13,203 research outputs found

    From Models to Simulations

    Get PDF
    This book analyses the impact computerization has had on contemporary science and explains the origins, technical nature and epistemological consequences of the current decisive interplay between technology and science: an intertwining of formalism, computation, data acquisition, data and visualization and how these factors have led to the spread of simulation models since the 1950s. Using historical, comparative and interpretative case studies from a range of disciplines, with a particular emphasis on the case of plant studies, the author shows how and why computers, data treatment devices and programming languages have occasioned a gradual but irresistible and massive shift from mathematical models to computer simulations

    Bibliographic Review on Distributed Kalman Filtering

    Get PDF
    In recent years, a compelling need has arisen to understand the effects of distributed information structures on estimation and filtering. In this paper, a bibliographical review on distributed Kalman filtering (DKF) is provided.\ud The paper contains a classification of different approaches and methods involved to DKF. The applications of DKF are also discussed and explained separately. A comparison of different approaches is briefly carried out. Focuses on the contemporary research are also addressed with emphasis on the practical applications of the techniques. An exhaustive list of publications, linked directly or indirectly to DKF in the open literature, is compiled to provide an overall picture of different developing aspects of this area

    Lifting with Inner Functions of Polynomial Discrepancy

    Get PDF
    Lifting theorems are theorems that bound the communication complexity of a composed function f?g? in terms of the query complexity of f and the communication complexity of g. Such theorems constitute a powerful generalization of direct-sum theorems for g, and have seen numerous applications in recent years. We prove a new lifting theorem that works for every two functions f,g such that the discrepancy of g is at most inverse polynomial in the input length of f. Our result is a significant generalization of the known direct-sum theorem for discrepancy, and extends the range of inner functions g for which lifting theorems hold

    John A. Henschke\u27s Vita Updated 2017

    Get PDF
    This vita includes my professional exploits and some personal experiences

    Fine-Grained Derandomization: From Problem-Centric to Resource-Centric Complexity

    Get PDF
    We show that popular hardness conjectures about problems from the field of fine-grained complexity theory imply structural results for resource-based complexity classes. Namely, we show that if either k-Orthogonal Vectors or k-CLIQUE requires n^{epsilon k} time, for some constant epsilon>1/2, to count (note that these conjectures are significantly weaker than the usual ones made on these problems) on randomized machines for all but finitely many input lengths, then we have the following derandomizations: - BPP can be decided in polynomial time using only n^alpha random bits on average over any efficient input distribution, for any constant alpha>0 - BPP can be decided in polynomial time with no randomness on average over the uniform distribution This answers an open question of Ball et al. (STOC \u2717) in the positive of whether derandomization can be achieved from conjectures from fine-grained complexity theory. More strongly, these derandomizations improve over all previous ones achieved from worst-case uniform assumptions by succeeding on all but finitely many input lengths. Previously, derandomizations from worst-case uniform assumptions were only know to succeed on infinitely many input lengths. It is specifically the structure and moderate hardness of the k-Orthogonal Vectors and k-CLIQUE problems that makes removing this restriction possible. Via this uniform derandomization, we connect the problem-centric and resource-centric views of complexity theory by showing that exact hardness assumptions about specific problems like k-CLIQUE imply quantitative and qualitative relationships between randomized and deterministic time. This can be either viewed as a barrier to proving some of the main conjectures of fine-grained complexity theory lest we achieve a major breakthrough in unconditional derandomization or, optimistically, as route to attain such derandomizations by working on very concrete and weak conjectures about specific problems

    A Field Guide to Genetic Programming

    Get PDF
    xiv, 233 p. : il. ; 23 cm.Libro ElectrónicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction -- Representation, initialisation and operators in Tree-based GP -- Getting ready to run genetic programming -- Example genetic programming run -- Alternative initialisations and operators in Tree-based GP -- Modular, grammatical and developmental Tree-based GP -- Linear and graph genetic programming -- Probalistic genetic programming -- Multi-objective genetic programming -- Fast and distributed genetic programming -- GP theory and its applications -- Applications -- Troubleshooting GP -- Conclusions.Contents xi 1 Introduction 1.1 Genetic Programming in a Nutshell 1.2 Getting Started 1.3 Prerequisites 1.4 Overview of this Field Guide I Basics 2 Representation, Initialisation and GP 2.1 Representation 2.2 Initialising the Population 2.3 Selection 2.4 Recombination and Mutation Operators in Tree-based 3 Getting Ready to Run Genetic Programming 19 3.1 Step 1: Terminal Set 19 3.2 Step 2: Function Set 20 3.2.1 Closure 21 3.2.2 Sufficiency 23 3.2.3 Evolving Structures other than Programs 23 3.3 Step 3: Fitness Function 24 3.4 Step 4: GP Parameters 26 3.5 Step 5: Termination and solution designation 27 4 Example Genetic Programming Run 4.1 Preparatory Steps 29 4.2 Step-by-Step Sample Run 31 4.2.1 Initialisation 31 4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming 5 Alternative Initialisations and Operators in 5.1 Constructing the Initial Population 5.1.1 Uniform Initialisation 5.1.2 Initialisation may Affect Bloat 5.1.3 Seeding 5.2 GP Mutation 5.2.1 Is Mutation Necessary? 5.2.2 Mutation Cookbook 5.3 GP Crossover 5.4 Other Techniques 32 5.5 Tree-based GP 39 6 Modular, Grammatical and Developmental Tree-based GP 47 6.1 Evolving Modular and Hierarchical Structures 47 6.1.1 Automatically Defined Functions 48 6.1.2 Program Architecture and Architecture-Altering 50 6.2 Constraining Structures 51 6.2.1 Enforcing Particular Structures 52 6.2.2 Strongly Typed GP 52 6.2.3 Grammar-based Constraints 53 6.2.4 Constraints and Bias 55 6.3 Developmental Genetic Programming 57 6.4 Strongly Typed Autoconstructive GP with PushGP 59 7 Linear and Graph Genetic Programming 61 7.1 Linear Genetic Programming 61 7.1.1 Motivations 61 7.1.2 Linear GP Representations 62 7.1.3 Linear GP Operators 64 7.2 Graph-Based Genetic Programming 65 7.2.1 Parallel Distributed GP (PDGP) 65 7.2.2 PADO 67 7.2.3 Cartesian GP 67 7.2.4 Evolving Parallel Programs using Indirect Encodings 68 8 Probabilistic Genetic Programming 8.1 Estimation of Distribution Algorithms 69 8.2 Pure EDA GP 71 8.3 Mixing Grammars and Probabilities 74 9 Multi-objective Genetic Programming 75 9.1 Combining Multiple Objectives into a Scalar Fitness Function 75 9.2 Keeping the Objectives Separate 76 9.2.1 Multi-objective Bloat and Complexity Control 77 9.2.2 Other Objectives 78 9.2.3 Non-Pareto Criteria 80 9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80 9.4 Multi-objective Optimisation via Operator Bias 81 10 Fast and Distributed Genetic Programming 83 10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83 10.2 Reducing Cost of Fitness with Caches 86 10.3 Parallel and Distributed GP are Not Equivalent 88 10.4 Running GP on Parallel Hardware 89 10.4.1 Master–slave GP 89 10.4.2 GP Running on GPUs 90 10.4.3 GP on FPGAs 92 10.4.4 Sub-machine-code GP 93 10.5 Geographically Distributed GP 93 11 GP Theory and its Applications 97 11.1 Mathematical Models 98 11.2 Search Spaces 99 11.3 Bloat 101 11.3.1 Bloat in Theory 101 11.3.2 Bloat Control in Practice 104 III Practical Genetic Programming 12 Applications 12.1 Where GP has Done Well 12.2 Curve Fitting, Data Modelling and Symbolic Regression 12.3 Human Competitive Results – the Humies 12.4 Image and Signal Processing 12.5 Financial Trading, Time Series, and Economic Modelling 12.6 Industrial Process Control 12.7 Medicine, Biology and Bioinformatics 12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii 12.9 Entertainment and Computer Games 127 12.10The Arts 127 12.11Compression 128 13 Troubleshooting GP 13.1 Is there a Bug in the Code? 13.2 Can you Trust your Results? 13.3 There are No Silver Bullets 13.4 Small Changes can have Big Effects 13.5 Big Changes can have No Effect 13.6 Study your Populations 13.7 Encourage Diversity 13.8 Embrace Approximation 13.9 Control Bloat 13.10 Checkpoint Results 13.11 Report Well 13.12 Convince your Customers 14 Conclusions Tricks of the Trade A Resources A.1 Key Books A.2 Key Journals A.3 Key International Meetings A.4 GP Implementations A.5 On-Line Resources 145 B TinyGP 151 B.1 Overview of TinyGP 151 B.2 Input Data Files for TinyGP 153 B.3 Source Code 154 B.4 Compiling and Running TinyGP 162 Bibliography 167 Inde

    Towards Better Separation between Deterministic and Randomized Query Complexity

    Get PDF
    We show that there exists a Boolean function FF which observes the following separations among deterministic query complexity (D(F))(D(F)), randomized zero error query complexity (R0(F))(R_0(F)) and randomized one-sided error query complexity (R1(F))(R_1(F)): R1(F)=O~(D(F))R_1(F) = \widetilde{O}(\sqrt{D(F)}) and R0(F)=O~(D(F))3/4R_0(F)=\widetilde{O}(D(F))^{3/4}. This refutes the conjecture made by Saks and Wigderson that for any Boolean function ff, R0(f)=Ω(D(f))0.753..R_0(f)=\Omega({D(f)})^{0.753..}. This also shows widest separation between R1(f)R_1(f) and D(f)D(f) for any Boolean function. The function FF was defined by G{\"{o}}{\"{o}}s, Pitassi and Watson who studied it for showing a separation between deterministic decision tree complexity and unambiguous non-deterministic decision tree complexity. Independently of us, Ambainis et al proved that different variants of the function FF certify optimal (quadratic) separation between D(f)D(f) and R0(f)R_0(f), and polynomial separation between R0(f)R_0(f) and R1(f)R_1(f). Viewed as separation results, our results are subsumed by those of Ambainis et al. However, while the functions considerd in the work of Ambainis et al are different variants of FF, we work with the original function FF itself.Comment: Reference adde
    • …
    corecore