
Journal of Digital Forensics, Journal of Digital Forensics,

Security and Law Security and Law

Volume 11 Number 2 Article 3

2016

Log Analysis Using Temporal Logic and Reconstruction Approach: Log Analysis Using Temporal Logic and Reconstruction Approach:

Web Server Case Web Server Case

Murat Gunestas
Security Department Gumushane

Zeki Bilgin
Security Department Gumushane

Follow this and additional works at: https://commons.erau.edu/jdfsl

 Part of the Computer Engineering Commons, Computer Law Commons, Electrical and Computer

Engineering Commons, Forensic Science and Technology Commons, and the Information Security

Commons

Recommended Citation Recommended Citation
Gunestas, Murat and Bilgin, Zeki (2016) "Log Analysis Using Temporal Logic and Reconstruction
Approach: Web Server Case," Journal of Digital Forensics, Security and Law: Vol. 11 : No. 2 , Article 3.
DOI: https://doi.org/10.15394/jdfsl.2016.1377
Available at: https://commons.erau.edu/jdfsl/vol11/iss2/3

This Article is brought to you for free and open access by
the Journals at Scholarly Commons. It has been
accepted for inclusion in Journal of Digital Forensics,
Security and Law by an authorized administrator of
Scholarly Commons. For more information, please
contact commons@erau.edu.

(c)ADFSL

http://commons.erau.edu/jdfsl
http://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl/vol11
https://commons.erau.edu/jdfsl/vol11/iss2
https://commons.erau.edu/jdfsl/vol11/iss2/3
https://commons.erau.edu/jdfsl?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1277?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.15394/jdfsl.2016.1377
https://commons.erau.edu/jdfsl/vol11/iss2/3?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu/
http://commons.erau.edu/
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/

Log Analysis Using Temporal Logic and Reconstruction Approach … JDFSL V11N2

© 2016 ADFSL Page 35

LOG ANALYSIS USING TEMPORAL LOGIC
AND RECONSTRUCTION APPROACH: WEB

SERVER CASE
Murat Gunestas, Zeki Bilgin

Security Department
Gumushane, 29000, Turkey

mgunestas@egm.gov.tr, zbilgin@egm.gov.tr

ABSTRACT
We present a post-mortem log analysis method based on Temporal Logic (TL), Event Processing
Language (EPL), and reconstruction approach. After showing that the proposed method could be
adapted to any misuse event or attack, we specifically investigate the case of web server misuses.
To this end, we examine five different misuses on WordPress web servers, and generate
corresponding log files of these attacks for forensic analysis. Then we establish attack patterns and
formalize them by means of a special case of temporal logic, i.e. many sorted first order metric
temporal logic (MSFOMTL). Later on, we implement these attack patterns in the EPL, and
performed experimental log analysis by using a time window mechanism sliding on sorted log
records to evaluate effectiveness and efficacy of our proposed method. We found that our
approach is potentially capable of providing a platform where investigators can define/store/share
misuse patterns using a common language while providing fast and accurate forensic analysis on
large log files.

Keywords: log analysis, digital investigation, network forensics, web application security,
intrusion detection system, complex event processing

INTRODUCTION
Log files are journals of computer systems and
applications, and stores valuable information
for system administrators, security
professionals, and digital investigators. Log
analysis is a critical tool for digital
investigators, as well as for cyber security
professionals and system administrators. Once
arrived on the cybercrime scene, law
enforcement officers investigating cybercrimes
need to understand what happened on the
system, when did it happen, and who did it.
For all those forensics procedures, there is need
to collect related evidence from log files. Those
evidences should soundly be linked to the

misuse or crime. This is, however, not an easy
task because of enormous sizes of web log files,
complexity of understanding and correlating
misuse patterns linked to actual cybercrime
such as intrusion.

As typical log files are huge in size, it is
difficult to crawl over lines along with filtering,
sorting and other mining capabilities.
Correlation of events that are distant to each
other in large log files take so much effort in
computation and manpower.

In this context, this research presents a log
analysis approach using temporal logic and
reconstruction approach for fast and better log
analysis, which is also potentially capable of

JDFSL V11N2 Log Analysis Using Temporal Logic and Reconstruction Approach …

Page 36 © 2016 ADFSL

providing a platform where investigators can
define/store/share misuse patterns using a
common language. Because Temporal Logic
(TL) is typically used for detecting time-based
complex patterns over streams in real time, we
aimed at taking advantage of TL after
reconstructing records in log files. We have
selected Apache web server logs as a case
study since Web servers are one of the most
preferred targets for hackers and other cyber
criminals to intrude systems because of their
publicity. Web logs are set of timely recorded
events occurred between web servers and
clients. In general, Web log files keep each
record in the form of request and response
together in one line. Reconstructing web server
activities as streams based on records in web
log files gives us the capability of implementing
TL based on streaming data. This way it
becomes trivial to achieve fast and better
forensics investigation because there are state-
of-the-art streaming technologies such as
StreamBase, Esper, etc. (“EsperTech - Esper,”
n.d., “StreamBase | Complex Event Processing,
Event Stream Processing, StreamBase
Streaming Platform,” n.d.). We preferred Esper
platform and Event Processing Language
(EPL) as a standard language to define misuse
patterns. Esper provides .NET and Java
packages that are easy to implement either for
a standalone application or enterprise
framework along with EPL, a declarative
language for dealing with high frequency time-
based event data (“EsperTech - Esper,” n.d.).

To the best of our knowledge, there is no
platform performing post-mortem log analysis
using MSFOMTL, EPL, and reconstruction
approach. In addition, cyber security
professionals and investigators lack a standard
format or language to store and share their
previous experiences on log analysis. Besides
performance advantage and temporal logical
capabilities, our approach would base a
platform and a library to store, share, and

adjust previously identified patterns of misuses
for further analysis.

Through the paper, we describe previous
work in Section 2, along with some background
information in Section 3. Section 4 describes
misuse patterns informally that could reside
and could be detected from web log records.
Then, in Section 5, we define formal versions of
those patterns using a special case of TL.
Section 6 describes EPL queries that are
mapped from TL formulae given in the
previous section.

LITERATURE REVIEW
Many researchers have studied log analysis
from several aspects. We can categorize these
efforts in three groups; (1) focusing on analysis
of very large log files, (2) addressing vast
variety of log formats, and (3) correlation of
events through log entries.

In the first group, Vernekar and Buchade
(2013) propose a system and claim to provide
significant improvement in response time
through large log file analysis, correlation of
events and generating alerts by implementing
MapReduce algorithm.

The Iterative Partitioning Log Mining
(IPLoM) approach (Makanju, Zincir-Heywood,
& Milios, 2009) divides log files into clusters to
mine the appropriate patterns for further alert
generation based on these patterns. The
approach employs three steps through its
hierarchical partitioning, followed by
generation of cluster description for each
clusters produced. Through another research to
deal with large log file analysis problem,
Kalamatianos et al. (2012) propose a technique
that helps analysts to focus on a smaller
collection of events related to their analysis
objective rather than the entire log file. Havens
et al. (2012) focus on Bayesian spam filters
through categorization of log entries claiming
to identify log entries only relevant to known

Log Analysis Using Temporal Logic and Reconstruction Approach … JDFSL V11N2

© 2016 ADFSL Page 37

context, and to effectively exclude outage
relationships. Similar to those studies,
addressing fast and effective analysis of large
log files our approach based on temporal logic
brings a solution to the same problem by
narrowing down the investigation scope using
time windows.

Among the second group, Jayathilake
(2011) mentions that many log file formats are
supported by existing log analysis tools and
proposes a framework that can handle many
log file formats along with a new language
called “Log Data Extraction Language”
(LDEL). Jayathilake claims the language is
capable of expressing all log file formats known
after analyzing 20 different log file types, and
comes with a flexible parser. Arasteh et al.
(2007) propose a model checking approach
addressing the problem of formal analysis of
logs. They model the log as a tree labeled
through a term algebra that represents the
variety of actions logged.

Falling into the third group, Security
Information and Event Management (SIEM)
systems, today, collect information from
several security software and hardware,
network devices, systems, and applications.
Correlating event data with other conceptual
information in real time, several actions can be
taken by SIEM products, such as event and
activity monitoring and reporting. Although
there are several commercial tools, Splunk,
LogRythm, and Archsight are most widely
used. There are few open source SIEM
products, and OSSIM is the most popular. Like
many SIEM products, OSSIM also provides its
own engine to perform rule-based event
correlation; thus allowing users to define
dependencies between events through an xml
file rather than implementing temporal logic,
any event processing language, or existing any
CEP engine. MASSIF, on the other hand, is a
SIEM example, which is based on Complex
Event Processing (CEP). MASSIF can

automatically translate OSSIM’s directives into
CEP queries and can run queries in parallel
(Kavanagh & Rochford, 2015; Jimenez-Peris,
2015).

Complex Event Processing is a technique
used for processing events with the purpose of
identification of complex event patterns in real
time. To some extent, complex event
processing systems employ temporal logic
through their processes. Esper (“EsperTech -
Esper,” n.d.) and Streambase (“StreamBase,”
n.d.) are the examples of most commonly used
CEP frameworks today. Since event processing
languages (“EventFlow and StreamSQL,” n.d.;
Albek, Bax, Billock, Chandy, & Swett, 2005)
provide adequate implementation of temporal
logic; today, some IDS proposals prefer CEP
frameworks in charge. Ahmed et al. (2011)
implement MSFOMTL to formally define
misuse patterns; transform these patterns into
StreamSQL query language; and run those
queries on Streambase platform. MONID and
ORCHIDS are other examples of IDS
frameworks implementing Temporal Logic
(Ahmed et al., 2011). Above efforts implement
CEP for real time analysis and do not intend
to address post mortem investigations.
Automated Forensic Diagnosis System (J.
Herrerías & R. Gómez, 2010), on the other
hand, proposes reconstructing attacks after
incidents and carries out log analysis using
Event Correlation Module. This way, the
system is said to detect multi-step attacks and
to reduce false positives.

BACKGROUND
Three important issues we need to know about
log files are: the vast variety of log formats,
categorization of data in log files, and
enrichment of the content of a log entity.

Log Formats
Today we can categorize log files in three
classes: Structured, Semi-structured, and

JDFSL V11N2 Log Analysis Using Temporal Logic and Reconstruction Approach …

Page 38 © 2016 ADFSL

Unstructured. Structured log records are
typically defined by a schema that tells you
what kind of records to expect (e.g. Oracle or
MySQL database). Semi-structured logs are
typically provided with some descriptive meta-
data (e.g. XML), which is a type of data that
partially describes the original data. In XML,
that data is the element and attribute names.
Unstructured log data, on the other hand, can
be server logs, audio and video streams,
paragraphs of text, bit streams of all kinds
with no inherent meta-data, semantic, or
structural design. Prior to processing, this type
of log data needs to be parsed to some extent.

Categorization
As there are several types of events, many
applications and logging software today enforce
categorization by severity. *NIX systems
provide panic, critical, error, warning, info,
debug categories, while Windows provides
Startup and Shutdown, Authentication
Success, Authentication Failure, Access Allow,
Access Deny, Audit Success, Audit Failure,
Audit Other, Critical, Error, Warning, and
Information categories. Facilities related to log
records are also used in categorization, such as
Kernel, email.

Enrichment
Enrichment of log records contributes to log
analysis twofold: In the first, it provides
investigators better information compared to
meaningless abbreviations or numbers;
secondly, investigators could employ
enrichment functions in correlations, filters,
and other predicates through their analysis.
Some examples are given below;

 IP address can be transformed into
several other information that is of
investigators’ interest: country
information, blacklisted or whitelisted,
internal or external, Proxy, VPN, or
real endpoint, etc.

 Port numbers can be transformed into
well-known services, blacklisted or
whitelisted, etc.

 Size (Bytes) can be transformed into a
scaling classification, small, medium,
large.

Analysts perform enrichment through
built-in or user-defined functions using internal
or external sources or services. Given raw data,
corresponding values can be used in correlation
and definition of events.

MISUSE PATTERNS
In order to empower investigators with a fast,
effective log analysis, we need to make sure
that they have an adequate knowledge base in
the context that they will perform analysis,
that is, web server misuses in our case study.
It is important to know exactly what to look
for, or at least, some signatures or patterns
representing the evidence in advance. If there
is already a pattern successfully abstracted and
corresponding to activity that you are after,
then it is relatively easy to mine the pattern.
However, this is not valid for unknown or
novel misuses; thus, there is need to develop
patterns for such malicious behaviors or
events. Since patterns can be complex and
span over time as a series of events, we have
slightly changed/extended the systematic
signature engineering approach of Schmerl et
al. (2008) to develop new patterns
corresponding to specific activities:

1. Execute the activity (benign or
malicious) on the similar system to
record its traces. Traces represent
events observable through log records.

2. The resulting traces contain all events
of the system, but try to find a
small/unique fraction that could
represent the activity.

3. Manually inspect log records in order to
identify the activity specific events.

Log Analysis Using Temporal Logic and Reconstruction Approach … JDFSL V11N2

© 2016 ADFSL Page 39

4. Derive the new pattern gradually,
considering how the activity proceeded.

5. After specifying the pattern, its
correctness and conciseness must be
validated. If necessary, the pattern has
to be corrected or modified.

6. Abstract from attack specific patterns
to develop new patterns addressing
other unknown attacks featuring same
attitude.

MISUSE PATTERNS IN
TEMPORAL LOGIC

In order to represent misuse patterns that
include many types and span over time we
prefer Many Sorted First Order Temporal
Logic MSFOMTL. Below we describe how we
can define misuses mentioned earlier using
MSFOMTL.

Overview of MSFOMTL
Syntax

Temporal logic, which is a special type of
modal logic, is widely implemented to verify
the correctness of computer systems as it
provides a framework for modeling systems
and a specification language for describing the
properties to be verified. It brings a great
advantage especially when analysing safety-
critical systems as well as commercially-critical
and mission-critical systems, and for this
reason, there is a growing demand for formal
verification methods from industry and
research community (Huth & Ryan, 2004).

In temporal logic, the models include
several states, and a formula can be true in
some states and false in others, as opposed to
propositional and predicate logic. Thus, the
notion of truth reflects a dynamic structure as
the formulae change their truth-values based
on the state of the system (Huth & Ryan,
2004).

In this study, we adopt to use Many Sorted
First Order Metric Temporal Logic
(MSFOMTL), which is a special case of
temporal logic, in order to model certain
attack patterns for analyzing log records
spanning over time. We select MSFOMTL
because it has some special features that can
be efficiently used to unambiguously and
concisely describe the events to be
investigated.

MSFOMTL is previously proposed and
used by Ahmed et al. (2011) to develop an
online network intrusion detection system
based on temporal logic, and stream data
processing. MSFOMTL has the following
syntax given in Backus Naur form::≔ ┬|┴| |¬ | ∧ |(∨)| → |(∀) |(∃) | ◊[,] | [,] |♦[,] |█[,] | [,]

where p is any propositional atom from
some et Atoms, and the symbols ┬ and ┴ are
MSFOMTL formulas. The ◊, □, ♦, and ■ are
temporal connectives. ◊[t1 ,t2] means
“eventually,” □[t1 ,t2] means “always,” ♦[t1 ,t2]

means “sometimes in the past,” and ■[t1 ,t2]

means “always in the past” between the
moments t1 and t2 from now.

Developing Patterns for
Apache Logs using MSFOTML

To illustrate this, we follow the same study
case- that is- web server logs.(, , , , , , , , ,)where:

 : is a string variable representing the
client IP address; 

 : is a string variable representing
Host; 

 : is a string variable representing the
User;

JDFSL V11N2 Log Analysis Using Temporal Logic and Reconstruction Approach …

Page 40 © 2016 ADFSL

 : is an date-time variable
representing the Timestamp; 

 : is a string variable representing the
Request Method;

 : is a string variable representing the
Request Url;

 : is an integer variable representing
the Response Code; 

 : is an integer variable representing
the Bytes Sent; 

 : is a string variable representing the
Referrer; 

 : is a string variable representing the
User Agent;

We classify 4 pattern types: Single,
Multiple, Compound, and Abstract patterns.

Single Record Patterns
Given a single log record, we can deduce a
specific activity then we are assumed to define
a pattern representing this activity based on a
single record. To define such a pattern, we
typically employ keyword or regular expression
matches and/or other basic logical operators
over field values of a log entry. Below are some
examples of Single Record Patterns.

SQL injection attack using GET method is
a form of web application attack that targets
the database behind front-end web application
interface. Through the input forms of a web
page, an attacker would typically input a
value, which is not a regular and expected by
the system. For example, the attacker would
submit a string like %' or '0'='0 instead of
typical number value, 1, that can be used as
an ID number for an entity stored in a table in
the backend database. This way, the SQL
sentence created for the endpoint database
would be SELECT first_name, last_name
FROM users WHERE user_id = '%' or

'0'='0' instead of SELECT first_name,
last_name FROM users WHERE user_id =

'1', thus leading the attacker to retrieve
entire table rather than a single record. Such
an attack could be identified through a single
record pattern depicted below:(∃ , , , , , ,)(, , , ,"GET", , 200, , ,)∧ (,"% or %=%") I

SQL injection attack using POST method
is similar to the above attack, however,
launched through post method, if the web site
is designed to work on post methods. In this
case, URL field in log entries does not provide
any clue regarding what is requested from the
web server. Therefore, we need to develop
another pattern to detect the malicious
activity. An additional field may help us
through this, that is, bytes field if typical post
requests for a specific page returns a fixed size
response or the response is limited in a range,
then we can define a threshold for normal
usage and detect excessive responses by
comparing bytes field to this threshold.(∃ , , , , , ,)(, , , ,"POST", , , , ,)∧ (,/query.php) ∧ > 4600 II

Today web servers are widely built upon
ready-made themes such as WordPress,
Joomla, Drupal, etc. Web activities represent
same traces on log records when they are built
upon the same theme. Therefore, once we
define patterns specific to those themes, then
we can search for same patterns on other
websites built with the same theme and detect
malicious/suspicious activities. As a case
study, we have selected WordPress to define
patterns and below are some examples as
WordPress has the 38% of the market (“CMS
technologies Web Usage Statistics,” n.d.).

Log Analysis Using Temporal Logic and Reconstruction Approach … JDFSL V11N2

© 2016 ADFSL Page 41

WordPress failed login is an activity such
that a web user attempts to log in a web site
developed based on WordPress theme and
cannot succeed. WordPress theme’s login page,
wp-login.php, has been designed to accept
credentials through POST methods of the
Hypertext Transport Protocol (HTTP). The
theme responds to client with a code 200,
which corresponds to OK in HTTP level;
however, code 200 means the page returns
successfully with a response message reading
the failure during the login. Red rectangle in
Figure 1 shows a failed login trace in an
Apache Log file while Pattern III maps to the
evidence of this failed login attempt.(∃ , , , , , ,)(, , , , “ ”, , 200, , ,)∧ (, ”wp-login”) III

WordPress successful login is an activity
such that a web user successfully logs in a web
site developed based on WordPress. Unlike
unsuccessful logins, WordPress responds to
client with a code, 302, which corresponds to
REDIRECTION of the page from wp-
login.php. Green rectangle in Figure 1 points
to a successful login trace in an Apache Log
file while Pattern IV maps to the evidence of
this activity.(∃ , , , , , ,)(, , , “ ”, , 302, , ,)∧ (, ”wp-login”) IV

Multiple Record Patterns

We define multiple records patterns when we
need to represent complex events comprise
more than one event spanned over time and
related to each other. However, we define
multiple records patterns not only that are
dependent on each other, but also for
corroborating evidence of complex pattern by
including more single record patterns. This
mitigates false positives when a single record
pattern cannot feature a distinguished
signature of the activity, and through the
search, matches more activities than the
expected one. It is often to process multiple
records either backward or forward depending
upon the standing point.

Forward Multiple Records Patterns:
When we need complex patterns comprising
different single record patterns in ascending
order in time, that is, expected patterns are
defined before they appear, we employ
Forward Multiple Records Patterns. While
defining such patterns, MSFOMTL utilizes
interval values to define time differences
between events, as interval values could be
treated as relative values to actual timestamp
values, which are definitely to differ case by
case. Pattern V corresponds to a WordPress
Advanced Video Plugin Local File Inclusion
attack against a WordPress-based web site.
Exploit Database (“WordPress Advanced
Video Plugin 1.0–- Local File Inclusion LFI,”
n.d.) provides the exploit in detail for this
attack along with instructions, exploit, and
vulnerable plugin source code.

Figure Error! No sequence specified..
WordPress Login Traces in Apache Log

JDFSL V11N2 Log Analysis Using Temporal Logic and Reconstruction Approach …

Page 42 © 2016 ADFSL

The exploit completes the attack in 3
phases; however, it leaves 4 records in the log
file as shown in Figure 2. In the first, admin-
ajax.php has been requested with action, title,
short, and thumb parameters. To gain access
local files in web server, attacker misuses the

Thumb parameter and assigns the intended
sensitive file, rather than expected image file.
The webserver loads the content of the
intended file instead of actual image file and
stores it in a folder. Exploit tries to locate and
download this file. This is, however, not
straightforward; thus the link in the content of
the response to the first request is requested as
a second step. Since this link is the short link
rather than the actual URL of the post, Server
redirects the client to the actual URL. As a
third step, the actual URL is requested and
the post page which includes the link to the
thumbnail image file is returned. Finally, this
image file is requested. If all of the steps above
are completed with success, then this
corresponds to an evidence of Successful
WordPress Advanced Video Plugin Local File
Inclusion attack.

(∃)

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛ (∃ , , , , ,)(, , , ,"GET", , 200, , ,)∧ (, " − . ℎ ? = _ ℎ ")∧◊[,] (∃ , , , , ,)(, , , ,"GET", , 301, , ,)∧ (, " ?⁄ = ")
∧◊[,] (∃ , , , , ,)(, , , ,"GET", , 200, , ,)∧ , (, " = ", "&")∧◊[,] (∃ , , , , ,)(, , , ,"GET", , 200, , ,)∧ (,". ") ⎠⎟

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

V

Backward Multiple Records Patterns:
When we need to identify patterns where a
specific event is required not to be preceded by
other event/s in the past; we employ Backward
Multiple Records Patterns. As in Forward
Multiple Records patterns, MSFOTML
employs interval values to define time
differences between events. For example,
successful administrative access events
generally entail to be preceded by successful

login events. If we cannot find successful logins
before successful administrative activities, then
we could consider this a suspicious activity,
such as session hijack, IP change (e.g. proxy-
drop) in the middle of a running session, or
extremely long session time-outs which is a
vital security vulnerability for a web server. In
Pattern VI, we define administrative access to
a web server based on WordPress not preceded
by a successful login in a reasonable past,
which is 48 hours (172800 seconds) default

Figure 2. WordPress Advanced Video Plugin Local File
Inclusion Exploit traces in an Apache Log

Log Analysis Using Temporal Logic and Reconstruction Approach … JDFSL V11N2

© 2016 ADFSL Page 43

session timeout value for WordPress based web
sites (“WP Login Timeout Settings —
WordPress Plugins,” n.d.).

Repeating Multiple Records Patterns:
When we need complex patterns in which same
single record pattern repeats several times,
typically,

(∃)
⎝⎜
⎜⎜⎜⎜
⎜⎛ ⎝⎜⎜

⎛ (∃ , , , ,)(, , , , ,y6, ,y8, "-",)∧ (,"wp-admin")∧ = "GET" ∧ (, 200)∨ = "POST" ∧ (, 302) ⎠⎟⎟
⎞

∧ ¬∎[,] (∃ , , , , , ,)(, , , , "POST", , 302, , ,)∧ (,"wp-login") ⎠⎟
⎟⎟⎟⎟
⎟⎞

VI

more than a threshold value within a time
window; then we employ Repeating Multiple
Records Patterns. The threshold value and
time window size are assumed to be specified
by the investigator based on three aspects:
innards of the activity that pattern would
claim to address, accuracy rates of pattern
matching, and resource consumption. We
prefer Repeating Multiple Records Pattern in
order to address malicious activities that entail
repeating pattern, such as vulnerability
scanning or other brute force attacks.

Pattern VII is a Repeating Multiple
Records Pattern for a sample brute force login
attack against WordPress’ login page, which
outputs when unsuccessful login attempts (as
depicted in Pattern III) occur more than or
equal to 30 times in 30 seconds by the same IP
address:

(∃) [,] (∃ , , , , , ,)(, , , , "POST", , 200, , ,)∧ (,"wp-login") VII

CompoundPatterns
As mentioned earlier, when single record
patterns are not adequate to address an
activity precisely we would take the advantage
of Multiple Record Patterns including other
single records related to the activity in a
specific order or repetition. This is also possible
to develop more complex patterns comprising
several Multiple Record Patterns and Single
Record Patterns together. This helps us to

corroborate evidence of an alleged activity
occurred in the system. We develop compound
patterns in the event that particular patterns
are weak to distinguish expected activity and
raise vast amounts of false positives. In such
cases, we look for other patterns taking part in
addressing the same activity followed or
preceded by a weak pattern. As an example,
Pattern VIII comprises of brute force login
attack followed by a successful login as this
can be used to locate records shown in Figure

Figure 3.Brute Force Login Attack Traces in Apache
Log

JDFSL V11N2 Log Analysis Using Temporal Logic and Reconstruction Approach …

Page 44 © 2016 ADFSL

3. The first part locates the records in green while the second locates the record in red.

(∃)
⎝⎜
⎜⎜⎛ [,] (∃ , , , , , ,)(, , , , “POST”, , 200, , ,)∧ (,”wp-login”)∧◊[,] (∃ , , , , , ,)(, , , , “POST”, , 302, , ,)∧ (,”wp-login”) ⎠⎟

⎟⎟⎞ VIII

For versions before 2.0.2., WordPress has a
vulnerability that could be exploited by
(cache) Remote Shell Injection Exploit
(“WordPress <= 2.0.2 – cache Remote Shell
Injection Exploit,” n.d.). Through the exploit,
attackers could run arbitrary commands during
profile updates. Those commands are appended
into files in wp-content/cache/userlogins/ and
wp-content/cache/users/ directories that are
further included by cache.php through
“cache_file =
$group_dir.md5($id.DB_PASSWORD)..php;”
code, thus allowing attacker to execute
commands in his/her favor. One of the
challenges in this attack is to find names of the
files in wp-content/cache/userlogins/ and wp-
content/cache/users/ directories without

traversing, as web masters generally ban this.
As md5 hash of the user password is used as
the file name, Remote Shell Injection Exploit
identifies filenames by calculating md5 hashes
of possible passwords. Calculated hash values
submitted to web server in the form of a URL
through GET requests. Until received a
positive response, 200,

(∃)
⎝⎜
⎜⎜⎛ [,] (∃ , , , , , ,)(, , , , “GET”, , 404, , ,)∧ (,”wp-content/cache”)∧◊[,] (∃ , , , , , ,)(, , , , “GET”, , 200, , ,)∧ (,”wp-content/cache”) ⎠⎟

⎟⎟⎞ IX

as HTTP response, attacker receives several
negative responses, 404, in a small time range.
We have employed this attack and Figure 4
depicts the traces of this attack, while Pattern
IX is an example of Compound Pattern for
such an attack.

Abstract Patterns
After exhaustive examination on traces of log
records, we observed that some compound
patterns have commonalities, thus, could be
abstracted from. After abstraction from similar
corroborative patterns, we can obtain more

Figure 4. (cache) Remote Shell Injection Exploit Traces
in an Apache Log

Log Analysis Using Temporal Logic and Reconstruction Approach … JDFSL V11N2

© 2016 ADFSL Page 45

general patterns that can address more misuse
activity types rather than being stuck to a
specific activity. Patterns VIII and IX address
similar activities. Therefore, we can abstract
another pattern from these two patterns using
their commonalities in order to address similar
misuse activities in one pattern. Besides
brevity, this will mitigate the number of

searches over log records. As you can see
below, the abstract pattern in Pattern X
identifies events when excessive (=>30 times
in 2 seconds) events with same ip, method, and
response are followed by an individual event
within at most 1 second with only one
difference, that is, the response of the server.

(∃)⎝⎜⎜
⎛(∃ ,) [,] (∃ , , , , , ,)(, , , , , , , , ,)∧◊[,] (∃ , , , , , ,)(, , , , , , , , ,)∧ (! =) ∧ (! = 404) ⎠⎟⎟

⎞ X

MISUSE PATTERNS IN
EVENT PROCESSING

LANGUAGE
Although we are able to define our developed
patterns using temporal logic, there is need to
implement temporal logic in order to analyze
patterns. We prefer Event Processing
Language (EPL) to define patterns and Esper
Complex Event Processing (CEP) Engine to
query these patterns.

Overview of Event Processing
Language

Event Processing Language (EPL) has syntax
similar to Standard Query Language SQL with
additional properties that allow running
queries over time windows. Below are brief
descriptions of primary clauses commonly used
through EPL.

SELECT: Given input streams SELECT
statement allows a user to retrieve specific
fields or expressions (e.g. using built-in or user-
defined functions) based on fields among all
fields through the input stream tuples.

FROM: FROM statement allows users to
define from which input streams tuples are
selected.

WHERE: Given logical operators a user
could define filters over input streams using
WHERE clause. Like SELECT statement
through WHERE clause, users could employ
built-in and user-defined functions for logical
operators used through predicates.

PATTERN: Unlike traditional SQL, EPL
provides PATTERN clauses to define forward
multiple records patterns.

OUTER LEFT JOIN: EPL introduces
OUTER LEFT JOIN clause in order to query
patterns that are based on backward multiple
records and looking for absence of some events
in a specified past.

win: This statement added to the input
stream to define the size of windows over
streams.

Simple EPL Queries
Simple queries are designed to filter log records
one at a time over only one input stream, thus
consuming small memory space. We select

JDFSL V11N2 Log Analysis Using Temporal Logic and Reconstruction Approach …

Page 46 © 2016 ADFSL

fields or additional expressions or user-defined
functions over those fields that have key roles
in introducing the activity to the user in
SELECT clause. For single record pattern
queries, we typically have one input stream.
We design filters through WHERE clauses
where we can employ logical operators along
with built-in or user-defined functions. Below
we provide EPL queries designed to query
single record patterns that are depicted in
patterns I – IV.

SQLi-GET is an EPL query depicted in
Query 1, which defines the SQL injection
attack using GET method defined in Pattern I.
The query receives Apache log records in line
2, filter out records of which response value is
equal to 200, method is equal to “GET” and
URL value contains the signature, “% or
%=%,” that most SQL injection attacks
feature in line 3. In line 1, we output the
filtered records as an intended activity along
with a “SQLi” phrase that address the type of
activity, timestamp, IP address, Country of
the IP address, URL containing the signature
and agent used through the attack.

1

2
3

@NAME('Output::SQLi-GET')
SELECT “SQLi-GET” as activity, timestamp, ip,
countryFromIP(ip) as country, url, agent
FROM ApacheLogRecordStream
WHERE response = 200 and method = 'GET' and url
like “% or %=%”;

Query 1. SQL injection attack using GET method

SQLi-POST is an EPL query depicted in
Query 2, which defines the SQL injection
attack using POST method defined in Pattern
II. The query receives Apache log records in
line 2, filter out records of which response
value is equal to 200, method is equal to
“POST,” URL value contains location of the
dynamic query page ($querypage) which has
potential for SQLi attack in line 3. Since
Apache log records do not store content
through POST methods, it is worthless to look
for attack signatures in URL field. As

mentioned earlier, depending upon the query
page and its behavior, we can define a
maximum size value ($threshold) for responses.
In line 1, we output the filtered records as an
intended activity along with a “SQLi” phrase
that address the type of activity, timestamp,
IP address, Country of the IP address, URL
containing the signature and agent used
through the attack.

SQLi-POST is an EPL query depicted in
Query 2, which defines the SQL injection
attack using POST method defined in Pattern
II. The query receives Apache log records in
line 2, filter out records of which response
value is equal to 200, method is equal to
“POST,” URL value contains location of the
dynamic query page ($querypage) which has
potential for SQLi attack in line 3. Since
Apache log records do not store content
through POST methods, it is worthless to look
for attack signatures in URL field. As
mentioned earlier, depending upon the query
page and its behavior, we can define a
maximum size value ($threshold) for responses.
In line 1, we output the filtered records as an
intended activity along with a “SQLi” phrase
that address the type of activity, timestamp,
IP address, Country of the IP address, URL
containing the signature and agent used
through the attack.

1

2
3

@NAME('Output:: SQLi-POST'')
SELECT “SQLi-GET” as activity, timestamp, ip,
countryFromIP(ip) as country, url, agent
FROM ApacheLogRecordStream
WHERE response = 200 and method = 'POST' and url
like “%$querypage%” and bytes > $threshold ;
Query 2. SQL injection attack using POST method

WPFailedLogin is an EPL query authored
to query Unsuccessful login attempts through
web sites developed on WordPress theme and
defined in Pattern III above. The query
receives Apache log records in line 2, filter out
records of which response value is equal to 200,
method is equal to “POST” and URL value

Log Analysis Using Temporal Logic and Reconstruction Approach … JDFSL V11N2

© 2016 ADFSL Page 47

contains the login signature, “%wp-login%,”
that feature login actions performed through
WordPress theme in line 3. In line 1, we
output the filtered records as an intended
activity along with a “WPFailedLogin” phrase
that address the type of activity, timestamp,
IP address, Country of the IP address, URL
containing the signature and agent used
through the attack.

1

2
3

@NAME('Output::WPFailedLogin')
SELECT “WPFailedLogin'” as activity, timestamp, ip,
countryFromIP(ip) as country, url, agent
FROM ApacheLogRecordStream
WHERE response = 200 and method = 'POST' and url
like '%wp-login%';

Query 3. WordPress Failed Login

WPSuccessfulLogin is an EPL query
authored to query Unsuccessful login attempts
through web sites developed on WordPress
theme and defined in Pattern IV above. The
query receives Apache log records in line 2,
filter out records of which response value is
equal to 302, method is equal to “POST” and
URL value contains the login signature, “%wp-
login%,” that features login actions performed
through the WordPress theme in line 3. In
line 1, we output the filtered records as an
intended activity along with a
“WPSuccessfulLogin” phrase that address the
type of activity, timestamp, IP address,
country of the IP address, and URL containing
the signature and agent used through the
attack.

1

2
3

@NAME('Output::WPSuccessfulLogin')
SELECT “WPUnsuccessfulLogin'” as activity, timestamp,
ip, countryFromIP(ip) as country, url, agent
FROM ApacheLogRecordStream
WHERE response = 302 and method = 'POST' and url
like '%wp-login%';

Query 4. WordPress Successful Login

Investigators could combine single record
pattern queries.

EPL Query for Multiple
Records Pattern

Unlike EPL queries for single record patterns,
EPL queries for multiple records are a little
more complex. They generally include sliding
time windows rather than processing over very
large log files and enormous number of log
records that would probably lead to overhead
in memory and unnecessary computation over
the records that are irrelevant from temporal
perspective. Below is the EPL query of Pattern
V depicted above.

Forward Multiple Records EPL
Queries: When we need to query Forward
Multiple Records Patterns described in Section
5, we employ Forward Multiple Records EPL
Queries. While defining such patterns, EPL
utilizes PATTERN clause to define different
events that are expected to emerge
consecutively. We use “->” symbol to define
the order of the events. Further events can
employ predicates using the values in
previously matched events. While events are
processed based on real time through typical
event processing model, there are cases
through which specific timestamp fields in
stream tuples could be defined externally, thus
events are processed based on this timestamp
values rather than actual time. Predicates
employing time criteria use time interval
values between events. Query 5 maps to a
successful WordPress Advanced Video Plugin
Local File Inclusion exploit attack mentioned
earlier on a WordPress-based web site. Line 1
refers to adequate descriptive information for
investigators through SELECT statement.
Instead of typical input stream through FROM
statement, Line 2 defines a multiple forward
records pattern including consecutive traces
that comprise of an evident WordPress
Advanced Video Plugin Local File Inclusion
exploit attack, which is provided in Exploit
Database along with instructions, source, and
vulnerable code. We have launched the exploit
on our test website and successfully retrieved
the content of sensitive files at the server side.

JDFSL V11N2 Log Analysis Using Temporal Logic and Reconstruction Approach …

Page 48 © 2016 ADFSL

The exploit code in python leaves 4 records in
a web server log file as depicted in Figure 3
and Pattern V: Line 3 points to the request of
admin-ajax.php along with action =

ave_publishPost, title = $randomTitle, term

= $random, short = $random, and thumb =

$targetedSensitiveFile parameters; Line 4
corresponds to the second request using the
URL including “/?p=%” phrase in response
page for the first request; Line 5 is the trace of
the third request which is held after web server
redirects the client to actual URL that includes
the value of title parameter in the first record.
Finally, Line 6 refers to the last event of
Pattern V, that is, the file request to jpeg file
including intended local file on the web server.
As we have seen in Figure 3, all requests are
performed using GET method and response
codes are expected to be 200 for a successful
attack. Expected time intervals between events
are defined to be equal or less than 1 second
for this query.

1

2
3

4

5

6

@Name('Output::WPAVEPluginExploit')
SELECT "WPAVEPluginExploit" as source, a.ip, a.url,
a.timestamp as starttime , b.url, b.timestamp as endtime
FROM PATTERN [every

a=ApacheLogRecordStream(url like '%/wp-
admin/admin-ajax.php%action=ave_publishPost%' and
method='GET' and response=200)->

b=ApacheLogRecordStream(ip = a.ip and url like
'%/?p=%' and method='GET' and response=301 and
(timestamp.toMillisec() - a.timestamp.toMillisec()) <=
1000)->

c=ApacheLogRecordStream(ip = b.ip and url like
'%'||substringBetween(a.url,'title=','&')||'%' and
method='GET' and response=200 and
(timestamp.toMillisec() - b.timestamp.toMillisec()) <= 1000)
->

d=ApacheLogRecordStream(ip = c.ip and url like
'%.jpeg' and method='GET' and response=200 and
(timestamp.toMillisec() - c.timestamp.toMillisec()) <= 1000)
];

Query 5. WordPress Advanced Video Plugin Local File
Inclusion

Backward Multiple Records EPL
Queries: When we need to query Backward
Multiple Records Patterns, we first define and
filter specific events that will constitute the
compound pattern. Since we need to search for
absence of an event as well as existence of

events, we need to define the time range as a
scope of our search. In order to find the
evidence of absence of some records we employ
LEFT OUTER JOIN statement along with a
window as a scope in which to search. Such
windows are helpful twofold: (1) they lead
process engines to limit their search space thus
being memory efficient; (2) the pattern itself
might be bound with specific time ranges as
time-out values play critical role through
identification of session based activities. For
example, if login time out value is 60 seconds
for a web site, then it is unnecessary to
perform searches over time windows larger
than 60 seconds. If we are not bound with any
time limit, and deal with a reasonable amount
of records that will not put any burden on
memory, then we may not want to draw a
scope; thus performing full-log search.

Query 6 corresponds to Pattern VI and
search for instances of WordPress Suspicious
Administrative Access Without Login pattern.
Line 1 accepts the log file as an input stream
and based on predicates in Line 4 and 7 input
stream is filtered and split into two separate
event streams. In Line 10, IP addresses of
administrative activities are selected and
looked up among successful login events in
Line 11 and 12; when there is no match, then
the pattern is assumed to match in Line 13.

Log Analysis Using Temporal Logic and Reconstruction Approach … JDFSL V11N2

© 2016 ADFSL Page 49

1
2
3
4

5
6

7

8

9

10

11

12
13

@NAME('Split:: WPAdminAndLoginActivity')
ON ApacheLogRecordStream

INSERT INTO WPLoginSuccessfulStream
SELECT timestamp, ip, url, agent
WHERE response = 302 and method = 'POST'

and url like '%wp-login%'
INSERT INTO WPAdminSuccessfulStream
SELECT timestamp, ip, url,method, response,

referer, agent
WHERE url like "%wp-admin%" and

((method="GET" and response=200) or
(method="POST" and response=302))
OUTPUT ALL;

@NAME('Output::
WPSuspiciousAdminActivityWithoutLogin')
SELECT "admtime:", adminStream.timestamp,
"admin:" || adminStream.ip, "admurl:" ||
adminStream.url, adminStream.agent
FROM
WPAdminSuccessfulStream().win:ext_timed(timest
amp.toMillisec(), 1 sec) as adminStream
LEFT OUTER JOIN
WPLoginSuccessfulStream().win:keepall() as
loginStream
on adminStream.ip=loginStream.ip
WHERE loginStream.ip is null and
adminStream.referer="-";

Query 6. WordPress Suspicious Administrative Access
Without Login

Repeating Multiple Records EPL
Queries: When we need to query a Repeating
Multiple Records pattern, we need to define
the size of time window and the threshold
value as an identifier where the counts of
repeats are above it. Repeating patterns are
critical to identify misuses at scanning and
gaining access levels of intrusion attacks as
well as Denial of Service (DoS) attacks. Unlike
intrusion attacks, DoS attacks are designed to
consume resources at the target site and they
typically employ repetitive actions with
specially crafted payloads and/or through
vulnerable spots. The difference between
intrusion and DoS attacks is that in the
former, repeating pattern is sometimes followed
by a successful gain, in the latter, however,
attackers aim no unauthorized access at all.
Through developing EPL queries for repeating
patterns, the threshold value and time window
size are assumed to be specified by the

investigator based on three aspects: innards of
the activity that pattern would claim to
address, accuracy rates of pattern matching,
and resource consumption.

WPBruteForceLoginAttempt is an EPL
Query where Apache Log file is accepted as an
input stream within a $WindowSize variable in
seconds basing timestamp values in tuples in
Line 2 in Query 7. Since we are looking for
repetitions of specific events we may need to
group tuples by related fields. Line 3 allows us
to count the events that have same IP
addresses. Since for web sites with huge
amount of users, unintended login failures of
real users that are not part of any attack may
lead this pattern to produce false positives;
Pattern VII is designed to identify this
malicious behavior based on IP addresses. In
Line 4, the variable $RepeatThreshold allows
investigators to focus only on IP addresses
which preform excessive amount of login
attempts and fail in a small time range that
are not expected through normal behavior of
any client.

1

2

3
4

@Name('Output::WPBruteForceLoginAttempt')
SELECT ip, min(timestamp) as starttime,
max(timestamp) as endtime, count(*) as cnt
FROM ApacheLogRecordStream (response = 200 and
method = 'POST' and url like '%wp-
login%').win:ext_timed(timestamp.toMillisec(),
$WindowSize sec)
GROUP BY ip
HAVING count(*) > $RepeatThreshold;

Query 7. Repeating WordPress Failed Logins

EPL Queries for Compound
Patterns

Scanning phase in cyber-attacks is generally a
stepping-stone to gain unauthorized access at
the victim site. Almost none of the countries in
the world consider scanning, itself, a crime,
unless any unauthorized access or damage
occurs at the target. This makes scanning a
most widely used tool among hackers,
penetration testers, researchers, etc. Thus, for
many web sites it is often used to observe huge

JDFSL V11N2 Log Analysis Using Temporal Logic and Reconstruction Approach …

Page 50 © 2016 ADFSL

amounts of scan activities among their log
records. This makes the investigators work
harder and leads them to narrow their
investigations down only to scans followed by
successful unauthorized access or damage at
the target. This can be achieved developing
EPL queries that can search compound
patterns that comprise other patterns, such as
single record or multiple records patterns.

WPSuccessfulBruteForceLoginAttack
defined in Query 8 below, extends the EPL
query in Query 7 such that repeating failed
logins are followed by a successful login defined
in Query 4. As defined in Pattern VIII, in
Lines 1-6 the query filters repeating login
attempts more than 30 times in 30-second
windows while in Lines 7-9 it filters successful
login records. Finally, Lines 10-11 correspond
to a compound pattern through which both
events are consecutively defined, that is,
repeating failed logins immediately (1 second
in this case) followed by successful logins by
the same IP address.

1
2

3

4
5
6

7
8

9

10

11

@Name('Split:: WPBruteForceLoginAttempt')
INSERT INTO RWULAStream
SELECT ip, min(timestamp) as starttime,

max(timestamp) as endtime, count(*) as cnt
FROM ApacheLogRecordStream(response = 200 and

method = 'POST' and url like '%wp-
login%').win:ext_timed(timestamp.toMillisec(), 30 sec)

GROUP BY ip, response
HAVING count(*) > 30;

@Name('Split:: WPSuccessfulLogin')
INSERT INTO WSLStream
SELECT max(timestamp) as timestamp, ip,

min(timestamp) as starttime, count(*) as cnt
FROM ApacheLogRecordStream(response = 302 and

method = 'POST' and url like '%wp-login%');

@Name('Output::
WPSuccessfulBruteForceLoginAttack')

SELECT ": Successful Wordpress Login Scan Attack
from " || a.ip as source, a.starttime, a.endtime, b.timestamp
as endtime

FROM PATTERN [every
a = RWULAStream() ->
b = WSLStream(ip = a.ip and

(timestamp.toMillisec() - a.endtime.toMillisec()) <= 1000)];

Query 8. Wordpress Successful Brute Force Login Attack

WPCacheScanAttack similar to Query 8
and is used to identify in terms of traces left in
the log file. However, as described in Section 5,
(cache) Remote Shell Injection Exploit has a
scanning component targeting caching
mechanism of WordPress to gain access first
and then to inject malicious code. We define
only to identify the successful scanning part
here as we want to illustrate how scanning
activities have similar behavior. As defined in
Pattern IX, through Lines 1-4 the query filters
repeating unsuccessful cache requests more
than 30 times in 2-second windows, while
through Lines 5-8, it filters successful cache
request records. Finally, Lines 9-10 correspond
to a compound pattern through which both
events are consecutively defined, that is,
repeating failed cache requests immediately (1
second in this case) followed by successful
cache request by the same IP address.

1
2

3

4

5
6
7
8

9

10

@Name('Split::WPCacheScans')
INSERT INTO WPUnsuccessfulCacheStream
SELECT ip, min(timestamp) as starttime,
max(timestamp) as endtime, count(*) as cnt
FROM ApacheLogRecordStream (response = 404 and url
like '%wp-
content/cache%').win:ext_timed(timestamp.toMillisec(),
2 sec)
GROUP BY ip, response having count(*) > 30;

@Name('Split::WPCacheSuccess')
INSERT INTO WPSuccessfulCacheStream
SELECT timestamp, ip, url, agent
FROM ApacheLogRecordStream
WHERE response = 200 and method = 'GET' and url
like '%wp-content/cache%';

@Name('Output::WPCacheScanAttack')
SELECT a.ip||": Successful Attack" as source,
a.starttime , a.endtime as _endtime, b.timestamp as
endtime
FROM PATTERN [every

a=WPUnsuccessfulCacheStream()->
b=WPSuccessfulCacheStream(ip=a.ip and

(timestamp.toMillisec() - a.endtime.toMillisec()) <=
1000)];

Query 9. Scanning Component of (cache) Remote Shell
Injection Exploit

EPL Queries for Abstract
Patterns

Log Analysis Using Temporal Logic and Reconstruction Approach … JDFSL V11N2

© 2016 ADFSL Page 51

As mentioned earlier, some compound
patterns are similar, and so are EPL queries
corresponding to them. EPL queries, designed
to address abstract patterns, can contribute to
Log Analysis twofold; (1) detecting other
unknown misuses that are similar to each other
and (2) addressing several types of patterns
querying only one pattern. However, since the
pattern is in more generalized form, it may
produce more false positives than patterns
dedicated to a specific misuse type.

WPSuspiciousScan is an EPL query to
search for Pattern X. Unlike Queries 8 and 9,
Query 10 employs no predicates on the input
stream rather than grouping and counting
based on these groups through Lines 1-6.

IMPLEMENTATION
In order to take the advantage of CEP for
forensic analysis of large log files, we were to
implement an existing CEP software package,
or create our own. Among others, we have
selected Esper as it is open source and provides
engine API that allows for creating standalone
applications. We have built our proof of
concept (PoC) application and authored the
code in Java based on Esper’s Java

1
2

3

4
5

6

7

@Name('Split::Scans)
INSERT INTO ScanStream
SELECT ip, method, response, min(timestamp) as
starttime, max(timestamp) as endtime, count(*) as cnt
FROM ApacheLogRecordStream().win:ext_timed
(timestamp.toMillisec(), 1 sec)
GROUP BY ip, method, response
HAVING count(*) > 30;

@Name('Output::WPSuspiciousScan')
SELECT a.ip||": Successful Attack at: "||b.url as source,
a.starttime , a.endtime as _endtime, b.timestamp as
endtime
FROM PATTERN [every-distinct(ip, method,
response, starttime, endtime)

a=ScanStream() ->
b=ApacheLogRecordStream(ip=a.ip and

method=a.method and response!=a.response and
response!=404 and (timestamp.toMillisec() -
a.endtime.toMillisec()) <= 2000)];

Query 10. Suspicious Scan

package. As CEP engines typically process
events in real time, we have decided to
reconstruct events in order to take the
advantage of the complex event-processing
model. After reconstruction, we need to make
it certain our PoC application makes CEP
engine run queries safely, that is, consuming
reasonable memory and CPU resources along
with producing accurate output.

Reconstruction of Log
Records

In order to reconstruct the activities through
Apache Log entries we first need to read
records from log files and then send those
records to the engine as events. To do so, we
have created an adapter in Java, called
ApacheLogInputAdapter, for the Apache log
forma, because ESPER provides only 7
adapters (e.g. amqp, csv, http, etc) and none
of them have been supporting Apache Log files
as of writing.

Through the adapter, we have employed
special regular expression (a.k.a regex) to parse
log records. After running the adapter for
several log files, we encountered log files and
records with errors. To eliminate distraction,
we have excluded non-compliant records from
the search process.

Since we deal with post mortem
identification and extraction of evidence from
log records, we lack capturing events in real-
time; thus, we need timestamp values bound to
records. Unfortunately, log files may not store
records in the correct order all the time.
According to our examinations on log files,
timely disordered events occur in small sizes of
time windows. That is, an event occurred
earlier may be stored only a few seconds later
and after some records with bigger timestamp
values, although it has smaller timestamp
value. To deal with this problem, we employ
sorting through an EPL query with a
reasonable time window and make sure the

JDFSL V11N2 Log Analysis Using Temporal Logic and Reconstruction Approach …

Page 52 © 2016 ADFSL

actual queries do not get confused with timing
disorder. Query 11 is the sample query to sort
the records over timestamp field.

1
2
3
4

@NAME ('Sort::ApacheLogEvent')
INSERT INTO ApacheLogRecordStream
SELECT * FROM ApacheLogEvent.win:length(10)
OUTPUT EVERY 1 events
ORDER BY timestamp;

Query 11. Sorting  

As a part of the enrichment process,
forensic analysts may need some
transformations of some field values into some
other related information, such as IP addresses
to country match. Although we have not
utilized all of them, we have created some
user-defined functions, not only to use through
the predicates of EPL queries, but also to
provide better output through SELECT
clauses.  

Adjusting EPL Queries
Investigators could create EPL queries that
can query same patterns with slight
differences. For example, in Pattern VI we
have developed a pattern to match the
administrative activity using   only “%wp-admin%" and ((method="GET" and response=200) or(method="POST" and response=302))” predicate.
However, having inspected the results of those
queries, we have observed so many false
positives. That is, there are pages, scripts, or
files under wp-admin directory that can be
requested and retrieved, while do not require
the user to be logged in and to have

administrative privileges. Therefore, in order to
mitigate the false positives, we adjust our
query adding additional predicates, such as“URL not like ‘%http%’ and URL not like ‘%/wp-admin/css/%’ and URL not like ‘%/wp-admin/js/%’and URL not like ‘%/wp-admin/admin-ajax.php%’"

Besides adjustment based on predicates,
when not tuned well, threshold values of
repeating patterns and size values for sliding
time windows might cause redundancy in
output or false negatives. For example, if we
define window size using win.ext_timed, then
the query slides smoothly over the records and
results in producing vast amount of alerts
pointing to the same event. Although this
mitigates the false positive rate, it raises
redundant outputs. There are two possible
solutions to mitigate this; (2) changing the
statement to win.ext_timed_batch that slides
windows as batches rather than smooth-slides
or (2) adding every-distinct statement before
pattern definitions through queries. In the
former, it is critical to know that batch queries
might produce false negatives depending upon
the record density.

Experiments and Results
In order to test and observe how those queries
are effective and efficient over actual log files,
we have used a system that is running
Yosemite-Mac OS on 8Gb Memory and Intel i5
Core 2 CPU. We developed and executed our
code using Eclipse and monitored resource
consumption through VisualVM.

Log Analysis Using Temporal Logic and Reconstruction Approach … JDFSL V11N2

© 2016 ADFSL Page 53

We have run our queries on real Apache
Log files of which web servers are based on
WordPress theme and we merged two large log
files in 1 Gb sizes and obtained a log file
around 2 GB in size. When we have run 6
queries provided in this paper earlier, we have
observed periods as depicted in Figure 5. When
we gathered all queries in one big query, notice
All-In-One in the figure, we have observed
elapsed time no more than the longest one
among individual runs. This is good news for

investigators who want to run several queries
once and significantly narrow down their
investigations.

Investigators may also need to sort log
records depending upon the situation of log
records or queries required. Figures below
illustrate EPL query-runs over a 10 GB
Apache log file. Figure 6.b depicts the query-
run with a sorting query, Query 11. With
sorting memory consumption raises around 100
mb heap usage.

Figure 5. Memory Consumption without Sorting

Figure 6a. Memory Consumption without Sorting

JDFSL V11N2 Log Analysis Using Temporal Logic and Reconstruction Approach …

Page 54 © 2016 ADFSL

Besides the size, content of log files also
impact the speed of query-runs. When we have
log file with high density of records that match
our search patterns which feature groupings
over large sliding windows then we observe
higher memory consumption and even out of
memory errors through smaller heap size. For
log file including the traces of (cache) Remote

Shell Injection Exploit attack depicted in
Figure 4, we have run Query 9. The log file has
almost 400K records related to this attack
spanning over only 100 minutes. The engine
has consumed memory space more than 400
mb as shown in Figure 7.a. CPU usage was
also high during this query run.

Figure 6b. Memory Consumption with Sorting

Figure 7a. Memory Usage over High Density Log File

Log Analysis Using Temporal Logic and Reconstruction Approach … JDFSL V11N2

© 2016 ADFSL Page 55

CONCLUSION
We have proposed a novel log analysis method
using TL based on reconstruction. As they are
ubiquitous, we focused on Web Server misuses
and Apache log files as a case study. Through
definition of misuses, we have developed formal
patterns in MSFOMTL and corresponding
queries in EPL. In order to run EPL queries,
we have built our PoC application upon an
open source CEP engine, Esper. Our tests
revealed this method can be very efficient and
effective through log analysis and would
contribute to digital forensics field in several
aspects.

Such approach could be used not only
through digital investigations for misuse
identification and location, but also through
business intelligence for use case analysis and
cyber-security for enhancing SIEM and host
based intrusion detection mechanisms.
Investigators can run several queries that have
previously been tested and stored in EPL
libraries. This would speed their investigations
up and allow saving time by focusing on
something novel rather than wasting time
through the search of already known patterns.

Figure 7b. CPU Usage over High Density Log File

JDFSL V11N2 Log Analysis Using Temporal Logic and Reconstruction Approach …

Page 56 © 2016 ADFSL

REFERENCES

Ahmed, A., Lisitsa, A., & Dixon, C. (2011). A
misuse-based network Intrusion Detection
System using Temporal Logic and stream
processing. In Network and System
Security (NSS), 2011 5th International
Conference on (pp. 1–8).
http://doi.org/10.1109/ICNSS.2011.605995
3

Albek, E., Bax, E., Billock, G., Chandy, K. M.,
& Swett, I. (2005). An Event Processing
Language (EPL) for Building Sense and
Respond Applications. In Parallel and
Distributed Processing Symposium, 2005.
Proceedings. 19th IEEE International (p.
136b–136b).
http://doi.org/10.1109/IPDPS.2005.97

Arasteh, A. R., Debbabi, M., Sakha, A., &
Saleh, M. (2007). Analyzing multiple logs
for forensic evidence. Digital Investigation,
4, Supplement(0), 82 – 91.
http://doi.org/http://dx.doi.org/10.1016/j.
diin.2007.06.013

[CMS technologies Web Usage Statistics.
(n.d.). Retrieved April 22, 2016, from
http://trends.builtwith.com/cms

EsperTech - Esper. (n.d.). Retrieved April 1,
2016, from
http://www.espertech.com/esper/

EventFlow and StreamSQL | StreamBase.
(n.d.). Retrieved April 23, 2016, from
http://www.streambase.com/products/stre
ambasecep/streamsql/

Havens, R. W., Lunt, B., & Teng, C. C.
(2012). Naive Bayesian filters for log file
analysis: Despam your logs. In 2012 IEEE
Network Operations and Management

Symposium (pp. 627–630).
http://doi.org/10.1109/NOMS.2012.621197
2

Huth, M., & Ryan, M. (2004). Logic in
Computer Science: Modelling and
Reasoning About Systems. New York, NY,
USA: Cambridge University Press.

Jayathilake, P. W. D. C. (2011). A novel mind
map based approach for log data
extraction. In 2011 6th International
Conference on Industrial and Information
Systems (pp. 130–135). http://
doi.org/10.1109/ICIINFS.2011.6038054

J. Herrerías, & R. Gómez. (2010). Log Analysis
Towards an Automated Forensic Diagnosis
System. Availability, Reliability, and
Security, 2010. ARES ’10 International
Conference on, 659–664.
http://doi.org/10.1109/ARES.2010.120

Jimenez-Peris, R. (2015). MASSIF: A Highly
Scalable SIEM. Presented at the DEMONS
Workshop.

Kalamatianos, T., Kontogiannis, K., &
Matthews, P. (2012). Domain Independent
Event Analysis for Log Data Reduction. In
2012 IEEE 36th Annual Computer
Software and Applications Conference (pp.
225–232).
http://doi.org/10.1109/COMPSAC.2012.33

Kavanagh, K. M., & Rochford, O. (2015).
Magic Quadrant for Security Information
and Event Management. Retrieved from
https://www.gartner.com/doc/reprints?id=
1-2JNUH1F&ct=150720&st=sb

Makanju, A. A. O., Zincir-Heywood, A. N., &
Milios, E. E. (2009). Clustering Event Logs

Log Analysis Using Temporal Logic and Reconstruction Approach … JDFSL V11N2

© 2016 ADFSL Page 57

Using Iterative Partitioning. In Proceedings
of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and
Data Mining (pp. 1255–1264). New York,
NY, USA: ACM.
http://doi.org/10.1145/1557019.1557154

Schmerl, S., Koenig, H., Flegel, U., Meier, M.,
& Rietz, R. (2008). Systematic Signature
Engineering by Re-use of Snort Signatures.
In Computer Security Applications
Conference, 2008. ACSAC 2008. Annual
(pp. 23–32).
http://doi.org/10.1109/ACSAC.2008.20

StreamBase | Complex Event Processing,
Event Stream Processing, StreamBase
Streaming Platform. (n.d.). Retrieved April
23, 2016, from
http://www.streambase.com/

Vernekar, S. S., & Buchade, A. (2013).
MapReduce based log file analysis for
system threats and problem identification.
In Advance Computing Conference
(IACC), 2013 IEEE 3rd International (pp.
831–835).
http://doi.org/10.1109/IAdCC.2013.651433
4

WordPress <= 2.0.2 - cache Remote Shell
Injection Exploit. (n.d.). Retrieved April 1,
2016, from https://www.exploit-
db.com/exploits/6/

WordPress Advanced Video Plugin 1.0 - Local
File Inclusion LFI. (n.d.). Retrieved April
19, 2016, from https://www.exploit-
db.com/exploits/39646/

WP Login Timeout Settings — WordPress
Plugins. (n.d.). Retrieved March 26, 2016,
from https://wordpress.org/plugins/wp-
login-timeout-settings/screenshot

JDFSL V11N2 Log Analysis Using Temporal Logic and Reconstruction Approach …

Page 58 © 2016 ADFSL

	Log Analysis Using Temporal Logic and Reconstruction Approach: Web Server Case
	Recommended Citation

	Log Analysis Using Temporal Logic and Reconstruction Approach: Web Server Case

