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Abstract. The impressive growth of the IoT we witnessed in the recent
years came together with a surge in cyber attacks that target it. Factories
adhering to digital transformation programs are quickly adopting the IoT
paradigm and are thus increasingly exposed to a large number of cyber
threats that need to be detected, analyzed and appropriately mitigated.
In this scenario, a common approach that is used in large organizations
is to setup an attack triage system where security operators, supported
by appropriate tools, can cherrypick new attack patterns, which require
further in-depth investigation, from a mass of known attacks, which can
be managed by automatic means. In this paper, we propose an attack
triage system that helps operators quickly identify attacks with unknown
behaviors, and later analyze them in detail. The novelty introduced by
our solution is in the usage of process mining techniques to model known
attacks and identify new variants. We demonstrate the feasibility of our
approach through a twofold evaluation based on three well-known IoT
botnets, BASHLITE, LIGHTAIDRA and MIRAI, and on real current
attack patterns collected through an IoT honeypot.

Keywords: IoT Security - Process Mining - Behavioral Attack Analysis.

1 Introduction

The Internet of Things (IoT) is supposed to revolutionize, in the forthcoming
years, the way we interact with the physical world. Nowadays, this interaction
mainly happens through smartphones and connected gadgets, but, in the soon-
to-come future, people will heavily rely on automated vehicles, wearable medical
devices, and other connected items to avoid potentially harmful incidents.

In this scenario, cybercriminals are starting to grasp the opportunities of a
new era where an impressively large number of connected devices can be ex-
ploited for criminal activities. Even if this phenomenon is still in its infancy, we
already experienced the first glimpses of a glooming future: between 2016 and
2018, a large botnet, named MIRAI[12], was used to launch some of the most
intense distributed denial of service (DDoS) attacks ever recorded, topping at
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more than 1Tbps [2]. The source code of the botnet was openly released to the
public by the end of 2017, paving the way for new breeds of the same threat.

Three factors mainly justify the growing alarms surrounding the security of
forthcoming IoT solutions:

— so far, most producers and system integrators have not paid enough attention
to security issues in IoT devices. Most of them are designed to be sold to the
masses at the lowest possible price, and consumers are still hardly willing to
spend more to pay for security features against advanced functionalities;

— IoT devices are often built on dedicated HW /SW platforms; this results in
a large heterogeneity of platforms to be defended, with a growing number of
potentially exploitable vulnerabilities that are hardly patched by producers;

— IoT systems are growing in size and complexity, with boundaries that are
sometimes difficult to define precisely, so that it becomes complex to identify
their exposed attack surface.

A common approach used by large organizations to protect complex systems
is to setup an internal structure (e.g., a Security Operations Center) to manage
cyber incidents. Incident response processes are typically based on the acquisition
of data from probes and sensors (firewalls, intrusion detection systems, AVs,
etc.) that is then analyzed by security operators in order to characterize ongoing
attacks. As the number of cybersecurity incidents increases, this approach needs
to be supported by a filtering phase that quickly discards cases representing
known attack patterns (for which remediation plans are already known and in-
place) thus allowing security operators to concentrate their efforts on new attack
patterns. This phase is known as triage’ and its output is a prioritized list of
attacks to be analyzed, where higher priority is assigned to attacks that do not
resemble known patterns.

In this paper, we introduce a novel solution to support security operators
during the triage of attacks that target IoT systems. Our solution leverages state-
of-the-art process mining techniques [4] to recognize known attack patterns and
identify new variants, providing the operators with information on the differen-
tiating details. Process mining stands for techniques to analyze business process
models and their execution traces (logs). It provides methods for reconstructing
process models from logs (process discovery), checking the conformance of an ex-
isting or reconstructed model and logs (conformance checking), and enhancing
process models based on the results of analysis (process enhancement).

Specifically our proposed approach analyzes logs of commands issued by a
botnet against a IoT device during the fingerprinting phase?, and discovers a
process model representing an up-to-date picture of the recorded attacks. New
observed traces are prioritized by aligning them to the model and then calculat-
ing their fitness score: the smaller the score, the more the log contains actions

! The name comes from the process used by ER-units in hospitals to quickly prioritize
incoming patients depending on the severity of their health status.

2 In this phase the botnet issues commands on the shell of a device found on the
internet to identify its architecture, before deploying the appropriate attack payload.
See Section 2 for further details.
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that were not observed in previous attacks, and therefore the larger is the priority
for the operator. The main finding of our research is that process mining tech-
niques provide a powerful tool for the automated discovery of new IoT attacks
and of their “anatomy”. This allows our solution to provide detailed feedbacks
of such unknown malevolent behaviors to support security operators in their
identification and classification as new attack patterns. Differently from other
solutions, commonly based on statistical models trained with machine learning
algorithms, this system allows us to inspect the model, extract human-readable
information from it, and use this information to notify the security operator
about how a new attack differs from previous observations.

To demonstrate the feasibility of our approach, we evaluated our solution
on attacks generated by three well-known IoT botnets, namely MIRAI, LIGH-
TAIDRA and BASHLITE. The evaluation demonstrates that our solution is able
to build a general attack model that correctly represents the various behaviors
characterizing these botnets, identify their attack patterns and gracefully evolve
as new variants are observed. Furthermore, we propose an experiment based on
current attack patterns collected through an IoT honeypot. It shows how our
system correctly identifies new botnets, and how it supports security operators
by providing precise information on the behavior of new attacks.

The rest of the paper is organized as follows. Section 2 provides a background
on the security of IoT systems, with a specific focus on botnets. Section 3 in-
troduces the process mining techniques used to realize our approach. Section 4
describes our system, while Section 5 discusses its evaluation. Section 6 presents
the related works and, finally, Section 7 concludes the paper.

2 Background on IoT (In-)Security

Even if the success of 10T is today a reality, the security of IoT devices remains
a big challenge. In 2014, the OWASP Foundation [33] published a list of the top
ten most dangerous vulnerabilities in IoT. At the first place, they listed insecure
web interfaces that often permit to an attacker to login into a device using weak
credentials or to capture plain-text password. Other sources of danger come
from the insecurity of the network services exposed by devices and the lack of
transport encryption. As evidenced by Hossain et al. [23], these security issues are
sometimes due to HW (e.g., limited memory, constrained energy consumption,
etc.) and SW (e.g., poor testing, unavailable security updates, etc.) constraints
that characterize IoT devices.

Given the roles played by IoT devices, oftentimes the risks involved by the
presence of such vulnerabilities cannot be easily mitigated. Indeed, these de-
vices are often deployed in places where the most common form of connection
is an internet link, which exposes their attack surfaces to remote threats. As
a consequence, user’s privacy is at high risk and operational safety cannot be
guaranteed. This scenario becomes even more worrying if we consider that an at-
tacker can leverage the vulnerabilities of each device to enroll it into a malicious
network of connected devices, namely a botnet, which respond to her commands.
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2.1 IoT Botnets

IoT botnets are networks of infected devices (bots) which perform malicious
actions issued as commands from a command and control (C2) server controlled
by an attacker. Bertino el al. [15] discussed the several potential usages of a
botnet: distributed denial of services (DDoS) attacks, crypto-mining, password
cracking, email spam and key logging. One of the most famous IoT botnets was
MIRAI which infected several hundreds of thousands devices [12] all over the
world and was successfully used to launch strong DDoS attacks against several
large companies. Other botnets, like BASHLITE [31] or LIGHTAIDRA [11] may
present some technical differences, but most of them act similarly. The operations
of an IoT botnet can be grouped into the following four phases:

Target Selection. Bots continuously scan the IPv4 address space searching for
new vulnerable devices. They look for online devices that expose SSH/Telnet
consoles or web interfaces, and try get access by either brute-forcing the login
using a dictionary of credentials or exploiting known vulnerabilities. When a new
vulnerable device is found, the bot informs the C2 server.

Device fingerprinting and infection. Once a new vulnerable device is found,
the botnet tries to infect it. In order to load the correct infection code on the
target device, the botnet first needs to discover its architecture (e.g., x86 vs
ARM). To do this, the target has to be fingerprinted by issuing a sequence of
different commands on its shell. After a matching fingerprint is found, the botnet
uses shell commands to download and execute the infection code.

Detection evasion and persistence. The infection code uses detection eva-
sion mechanisms to avoid being detected. MIRAI, for example, deletes the down-
loaded binary code and changes the bot process name using an alphanumeric
string. In this particular case, the botnet software does not persist if the device
is rebooted. Recent techniques try to avoid the blacklisting of C2 server IPs
using domain fluxing [15]. Other botnets do not directly connect bots to the
C2 server, but rather use proxies or peerZpeer overlay network architectures to
evade detection.

Activation. When the malicious code is running on the infected device, the
new bot can be activated by the C2 server. Once activated, it starts perform-
ing the malicious actions requested by the attacker, like, for example, opening
connections towards a targeted server in order to overload it.

3 Petri Nets and Process Mining

In this section, we present the process mining techniques that are the starting
point of our attack triage approach. Preliminaries on Petri nets, which act as
main artifacts to represent process models, and event logs are introduced as well.

3.1 Petri Nets and Event Logs

Many notations have been introduced to represent process models, such as
BPMN, EPC or UML Activity Diagrams [22], and some of those are charac-
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Fig. 1: Examples of a Petri net and of trace alignments

terized by an ambiguous semantics. Since we need a simple language with clear
semantics to explain our approach, we opted for Petri nets, which have proven
to be adequate for representing process models [3]. This is especially true when
the focus is only on the control-flow perspective, which is the case in this paper.

A Petri net N = (P,T,F) is a directed graph with a set P of nodes called
places and a set T of transitions. Places are represented by circles and transitions
by rectangles. The nodes are connected via directed arcs FF C (P x T) U (T x
P). Connections between two nodes of the same type are not allowed. Fig. la
illustrates an example of a Petri net. Given a transition ¢ € T, *¢ is used to
indicate the set of input places of t, which are the places p with a directed arc
from p to t (i.e., such that (p,t) € F). Similarly, ¢* indicates the set of output
places, namely the places p with a direct arc from ¢ to p. At any time, a place can
contain zero or more tokens, drawn as black dots. The state of a Petri net, a.k.a.
marking m, is determined by the number of tokens in places, i.e., m : P — IN.

In any run of a Petri net, the number of tokens in places (i.e., the marking)
may change. A transition ¢ is enabled at a marking m iff each input place contains
at least one token, i.e., V p € *t, M(p) > 0. A transition ¢ can fire at a marking
m iff it is enabled. As result of firing a transition ¢, one token is “consumed” from
each input place and one is “produced” in each output place. This is denoted as
m % m’. In the remainder, given a sequence of transition firing o = (t1,...,t,) €

o . o1 t1 to tn
T*, mg — my, is used to indicate mgo — m1 —= ... = my,.

An event log L is a multi-set of traces o; € T*. A trace is a sequence of
transition firings and describes the execution of a process instance in terms of the
executed activities.> Transition firings in an event log are known as events. Event
logs may store additional information about events such as the timestamp when
the activity was executed. Some transitions do not represent process activities
but are necessary to correctly represent a process model through Petri nets.
These transitions are invisible transitions (the black-colored transition 7 in the
Petri net of Fig. 1a is invisible) and are not recorded as log events.

3 We use multisets because the same trace can appear multiple times in an event log.
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3.2 Process Discovery and Trace Alignment in Process Mining

Event logs are the starting point for any process mining technique. Typically,
three types of process mining techniques can be distinguished [4]: (a) process dis-
covery (learning a model from example traces in an event log), (b) conformance
checking (comparing the observed behavior in the event log with a given modeled
behavior), and (¢) model enhancement (extending models based on additional
information in the event logs, e.g., to highlight bottlenecks).

Process discovery techniques [13] automatically construct a representation of
complex processes based on example executions in an event log, without using
any a-priori information. In particular, we focus on online process discovery from
event streams [29, 16, 17] as a way to deal with big amounts of data. Events are
processed on-the-fly, as they occur, and only information about the most relevant
ones is stored in a limited budget of memory. The discovered process models are
represented using Petri nets that change over time, as new events are processed.

Then, we perform conformance checking by constructing an alignment of an
event log and a process model [4, 9] to pinpoint where exactly deviations occur.
To this aim, events in the log need to be matched with transitions in the model,
and vice versa. In addition, to identify the alignment, we need to relate “moves”
in the log to “moves” in the model. To represent moves in the log and moves in
the model, we will use the symbol > to indicate “no moves”, i.e., moves in the
log that cannot be mimicked by the model and vice versa. .

Definition 1 (Alignment Moves). Let N = (P, T, F') be a Petri net and L be
an event log with events in E. A legal alignment move for N and L is represented
by a pair (sp,sy) € (EU{>} x TU{>})\{(>,>)} such that:

— (s, sum) 18 a move in the log if s;, # > and sy = >,
— (8L, 8n) is a move in the model if s, => and sy € T,
— (s1,8Mm) is a synchronous move if s;, = S/

An alignment is a sequence of alignment moves:

Definition 2 (Alignment). Let N = (P, T, F) be a Petri net with initial mark-
ing and final marking denoted with m; and my Let L be an event log. Let I'n
be the universe of all alignment moves for N and L. Let oy, € L be a log trace.
Sequence v € I'y, is an alignment of N and oy, if, ignoring all occurrences of
>, the projection on the first element yields o, and the projection on the second

one yields a sequence o’ € T* such that m; = my.

A move in the log for a transition ¢ indicates that ¢ occurred when not allowed;
a move in model for a visible transition ¢ indicates that ¢ did not occur, when,
conversely, expected. Many alignments are possible for the same trace. For ex-
ample, Fig. 1b shows three possible alignments for a trace o1 = (a, d, b, c). Note
how moves are represented vertically. For example, as shown in Fig. 1b, the first
move of 1 is (a, a), i.e., a synchronous move of a, while the second and the fifth
move of y; are a move in the log and in the model, respectively.
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We aim at finding an alignment of oy, and N with minimal deviation cost.
In order to define the severity of a deviation, we first introduce a cost function
on legal moves and, then, generalize it to alignments. The alignments with the
lowest cost are called optimal alignments.

Definition 3 (Cost Function). Let N = (P, T, F') be a Petri net and o, a log
trace, respectively. Assuming I'y as the set of all legal alignment mowves, a cost
function k assigns a non-negative cost to each legal move: I'y — ]Na'. The cost
of an alignment v € I'y between o, and N is computed as the sum of the cost
of all constituent moves: K(7v) = 35, s\,yey F(SLs S01)-

~ is an optimal alignment if, for any alignment v of N and o, K(v) < K(¥/).
Consider the following cost function for the example in Fig. 1:

1if Sy =2,
k((sp,sm)) =4 Lif sy =>> and sy # 7, (1)
0 otherwise.

With reference to the alignments in Fig. 1b, alignment ; has cost 2, since
it has 1 move in the model and 1 move in the log. Conversely, 72 has cost
4 and 73 has cost 6 (moves for invisible transitions 7 have cost 0). Since no
alignment exists with cost lower than 2, v; is an optimal alignment. To quantify
the amount of deviations between a trace and a model, we use the notion of
fitness presented in [9] that takes into account the cost of the deviations. The
outcome of the fitness is a score that may vary between 0 (very poor fitness) to
1 (perfect fitness between the trace and the model).

4 An Approach for Attack Triage

In this section, we introduce our solution and its approach for attack triage
in IoT systems that leverages process mining to help prioritizing the analysis
of new attack patterns. The output of our system is a prioritized list where
unknown attacks have a higher priority with respect to known attacks. Moreover,
a classification score for each attack is derived, which allows us to associate it
to a specific botnet campaing. We first introduce an overview of the proposed
approach and then move to describe the system.

4.1 Overview

The basic idea at the core of our approach is that operations performed by an
attacker while infecting an IoT device can be logged, and this log can be analyzed
to mine the infection processes. Therefore, the starting point of our approach is
a log that contains attack traces each referring to a different IoT attack*

4 Note that distinguishing attack interactions from bening interactions, namely detect-
ing attacks, is a different problem that is out of the scope of this paper. We assume
that data fed as input only contains traces of attacks.
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Since the same botnet often exhibits a repetitive behavior during the device
fingerprinting phase, our intuition is that process mining techniques can shed
light on that behavior and support security operators to automatically distin-
guish between known and unknown attacks. Our approach models commands
issued by the attacker on the target device while fingerprinting it as events of a
process, it groups them into a trace representing the evolution of the attack and
stores the trace in a log. Then, online discovery techniques of process models
are leveraged to provide security operators with a process model representing an
up-to-date picture of the attacks recorded in the log. Note that the log becomes
indefinitely large over time as new attacks are recorded. This is the reason why
online discovery techniques allow us to keep the analysis of the log computation-
ally feasible by “forgetting” obsolete attacks. New observed traces are prioritized
by aligning them to the discovered model and then calculating their fitness score.

Fig. 2 depicts the main steps in our approach. A target system keeps track
of incoming connections from the internet and logs commands received on its
interfaces (Raw log). The log is then filtered to get rid of spurious information
and to prepare it for the subsequent model discovery phase. An online model
discovery algorithm is then applied to the filtered logs in order to extract an up-
to-date general attack model. When a new incoming attack trace is collected, we
check its conformance with the attack model using trace alignment and compute
the fitness of the new attack trace with the model. According to the fitness, we
can assign a priority to the attack and report it to the security operators. When
we detect that a given trace does not belong to a new attack, the trace is fed
into the classification sub-system that is described in Section 4.2. Finally, the
trace is used to feed the discovery algorithm to update the attack model.

Online Process Classification

Discovery
Target System fi@; @
BB |
o Bl
Raw Log Filtered\ u; ‘ E (
Log v= —A @
‘ -

Conformance
Checking

Security Operator
Priority

Attacker Assignment

Fig. 2: Schematic overview of the proposed approach

4.2 Attack Classification

As already discussed in the previous section, given an attack trace, our approach
is able to assign it a priority based on how much the trace differs from known
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Fig. 3: Online process discovery [16]

behaviors. This information can be further enhanced by classifying “similar” at-
tack traces in the same class of (already seen) attacks. Attack classification is
a well known practice in IT security that enables important threat intelligence
activities. In particular, it allows security operators to identify common charac-
teristics of a class of attacks, information that is fundamental when studying the
provenance of attacks or their attribution (i.e., who is performing the attack).

Even the classification task has been realized through process mining. Given
a set of traces belonging to different classes of attack, it is possible to represent
each class with a different process model. Then, trace alignment can be employed
to understand which class (i.e., model) fits better with a recent captured trace.
When a trace is particularly fitting with the model related to a class of attacks, its
behavior can be later injected in the model of the identified class in order to keep
it updated. Conversely, if the trace shows a low fitness value after performing
the alignment task with any of the available (attack) models, then the trace is
considered as belonging to a new, yet unknown class of attacks.

The above classification procedure requires an initial effort by the security
operators to build the initial models reflecting the different classes of attacks; this
is particularly true when just few attack traces have been collected and when a
trace seems to belong to an unknown class. It is worth noting that the precision
of the classification task strongly depends on the fitness threshold values used
to state if a trace belongs to a class of attacks or not.

4.3 Online Process Discovery

One of the main aims of process mining is automated process discovery, i.e.,
learning process models from example traces recorded in some event log. Many
different process discovery algorithms have been proposed in the past [13]. Basi-
cally, all such algorithms have been defined for batch processing, i.e., a complete
event log containing all executed activities is supposed to be available for their
execution. However, when dealing with data coming from IoT attacks, we have
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Fig. 4: Petri net representing the attack model

to deal with large amounts of events so that it becomes impossible to store all
of them. Moreover, even if it would be possible to store all event data, it is of-
ten impossible to process them due to the exponential nature of most discovery
algorithms. Finally, the process evolves over time when new attacks are detected.

For these reasons our solution makes use of the online discovery algorithm
presented in [16], which is able to mine process models based on streaming event
data. The general representation of the online discovery problem is shown in
Fig. 3: one or more sources emit events (represented as solid dots). Events are
observed by the miner that keeps the representation of the discovered model
up-to-date. Algorithms that are supposed to interact with event streams must
respect some requirements, such as: a) it is impossible to store the complete
stream; b) backtracking over an event stream is not feasible, so algorithms are
required to make only one pass over data; ¢) it is important to adapt the model
to cope with unusual data values. The algorithm used in [16] is based on the
Heuristics Miner [34], one of the most effective algorithms for practical applica-
tions of process mining [13]. Fig. 4 shows the Petri net discovered from the event
stream provided by our honeypot at a given point in time.

4.4 Conformance Checking

One of ours goals is to provide security operators with an effective tool that
supports them in the analysis of incoming traces representing malicious attacks.
Since our approach is based on process mining, one of its strengths lies in the
possibility of employing trace alignment to extend the range of the available
security analysis features. In particular, with trace alignment, it is possible to
“build” a relevant feedback for the security operators that are in charge of mon-
itoring incoming attacks. This feedback includes the identification of unseen
attack traces and insights into their structure. The latter enable the security
operator to have a prioritized list of malicious traces ranked according to their
distance from known behaviors and pinpoint where these traces differ from the
up-to-date general attack model.

After an initialization phase of 1 day, the model discovered by the online
discovery algorithm from the event stream provided by our honeypot was the
one shown in Fig. 4. In Fig. 5, we show a trace containing a new attack and
its discrepancies with the original attack model. In particular, the new attack
requires 3 moves in the log to be aligned with the process model (the 3 activities
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indicated in the figure should be skipped according to the original model) and
the new trace has a fitness of 0.97 with the model. As shown in Section 4.3, the
new behavior is taken into consideration by the online discovery algorithm that
changes the process model into the one shown in Fig. 6.

It is important to observe that the cost of each legal alignment move depends
on the specific application domain. Hence, the cost function x needs to be de-
fined specifically for each setting and cannot be automated. For instance, in our
context, inserting an Is command should not be punished too hard, since this
command is not too relevant in the context of an IoT attack, while inserting
a ping command should lead to a lower fitness of the trace. While approaches
could be researched to support security operators in the definition of the cost
function, this is beyond the scope of this paper and left for future work.

5 Evaluation

We developed a prototype implementing our proposed approach using the ProM®
framework. To evaluate our approach, we first collected data from three botnets
that we ran against an instance of a Cowrie honeypot. Then, we tested the
ability of our solution to recognize unknown attacks and classify attack traces
according to their behaviour. Finally, we performed a further experiment through
a honeypot instance collecting real attacks over the web.

5.1 Experimental Setup

In order to collect data to test our approach, we setup an honeypot to mimic the
behavior of a target system. A honeypot is a software device that simulates the

® ProM (http://www.promtools.org/) is an is a open-source framework for im-
plementing process mining tools and algorithms.

Fig. 5: Alignment for a non-compliant trace
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Fig. 6: Petri net modified with the addition of a non-compliant trace

behavior of a real system to fool attackers in infecting it. Using a honeypot, it is
possible to collect data about attacks without running the risk of compromising
real systems. In addition, a honeypot includes security features that block the
attacker as soon as s/he tries to execute dangerous commands (e.g., execute
infection code). In particular, we setup an instance of Cowrie [1], a medium
interaction SSH and Telnet honeypot. This software can be configured to mimic
different linux-based environments.® We configured the honeypot to accept login
attempts with user “root” and any password.

Data Filtering. When a new connection is received, Cowrie logs all the com-
mands prompted by the attacker into a JSON file, also registering if the com-
mand is executed successfully or not. Since the logs produced by Cowrie are
highly verbose, we filtered out all the events that were not related to an inter-
action between the attacker and the honeypot. For example, after each login,
the honeypot logs the internal event cowrie.client.size; we discarded this event,
since it does not provide interesting information about the attack behavior.
The commands prompted by an attacker into the shell represent the most
important sources of information of a botnet. Hence, in some preliminary tests,
we tried to model all the shell commands as activities. However, in this way,
our logs recorded more than five thousands different commands (considering
also their arguments). Since most process mining techniques have been tested
with a smaller maximum number of activities, it has been required to reduce
the number of possible activities by filtering out some of them. Therefore, we
decided to ignore the arguments of each command. For example, if the attacker
prompts the command $ Is /usr/bin, we modeled it as $§ Is. After this first filter,
we removed all front and back spaces in order to normalize all commands. From
the resulting set of shell commands, we retained only the most frequent ones:

— /bin/busybox, rm, enable, shell, sh, system, cd, dvrHelper, cat, echo, tftp,
uname, killall, ping, linuzshell, exit, ls,wget, chmod, /bin/busybor wget,
/bin/busybox tftp.

5 Many commercial IoT devices are based on linux-like operating systems.
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Other commands were modeled with the activity generic command. Finally,
we represented all shell commands starting with the symbol > with activity
redirect. An example of attack trace obtained after the filtering step is:

(cowrie.session.connect, cowrie.login.success, enable, sh, /bin/busybox, rm,

cd, /bin/busybox, cowrie.session. file_download, cowrie.session.closed).

Note that, together with shell commands, internal commands of the honeypot
like cowrie.session.connect and cowrie.login.success can occur.

Data Collection We collected data from the honeypot in two different setups:
Controlled Environment (CE) and Not Controlled Environment (NCE).

CE: We put the honeypot into an isolated LAN network to enable it receiving
“controlled” attacks from three different botnets whose source code has been
leaked and publicly released: BASHLITE, LIGHTAIDRA and MIRAI We trig-
gered the botnets to generate new attacks; consequently, we exactly knew which
specific botnet produced an attack trace. For the CE configuration, we collected
1000 different attack traces for each botnet.

NCE: The honeypot had an associated public address with ports 22 and 23
open (i.e., reachable by anyone over the internet). This has allowed us to test
the feasibility of our approach when deployed in a real world environment. In
this configuration, we collected a total of 122 complete attack traces in four days.

5.2 Detection of Unknown Attacks

We initially performed an experiment to test if our system was able to distinguish
between a new attack and a known one. We used the data collected from the
honeypot in the CE configuration. Results are shown in Fig. 7a.

Firstly, we mined a general attack model using the first attack trace obtained
with the BASHLITFE botnet. After that, we computed the fitness of the model
with the remaining 999 attack traces produced by the same botnet. Since this
botnet exhibited the same behavior for any attack trace, the fitness score for
each trace was 1, i.e., the general attack model was able to recognize all known
attacks produced by BASHLITE.

Then, we computed the fitness of the previously discovered attack model with
the first attack trace obtained with LIGHTAIDRA. In this case, we measured
a fitness of 0.24, meaning that a new attack was discovered. This because the
attack model has been initially trained just over BASHLITE attack traces. Since
the first attack trace of LIGHTAIDRA was unknown for the general attack
model (i.e., fitness score lower than 1), we updated it to reflect the new recorded
behaviour. When we computed the fitness with the second trace obtained with
LIGHTAIDRA, we measured a higher accuracy, i.e., a fitness around 0.88, and
we again updated the model (even if fitness scores greater than 0.8 refer to
attack traces that are only partially unknown, as they represent variants of
known attacks, cf. Section 5.4). We repeated this procedure for the first 20



14 S. Coltellese et al.

attack traces obtained with LIGHTAIDRA, being the measured fitness lower
than 1. After that, for the remaining attack traces, the measured fitness was 1.

Finally, as expected, when we computed the fitness with the first trace ob-
tained with MIRAI, we registered a new drop in the fitness: 0.34. Repeating
the same update procedure as before, we started to measure high fitness scores
(around 0.97) after the first 20 traces produced by MIRAL

The above results show that with our approach we can distinguish between
new attacks and known ones, just looking at the value of the fitness.

5.3 Attack Classification

The aim of this second experiment was to verify the ability of our system to
classify the kind of attack underlying a recorded log trace. Leveraging again
the CE configuration, for each botnet, we split any log in two sublogs including
500 traces each. Given a botnet, we used the 500 traces in the first sublog as
training set, in order to discover the attack model underlying the specific botnet.
We performed this same procedure for the other two botnets, obtaining at the
end three attack models, one per botnet. Then, we used the 500 traces in the
second sublogs (one per botnet) as test set, computing the fitness of any trace
with respect to the attack models of the various botnets.

The results of this experiment are summarized in the confusion matrix of Fig.
7b, which includes the mean of the fitness score of traces taken by the second
sublogs with the three attack models. The analysis of the matrix makes clear that
our approach can classify attacks belonging to specific botnets very accurately.
Moreover, we can notice that the fitness between the traces of BASHLITE and
the LIGHTAIDRA model is high. This is because LIGHTAIDRA is an evolution
of BASHLITE, and shares some similar behaviours in its attacks.

5.4 Experiments with real attack traces

The aim of this third experiment is to test the effectiveness of the proposed
approach in a real world scenario. Leveraging the NCE configuration, which
allowed us to collect data associated to real attack traces, we investigated the
amount of new attacks that was possible to identify using our approach. The
results of this experiment are reported in Fig. 8, together with the fitness score
for each trace. Traces are sorted according to their timestamp. Analysing such
results, two considerations can be made: (i) looking at the drop in the fitness
we distinguished 13 different types/classes of attacks; and (%) the threshold of
the fitness score for identifying new unknown attacks can be fixed to 0.8. This
value, which is a result of this last empirical test, is useful to consider attacks
having a fitness score greater than 0.8 but lower than 1 as variants of already
known attacks, and not as totally new attacks.
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Fig. 7: Experiments for detection of unknown attacks and attack classification

6 Related Work

IoT Botnets — Research in the area of IoT security is recent by its nature, and
only contains few important works that have been driven by the observation of
attacks in the last 5 years. In particular there are several works that aimed at
analyzing the evolution of the largest botnets based on IoT devices. We already
cited the work by Antonakakis [12] that provides an in-depth analysis of MIRAI
while the evolution of MIRAI and BASHLITE was described by Marzano et al.
in [31]. From a more general standpoint, Cozzi et al. [19] studied common char-
acteristics of current linux malware, an important contribution for this research
area, as a large number of IoT devices run on some form linux-based platform.

Attack Triage — The idea of applying the concept of triage to attacks comes
from practitioners that first experimented it within security operation centers
of large companies. In particular, it is often associated with the analysis of
malware. Recent research contributions applied this concept to malware analysis
for android-based platforms. Bitshred [25] proposes a probabilistic data structure
created through feature hashing for large-scale correlation of malware samples.
Bitshred was designed to efficiently identify samples of similar malware, but
differently from us, its internal data structures are not designed to details how
two samples differ. SigMal [27] shares some similarities with Bitshred, but uses
signal processing based analysis to improve resistance to noise. More recently,
Calleja et al. [18] showed that confusing statistical classification systems may be
easy for malware writers. More generally, the recent research trend on adversarial
machine learning [24] cast a shadow on the robustness of triage solutions based
on statistical models. Recently, Shen et al. have shown that it is possible to find
similarities between attacks with temporal word embeddings [32]. If compared
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Fig. 8: Fitness score for the attacks in the NCE configuration. In red we report
the values of fitness below 0.8 (from trace 20 and on) that represent a new attack.

with our approach, the main difference is that the work [32] relies on explicit
alerts given by an Intrusion Detection System (IDS) and requires a very large
dataset of alerts to produce reliable results.

Process Mining and Security — In the research literature, there are some
studies that advocate the use of process mining to analyse logs for the detection
of security violations in business processes [6, 5,7, 26, 8]. It is worth noting that
such studies focus on investigating security aspects regarding the ezecution of
business processes. Conversely, our work aims at applying process mining tech-
niques directly to malicious traces extracted from event logs containing attacks.
We found only two existing studies that go in our same direction [10, 14].

In [10], the authors combine process mining techniques and visual features to
help a network administrator analyzing the alerts (i.e., the amount of malicious
events included in a trace) generated by IDSs. If this amount is greater than
a predefined threshold, the alert is captured. Process discovery techniques have
been also employed for studying and classifying malware and malicious code
n [14]. In this work, by extracting a process model from the system logs of
infected devices and comparing it against the normal execution of non-infected
and similar devices, the authors create a classification of malware families.

Differently from the above studies, which employ offline process discovery
algorithms coupled with ad-hoc attack detection techniques, our solution uses
online discovery in combination with trace alignment. This ensures a more precise
identification of malicious traces and gives insights about their potential impact.

7 Concluding Remarks

In this paper, we have presented a novel solution for attack triage support dedi-
cated to IoT systems that, leveraging process mining techniques, can help secu-
rity operators to quickly identify new attacks with unknown behaviors, to later
analyze them in detail. We implemented and tested our solution with traces
generated by running publicly available botnet code (MIRAI, BASHLITE and
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LIGHTAIDRA) in a controlled environment, experimentally demonstrating the
validity of the proposed approach. Furthermore, we validated the effectiveness
of this system on a real-world use case considering traces of attacks collected
with our IoT honeypot.

It is worth noting that current algorithms for online process discovery and
trace alignment performs and scales very well with input models consisting of
hundreds of transitions and logs including thousands of execution traces [28, 20,
13, 21], making them very suitable for the automated triage of IoT attacks.

Future work will be devoted to validate our approach against larger collec-
tions of attack traces characterized by larger botnet variability. Furthermore, we
will investigate ways to automatically tune at run-time the cost function used
for trace alignment and the alarm threshold applied to the fitness score.

Finally, we plan to investigate how our approach can be used to monitor sys-
tems and lock attacks as they unfold. To this aim, predictive process monitoring
methods [30] can be employed to provide the user with predictions about the
future of an ongoing trace. The forward-looking nature of predictive monitoring
enables applications where evolving traces can be analyzed before completion,
to predict how they evolve, and possibly identify them as malicious (and thus
block them), before the infection vector is installed on the target system.
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