
1

Insider Threat Detection in PRODIGAL
Henry G. Goldberg, William T. Young, Matthew G. Reardon, Brian J. Phillips, and Ted E. Senator*

Leidos, Inc., Arlington, VA USA (*former employee)
{goldberghg, youngwil, reardonmg, phillipsb}@leidos.com; t.senator@verizon.net

Abstract—This paper reports on insider threat detection re-
search, during which a prototype system (PRODIGAL)1 was
developed and operated as a testbed for exploring a range of
detection and analysis methods. The data and test environment,
system components, and the core method of unsupervised detec-
tion of insider threat leads are presented to document this work
and benefit others working in the insider threat domain.

We also discuss a core set of experiments evaluating the
prototype’s ability to detect both known and unknown malicious
insider behaviors. The experimental results show the ability
to detect a large variety of insider threat scenario instances
imbedded in real data with no prior knowledge of what scenarios
are present or when they occur.

We report on an ensemble-based, unsupervised technique for
detecting potential insider threat instances. When run over 16
months of real monitored computer usage activity augmented
with independently developed and unknown but realistic, insider
threat scenarios, this technique robustly achieves results within
five percent of the best individual detectors identified after
the fact. We discuss factors that contribute to the success
of the ensemble method, such as the number and variety of
unsupervised detectors and the use of prior knowledge encoded
in detectors designed for specific activity patterns.

Finally, the paper describes the architecture of the proto-
type system, the environment in which we conducted these
experiments and that is in the process of being transitioned to
operational users.

Index Terms—Anomaly detection; insider threat; unsupervised
ensembles; experimental case study

I. INTRODUCTION

Malicious insiders are adversarial and may attempt to hide
their actions by employing techniques that they believe will
evade detection. As in other adversarial domains, a useful
insider threat detection system must be able to detect not only
instances of known, suspected, or hypothesized insider threat
scenarios, but also instances of previously unseen and novel
insider threat scenarios [21].

Insider threat detection can be more difficult than other
similar domains such as money laundering, intrusion detection,
or counter-terrorism because insiders may be more aware of
an organization’s information protection capabilities and pro-
cedures than outsiders. Furthermore, malicious insider activity
is typically only a small fraction of the activities performed
by any user of an organization’s information systems. We will
see in the next section that this low ”signal to noise ratio” is
reflected in the test data, as is the unknown nature and diversity
of threat scenarios.

The scenarios presented in this paper draw inspiration from
case study literature of documented insider threat incidents
from the public and private sectors ([6], [14], [18]). These

1PROactive Detection of Insider Threats with Graph Analysis and Learning

examples of insider threat behaviors generalize across in-
sider threat detection applications. Understanding the types of
attacks designed to steal protected information informs the
development of defensive enterprise detection technologies
such as decoys ([4], [17]). Understanding complex human
behaviors in enterprise environments supports the identifica-
tion of patterns of activity in computer usage data related
to behaviors associated with insider threat actions, such as
quitting ([10], [5]). Characterizing behavior demonstrated by
users in online social communities such as deception ([3])
and negative predisposition toward law enforcement ([13]) can
be relevant to the insider threat domain. Machine learning
techniques, such as outlier detection [2] and unsupervised
anomaly detection [7], have likewise shown utility for identi-
fying insider threat activiites in large, complex data sets ([9],
[24]). Finally, the efficacy of ensembles of detectors has been
shown ([1], [8]) and inspired our approach.

This paper concludes more than five years of work on
insider threat detection during which a prototype system
(PRODIGAL) was developed and operated to provide a testbed
for exploring a wide range of detection and analysis methods.

Since this paper continues and extends experiments previ-
ously reported in [25], we have repeated some introductory
material and descriptions of our approach - especially regard-
ing metrics, the test data, and the ensemble approach. While
the previous paper looked at results from data collected over
eight months, we cover results from 16 months, including a
number of novel inserted target scenarios. We also present
the PRODIGAL system architecture and discuss its utility
in potential layered applications. Finally, we are able to
draw stronger conclusions about ensemble performance and
to suggest future directions.

The first phase of the program was devoted to developing
the data structures and detection algorithms needed to operate
a large suite of detectors. The two main foci of the work
performed during the second phase of the program involved
approaches to support analysts in a real operational system.

• The fact that analysts need a single ranked list of sub-
jects for investigation led to experiments with combining
multiple detector results to produce a single set of high-
quality leads.

• The need to provide analysts with more information
about the component decisions comprising a lead inspired
methods to provide explanations of detector output and
other (temporal and aggregate) analyses to support down
stream decision makers. [12]

We present findings from experiments to detect instances of
insider threat scenarios inserted into a real database from mon-
itored activity on users’ computers seeded with independently-

2648

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41476
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND

2

developed and inserted insider threat activities superposed on
the activities of real users and inserted into the underlying
system to be monitored in the same way as any other user
activities2

The rarity of known targets, as well as the diversity of threat
scenarios provided in the test data preclude our ability to
make strong claims of repeatability or robustness. However,
we discuss findings from exploratory experiments applying
a diverse suite of anomaly detection methods and compare
them individually with the output of an unsupervised ensemble
combination method.

• We describe an unsupervised ensemble-combination tech-
nique whose performance, when operating on outputs
from a large diverse set of anomaly detectors, is close
to that of the best (post hoc) detector over many months
of data and multiple scenario types.

• We see that the same unsupervised ensemble-based
anomaly detection technique outperforms detectors hav-
ing features designed specifically for individual suspected
scenarios.

• Initial comparisons of the best performing anomaly detec-
tors with those selected in the final step of the ensemble
method show interesting potential for improving the
method.

• We note instances where individual detectors and the
ensemble, although performing poorly on some scenarios
vis. an overall metric like AUC3, can still support the
ability to detect leads to detection of complex insider
threat scenarios involving unknown groups of actors
collaborating over days or weeks.

Experiments and results included in this paper extend pre-
viously reported results ([21], [24], [25]) to cover 16 months
of data from September 2012 through February 2014. Testing
on the additional eight months included a number of new Red
Team (RT) scenarios, new detection algorithms, and improved
versions of existing detectors.

Finally, this paper describes PRODIGAL’s architecture and
discusses some of the design issues and tradeoffs that affect
how to deploy an insider threat detection system incorporating
these methods.

II. BACKGROUND: DATA, SCENARIOS AND DETECTORS

A. Test Data and Red Team Scenarios

Test data for experimentation consists of a database of 5,500
users. The data collection system, SureView R©4, records all
user behaviors for specified activities, such as logon/logoff,
email, file actions, instant message, printer, process, and URL
events for a calendar month. On average, there are 1,000 events
per user per active day. Data are made available on a monthly
basis. The data provider anonymizes all user identification
(ID) and other personally identifiable information (PII) in the

2The information in this tool is collected from users from an unspecified
organization. All data is used with permission, in a closed facility subject to
all necessary privacy protections.

3area under the receiver operating characteristic (ROC) curve
4See https://www.forcepoint.com.

data set and hashes all information related to user events to a
randomly generated but internally consistent designator.

Separately from the data collection process, an independent
Red Team develops scenarios reflecting their field experience
of threat behaviors. Scenarios encapsulate specific insider
threat actions that are superimposed on the actions of real users
identified as appropriate to particular roles in the scenario.
The Red Team inserts up to five instances of scenarios (with
variations) in a data month for a total of 54 instances of
twenty-eight distinct scenarios. ([6], [11], [23])

The Red Team, in an effort to avoid evaluation bias, designs
its scenarios independently of our detection methods. Like-
wise, we do not review scenario specifics nor train our detec-
tors on the test data to avoid over-fitting. Scenario descriptions
are provided after the fact for purposes of evaluating our
methods; the Red Team is continually adding new scenarios
as the research is ongoing. Neither the Red Team nor our team
claims that the set of scenarios is complete.

B. Developing a Diverse Suite of Detectors
PRODIGAL is constructed to enable a variety of experi-

ments in insider threat detection over the test data previously
described. The key techniques have been described in detail
in [21], [24] and [25].

Our core hypothesis is that a diverse suite of detectors,
coupled with a method for combining their results, will be suf-
ficient to produce high quality leads for further investigation,
either by human analysts or automated reasoning components.

In this section, we describe a diverse suite of detectors
of three types: (I) indicator-based, (A) anomaly-based, and
(S) scenario-based. Table I lists the detectors, configured in
PRODIGAL and reported in this paper.

Indicator-based detectors use statistical outlier techniques
applied to sub-sets of features related to one or two particular
types of activity such as file or web access. They are most like
the detectors aimed at ”tells” or specific activities, which are
typically used in current practice.

Anomaly detectors employ complex models that focus on
different aspects of the data, e.g. structural features, semantic
features, or temporal features, and then search through the
entire feature space to identify potential anomalies. Features
typically consist of observed actions, aggregates, or ratios,
such as URLs accessed by a user, the number of print jobs
by a user, or the ratio of the number of files copied to
removable media compared to the total number of files actions.
Relational features such as the email and text-message com-
munication graphs are used to provide comparison groups in
some detectors. Different approaches to feature normalization
are incorporated into variants of the same detection models
used in PRODIGAL [21].

Scenario-based detectors are designed to detect specific
patterns of activity known to be associated with some insider
threat scenarios. They are inspired by the scenarios described
in [6], but are developed independently of the Red Team sce-
nario descriptions and inserts. They consist of a combination of
indicator-based and anomaly-based detectors and classifiers in
a specified workflow, structured to reflect a hypothesized com-
bination of real world actions that are likely to discriminate

2649

3

TABLE I: User-Day Detectors in PRODIGAL

Algorithm Type Description
TBAD A Temporal Based Anomaly Detection
VSM A Vector Space Models
GFADD:1 I Grid-based Fast Anomaly Detection with Dupli-

cates (GFADD) (File creation : distinct file no
grid)

GFADD:2 I GFADD (Distinct file count : files on remov.
count grid:8)

GFADD:3 I GFADD (Copies to : from removable drives no
grid)

GFADD:4 I GFADD (Copies to : from removable drives
grid:8)

GFADD:5 I GFADD (File : removable drive events grid:8)
GFADD:6 I GFADD (Fixed event count : network event count

no grid)
GFADD:7 I GFADD (Fixed event count : network event count

grid:8)
GFADD:8 I GFADD (Fixed : removable event counts grid:8)
GFADD:9 I GFADD (Network events : distinct removable

drives no grid)
GFADD:10 I GFADD (Removable drive events : distinct no

grid)
GFADD:11 I GFADD (Removable drive events : distinct

grid:8)
GFADD:12 I GFADD (Removable drive events : network

events no grid)
GFADD:13 I GFADD (Removable drive events : network

events grid:8)
GMM:RD A Gaussian Mixture Model (GMM) (Raw count

features user-day scores)
GMM:QD A GMM (Quantile features)
EGMM:RD A GMM (Raw count features)
EGMM:QD A Ensemble GMM (Quantile features)
CROSS:RD A Cross Prediction (CP) (Raw count features)
CROSS:(QD A CP (Quantile features)
RIDE:RD A Repeated Impossible Discrimination Ensemble

(RIDE) (Raw count features)
RIDE:QD A RIDE Ensemble (Quantile features)
IFOR:RD A Isolation Forest (IFor) (Raw count features)
IFOR:QD A IFor (Quantile features)
CADE:R A Classifier-Adjusted Density Estimation (CADE)

(Raw features)
CADE:UP A CADE (UP features)
PDE:R10K A Pseudo-likelihood Density Estimator (PDE) (raw

features 10k training)
PDE:UP10K A PDE (UP features 10k training)
PDE:UP A PDE (UP feature set)
Saboteur S Scenario: Saboteur (Variant 2)
IP Thief S Scenario: IP Thief (Variant 1)
Fraudster S Scenario: Fraudster (Variant 1)
Amb. Lead. S Scenario: IP Thief Ambitious Leader (Variant 1)
File I Indicator: File Activity (Variant 1)
URL I Indicator: URL Activity (Variant 1)
File-URL I Indicator: File vs. URL (Variant 1)
URL,File-
Log.

I Indicator: URL and File vs. Logon

Careless S Scenario: Carless User
Rager S Scenario: Rager

between the scenario of interest and other, mostly legitimate,
actions. Six scenario-based detectors have been deployed in
varying stages of development in PRODIGAL. They focus on
particular sub-spaces of features that are relevant to a particular
scenario, as well as sub-sets of target users and/or time periods,
as suggested by the scenario. In this way, domain knowledge
of both activity type and relevant comparison peer groups are
incorporated into the detection. They are:

• Saboteur: An insider uses corporate information tech-
nology (IT) resources to harm an organization or an

Fig. 1: ADL Diagram of IP Thief Ambitious Leader Scenario

individual.
• IP Thief: An insider uses corporate IT resources to steal

intellectual property.
• Fraudster: An insider mis-uses IT for for personal gain

or to commit a crime.
• Ambitious Leader: The Ambitious Leader recruits other

insiders to get access to all parts of the IP being stolen.
• Careless User: The insider is not intentionally malicious

but disregards corporate IT policies, exposing the orga-
nization to risk.

• Rager: The insider has outbursts of strong or threatening
language in Email/Webmail/IM coinciding with anoma-
lies in other activities, indicating a potential fundamental
change in behavior.

A particular detector specification may incorporate a sta-
tistical model of normal behavior, a set of features derived
from user activities, a baseline population for comparison (i.e.,
a peer group), a time period for the baseline activity, time
granularity for potential detection, a particular approach to
feature normalization, and other relevant aspects (for example,
user job categories). Baselines for comparison may be cross-
sectional (i.e., compare a user’s actions over a particular time
period with that of other users in a peer group over some
time comparable time period) or temporal (i.e., compare a
user with his/her own behavior over different time periods), or
both. Especially for the more complex, scenario detectors, we
develop specifications using an Anomaly Detection Language
(ADL) that was introduced in [21] and [24]. We have found
specification of a complex planned detection in ADL to be
extremely useful in the process of developing and testing
combinations of feature sub-setting, classification, anomaly
detection, and threat ranking mechanisms. Figure 1, taken from
[24], shows the design of a complex scenario-based detector.

III. DETECTOR ENSEMBLE PERFORMANCE

As we discussed earlier, the primary role of the PRODIGAL
prototype is to enable exploratory experiments in the insider
threat space. This reflects the goals of the ADAMS program
generally, and is an effective way to advance the state of
practice in this domain.

2650

4

In the following sections, we present results from running
and evaluating the detector ensemble over the full two years
of live data + Red Team inserts. We begin with the choice of
performance metrics and discuss the potential contribution of
PRODIGAL’s anomaly detection approach to overall analysis
of insider threats. We then describe the ensemble method used
to produce a single threat ranking from the detector suite.
Then we discuss the performance of the ensemble itself, its
component detectors, and how they relate to one another.

A. Measuring Overall Detector Performance

Section II.A. above describes the data environment in which
our prototype operates. Instances of Red Team scenarios are
limited to one month duration and inserted as targets each
calendar month. (The Computer Emergency Response Team
(CERT), a division of Carnegie-Mellon’s Software Engineer-
ing Institute, has found that 2/3 of known insider threat
scenarios evolve over less than one month.) This allows
for consistent, independent experiments. However, because
of the (realistic) rarity of threat inserts and the variety of
scenarios, there is very little repeated data with which to
validate robustness or measure sensitivity of our methods to
different levels of threat activity. Furthmore, since we do not
have ground truth regarding the live data, we cannot measure
the true precision, recall, or false alarm rate, only the rates of
detection vis. Red Team inserts.

The experiments reported here measure detection perfor-
mance on user-day entity extents, a data structure derived
from the collection of activities of one user over one day.
(We limit entity extents to this size for these experiments,
although PRODIGAL is capable of representing many others.)
We consider a hit to be the ranking of a user-day above some
threshold, and can measure the hit/false-alarm tradeoffs using
measures of the rate of true positives and false negatives.

B. Addressing the Needs of Insider Threat Surveillance

Metrics were chosen to measure both detection accuracy of
the individual algorithms and their contribution to the overall
task of providing leads to an analyst. For the former, we
compute the Receiver Operator Characteristic (ROC) curve
and area under the curve (AUC) as well as the Approximate
Lift Curve and Average Lift. AUC estimates discrimination, or
the probability that a randomly chosen positive entity extent
will be ranked higher than a randomly chosen negative one.

The choice of metric is critical to achieve the goal of
providing workable leads to an analyst. Initial development has
relied on the AUC metric, and, for simplicity, that is what is
reported here. However, AUC may be less suitable for a highly
asymmetrical detection situation, where a very few positives
must be identified high in the ranking to support an effective
layered detection process in which analysts receive at least
one lead from each (or most) scenarios near the top of the list
and can then ’connect the dots’ to the rest of the malicious
behavior.

Lift metrics, such as Average Lift, estimate the improvement
in target density delivered to later stages of a multi-stage
detection process. We also compute the number of positive

Fig. 2: Feasibility of Insider Threat Detection based on
Anomaly Detection

hits ranked in the top k scored entity extents (for k = 5, 10,
50, 100, 500, etc.) and in the top p% of all scored entity
extents (for p = .01, .05, .1, .5, 1, 5, etc.). The latter allow
us to estimate anticipated detection success for fixed analyst
workloads.

We are investigating other lift-focused approaches, aiming
to improve the detection of leads to better support a layered
detection process (as described in [22]). Figure 2 depicts how
such processes, individually with very modest lift values, can
be combined to solve the problem. The unsupervised anomaly
detection and ensemble methods we describe subsequently in
this paper can achieve the indicated performance. Further re-
search we are pursuing with domain-knowledge based pattern
detection and threat assessment will be able to provide further
lift to support insider threat surveillance on an ongoing basis
in an organization.

The following sections report on our investigation of unsu-
pervised anomaly detection, ensemble methods for combining
diverse detection results, and the role that domain-specific
detectors may or may not play in the acquisition of leads for
insider threat surveillance.

IV. UNSUPERVISED ENSEMBLE-BASED ANOMALY
DETECTION

A. Methods

An analyst responsible for insider threat detection needs
a single ranked list rather than many different result sets
from different detectors whose detailed operation he/she may
not fully understand. Anomaly detector ensemble methods
combine the results (i.e., scores) from multiple detectors in
a way that is analogous to how classifier ensembles combine
predictions from multiple classifiers [8]. The following de-
scription of our ensemble approach is taken from [25]. We
have not significantly altered the algorithm for the experiments
reported here.

Selecting an approach for building ensembles depends upon
the types of detectors that are used. If all the detectors share
an underlying model, then the ensemble approach can leverage
that commonality to improve performance, e.g., the method

2651

5

reported in [15] varies the features used as input to a single
anomaly detection model to build an ensemble. Another way
of leveraging a common model is to use the same input
features, but alter hyperparameters, which determine how the
model is built in each detector ([15], [8]).

Because our individual detectors employ a variety of mod-
els, we chose an approach, presented in [19], that is consistent
with such a diverse ensemble of detectors. This method
employs two heuristics:

1) If a consensus about which points are most anomalous
can be drawn from the individual detectors, then that
consensus should be preserved in the final ensemble.

2) Because each individual detector is subject to unavoid-
able biases stemming from the choice of model, choice
of input features, hyperparameter settings, etc., the
ensemble should prefer combinations of results from
detectors with uncorrelated biases.

These heuristics are implemented in two distinct phases in
this method. In the first phase they extract a consensus across
all detectors from the union of the top k most-anomalous
points from each detector. All points in this union are given
a score equal 1.0 and all others are given a score of zero.
We chose a value for k for each dataset that included the top
1.0% of the points. The method then initializes the ensemble
with scores from the detector that is most correlated with
the consensus. The correlation between detectors and the
consensus is found by viewing each as n-length vectors of
scores, where there are n points in the dataset, and then using
a simple correlation metric to compare the vectors. We used
the Pearson’s r correlation metric for this.

In the second phase, the method selects candidate detectors
to combine with the initial ensemble, preferring detectors that
are least correlated with the current ensemble. The same cor-
relation metric used before is used again here. The candidate
detector’s scores are combined with the current ensemble using
a point-wise combination function. For this the method uses
the average over scores for each point; we also experimented
with other functions including the maximum of scores. The
algorithm proceeds to accept a candidate detector if the
resulting ensemble is no less correlated with the consensus
than the previous ensemble; if it is, then the candidate detector
is discarded. This phase continues until all detectors are either
accepted or discarded.

B. Results and Discussion

Our initial experiments evaluated our detection results based
on our ability to detect user-days with red-team inserted
activity. We used a wide variety of detectors, described in
[21], and the ensemble technique described above. Results
are summarized in Table II. For each month, we report the
area under the ROC curve for our best detectors, for the
ensemble, and the ratio of the two, indicating how close the
ensemble came to the best. The AUCs reflect the ability of
the detectors to find all of the user-days of the union of all
scenarios present in the month. These results illustrate that
the unsupervised ensemble-based anomaly-detection technique
had performance that is close to that of the best of the

individual anomaly detectors. The AUC for the ensemble
technique was within five percent of the AUC of the best
detector, with a 95% confidence interval of +/- 1.5% around
a linear regression fit of ensemble to best AUC over 54
individual RT scenario instances. Interestingly, the ensemble-
based technique appeared to have results that were similar
across datasets, while the best detector varied widely.

Figure 3 illustrates the differences in performance between
the ensemble and the best-performing detector for selected
months. These eight months have been selected to show in-
stances when a wide variety of detectors were best performer.

In September and October 2012 (Figure 3a and Figure 3b)
there were six instances of the same RT scenario (14-17, 20-
21), and one of the CADE detectors was best both times.
Although neither CADE nor the Ensemble were able to
score all inserted user-days very high, all inserted scenarios
had several user-days in very high rankings, supporting the
expectation that a later stage of analysis would easily find the
rest given these leads.

Figure 3c through Figure 3e and Figure 3g show months
where different detector models performed best. In each case
the Ensemble was able to approximate performance of the best
detector. These months contained 12 instances of 10 different
RT scenarios.

Figure 3f shows Ensemble performance significantly lower
than the best detector, although the top few user-days are
ranked highly by both. However this detector, PDE:UP, av-
eraged only 85% of the Ensemble’s AUC values over all
16 months, and so could not be relied upon for consistent
detection. This is the case for all detectors of all three types
and is the principal reason why even an ensemble method that
fails to improve on the best score is still valuable.

Finally, we note for the month shown in Figure 3h, the
best detector – GFADD with no grid over the feature pair,
file events on removable drives vs. # distinct removable
drives – only returns a score for user-days it finds anomalous,
so the value of an AUC is questionable. The second best
detector is also shown. Again, the Ensemble comes close, in
fact exceeding its AUC value slightly.

We are particularly interested in how well the scenario-
based detectors perform, since they contain domain knowl-
edge. We see that the ensemble generally out-performed the
scenario-based detectors, including the scenario-based detec-
tors that we determined later to have been a likely fit to the
Red Team scenario that was actually inserted. In Table III
we see AUC performance on individual inserted scenario
instances. Ensemble AUC over these instances averages 0.87
and consistently outperforms the selected relevant scenario-
based detector; in three of the 41 by over 150%. There is
considerable variation in the results, even over instances of
the same RT scenario, suggesting the inherent variability of
the RT threat simulation process.

Table III reports results on all months where the comparison
was possible, not only months where the ensemble performed
well. Figure 4 depicts the performance of the ensemble method
compared to the corresponding scenario-based detectors for
four of these months. Figure 4a shows a month where the
inserted scenarios and the scenario-base detectors correspond

2652

6

TABLE II: Ensemble and Best Detector Results by Month

Month Ensemble
AUC

Best Detec-
tor

Best Det.
AUC

Ens. / Best RT Scenarios

12-Sep 0.8973 CADE:UP 0.9703 92.47% Circumventing SureView Insider Startup
12-Oct 0.9319 CADE:UP 0.9804 95.05% Insider Startup
12-Nov 0.7542 File 0.7895 95.53% Anomalous Encryption, Layoff Logic Bomb, Masquerading 2
12-Dec 0.8646 GMM:QD 0.8677 99.64% Anomalous Encryption, Layoff Logic Bomb, Outsourcer’s Apprentice
13-Jan 0.8594 RIDE:RD 0.9015 95.34% Hiding Undue Affluence, Outsourcer’s Apprentice, Survivor’s Burden
13-Feb 0.7632 EGMM:QD 0.7793 97.94% Bona Fides, Manning Up, Survivor’s Burden
13-Mar 0.8853 IFOR:QD 0.8963 98.77% Bona Fides, Hiding Undue Affluence, Manning Up Redux
13-Apr 0.8635 RIDE:QD 0.8619 100.19% Circ. SureView, Indecent RFP, Selling Login Cred., Survivor’s Burden
13-May 0.8469 PDE:UP 0.9718 87.14% Credit Czech, Exfiltration Prior to Termination
13-Jun 0.8852 IFOR:QD 0.9103 97.24% Czech Mate, Exfiltration of Sensitive Data Using Screenshots
13-Jul 0.8498 RIDE:RD 0.8769 96.90% Breaking the Stovepipe, Snowed In
13-Oct 0.8938 GMM:RD 0.8972 99.62% Breaking the Stovepipe, Snowed In
13-Nov 0.8479 RIDE:RD 0.8459 100.23% Byte Me, Naughty by Proxy
13-Dec 0.8034 EGMM:RD 0.828 97.02% Byte Me Middleman, Indecent RFP 2, Passed Over
14-Jan 0.8425 IFOR:RD 0.8242 102.22% From Belarus With Love, Passed Over, What’s the Big Deal
14-Feb 0.847 GFADD:84-

88-0
0.9775 86.65% Bollywood Breakdown, Breaking the Stovepipe, Gift Card Bonanza,

Naughty by Proxy

(a) September 2012 (b) October 2012 (c) December 2012 (d) January 2013

(e) March 2013 (f) May 2013 (g) December 2013 (h) February 2014

Fig. 3: ROC curves vs. all RT inserts for the Ensemble and the best detector for various months.

fairly well. The typical response of the scenario-based detec-
tors is to score some of the best matching user-days well,
often better than the Ensemble, but then drop off rapidly
in the remainder of inserted targets. IP Thief in Figure 4b
through Figure 4d shows this behavior, although the presence
of other scenarios in the month masks its performance on
the relevant inserts. We have reviewed individual scenario-
based detectors on separate inserted RT scenarios and see the
same response, but the data are too cumbersome to present
graphically in this paper. However, it is worthwhile to note
the number of instances in Table III where scenario-based
detectors performed close to the Ensemble cases where the
detector does well on a few high ranking user-days at the
expense of not identifying others. We are investigating ways
to make use of these targeted responses.

Figure 5 identifies the sets of detectors selected by the
ensemble each month and compares them to the best per-
forming detectors for that month. The best-performing detector

was included in the ensemble in only four of the 16 months
of data. And because in those months there are on average
more than six detectors selected for the final scoring step, and
all ensembles comprise equally-weighted detectors, the best
detector is never given more than one sixth of the weight in
this ensemble result. Therefore, the ensemble technique is able
to achieve comparable performance to the best detector by
combining detectors and with those detectors often excluding
the best-performing detector. Recall that the heuristics driving
the ensemble technique favor detectors that are either most
close to the consensus or those that are able to add diversity
to the ensemble (least correlation with the ensemble) without
reducing correlation with the consensus. Thus in these data
sets the best-performing detector generally disagrees with the
consensus from other detectors, yet a combination of those
other detectors can be built automatically that performs nearly
as well as that best detector.

In eight out of 16 months at least one of the accepted

2653

7

(a) September 2012 (b) March 2013 (c) May 2013 (d) February 2014

Fig. 4: ROC curves for the Ensemble and the Scenario-Based Detectors for various months.

TABLE III: Comparison of Scenario-Based Detector to En-
semble Performance, by Red Team Scenario Inserts

Month Inserted RT Scen. Ens.
AUC

Relevent
Scenario
Detector

Scen.
Det.
AUC

Ratio

12-Sep Insider Startup 0.87 Amb. Lead. 0.92 95%
12-Sep Insider Startup 0.88 Amb. Lead. 0.69 128%
12-Sep Insider Startup 0.93 Amb. Lead. 0.92 102%
12-Sep Insider Startup 0.91 Amb. Lead. 0.84 108%
12-Sep Circumventing S.V. 0.98 Saboteur 0.95 103%
12-Oct Insider Startup 0.92 Amb. Lead. 0.93 99%
12-Oct Insider Startup 0.95 Amb. Lead. 0.82 115%
13-Mar Manning Up Redux 0.90 IP Thief 0.76 119%
13-Mar Hiding Undue Aff. 0.85 Fraudster 0.82 104%
13-Mar Bona Fides 0.84 IP Thief 0.66 129%
13-Apr Survivor’s Burden 0.88 Saboteur 0.69 128%
13-Apr Selling Login Cred. 0.86 Amb. Lead. 0.62 139%
13-Apr Indecent RFP 0.84 Fraudster 0.65 128%
13-May Credit Czech 0.83 Fraudster 0.86 97%
13-May Exfil. Pre-Termination 0.85 IP Thief 0.81 105%
13-May Exfil. Pre-Termination 1.00 IP Thief 1.00 100%
13-Jun Exfil. w/Screenshots 0.81 IP Thief 0.47 173%
13-Jun Exfil. w/Screenshots 0.99 IP Thief 0.98 102%
13-Jun Exfil. w/Screenshots 0.93 IP Thief 0.47 197%
13-Jun Czech Mate 0.87 Fraudster 0.60 145%
13-Jul Breaking the Stovepipe 0.82 IP Thief 0.80 102%
13-Jul Snowed In 0.86 Fraudster 0.72 118%
13-Oct Snowed In 0.86 Fraudster 0.83 105%
13-Oct Snowed In 0.93 Fraudster 0.69 134%
13-Oct Snowed In 0.87 Fraudster 0.81 107%
13-Oct Breaking the Stovepipe 0.93 IP Thief 0.84 111%
13-Nov Naughty by Proxy 0.79 Saboteur 0.57 138%
13-Nov Naughty by Proxy 0.72 Saboteur 0.49 147%
13-Nov Byte Me 0.86 Fraudster 0.72 119%
13-Nov Byte Me 0.89 Fraudster 0.74 120%
13-Dec Indecent RFP 2 0.94 Fraudster 0.72 131%
13-Dec Byte Me Middleman 0.83 Fraudster 0.62 133%
13-Dec Passed Over 0.75 Saboteur 0.50 150%
14-Jan Passed Over 0.86 Saboteur 0.66 130%
14-Jan What’s the Big Deal 0.90 Careless 0.69 130%
14-Jan From Belarus w/Love 0.72 IP Thief 0.63 115%
14-Feb Bollywood Breakdown 0.93 IP Thief 0.79 117%
14-Feb Gift Card Bonanza 0.77 Fraudster 0.64 120%
14-Feb Breaking the Stovepipe 0.95 IP Thief 0.84 114%
14-Feb Naughty by Proxy 0.81 Saboteur 0.57 141%

detectors used an underlying model that was shared with
the best-performing detector. For example, in December 2012
the best performing algorithm is GMM Density Estimation
via unusualness of counts vs company, which shares the
same underlying model Gaussian mixture models as one
of the accepted detectors, GMM Density Estimation using
Raw Counts; the difference between these two detectors is the

Fig. 5: Ensemble Composition and Best-Performing Detector,
by Month

method of normalizing input features, which we mentioned as
an important element of detector configuration and a source
of diversity in our detection suite.

These apparently contradictory results, good performance of
the ensemble without participation of the best detector in the
final scoring step, have led us to devise a series of simulation
experiments to thoroughly understand the role of the partici-
pating detectors in ensemble methods. It is clear that the best
detector plays a role in driving ensemble performance. When
the best detectors perform poorly, so does the ensemble. So
their role in constructing the consensus must be important. We
aim to improve ensemble performance significantly through
this research by applying the two heuristics more effectively
as well as through continued improvement of the individual
detectors.

V. COMPLEX SCENARIO DETECTION

The threat scenarios that form the targets for detection
typically involve complex inter-related sets of small numbers
of actions by multiple individuals with varying relationships
occurring over multiple days to weeks. Their actions are
superposed on normal activities.

In contrast, cyber threats are typically executed by software
at time scales of seconds or less. Network-based monitoring
is typically used to detect such cyber threats. Here, we rely on
host-based monitoring of user actions. The essential challenge

2654

8

Fig. 6: Monthly Pipeline Processing in Testbed Environment

to detect these actions is that the effective signal-to-noise
ratio is dependent not only on the fraction of actions by
the malicious individuals that are improper but also on the
combinatorics of the grouping of individuals.

To illustrate PRODIGAL’s ability to detect such complex
scenarios, we repeat a discussion of one such target scenario
inserted in multiple data set by the Red Team as described in
[25].

The Insider Startup scenario for the month of October 2012
involved two separate instances each of three distinct users
who engaged in malicious activity on 22 user-days on 12
distinct calendar days in a calendar month. The first of these
instances comprised 527 distinct observations of user activity,
of which 151 involved file accesses, 19 involved text messages,
42 involved processes, and 12 involved URL accesses. The
second of these instances involved 468 inserted observations,
of which one was an email event, 148 were file events, 41
process events, 18 keyboard events, and 278 URL events. These
527/468 inserted events correspond to roughly 0.5-0.5-0.6%
of each user’s total activity over the course of a month, or
about 0.0003% of the total observations in the database of
about 5500 users each month. The scenario was designed with
minimal communications between the three malicious users
to make it realistically difficult to detect; the key challenge
was to aggregate behavior to detect any of the conspirators.
The highest-ranked user-day from our best detector for the
two instances of this scenario; i.e. the number of user-days
that would have to be reviewed by an analyst to detect this
malicious behavior, was 17 and 13 out of the approximately
150,000 user-days analyzed that month.

Similar results were achieved on four instances of the same
scenario in September 2012, and on an instance of the Indecent
RFP scenario in April 2013, where the highest ranked user-
day was involved in the target and thus could provide a lead
for subsequent analysis.

VI. PROTOTYPE ARCHITECTURE

PRODIGAL operates in the research environment as a
manually controlled pipeline as illustrated in Figure 6. In this
research environment, it is executed monthly to correspond
with the Red Team scenario insertion and evaluation processes.
As new versions of components are developed, tested, and con-
sidered for incorporation in the prototype, different versions
and/or configurations of some modules are executed for exper-
imental purposes; these execution sequences usually involve

all components downstream of the subject of the experiment.
For potential production environments, PRODIGAL can be
configured to execute more frequently and/or on different data
periods (e.g., weekly execution on a rolling four-week period).
This section describes the PRODIGAL components and the
controlling software framework that enables this variety of
different execution methods, beginning with the details of the
components in the context of the monthly testbed processing
that generated the majority of the results reported in this paper.

A. Monthly Pipeline Processing in Testbed Environment

The PRODIGAL prototype ingests user activity data on
a daily or monthly basis. Figure 6 shows a series of data
processing stages (identified by a number). The PRODIGAL
prototype executes each of those stages in series within a
pipeline structure.

Processing begins with monitoring of events by SureView
on user workstations and organizational servers. (boxes 1-3)
Information collected by SureView is warehoused in an Oracle
database at the SureView server and is used for regular moni-
toring by security personnel. A copy of the data is transmitted
to the ADAMS testbed environment, where it is anonymized
by removal or hashing of personally identifying information
(PII) and stored in an instance of the SureView warehouse
schema. In parallel, the Red Team creates additional SureView
events (boxes 4-5) that are inserted into a separate partition
for merger with the collected data.

PRODIGAL processing begins with an ETL component
(box 8) that extracts data from the Oracle SureView database
and (box 9) transforms and loads it into the PRODIGAL
schema in a MySQL database. The purpose of this transfor-
mation is to convert the data from SureView observations into
user activities. The same ETL processes (boxes 6 and 7) are
executed on the real user data and on the Red Team insert
data.

The real and Red Team data are merged using table views,
and PRODIGAL loads this combined data into its MySQL
database. This area of the PRODIGAL database is referred
to as the PRODIGAL Observation Store. PRODIGAL next
computes the features that serve as the basis for its detectors
and augments the PRODIGAL Observation Store with these
computed features (box 10).

Detectors, consisting of algorithms and their associated
parameterizations, create anomaly scores for all user-days in
the data set (box 11). Each detector separately scores each
user-day, so there are many scores for each user-day. These
scores are stored in a separate MySQL database called the
PRODIGAL Results Store, and are indexed by algorithm id
value, user id value, and a sequential run id value. The
algorithm id specifies the exact algorithm used to generate
a score. Algorithms read in many feature values from a user,
a time period, or a population to assess how anomalous a
behavior set is. The PRODIGAL prototype uses a user id as
a unique identifier for a specific person operating a computer.

The next step in the processing flow, also included in box
11, is the execution of the ensemble algorithm, which produces
the official single score for each user-day. A user with a very

2655

9

TABLE IV: Stages and Longest Run Times

Stages Performance Time
ET (6) and Run Time Load (7)

of simulated Red Team data 1 day
ET (8) and Load (9) of

source data from SureView database 10 days
Generate features (10) 2 days

Run Algorithms 7 days

high anomaly score represents a candidate for further security
investigation activities. The Red Team provides an answer key
to the team after the pipeline is run (stage 12). These labels are
inserted into the database (box 13) and used to determine how
accurate the output scores were and to compute the detection
metrics discussed earlier in this paper (box 14).

The ADAMS testbed environment interacts with two other
environments; 1) a research and development environment
in which algorithm experimentation can occur on derived
data and statistical summaries, and 2) an operational test
environment in which the real data are processed (without
the Red Team inserts) for evaluation by security personnel,
with feedback on the highly-scored user-days to be provided
back to the research team. Each environment is composed of
multiple computers with different hardware configurations and
source data sets.

Researchers use the research and development environment
to create new framework and algorithm software. It is housed
within a development network that is separate from all other
data sources. It receives data exports from the testbed environ-
ment, and acts as a development platform used by data analysts
to explore results using novel and experimental processes. An
engineering team uses this to develop framework code to man-
age the overall PRODIGAL prototype. Algorithm designers
use this to experiment with algorithms, test approaches, and
create production quality anomaly detection algorithms within
a test environment.

The operational test environment accepts data from the same
real data feeds as the production environment. It contains a
PRODIGAL prototype instance that performs daily ingestion
of user data, generates feature scores, and computes algorithm
and ensemble scores on a weekly basis using a rolling four-
week baseline. This environment has no simulated insider
threats. The operational test environment represents PRODI-
GAL outside of its research role, focusing on how it will
be used in the real world’. Configuring the operational test
environment provided engineers with experience that will be
useful to enable deployment of PRODIGAL to actual customer
environments and to demonstrate its utility to security analysts
on their own real world datasets. PRODIGAL components are
installed in the operational test environment using RedHat’s
Package Manager (RPMs).

All framework source code development and unit testing
takes place in the research and development environment.
In the event that some source code is developed in other
environments, it must also be included in the research and
development environment. The development environment con-
tains several git repositories for different components used for
source code version control. Researchers upload software into

an environment using either source code (for later Java com-
pilation) or an automated RPM installation process. Engineers
automate the creation of RPM packages by using a Maven
plug-in component.

Source code development encompasses different computer
languages and approaches. Framework software developers
use the Java programming language. Algorithm developers and
analysts use a variety of computer languages. These analysts
contribute skills and software libraries to be used within the
overall PRODIGAL prototype. Algorithm components have
been built using Java, C, C++, Steel Bank Common LISP,
Python, and R. The framework triggers these algorithms
through a command line call. Framework developers have
created a set of Java classes used to wrap a command line call
within a Java object. Spring framework context files integrate
these diverse applications together into a single system. The
wrapper classes launch applications that use different pro-
gramming languages, pass database connection information to
these algorithm components, and detect when processes have
finished.

The framework uses individual wrapper classes to create an
asynchronous flow of algorithms. A flow is a list of wrappers
annotated with dependency information. A flow starts one
algorithm, waits for it to finish, then starts the next. The
total number of asynchronous algorithms is dependent on the
available processors, and the dependencies described within
the flow.

B. Performance

Each stage of the pipeline requires time and computing
resources. Most of the time used to execute the ETL and the
detection algorithms. Table IV shows the pipeline stages that
consume the most processing time on a 40 CPU server with
512 GB of RAM. The team measured the performance times
in Table IV by executing a monthly pipeline using the testbed
environment.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we evaluate PRODIGAL in the setting of
complex, adversarial insider threats inserted into a database
of real user activities. These threat are unknown and varied
in composition, methods, and goals. We show that by using
a variety of diverse individual detectors combined using an
anomaly detection ensemble technique, we achieve a final
detection result with performance that consistently approaches
that of the best detector on each dataset (in after-the-fact
analysis).

This result holds on many threat data sets, including ones
following scenarios we had not contemplated when designing
the detectors. The ensemble result also outperforms many
anomaly detectors that are specifically focused on the scenar-
ios that are known, on data sets containing those scenarios or
scenarios with similar behaviors. Furthermore, we investigate
the composition of the ensembles chosen by our technique
and find that the ensemble achieves consistent performance
without relying any single detector or the best unidentified
detector for each dataset.

2656

10

We extend preliminary results (from [25]) to an additional
eight months, including 27 additional threat data sets compris-
ing 15 new Red Team scenarios. The average AUC achieved
by the ensemble over the new data is identical to that over the
initial data, at 0.85, while the average ”best” detector AUC
only improved slightly from 0.88 to 0.89. These observations
suggest that our approach is robust to gaps between the scenar-
ios contemplated during detector design time and unexpected
scenarios that appear in real data, so long as the available
detectors are still diverse and numerous as we have in our
prototype.

This result is one that we hope to study in future work.
Specifically, we are interested in developing more advanced
ensemble techniques than the one we used that are able to
incorporate scenario-based detectors effectively to increase
confidence in results when known scenarios do match with
ones in the data. We have also begun incorporating explanation
capabilities with the ensemble approach so that underlying rea-
sons for detection from individual detectors can be combined
in the final result presented to analysts. These explanations
are made available to the analysts in a newly designed user
interface.

ACKNOWLEDGMENT

The work reported herein was performed as part of the
Anomaly Detection at Multiple Scales (ADAMS) program
sponsored by the Defense Advanced Research Projects Agency
(DARPA). We thank our collaborators at Oregon State Univer-
sity, University of Massachusetts, Georgia Institute of Tech-
nology, and Carnegie Mellon University, and Leidos who
developed many of the algorithms that were used for detection
and who developed and operate the software that configures
and executes these algorithms in the ADAMS testbed. We
also thank the ADAMS Red Team from CERT who develops
the scenarios, inserts them into the real data, and provides
the answer keys against which we are evaluated. Finally, we
thank the data provider and testbed operator for the ADAMS
program for making the real data available for research and for
operating the testbed in which it occurs. Funding was provided
by the U.S. Army Research Office (ARO) and DARPA under
Contract Number W911NF-11-C-0088. The content of the
information in this document does not necessarily reflect the
position or the policy of the Government, and no official
endorsement should be inferred. The U.S. Government is
authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here on.

REFERENCES

[1] C. Aggarwal, Outlier Ensembles, In Proceedings of the ACM SIGKDD
Workshop on Outlier Detection and Description, ODD ’13, New York,
ACM, 2013.

[2] C. Aggarwal, Outlier analysis, In Data Mining, (pp. 237-263), Springer
International Publishing, 2015.

[3] L. Akoglu, R. Chandy, C. Faloutsos, Opinion Fraud Detection in Online
Reviews by Network Effects. ICWSM, 13, 2-11, 2013.

[4] B. Bowen, et. al., Monitoring Technologies for Mitigating Insider Threats.
In Insider Threats in Cyber Security, C. Probst, et. al. (Eds.) (pp. 197217),
New York: Springer US, 2010.

[5] O. Brdiczka, et. al., Proactive insider threat detection through graph
learning and psychological context. In Security and Privacy Workshops
(SPW), 2012 IEEE Symposium on Security and Privacy (pp. 142-149),
IEEE, 2012.

[6] D. Cappelli, A. Moore, R. Trzeciak, The CERT Guide to Insider Threats:
How to Detect, Prevent, and Respond to Information Technology Crimes,
Addison-Wesley Professional, 2012.

[7] V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: A survey. ACM
computing surveys (CSUR),41(3), 15, 2009.

[8] T. Dietterich. Ensemble Methods in Machine Learning, In Multiple
Classifier Systems, 115. Springer, 2000.

[9] H. Eldardiry, et. al., Multi-domain information fusion for insider threat
detection. In Security and Privacy Workshops (SPW), (pp. 45-51). IEEE,
2013.

[10] G. Gavai, et. al., Supervised and unsupervised methods to detect insider
threat from enterprise social and online activity data. Journal of Wireless
Mobile Networks, Ubiquitous Computing, and Dependable Applications
(JoWUA), 6(4), 47-63, 2015.

[11] J. Glasser, B, Lindauer, B., Bridging the gap: A pragmatic approach to
generating insider threat data. In Security and Privacy Workshops (SPW),
2013 IEEE (pp. 98-104), IEEE, 2013.

[12] H. Goldberg, et. al., ”Explaining and Aggregating Anomalies to Detect
Insider Threats”, in Proceedings 49th Hawaii International Conference
on System Sciences (HICSS), Koloa, HI, USA, Jan. 5-8, 2016.

[13] M. Kandias, et. al., Proactive insider threat detection through social
media: The YouTube case. In Proceedings of the 12th ACM workshop
on Workshop on privacy in the electronic society (pp. 261-266), ACM,
2013.

[14] E. Kowalski, et al., Insider threat study: illicit cyber activity in the gov-
ernment sector, United States Secret Service & the Software Engineering
Institute, Carnegie Mellon University, January 2008.

[15] A. Lazarevic and V. Kumar, Feature Bagging for Outlier Detection, In
Proceedings of the Eleventh ACM SIGKDD International Conference on
Knowledge Discovery in Data Mining, 157166, 2005.

[16] F. T. Liu, K. M. Ting, and Z. H. Zhou, Isolation Forest, In Proceedings
of the 8th IEEE International Conference on Data Mining (ICDM’08),
Pisa, Italy, 15-19 December 2008, pp. 413422.

[17] Y. Park, S. Stolfo, Software decoys for insider threat. In Proceedings of
the 7th ACM Symposium on Information, Computer and Communications
Security (pp. 93-94). ACM, 2012.

[18] M. Randazzo, et. al., Insider threat study: Illicit cyber activity in
the banking and finance sector (No. CMU/SEI-2004-TR-021). Carnegie-
Mellon University Software Engineering Institute, 2005.

[19] E. Schubert et. al., On Evaluation of Outlier Rankings and Outlier
Scores, in Proceedings of the 12th SIAM International Conference on
Data Mining (SDM), Anaheim, CA, 2012, 10471058, 2012.

[20] E. Schultz, A framework for understanding and predicting insider
attacks. Computers & Security, 21(6), 526-531, 2002.

[21] T. E. Senator et. al., Detecting Insider Threats in a Real Corporate
Database of Computer Usage Activity, in Proceedings of the ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, page
1393-1401, ACM (2013).

[22] T. E. Senator, On the Efficacy of Data Mining for Security Applications,
in Proceedings of the ACM SIGKDD Workshop on CyberSecurity and
Intelligence Informatics, Paris, France, June 28, 2009.

[23] K. Wallnau, et. al., ”Simulating malicious insiders in real host-monitored
user data”, In Proceedings of the 7th USENIX conference on Cyber
Security Experimentation and Test, pp. 4-4. USENIX Association, 2014.

[24] W T. Young et. al., Use of Domain Knowledge to Detect Insider Threats
in Computer Activities, in Proceedings of the Workshop on Research for
Insider Threat, IEEE CS Security and Privacy Workshops, San Francisco,
CA, 23-24 May 2013.

[25] W T. Young et. al., Detecting Unknown Insider Threat Scenarios, in
Proceedings of the Workshop on Research for Insider Threat, IEEE CS
Security and Privacy Workshops, San Jose, CA, 18 May 2014.

2657

