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Abstract
Lifting theorems are theorems that bound the communication complexity of a composed function f◦gn

in terms of the query complexity of f and the communication complexity of g. Such theorems
constitute a powerful generalization of direct-sum theorems for g, and have seen numerous applications
in recent years.

We prove a new lifting theorem that works for every two functions f, g such that the discrepancy
of g is at most inverse polynomial in the input length of f . Our result is a significant generalization
of the known direct-sum theorem for discrepancy, and extends the range of inner functions g for
which lifting theorems hold.
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1 Introduction

The direct-sum question is a fundamental question in complexity theory, which asks whether
computing a function g on n independent inputs is n times harder than computing it on a
single input. A related type of result, which is sometimes referred to as an “XOR lemma”, says
that computing the XOR of the outputs of g on n independent inputs is about n times harder
than computing of g on a single coordinate. Both questions received much attention in the
communication complexity literature, see, e.g., [24, 13, 23, 7, 31, 21, 3, 22, 25, 2, 20, 33, 5, 4].

A lifting theorem is a powerful generalization of both direct-sum theorems and XOR
lemmas. Let f : {0, 1}n → O and g : {0, 1}b ×{0, 1}b → {0, 1} be functions (where O is some
arbitrary set). The block-composed function f ◦ gn is the function that corresponds to the
following task: Alice gets x1, . . . , xn ∈ {0, 1}b, Bob gets y1, . . . , yn ∈ {0, 1}b, and they wish
to compute the output of f on the n-bit string whose i-th bit is g(xi, yi). Lifting theorems
say that the “natural way” for computing f ◦ gn is more-or-less the best way. In particular,
direct-sum theorems and XOR lemmas can be viewed as lifting theorems for the special cases
where f is the identity function and the parity function respectively.

A bit more formally, observe that there is an obvious protocol for computing f ◦ gn: Alice
and Bob jointly simulate a decision tree of optimal height for solving f . Any time the tree
queries the i-th bit, they compute g on (xi, yi) by invoking the best possible communication
protocol for g. A (query-to-communication) lifting theorem is a theorem that says that this
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26:2 Lifting with Functions of Polynomial Discrepancy

protocol is roughly optimal. Specifically, let Ddt(f) and Dcc(g) denote the deterministic
query complexity of f and communication complexity of g respectively, and let Rdt(f) and
Rcc(g) denote the corresponding randomized complexities. Then, a lifting theorem says that

Dcc(f ◦ gn) = Ω
(
Ddt(f) · Dcc(g)

)
(in the deterministic setting) (1)

Rcc(f ◦ gn) = Ω
(
Rdt(f) · Rcc(g)

)
(in the randomized setting).

In other words, a lifting theorem says that the communication complexity of f ◦ gn is close
to the upper bound that is obtained by the natural protocol.

In recent years, lifting theorems found numerous applications, such as proving lower bounds
on monotone circuit complexity and proof complexity (e.g. [28, 16, 30, 26, 14, 27, 11, 12]),
the separation of partition number and deterministic communication complexity [17], proving
lower bounds on data structures [10], and an application to the famous log-rank conjecture
[19], to name a few.

For most applications, it is sufficient to prove a lifting theorem that holds for every outer
function f , but only for one particular choice of the inner function g. Moreover, it is desirable
that the inner function g would be a simple as possible, and that its input length b would
be a small as possible in terms of in the input length n of the outer function f . For these
reasons, the function g is often referred to as the “gadget”.

On the other hand, if we view lifting theorems as a generalization of direct-sum theorems,
then it is an important research goal to prove lifting theorems for as many inner functions g

as possible, including “complicated” ones. This goal is not only interesting in its own right,
but might also lead to additional applications. Indeed, this goal is a natural extension of the
long line of research that attempts to prove direct-sum theorems for as many functions as
possible. This is the perspective we take in this work, following Chattopadhyay et. al. [9, 8].
In particular, we intentionally avoid the term “gadget”, since we now view the function g as
the main object of study.

Previous work

The first lifting theorem, due to Raz and McKenzie [29], holds only when the inner function g

is the index function. For a long time, this was the only inner function for which lifting
theorems were known to hold for every outer function f . Then, the works of Chattopadhyay
et. al. [9] and Wu et. al. [35] proved a lifting theorem for the case where g is the inner
product function. The work of [9] went further than that, and showed that their lifting
theorem holds for any inner function g that satisfies a certain hitting property. This includes,
for example, the gap-Hamming-distance problem.

All the above results are stated only for the deterministic setting. In the randomized
setting, Göös, Pitassi, and Watson [18] proved a lifting theorem with the inner function g

being the index function. In addition, Göös et. al. [15] proved a lifting theorem in the
non-deterministic setting (as well as several related settings) with g being the inner product
function.

More recently, Chattopadhyay et. al. [8] proved a lifting theorem that holds for every
inner function g that has logarithmic input length and exponentially small discrepancy. This
theorem holds in both the deterministic and randomized setting, and includes the cases
where g is the inner product function or a random function. Since our work builds on the
lifting theorem of [8], we discuss this result in more detail. The discrepancy of g, denoted
disc(g), is a natural and widely-studied property of functions, and is equal to the maximum
bias of g in any combinatorial rectangle. Formally, it is defined as follows:
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▶ Definition 1. Let g : {0, 1}b × {0, 1}b → {0, 1} be a function, and let U, V be independent
random variables that are uniformly distributed over {0, 1}b. Given a combinatorial rectangle
R ⊆ {0, 1}b × {0, 1}b, the discrepancy of g with respect to R, denoted discR(g), is defined as
follows:

discR(g) = |Pr [g(U, V ) = 0 and (U, V ) ∈ R] − Pr [g(U, V ) = 1 and (U, V ) ∈ R]| .

The discrepancy of g, denoted disc(g), is defined as the maximum of discR(g) over all
combinatorial rectangles R ⊆ {0, 1}b × {0, 1}b.

Informally, the main theorem of [8] says that if disc(g) = 2−Ω(b) and b ≥ c · log n for some
constant c, then

Dcc(f ◦ gn) = Ω
(
Ddt(f) · b

)
and Rcc

1/3(f ◦ gn) = Ω
(

Rdt
1/3(f) · b

)
.

We note that when disc(g) = 2−Ω(b), it holds that Dcc(g) ≥ Rcc(g) ≥ Ω(b), and therefore
the latter result is equivalent to Equation (1).

The research agenda of [8]

As discussed above, we would like to prove a lifting theorem that holds for as many inner
functions g as possible. Inspired by the literature on direct-sum theorems, [8] conjectured
that lifting theorems should hold for every inner function g that has a sufficiently large
information cost IC(g).

▶ Conjecture 2 (special case of [8, Conj. 1.4]). There exists a constant c > 0 such that
the following holds. Let f : {0, 1}n → O and g : {0, 1}b × {0, 1}b → {0, 1} be an arbitrary
function such that IC(g) ≥ c · log n. Then

Rcc(f ◦ gn) = Ω
(
Rdt(f) · IC(g)

)
.

Proving this conjecture is a fairly ambitious goal. As an intermediate goal, [8] suggested
to prove this conjecture for complexity measures that are simpler than IC(g). In light of
their result, it is natural to start with discrepancy. It has long been known that the quantity
∆(g) def= log 1

disc(g) is a lower bound on Rcc(g) up to a constant factor. More recently, it has
even been shown that ∆(g) is a lower bound on IC(g) up to a constant factor [6]. Motivated
by this consideration, [8] suggested the following natural conjecture: for every function g such
that ∆(g) ≥ c · log n, it holds that Rcc(f ◦ gn) = Ω

(
Rdt(f) · ∆(g)

)
(see Conjecture 1.5 there).

The lifting theorem of [8] proves this conjecture for the special case where ∆(g) = Ω(b).

Our result

In this work, we prove the latter conjecture of [8] in full, by waiving the limitation of
∆(g) = Ω(b) from their result. We note that a full proof can be found in the full version
that will be published later. As in previous works, our result holds even if f is replaced
with a general search problem S. In what follows, we denote by Rdt

β (S) and Rcc
β (S ◦ gn)

the randomized query complexity of S with error β and the randomized communication
complexity of S ◦ gn with error β respectively. We now state our result formally.

▶ Theorem 3 (Main theorem). There exists a universal constant c such that the following holds:
Let S be a search problem that takes inputs from {0, 1}n, and let g : {0, 1}b × {0, 1}b → {0, 1}
be an arbitrary function such that ∆(g) ≥ c · log n. Then

Dcc(S ◦ gn) = Ω
(
Ddt(S) · ∆(g)

)
,

APPROX/RANDOM 2022



26:4 Lifting with Functions of Polynomial Discrepancy

and for every β > 0 it holds that

Rcc
β (S ◦ gn) = Ω

((
Rdt

β′(S) − O(1)
)

· ∆(g)
)

,

where β′ = β + 2−∆(g)/50.

▶ Remark 4. It is interesting to note that one of the first direct-sum results in the randomized
setting went along these lines. In particular, the work of Shaltiel [31] implies that for
every function g such that ∆(g) ≥ c for some universal constant c, it holds that Rcc(gn) =
Ω (n · ∆(g)). Our main theorem can be viewed as a generalization of that result.

▶ Remark 5. A natural question is whether the requirement that ∆(g) ≥ c · log n is necessary.
In principle, it is possible that this requirement could be relaxed. Any such relaxation,
however, would imply a lifting theorem that allows gadgets of smaller input length than is
currently known which would be considered a significant breakthrough.

▶ Remark 6. In order to facilitate the presentation, we restricted our discussion on the
previous work to lifting theorems that hold for every outer function f (and indeed, every
search problem S). If one is willing to make certain assumptions on the outer function f , it
is possible to prove stronger lifting theorems that in particular allow for a wider variety of
inner functions (see, e.g., [32, 34, 16, 19, 12, 1]).

▶ Remark 7. We note that Definition 1 is in fact a special case of the common definition of
discrepancy. The general definition refers to an arbitrary distribution µ over {0, 1}b × {0, 1}b.
The discrepancy of g over µ is defined similarly to Definition 1 except that the random
variables U, V are distributed according to µ rather than the uniform distribution.

1.1 Our Techniques
Following the previous works, we use a “simulation argument”: We show that given a protocol
that computes f ◦ gn with communication complexity C, we can construct a decision tree
that computes f with query complexity O( C

∆(g) ). In particular, we follow the simulation
argument of [8] and extend their main technical lemma. We now describe this argument
in more detail, focusing on the main lemma of [8] and our extension of that lemma. For
simplicity, we focus on the deterministic setting, but the proof in the randomized setting
follows similar ideas. In this paper, due to space constraints, the simulation argument is
omitted. Only the proof of the main lemma is presented in the paper.

The simulation argument

We assume that we have a protocol Π that computes f ◦ gn, and would like to construct
a decision tree T that computes f . The basic idea is that given an input z ∈ {0, 1}n, the
tree T uses the protocol Π to find a pair of inputs (x, y) ∈ ({0, 1}b)

n
× ({0, 1}b)

n
such that

(f ◦ gn)(x, y) = f(z), and then returns the output of Π on (x, y).
In order to find the pair (x, y), the tree T maintains a pair of random variables (X, Y ).

Initially, the variables (X, Y ) are uniformly distributed over ({0, 1}b)
n

× ({0, 1}b)
n
. Then,

the tree gradually changes the distribution of (X, Y ) until they satisfy (f ◦ gn)(X, Y ) = f(z)
with probability 1, at which point the tree chooses (x, y) to be an arbitrary pair in the
support of (X, Y ). This manipulation of the distribution of (X, Y ) is guided by a simulation
of the protocol Π on (X, Y ) (hence the name “simulation argument”). Throughout this
process, the decision tree maintains the following structure of (X, Y ):
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There is a set of coordinates, denoted F ⊆ [n], such that for every i ∈ F it holds that
g(Xi, Yi) = zi with probability 1.
X[n]\F and Y[n]\F are dense in the following sense: for every J ⊆ [n] \F , the variables
XJ and YJ have high min-entropy.

Intuitively, the set F is the set of coordinates i for which the simulation of Π has already
computed g(Xi, Yi), while for the coordinates i ∈ [n] \F the value g(Xi, Yi) is unknown.
Initially, the set F is empty, and then it is gradually expanded until it holds that (f ◦
gn)(X, Y ) = f(z).

The main lemma of [8]

Suppose now that as part of the process described above, we would like to expand the
set F by adding a new set of coordinates I ⊆ [n] \F . This means that we should condition
the distribution of (X, Y ) on the event that gI(XI , YI) = zI . This conditioning, however,
decreases the min-entropy of (X, Y ), which might cause X[n]\F and Y[n]\F to lose their
density.

In order to resolve this issue, [8] defined a notion of “sparsifying values” of X and Y .
Informally, a value x in the support of X is called sparsifying if after conditioning Y on the
event gI(xI , YI) = zI , the variable Y[n]\(F ∪I) ceases to be dense. A sparsifying value of Y is
defined similarly. It is not hard to see that if X and Y do not have any sparsifying values in
their supports, then the density of X[n]\F and Y[n]\F is maintained after the conditioning on
gI(XI , YI) = zI . Therefore, [8] design their decision tree such that before every conditioning
on the event gI(xI , YI) = zI , the tree first removes the sparsifying values from the supports
of X and Y .

The removal of sparsifying values, however, raises another issue: when we remove values
from the supports of X and Y , we decrease the min-entropy of X and Y . In particular, the
removal of the sparsifying values might cause X[n]\F and Y[n]\F to lose their density. This
issue is resolved by the main technical lemma of [8]. Informally, this lemma says that if
X[n]\F and Y[n]\F are dense, then the sparsifying values are very rare. This means that the
removal of these values barely changes the min-entropy of X and Y , and in particular, does
not violate the density property.

Our contribution

Recall that the lifting theorem of [8] requires that ∆(g) = Ω(b), and that our goal is to waive
that requirement. Unfortunately, it turns out that main lemma of [8] fails when ∆(g) is very
small relatively to b. In fact, the full version provide an example in which all the values
in the support of X are sparsifying. In such a case, it is simply impossible to remove the
sparsifying values.

In short, unlike [8], we cannot afford to remove the sparsifying values before conditioning
on the event gI(XI , YI) = zI . Therefore, in our simulation X[n]\F and Y[n]\F sometimes
lose their density after the conditioning. Nevertheless, we observe that even if the density
property breaks in this way, it can often be restored by removing some more values from
the supports of X and Y . We formalize this intuition by defining a notion of “recoverable
values”. Informally, a value x in the support of X is called recoverable if after conditioning Y

on the event gI(xI , YI) = zI , the density of Y[n]\(F ∪I) can be restored by discarding some
values from its support.

Our main lemma says, informally, that if X[n]\F and Y[n]\F are dense, then almost all the
values of X and Y are recoverable. In particular, we can afford to remove the unrecoverable
values of X and Y without violating their density. Given our lemma, it is easy to fix
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26:6 Lifting with Functions of Polynomial Discrepancy

the simulation argument of [8]: whenever our decision tree is about to condition on an
event gI(xI , YI) = zI , it first discards the unrecoverable values of X and Y ; then, after the
conditioning, the decision tree restores the density property by discarding some additional
values. The rest of our argument proceeds exactly as in [8].

The proof of our main lemma

The definition of a sparsifying value of X can be stated as follows: the value x is sparsifying
if there exists a value yJ such that the probability

Pr [YJ = yJ | g(xI , YI) = zI ] (2)

is too high. On the other hand, it can be showed that a value x is unrecoverable if there are
many such corresponding values yJ . Indeed, if there are only few such values yJ , then we
can recover the density of Y[n]\(F ∪I) by discarding them.

Very roughly, the main lemma of [8] is proved by showing that for every yJ , there is
only a very small number of corresponding x’s for which the latter probability is too high.
Then, by taking union bound over all possible choices of yJ , it follows that there are only
few values x for which there exists some corresponding yJ . In other words, there are only
few sparsifying values.

This argument works in the setting of [8] because they can prove a very strong upper
bound on the number of values x for a single yJ — indeed, the bound is sufficiently strong
to survive the union bound. In our setting, on the other hand, the fact that we assume a
smaller value of ∆(g) translates to a weaker bound on the number of values x for a single yJ .
In particular, we cannot afford to use the union bound. Instead, we take a different approach:
we observe that, since for every yJ there is only a small number of corresponding x’s, it
follows by an averaging argument that there can only be a small number of x’s that have
many corresponding yJ ’s. In other words, it follows from the averaging argument that there
can only be a small number of unrecoverable x’s.

Implementing this idea is more difficult than it might seem at a first glance. The key
difficulty is that when we say “values x that have many corresponding yJ ’s” we do not
refer to the absolute number of yJ ’s but rather to their probability mass. Specifically, the
probability distribution according to which the yJ ’s should be counted is the probability
distribution of Equation (2). Unfortunately, this means that for every value x, we count
the yJ ’s according to a different distribution, which renders a simple averaging argument
impossible. We overcome this difficulty by proving a finer upper bound on the number of x’s
for each yJ and using a careful bucketing scheme for the averaging argument.

2 The Main Lemma

In this section, we state and prove our main lemma. As discussed in the introduction, our
simulation argument maintains a pair of random variables X, Y ∈ Λn. A crucial part of
the simulation consists of removing certain “dangerous” values from the supports of these
variables. Our main lemma says that almost all values are safe.

There are two types of “dangerous” values: non recoverable values are values that might
lead to a violation of the structure of X, Y (as per density, defined in [8]); non almost
uniform values are values for which gI (xI , YI) is not close enough to uniform and therefore
might cause the simulation to leak too much information about X and Y . Additionally,
the assumption that gI (xI , YI) is close to uniform allow the simulation to assume that
X | gI (XI , YI) = zI is close to X even when X, Y are not structured. We first define those
notions formally and then compere between those notions and the notions from [8].
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▶ Definition 8 (dangerous values). Let ε, α ≥ 0. Let Y be a random variable and ρ a
restriction. Let x ∈ Λn, and let σY > 0 be such that Yfree(ρ) is σY -sparse. We say that x is
almost uniform if for any set I ⊆ free (ρ) and an assignment zI ∈ {0, 1}I it holds that

Pr
[
gI(xI , YI) = zI

]
∈ 2−|I|

(
1 ± 2− ∆

10

)
.

We say that x is (ε, α)-recoverable if for all I ⊆ free (ρ) and zI the following holds: exist
event E such that Pr

[
E | gI(xI , YI) = zI

]
≥ 1 − 2−α∆ and the random variable

Yfree(ρ)−I | E and gI(xI , YI) = zI

is (σY + ε)-sparse. We say that x is (ε, α)-safe if it is both almost uniform and (ε, α)-
recoverable. Almost uniform, recoverable, and safe values of Y are defined analogously.

The notion of “dangerous” (Alternatively, not safe) in this paper is closely connected to
the definition presented in [8]. We will now discuss the differences and the reasons for the
changes. The first type of “dangerous” values, that is non recoverable values, are connected
to notion of sparsifying from [8]. Any non recoverable value is sparsifying, but the converse is
false. Both definitions regard the sparsity of the random variable Y[n]−I | gI(xI , YI) = zI , if
this variable is not dense then it sparsifying. We suggest to “recover” Y[n]−I | gI(xI , YI) = zI

by conditioning it on high-probability event that make this random variable sparse enough.
If such option is viable we say that x is recoverable. As show in the full version, using the
original definition of sparsifying in the setting of ∆ ≪ b can lead to the marking all values
x as dangerous, and therefore the weakening is required. Regrading the second type of
“dangerous” values, the definition of almost uniform is strictly stronger than the definition
of non leaking. Both definition regard the values of Pr

[
gI (xI , YI) = zI

]
, almost uniform

bound the value tightly both from above and bellow while non leaking bound only from
bellow. The definition of almost uniform allow us to get tight connection between Pr [E ] and
Pr

[
E | gI (xI , YI) = zI

]
as can be seen in proof of correctness of the randomized theorem in

the full version, where leaking is not sufficient for the analysis of the recovering process.
We turn to state our main lemma.

▶ Proposition 9 (Main Lemma). Let ε ≥ 5
c , α > 1

c , γ > 0, and let X and Y be independent
(ρ, τ)-structured random variables. Let σX , σY > 0 be such that Xfree(ρ) is σX-sparse, and
Yfree(ρ) is σY -sparse. If σX + 2σY ≤ 9

10 − 22
c − γ − α. Then

Pr
x∼X

[x is not (ε, α)-safe] ≤ 2−γ·∆.

In the rest of this section, we prove the main lemma. Let ε, α, σX , σY be as in the lemma.
Additionally, we let X, Y to be independent (ρ, τ)-structured random variables such that
Xfree(ρ) is σX -sparse, and Yfree(ρ) is σY -sparse and let τ

def= σX + σY . We note that we do
not assume that σX + 2σY ≤ 9

10 − 22
c − γ − α in the following lemmas, and some other

requirements are used instead. For simplicity, we assume that fix(ρ) = ∅ and free(ρ) = [n]
(otherwise, we can restrict our attention to the coordinates in free(ρ)). The first step of the
proof is to upper bound the probability that X takes a non almost uniform value.

▶ Proposition 10. Let γ > 0. Additionally assume that τ ≤ 9
10 − 11

c − γ. The probability
that X takes a value that is not almost uniform is at most 2−γ·∆.

Proposition 10 is proved in Section 2.1 below. We now introduce the definition sparsifying,
informally, a value x is (ε, t)-sparsifying with respect to yJ if in the distribution YJ |
gI (xI , YI) = zI the value yJviolets the (σY + ε)-sparsity of Y . While all sparsifying values

APPROX/RANDOM 2022



26:8 Lifting with Functions of Polynomial Discrepancy

violate the (σY + ε)-sparsity of Y , some of them violate it more strongly than others, and
this is measured by the additional parameter t. The next steps of the proof use the following
notion.

▶ Definition 11. Let x ∈ Λn, J ⊆ [n], and yJ ∈ ΛJ . We say that x is (ε, t)-sparsifying for
yJ if there exist I ⊆ [n] and zI ∈ ΛI such that

Pr
[
YJ = yJ | gI (xI , YI) = zI

]
> 2(σY +ε)·∆·|J|+t−b·|J|.

Informally, a value x is not recoverable if it is sparsifying for many yJ ’s, whereas a
value x is sparsifying according to the terminology of [8] if it is sparsifying for some yJ .

The following proposition upper bounds the probability that X takes a sparsifying value
for specific value yJ , and is proved in Section 2.2.

▶ Proposition 12. Let γ > 2
c . Additionally assume that ε ≥ 5

c and τ ≤ 1 − 14
c − γ. Then,

for every J ⊆ [n] and for every yJ ∈ ΛJ , the probability that X takes an almost uniform
value x that is (ε, t)-sparsifying for yJ is at most 2−γ·∆· c·ε

2 ·|J|−2t.

Proposition 12 is essentially a more refined version of the analysis in [8]. An important
point about this proposition is that it gives a stronger bound for larger values of t. In
contrast, the analysis [8] does not consider the parameter t and gives the same upper bound
for all values x. In the final part of the proof, which is described in Section 2.3, we derive
the main lemma from Propositions 10 and 12.

To prove the propositions in this section we will use the following lemma from [8]

▶ Lemma 13 (see, e.g., [8, Cor. 2.13]). Let γ, λ > 0 and let S ⊆ [n]. If it holds for X, Y that

D∞(XS) + D∞(YS) ≤ (∆(g) − 7 − γ − λ) · |S| .

Then the probability that X takes a value x ∈ Λn such that

bias
(
g⊕S(xS , YS)

)
> 2−λ|S|

is less than 2−γ|S|.

2.1 Proof of Proposition 10
In this section we prove Proposition 10, following the ideas of [8]. Essentially, the proof
uses the fact that X and Y have low sparsity together with the discrepancy of g to argue
that with high probability the random variable XS takes a value xS such that all parities
g⊕S(xS , YS) are relatively unbiased. Then, the proof uses the latter claim together with the
Vazirani lemma to conclude that the random strings gI(xI , YI) are almost uniform.

▶ Proposition 10. Let γ > 0. Additionally assume that τ ≤ 9
10 − 11

c − γ. The probability
that X takes a value that is not almost uniform is at most 2−γ·∆.

Proof. We start by observing that for every x ∈ Λn, if it holds that bias(g⊕S(xS , YS)) ≤
2− ∆

10 · (2n)−|S| for every non-empty set S ⊆ [n], then x is almost uniform. Indeed, let x ∈ Λn

be a value that satisfies the above condition, and let I ⊆ [n]. Then, by applying the first
variant of Vazirani’s lemma to the random variable gI(xI , YI), it holds that

Pr
[
gI(xI , YI) = zI

]
∈

(
1 ± 2− ∆

10

)
· 2−|I|

for every zI ∈ {0, 1}I . It follows that x is almost uniform.
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It remains to show that with probability at least 1 − 2−γ·∆ the random variable X takes
a value x that satisfies the latter condition on the biases. We start by lower bounding
the probability that bias(g⊕S(xS , YS)) ≤ 2− ∆

10 · (2n)−|S| for a specific set S ⊆ [n]. Fix a
non-empty set S ⊆ [n]. By assumption, it holds that

D∞(XS) + D∞(YS) ≤ (1 − 11
c

− γ − 1
10) · ∆ · |S|

=
(

∆ − 7∆
c

− γ∆ − ∆
10 − 4∆

c

)
· |S|

≤
(

∆ − 7 − γ∆ − ∆
10 − 2 log n − 2

)
· |S| .

By applying Lemma 13 with γ = γ∆ + log n + 1 and λ = log n + 1 + ∆
10 it follows that with

probability at least 1 − 2−γ∆−1 · 1
n|S| , the random variable X takes a value x such that

bias
(
g⊕S(xS , YS)

)
≤ (2− ∆

10 · 2n)−|S| ≤ 2− ∆
10 · (2n)−|S|

.

Next, by taking the union bound over all non-empty sets S ⊆ [n], it follows that the
probability that there exists some non-empty set S with bias(g⊕S(xS , YS)) > 2− ∆

10 · (2n)−|S|

is at most∑
S⊆[n]:S ̸=∅

2−γ∆−1 · 1
n|S| (binomial like bound)

< 2−γ∆−1 · 2
= 2−γ∆.

It follows that with probability at least 1 − 2−γ∆, the random variable X takes a value x

such that bias(g⊕S(xS , YS)) ≤ 2− ∆
10 · (2n)−|S| for all non-empty sets S ⊆ [n], as required. ◀

2.2 Proof of Proposition 12
In this section, we prove Proposition 12 using a refined version of the analysis of [8]. The
proof consists of three main steps: first, we use Bayes’ formula to reduce the task of upper
bounding the probability of sparsifying values into the task of upper bounding the probability
of a related type of values, called skewing values; then, we use Vazirani’s lemma to reduce
the latter task to the task of the upper bounding the biases of g(xI , YI). Finally, we upper
bound the biases of g(xI , YI) using the low deficiency of X and Y and the discrepancy of g.
We start by formally defining skewing values, and then prove their connection to sparsifying
values.

▶ Definition 14. Let J ⊆ [n] and let yJ ∈ ΛJ . Let e(yJ) be the real number such that

Pr [YJ = yJ ] = 2σY ·∆·|J|−b·|J|−e(yJ )

We note that this number is non-negative as we assume Y is σY -sparse. We say that x is
(ε, t)-skewing for yJ if there exist I ⊆ [n] − J such that

D∞
(
gI(xI , YI) | YJ = yJ

)
> ε · ∆ · |J | + e (yJ) + t − 1

▶ Proposition 15. Let x ∈ Λn, J ⊆ [n], and yJ ∈ ΛJ . If x is (ε, t)-sparsifying for yJ and is
almost uniform then x is (ε, t)-skewing for yJ .
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Proof. The proof is straightforward and been omitted due to space constraints. The proof
can be found in the full version of this paper. ◀

We now formally define biasing values and connect them to skewing values via the usage
of Vazirani lemma, thus allowing us to focus on the biases. Informally, biasing values are
values x such that when conditioning on YJ = yJ , the bias of g⊕S (xS , YS) is too high.

▶ Definition 16. Let J ⊆ [n] and let yJ ∈ ΛJ . We say that x is (ε, t)-biasing for yJ if there
exists a set S ⊆ [n] − J such that |S| ≥ c · ε · |J | + t+e(yJ )−2

log n and

bias
(
g⊕S (xS , YS) | YJ = yJ

)
> (2n)−|S|

.

▶ Proposition 17. Let x ∈ Λn, let J ⊆ [n], and let yJ ∈ ΛJ . If x is not (ε, t)-biasing for yJ

then x is not (ε, t)-skewing for yJ .

Proof. The proof is omitted due to space constraints and can be found in the full version of
this paper. ◀

We finally prove Proposition 12, restated next.

▶ Proposition 12. Let γ > 2
c . Additionally assume that ε ≥ 5

c and τ ≤ 1 − 14
c − γ. Then,

for every J ⊆ [n] and for every yJ ∈ ΛJ , the probability that X takes an almost uniform
value x that is (ε, t)-sparsifying for yJ is at most 2−γ·∆· c·ε

2 ·|J|−2t.

Proof. Let J ⊆ [n] and let yJ ∈ ΛJ . We first observe that it suffices to prove that with
probability at least 1 − 2−γ·∆·|J|−2t, the random variable X takes a value x that is not (ε, t)-
biasing for yJ . Indeed, if x is a value that is not (ε, t)-biasing for yJ , then by Proposition 17
it is not (ε, t)-skewing for yJ , and then by Proposition 15 it cannot be both (ε, t)-sparsifying
for yJ and almost uniform. It remains to upper bound the probability that x is (ε, t)-biasing
for yJ .

We start by upper bounding the probability that X takes a value x such that

bias
(
g⊕S (xS , YS) | YJ = yJ

)
> (2n)−|S|

for some non-empty fixed set S ⊆ [n] − J such that |S| ≥ c · ε · |J | + t+e(yJ )−2
log n . Let S be

such a set. In order to upper bound the latter probability, we use Lemma 13, which in turn
requires us to upper bound the deficiencies D∞(XS) and D∞(YS |YJ = yJ ). By assumption,
we know that D∞(XS) ≤ σX · ∆ · |S|. We turn to upper bound D∞(YS |YJ = yJ ). For every
yS ∈ ΛS , it holds that

Pr [YS = yS | YJ = yJ ] = Pr [YS∪J = yS∪J ]
Pr [YJ = yJ ]

= Pr [YS∪J = yS∪J ]
2σY ·∆·|J|−b·|J|−e(yJ ) (Definition of e(yJ))

≤ 2σY ·∆·(|S|+|J|)−b·(|S|+|J|)

2σY ·∆·|J|−b·|J|−e(yJ ) (Y is σY -sparse)

= 2σY ·∆·|S|+e(yJ )−b·|S|.

It follows that

D∞(YS | YJ = yJ) ≤ σY · ∆ · |S| + e(yJ).
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By our assumption on the size of S, it follows that

e(yJ) ≤ log n · |S| + 2 ≤ 3 · log n · |S| ≤ 3
c

· ∆ · |S| .

It follows that

D(XS) + D∞(YS | YJ = yJ)

≤(σX + σY + 3
c

) · ∆ · |S|

≤(1 − 11
c

− γ) · ∆ · |S| (σX + σY ≤ 1 − 14
c

− γ)

=
(

∆ − 7∆
c

− γ∆ − 4∆
c

)
· |S|

≤ (∆ − 7 − γ∆ − 3 log n − 1) · |S| .

Now, by applying Lemma 13 with γ = γ∆ + 2 log n and λ = log n + 1, it follows that the
probability that X takes a value x such that

bias
(
g⊕S (xS , YS) | YJ = yJ

)
> (2n)−|S|

is at most

2−γ·∆·|S| · 1
n2|S| ≤ 2−γ·∆·|S| · 1

n|S|+1 ,

where the inequality holds since S is assumed to be non-empty. By taking union bound over
all relevant sets S, it follows that the probability that X takes a value x that is (t, ε)-biasing
for yJ is at most∑

S⊆[n]:|S|≥c·ε·|J|+ t+e(yJ )−2
log n

2−γ·∆·|S| · 1
n|S|+1

≤
∑

S⊆[n]:|S|≥( c·ε
2 +2)|J|+ t−2

log n

2−γ·∆·|S| · 1
n|S|+1 (e(yJ) ≥ 0, ε ≥ 5

c
)

≤ 2 · 2−γ·∆·(( c·ε
2 +2)|J|+ t−2

log n ) · 1
n

(binomial like bound)

≤ 2−γ·∆·( c·ε
2 +2)|J| · 2−2t+( γ·∆·2

log n ) (γ ≥2
c

≥ 2 log n

∆ , n ≥ 2)

≤ 2−γ·∆· c·ε
2 ·|J|−2t · 2γ·∆·( 2

log n −2) (|J | ≥ 1)

≤ 2−γ·∆· c·ε
2 ·|J|−2t (n≥2)

as required. ◀

2.3 Proof of the Main Lemma from Propositions 10 and 12
In this section, we derive the main lemma from the previous propositions. The difficult
part is to prove an upper bound on the probability of non-recoverable values x, which is
essentially equivalent to proving the following statement:

There are very few values x that are sparsifying for many values yJ .
Proposition 12 essentially tells us the following statement:

For every yJ , there are very few values x that are sparsifying for it.
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It is tempting to try to deduce the first statement from the second statement via an averaging
argument. However, there is a significant obstacle here: in the first statement, when we say
“for many values yJ”, we count the values yJ with respect to a distribution that depends on x.
This complication renders a naive averaging argument impossible. In order to overcome this
obstacle, we consider all the pairs (x, yJ) such that x is (ε, t)-sparsifying for yJ , and place
them into buckets according to the value of t. Then, we bound the weight of each bucket
separately, while making use of the fact that Proposition 12 provides a stronger upper bound
for larger values of t. Using this bucketing scheme turns out to be sufficient for the averaging
argument to go through.

We start by defining the notion of a “light” value of X, which is a value x that is not
sparsifying for many values yJ for a particular set J ⊆ [n]. The term “light” is motivated by
the intuitive idea that the relevant values yJ are “heavy” in terms of their probability mass,
so a “light” value x is one that does not make many values yJ “heavy”. We show that “light”
values of x are recoverable, intuitively this is true as one can remove all the relevant values
yJ that cause the sparsity by condition on high the probability event of not choosing any of
them. We then consider x that are not light with respect to some specific J . We proceed by
bounding the probability of x that are not light with respect to single J , and complete the
proof by taking union bound over all J .

▶ Definition 18. Let x ∈ Λn and let J ⊆ [n]. For every set I ⊆ [n] − J and a value
zI ∈ {0, 1}I , we denote by

Hx,J,I,zI

def=
{

yJ ∈ ΛJ : Pr
[
YJ = yJ | gI (xI , YI) = zI

]
> 2(σY +ε− 1

∆ )·∆·|J|−b·|J|
}

the set of “heavy” values yJ . We say that a value x is (ε, α)-light if for every disjoint I, J

and zI ∈ {0, 1}I it holds that

Pr
[
YJ ∈ Hx,J,I,zI

| gI (xI , YI) = zI

]
≤ 2−α∆ ·

(
1

2n

)|J|

.

▶ Proposition 19. Let α ≥ 1
∆ . If x ∈ Λn is (ε, α)-light with respect to every J ⊆ [n] then it

is (ε, α)-recoverable.

Proof. Let α ≥ 1
∆ and let x ∈ Λn be (ε, α)-light with respect to every J ⊆ [n]. We show

that x is (ε, α)-recoverable by showing that for every I ⊆ [n] and zI ∈ ΛI there exists an
event E such that the random variable

Y[n]−I | E and gI (xI , YI) = zI

is (σY + ε)-sparse. We choose E to be the event that YJ /∈ Hx,J,I,zI
for any non-empty set

J ⊆ [n] − I. We first prove that Pr [¬E | g (xI , YI) = zI ] < 2−α∆. By the union bound, it
holds that

Pr [¬E | g (xI , YI) = zI ]

= Pr

 ∨
∅̸=J⊆[n]−I

YJ ∈ Hx,J,I,zI
| g (xI , YI) = zI


≤

∑
∅̸=J⊆[n]−I

Pr [YJ ∈ Hx,J,I,zI
]

≤
∑

∅̸=J⊆[n]−I

2−α∆ ·
(

1
2n

)|J|

≤2−α∆ (binomial like bound)
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It remains to prove that the random variable

Y[n]−I | E and gI (xI , YI) = zI

is (σY + ε)-sparse. For every J ⊆ [n] − I, it holds that

Pr
[
YJ = yJ | E and gI (xI , YI) = zI

]
=Pr [YJ = yJ and E | g (xI , YI) = zI ]

Pr [E | g (xI , YI) = zI ]

≤Pr [YJ = yJ | g (xI , YI) = zI ]
Pr [E | g (xI , YI) = zI ]

≤2(σY +ε− 1
∆ )·∆·|J|−b·|J|

1 − 2−α∆

≤2(σY +ε)·∆·|J|−b·|J|−1

1 − 1
2

(since α ≥ 1
∆ )

≤2(σY +ε)·∆·|J|−b·|J|,

and therefore the above random variable is (σY + ε)-sparse, as required. ◀

▶ Definition 20. Let x ∈ Λn, J ⊆ [n], I ⊆ [n] − J and zI ∈ {0, 1}I , recall that

Hx,J,I,zI

def=
{

yJ ∈ ΛJ : Pr
[
YJ = yJ | gI (xI , YI) = zI

]
> 2(σY +ε− 1

∆ )·∆·|J|−b·|J|
}

.

We say that a value x is (ε, α)-light with respect to J if for every I ⊆ [n] − J and zI ∈ {0, 1}I

it holds that

Pr
[
YJ ∈ Hx,J,I,zI

| gI (xI , YI) = zI

]
≤ 2−α∆ ·

(
1

2n

)|J|

.

It is easy to see that by definition a value x is (ε, α)-light if it is (ε, α)-light with respect
to every J ⊆ [n]. We now use this notion to bound the probability of x been not light for
every J and later get bound on the probability that X is (ε, α)-light by binomial like bound.

▶ Proposition 21. Assume that σX + 2 · σY ≤ 1 − 19
c − γ − α. For every J ⊆ [n], the

probability that X takes an almost uniform value x that is not (ε, α)-light for J is at most
2−γ·∆·|J|.

Proof. Let J ⊆ [n]. Let X and YJ denote the supports of X and YJ respectively. For every
x ∈ X and yJ ∈ YJ , let tx,yJ

denote the maximal value t such that x is (ε − 1
∆ , t)-sparsifying

for yJ . Next, consider a two dimensional table whose rows and columns are indexed by X
and YJ respectively. For every row x ∈ X and column yJ ∈ YJ , we set the corresponding
entry to be

ent(x, yJ) def=
{

2(σY +ε− 1
∆ )·∆·|J|−b·|J|+tx,yJ tx,yJ

> 0 and x is almost uniform
0 otherwise.

Now we use bucketing argument to bound the probabilities of high values of ent(x, yJ ) to
occur. Let γ′ = γ + σY + 2

c + α + 3
c . By applying Proposition 12 with γ = γ′, we get that

for every yJ and every t ∈ Z>0 it holds that

Pr [⌈tX,yJ
⌉ = t and X is almost uniform] ≤ 2−γ′·∆· c·ε

2 ·|J|−2(t−1).
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Therefore, for every yJ ∈ YJ , the expected random entry in the yJ -th column (over the
random choice of X) is

E [ent(X, yJ)] ≤ 2(σY +ε− 1
∆ )·∆·|J|−b·|J| ·

∞∑
t=1

Pr [⌈tX,yJ
⌉ = t and X is not leaking] · 2t

≤ 2(σY +ε− 1
∆ )·∆·|J|−b·|J| ·

∞∑
t=1

2−γ′·∆· c·ε
2 ·|J|−2(t−1) · 2t

= 2−γ′·∆· c·ε
2 ·|J|+2 · 2(σY +ε− 1

∆ )·∆·|J|−b·|J| ·
∞∑

t=1
2−t

≤ 2(σY +ε− 1
∆ −γ′· c·ε

2 + 2
c )·∆·|J|−b·|J|.

It follows that the expected sum of a random row of the table (over the random choice
of X) is

E

 ∑
yJ ∈YJ

ent(X, yJ)


=

∑
yJ ∈YJ

E [ent(X, yJ)]

≤
∑

yJ ∈YJ

2(σY +ε− 1
∆ −γ′· c·ε

2 + 2
c )·∆·|J|−b·|J|

=2(σY +ε− 1
∆ −γ′· c·ε

2 + 2
c )·∆·|J|

=2(σY +ε− 1
∆ −γ−σY − 2

c · c·ε
2 −α− 3

c + 2
c )·∆·|J| (definition of γ′,·c · ε

2 ≥ 1)

≤2−(γ+α)·∆·|J|. (∆ ≥ c)

By Markov’s inequality, the probability that X is almost uniform and the sum of the
X-th row is more than 2−α·∆|J| is upper bounded by 2−γ·∆·|J|. We now prove that if a
value x ∈ X is almost uniform and the sum in the x-th row is at most 2−α·∆|J|, then x is
(ε, α)-light with respect to J , and this will finish the proof of the proposition.

Let x ∈ X be such a value. We prove that x is (ε, α)-light with respect to J . Let
I ⊆ [n] − J and let zI ∈ {0, 1}I . We would like to prove that

Pr
[
YJ ∈ Hx,J,I,zI

| gI (xI , YI) = zI

]
≤ 2−α∆ ·

(
1

2n

)|J|

.

Observe that for every value yJ ∈ Hx,J,I,zI
, it holds that x is (ε − 1

∆ , t′)-sparsifying for yJ

with some t′ ≥ 0. Therefore, for every such yJ it holds that tx,yJ
> 0 and in particular

ent(x, yJ ) = 2(σY +ε− 1
∆ )·∆·|J|−b·|J|+tx,yJ . Furthermore, recall that by the definition of tx,yJ

it
holds that

Pr
[
YJ = yJ | gI (xI , YI) = zI

]
≤ 2(σY +ε− 1

∆ )·∆·|J|−b·|J|+tx,yJ .

It follows that

Pr
[
YJ ∈ Hx,J,I,zI

| gI (xI , YI) = zI

]
≤

∑
yJ ∈Hx,J,I,zI

Pr
[
YJ = yJ | gI (xI , YI) = zI

]
≤

∑
yJ ∈Hx,J,I,zI

ent(x, yJ).

≤ 2−α∆·|J|

as required. ◀
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▶ Remark. In the preceded proof we bound the probability that

Pr [⌈tX,yJ
⌉ = t and X is almost uniform]

. At a first glance the usage of ceiling may be unclear. The ceiling in this argument is
merely the implantation of the bucketing argument that used in the proof. Furthermore, the
bucketing argument is needed as our tools such as Proposition 12 bound the probability of t

to pass some threshold, if we not additionally give upper bound on t then the increment of
the contribution for the exception become unlimited and those we need some for of bucketing.
On the other hand one suggest creating “zero sized” buckets around every value of t, and
thus removing the need for ceiling but that way the sum can be infinite.

We conclude the following bound by taking union bound of the probability for x to be
not light over all J , yielding a bound for the probability that x is not light.

▶ Corollary 22. Assume that σX + 2 · σY ≤ 1 − 21
c − γ − α. Then, the probability that X

takes an almost uniform value x that is not (ε, α)-recoverable is at most 2−γ·∆.

Proof. By applying Proposition 21 with γ = γ + 2
c , we obtain that for every set J ⊆ [n], the

probability that X takes an almost uniform value x that is not (ε, α)-light for J is at most
2−γ·∆ · 1

(2n)|J| . By binomial like bound, we obtain that with probability at least 1 − 2−γ·∆,
the random variable X takes a value x that is (ε, α)-light for J ⊆ [n]. Such a value x is
(ε, α)-recoverable by Proposition 19, so the required result follows. ◀

We finally complete the proof of Proposition 9, restated next.

▶ Proposition 9 (Main Lemma). Let ε ≥ 5
c , α > 1

c , γ > 0, and let X and Y be independent
(ρ, τ)-structured random variables. Let σX , σY > 0 be such that Xfree(ρ) is σX-sparse, and
Yfree(ρ) is σY -sparse. If σX + 2σY ≤ 9

10 − 22
c − γ − α. Then

Pr
x∼X

[x is not (ε, α)-safe] ≤ 2−γ·∆.

Proof. Any value that is not (ε, α)-safe must be not almost uniform or almost uniform
but not (ε, α)-recoverable. By applying Proposition 10 with γ = γ + 1

c , it follows that the
probability that X takes a non almost uniform value is at most 2−(γ+ 1

c )·∆ ≤ 2−γ∆−1, By
applying Corollary 22 with γ = γ + 1

c , α = α, and ε = ε, it follows that the probability
that X takes an almost uniform and not (ε, α)-recoverable value is at most 2−(γ+ 1

c )·∆ ≤
2−γ∆−1. Therefore, the probability that X takes that is not (ε, α)-safe value is at most
2−γ∆−1 + 2−γ∆−1 = 2−γ∆. ◀
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