312,203 research outputs found

    Mutations in evolution algebras by means of isotopisms

    Get PDF
    Any mutation of genotypes that occurs during the mitotic cell cycle in an eukaryotic cell can be algebraically represented by an isotopism of the evolution algebra that describes the genetic pattern of the inheritance process. This talk deals with the theory of isotopisms of non-associative algebras and, particularly, with the distribution of evolution algebras into isotopism classes in order to determine the spectrum of genetic patterns, up to mutation, that describe the mentioned inheritance process of a mitotic cell cycle.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Migration and Inheritance Practices in the Bolivian Altiplano

    Get PDF
    Most theoretical approaches to inheritance assume that parents are the key actors of bequest decisions. However, in a context of important migration, children may play an active role in the inheritance process. Based on a unique data set collected at both ends of the migration link in Bolivia, we are able to show that migrant children significantly influence the way inheritance is distributed through their decision to accept or refuse their share of inheritance. This decision is not only influenced by the migrants need for economic security but also by the transaction costs associated to land ownership. Yet, land inheritance is not completely driven by the demand for inheritance of the children. Parents continue to play an important role and the identity of the person responsible for the migration decision emerges as an important determinant of their bequest decision.land access, inheritance, migration, transaction costs

    A Role for Actin, Cdc1p, and Myo2p in the Inheritance of Late Golgi Elements in \u3cem\u3eSaccharomyces cerevisiae\u3c/em\u3e

    Get PDF
    In Saccharomyces cerevisiae, Golgi elements are present in the bud very early in the cell cycle. We have analyzed this Golgi inheritance process using fluorescence microscopy and genetics. In rapidly growing cells, late Golgi elements show an actin-dependent concentration at sites of polarized growth. Late Golgi elements are apparently transported into the bud along actin cables and are also retained in the bud by a mechanism that may involve actin. A visual screen for mutants defective in the inheritance of late Golgi elements yielded multiple alleles of CDC1. Mutations in CDC1 severely depolarize the actin cytoskeleton, and these mutations prevent late Golgi elements from being retained in the bud. The efficient localization of late Golgi elements to the bud requires the type V myosin Myo2p, further suggesting that actin plays a role in Golgi inheritance. Surprisingly, early and late Golgi elements are inherited by different pathways, with early Golgi elements localizing to the bud in a Cdc1p- and Myo2p-independent manner. We propose that early Golgi elements arise from ER membranes that are present in the bud. These two pathways of Golgi inheritance in S. cerevisiae resemble Golgi inheritance pathways in vertebrate cells

    Juvenile rank acquisition is associated with fitness independent of adult rank

    Get PDF
    Social rank is a significant determinant of fitness in a variety of species. The importance of social rank suggests that the process by which juveniles come to establish their position in the social hierarchy is a critical component of development. Here, we use the highly predictable process of rank acquisition in spotted hyenas to study the consequences of variation in rank acquisition in early life. In spotted hyenas, rank is ‘inherited’ through a learning process called ‘maternal rank inheritance.’ This pattern is very consistent: approximately 80% of juveniles acquire the exact rank expected under the rules of maternal rank inheritance. The predictable nature of rank acquisition in these societies allows the process of rank acquisition to be studied independently from the ultimate rank that each juvenile attains. In this study, we use Elo-deviance scores, a novel application of the Elo-rating method, to calculate each juvenile’s deviation from the expected pattern of maternal rank inheritance during development. Despite variability in rank acquisition among juveniles, most of these juveniles come to attain the exact rank expected of them according to the rules of maternal rank inheritance. Nevertheless, we find that transient variation in rank acquisition in early life is associated with long-term fitness consequences for these individuals: juveniles ‘underperforming’ their expected ranks show reduced survival and lower lifetime reproductive success than better-performing peers, and this relationship is independent of both maternal rank and rank achieved in adulthood. We also find that multiple sources of early life adversity have cumulative, but not compounding, effects on fitness. Future work is needed to determine if variation in rank acquisition directly affects fitness, or if some other variable, such as maternal investment or juvenile condition, causes variation in both of these outcomes. (Includes Supplemental Materials and Reviewers\u27 Comments.

    A Stochastic Overlapping Generations Economy with Inheritance

    Get PDF
    An overlapping generations model of an exchange economy is considered, with individuals having a finite expected life-span. Conditions concerning birth, death, inheritance and bequests are fully specified. Under such conditions, the existence of stationary Markov equilibrium is established in some generality, and several explicitly solvable examples are treated in detail.Overlapping generations, inheritance, stochastic process, life span

    Efficient allelic-drive in Drosophila.

    Get PDF
    Gene-drive systems developed in several organisms result in super-Mendelian inheritance of transgenic insertions. Here, we generalize this "active genetic" approach to preferentially transmit allelic variants (allelic-drive) resulting from only a single or a few nucleotide alterations. We test two configurations for allelic-drive: one, copy-cutting, in which a non-preferred allele is selectively targeted for Cas9/guide RNA (gRNA) cleavage, and a more general approach, copy-grafting, that permits selective inheritance of a desired allele located in close proximity to the gRNA cut site. We also characterize a phenomenon we refer to as lethal-mosaicism that dominantly eliminates NHEJ-induced mutations and favors inheritance of functional cleavage-resistant alleles. These two efficient allelic-drive methods, enhanced by lethal mosaicism and a trans-generational drive process we refer to as "shadow-drive", have broad practical applications in improving health and agriculture and greatly extend the active genetics toolbox
    • …
    corecore