355 research outputs found

    Comparing Czech and English AMRs

    Get PDF
    This paper compares Czech and English annotation using Abstract Meaning Represantation formalism

    The biomedical discourse relation bank

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identification of discourse relations, such as causal and contrastive relations, between situations mentioned in text is an important task for biomedical text-mining. A biomedical text corpus annotated with discourse relations would be very useful for developing and evaluating methods for biomedical discourse processing. However, little effort has been made to develop such an annotated resource.</p> <p>Results</p> <p>We have developed the Biomedical Discourse Relation Bank (BioDRB), in which we have annotated explicit and implicit discourse relations in 24 open-access full-text biomedical articles from the GENIA corpus. Guidelines for the annotation were adapted from the Penn Discourse TreeBank (PDTB), which has discourse relations annotated over open-domain news articles. We introduced new conventions and modifications to the sense classification. We report reliable inter-annotator agreement of over 80% for all sub-tasks. Experiments for identifying the sense of explicit discourse connectives show the connective itself as a highly reliable indicator for coarse sense classification (accuracy 90.9% and F1 score 0.89). These results are comparable to results obtained with the same classifier on the PDTB data. With more refined sense classification, there is degradation in performance (accuracy 69.2% and F1 score 0.28), mainly due to sparsity in the data. The size of the corpus was found to be sufficient for identifying the sense of explicit connectives, with classifier performance stabilizing at about 1900 training instances. Finally, the classifier performs poorly when trained on PDTB and tested on BioDRB (accuracy 54.5% and F1 score 0.57).</p> <p>Conclusion</p> <p>Our work shows that discourse relations can be reliably annotated in biomedical text. Coarse sense disambiguation of explicit connectives can be done with high reliability by using just the connective as a feature, but more refined sense classification requires either richer features or more annotated data. The poor performance of a classifier trained in the open domain and tested in the biomedical domain suggests significant differences in the semantic usage of connectives across these domains, and provides robust evidence for a biomedical sublanguage for discourse and the need to develop a specialized biomedical discourse annotated corpus. The results of our cross-domain experiments are consistent with related work on identifying connectives in BioDRB.</p

    Discourse structure and language technology

    Get PDF
    This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.An increasing number of researchers and practitioners in Natural Language Engineering face the prospect of having to work with entire texts, rather than individual sentences. While it is clear that text must have useful structure, its nature may be less clear, making it more difficult to exploit in applications. This survey of work on discourse structure thus provides a primer on the bases of which discourse is structured along with some of their formal properties. It then lays out the current state-of-the-art with respect to algorithms for recognizing these different structures, and how these algorithms are currently being used in Language Technology applications. After identifying resources that should prove useful in improving algorithm performance across a range of languages, we conclude by speculating on future discourse structure-enabled technology.Peer Reviewe

    Semi-Supervised Learning for Neural Keyphrase Generation

    Full text link
    We study the problem of generating keyphrases that summarize the key points for a given document. While sequence-to-sequence (seq2seq) models have achieved remarkable performance on this task (Meng et al., 2017), model training often relies on large amounts of labeled data, which is only applicable to resource-rich domains. In this paper, we propose semi-supervised keyphrase generation methods by leveraging both labeled data and large-scale unlabeled samples for learning. Two strategies are proposed. First, unlabeled documents are first tagged with synthetic keyphrases obtained from unsupervised keyphrase extraction methods or a selflearning algorithm, and then combined with labeled samples for training. Furthermore, we investigate a multi-task learning framework to jointly learn to generate keyphrases as well as the titles of the articles. Experimental results show that our semi-supervised learning-based methods outperform a state-of-the-art model trained with labeled data only.Comment: To appear in EMNLP 2018 (12 pages, 7 figures, 6 tables
    corecore