behaviors. The experimental results show the ability to detect a large variety of insider threat scenario instances imbedded in real data with no prior knowledge of what scenarios \ are present or when they occur. \ \ We report on an ensemble-based, unsupervised technique for detecting potential insider threat instances. When run over 16 months of real monitored computer usage activity augmented with independently developed and unknown but realistic, insider threat scenarios, this technique robustly achieves results within five percent of the best individual detectors identified after the fact. We discuss factors that contribute to the success of the ensemble method, such as the number and variety of unsupervised detectors and the use of prior knowledge encoded in detectors designed for specific activity patterns. \ \ Finally, the paper describes the architecture of the prototype system, the environment in which we conducted these experiments and that is in the process of being transitioned to operational users

    Log Analysis Using Temporal Logic and Reconstruction Approach: Web Server Case

    Get PDF
    We present a post-mortem log analysis method based on Temporal Logic (TL), Event Processing Language (EPL), and reconstruction approach. After showing that the proposed method could be adapted to any misuse event or attack, we specifically investigate the case of web server misuses. To this end, we examine 5 different misuses on Wordpress web servers, and generate corresponding log files of these attacks for forensic analysis. Then we establish attack patterns and formalize them by means of a special case of temporal logic, i.e. many sorted first order metric temporal logic (MSFOMTL). Later on, we implement these attack patterns in the EPL, and performed experimental log analysis by using a time window mechanism sliding on sorted log records to evaluate effectiveness and efficacy of our proposed method. We found that our approach is potentially capable of providing a platform where investigators can define/store/share misuse patterns using a common language while providing fast and accurate forensic analysis on large log files
    corecore