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—— Abstract

We show that popular hardness conjectures about problems from the field of fine-grained com-
plexity theory imply structural results for resource-based complexity classes. Namely, we show
that if either k-Orthogonal Vectors or k-CLIQUE requires n* time, for some constant € > 1/2,
to count (note that these conjectures are significantly weaker than the usual ones made on these
problems) on randomized machines for all but finitely many input lengths, then we have the
following derandomizations:

BPP can be decided in polynomial time wusing only n® random bits on average over any

efficient input distribution, for any constant oz > 0

BPP can be decided in polynomial time with no randomness on average over the uniform

distribution

This answers an open question of Ball et al. (STOC ’17) in the positive of whether deran-
domization can be achieved from conjectures from fine-grained complexity theory. More strongly,
these derandomizations improve over all previous ones achieved from worst-case uniform assump-
tions by succeeding on all but finitely many input lengths. Previously, derandomizations from
worst-case uniform assumptions were only know to succeed on infinitely many input lengths. It
is specifically the structure and moderate hardness of the k-Orthogonal Vectors and k-CLIQUE
problems that makes removing this restriction possible.

Via this uniform derandomization, we connect the problem-centric and resource-centric views
of complexity theory by showing that exact hardness assumptions about specific problems like
k-CLIQUE imply quantitative and qualitative relationships between randomized and determin-
istic time. This can be either viewed as a barrier to proving some of the main conjectures of
fine-grained complexity theory lest we achieve a major breakthrough in unconditional derandom-
ization or, optimistically, as route to attain such derandomizations by working on very concrete
and weak conjectures about specific problems.
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1 Introduction

Computational complexity can be viewed through two main perspectives: problem-centric
or resource-centric. Problem-centric complexity theory asks what resources are required
to solve specific problems, while resource-centric complexity deals with the relative power
of different computational models given different resource budgets such as time, memory,
non-determinism, randomness, etc. (see [17] for a discussion). Through complete problems,
these two perspectives often coincide, so that a resource-centric view acts as a fine proxy
for answering questions about the complexity of specific problems. The rapidly progressing
field of fine-grained complexity theory, however, brings attention back to the problem-centric
viewpoint, raising fine distinctions even between problems complete for the same complexity
class, and making connections between problems at very different levels of complexity. To
what extent are these two approaches linked, i.e., to what extent can inferences about the
fine-grained complexities of specific problems be made from general assumptions about
complexity classes, and vice versa?

Here, we examine such links between the fine-grained complexity of specific problems
such as the k-Orthogonal Vectors and k-CLIQUE problems and general results about deran-
domization of algorithms. Derandomization has been a very fruitful study in complexity
theory, with many fascinating connections between lower bounds, showing that problems
require large amounts of resources to solve, and upper bounds, showing that classes of
probabilistic algorithms can be ‘derandomized’ by simulating them deterministically in a
non-trivial fashion. In particular, the hardness-to-randomness framework shows that in many
cases, the existence of any “hard” problem can be used to derandomize classes of algorithms.
We reconsider this framework from the fine-grained, problem-centric perspective. We show
that replacing a generic hard problem with specific hardness conjectures from fine-grained
complexity leads to quantitatively and qualitatively stronger derandomization results than
one gets from the analogous assumption about a generic problem. In particular, we show
that starting from these assumptions, we can simulate any polynomial-time probabilistic
algorithm (on any samplable distribution on inputs with a very small fraction of errors) by a
polynomial time probabilistc algorithm that uses only n® random coins, for any « > 0. This
type of derandomization previously either assumed the existence of cryptographic One-Way
Functions or exponential non-uniform hardness of Boolean functions.

Thus, the problem-centric conjectures of fine-grained complexity cannot live in isolation
from classical resource-centric consequences about the power of randomness. Viewed another
way, our results can be seen as a barrier to proving some of the key hardness assumptions used
by fine-grained complexity theory. That is, despite recent progress towards proving hardness
for k-Orthogonal Vectors, one of fine-grained complexity’s key problems, in restricted models
of computation [29], doing so for general randomized algorithms would immediately prove
all problems in BPP are easy on average (over, say, uniformly chosen inputs).
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1.1 Our Results

We obtain two main theorems about the power of BPP from uniform worst-case assump-
tions about well-studied problems from fine-grained complexity theory. We consider the
k-Orthogonal Vectors (k-OV) and the k-CLIQUE problems, defined and motivated in Sec-
tion 2.1, and show that (even weaker versions of) popular conjectures about their hardness
give two flavors of average-case derandomization that improve over the classical uniform
derandomizations.

All previous derandomizations from uniform assumptions on worst-case hardness only
succeed on infinitely many input lengths. Our work is the first to use worst-case uniform
assumptions to derandomize BPP for all but finitely many input lengths, giving a standard
inclusion. The only other worst-case uniform assumptions known to imply such results are
those so strong as to imply cryptographic assumptions or circuit lower bounds, fitting closer
to the cryptographic or non-uniform derandomization literature. In contrast, our uniform
derandomizations are from extremely weak worst-case uniform conjectures on simple, natural,
combinatorial problems. Informally, we prove the following:

» Informal Theorem 1. If k-OV or k-CLIQUE requires n* time, for some constant € > 1/2,
to count on randomized machines in the worst-case for all but finitely many input lengths,
then BPP can be decided in polynomial time using only n® random bits on average over
any efficient input distribution, for any constant o > 0.

Randomness can be removed entirely by simply brute-forcing all random bits and taking
the majority of the outputs to give the following more standard full derandomization.

» Corollary. If k-OV or k-CLIQUE requires n* time, for some constant e > 1/2, to count
on randomized machines in the worst-case for all but finitely many input lengths, then BPP
can be decided with no randomness in sub-exponential time on average over any efficient
input distribution.

This conclusion is strictly stronger than the classic uniform derandomizations of [25, 38].
The weakest uniform assumption previously known to imply such a conclusion was from those
already strong enough to imply the cryptographic assumption of the existence of One-Way
Functions that are hard to invert for polynomial time adversaries [9, 19, 20, 23, 42] or those
implying non-uniform circuit lower bounds [4].

Our second main theorem, using techniques from [31], shows how to remove all random-
ness within polynomial time if the distribution over inputs is uniform. The only stronger
derandomization from uniform assumptions were, again, from those already strong enough
to imply circuit lower bounds or the cryptographic assumption of the existence of One-Way
Permutations that require exponential time to invert [9, 20, 42].

» Informal Theorem 2. If k-OV or k-CLIQUE require n* time, for some constant ¢ > 1/2,
to count on randomized machines in the worst-case for all but finitely many input lengths,
then BPP can be decided in polynomial time with no randomness on average over the
uniform distribution.

1.2 Related Work

Connections Between Problem-Centric and Resource-Centric Complexity. Most connec-
tions from problem-centric to resource-centric complexity show that faster algorithms for
OV or related problems give circuit lower bounds. For instance, improvements in EDIT-
DISTANCE algorithms imply circuit lower bounds [2] and solving OV faster (and thus
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CNF-SAT [40]) implies circuit lower bounds [26]. These are all non-uniform results, how-
ever, whereas in this paper we are concerned with machines and their resource-bounds as
opposed to circuits. On the uniform side, [18] recently showed that the exact complexity
of k-Orthogonal Vectors is closely related to the complexity of uniform AC’, although a
connection between more powerful machine models and fine-grained assumptions was still
not known until now. Further, most of these results follow from OV being easy. Our work
shows instead that there are interesting resource-centric consequences if our fine-grained
problems are hard.

Uniform Derandomization Framework. The uniform derandomization framework was in-
troduced in [25], a breakthrough paper that showed the first derandomization from a
uniform assumption (EXP # BPP) in the low-end setting: a weak assumption gives a slow
(subexponential-time) deterministic simulation of BPP. This is in contrast to our simulation
which retains small amounts of randomness but is fast (this is a strictly stronger result as it
recovers the [25] derandomization as a corollary).

We build on [38], which simplifies the proof of [25] to prove that PSPACE # BPP implies
a non-trivial deterministic simulation of BPP. The technique of [38] carefully arithmetizes
the PSPACE-complete problem TQBF and uses this as a hard function in the generator of
[25]. Our proof substitutes a carefully-arithmetized k-OV problem from [8]. Numerous other
works study derandomization from uniform assumptions ([27, 33, 24, 22, 37]), but these all
focus on assumptions and consequences about nondeterministic classes.

All worst-case uniform derandomizations, including [38] and [25], seem to only be able to
achieve simulations of BPP that succeed for infinitely many input lengths because of how
their proofs use downward self-reductions. Our is the first work to achieve simulations on
all but finitely many input lengths, because the k-OV and k-CLIQUE-inspired problems have
very parallelizable downward self reductions so that we can reduce to a single much smaller
input length rather than recurse through a chain of incrementally smaller input lengths in
our downward self-reduction.

Heuristics by Extracting Randomness From the Input. A separate line of work began when
[21] introduced the idea of using the input itself as a source of randomness to heuristically
simulate randomized algorithms over uniformly-distributed inputs. While their assumptions
contain oracles and are mostly non-uniform and average-case, they construct an algebraic
problem inside P whose worst-case uniform hardness can be used in the framework of [25]
to get an infinitely-often simulation of BPP in polynomial time. Our work differs in that
we achieve an almost-everywhere simulation, that our assumptions are based on canonical
fine-grained problems, and that our assumptions aren’t against machines with SAT-oracles.
Further, the downward self-reduction of their problem requires an expansion by minors of
the determinant and so they cannot also obtain an almost-everywhere heuristic using our
techniques without placing the determinant in NC* (as our modification to [25] exploits
embarrassingly parallel downward self reductions).

The work of [31], generalizing [36], removes the SAT-oracles needed in the assumptions of
[21] by showing that the Nisan-Wigderson generator (see [35]) remains secure against non-
uniform adversaries even if the seed is revealed to potential distinguishers. In Section 3.2.2
we will show their arguments can be made uniform so we can derandomize from uniform
assumptions. Seed-revealing Nisan-Wigderson generators are used in [31] to obtain polynomial-
time heuristics for randomized algorithms, where the uniformly distributed input is used
as a seed to the generator. The derandomizations in [31] are achieved from non-uniform
assumptions of polynomial average-case hardness. From worst-case uniform assumptions we
achieve the same derandomizations.
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2 Preliminaries

All complexity measures of fine-grained problems will refer to time on a randomized word

RAM with O(log(n))-bit word length, as is standard for the fine-grained literature [41, 8].

Specifically, we will consider two-sided bounded error as in [8].

2.1 Fine-Grained Hardness

The problem-centric field of fine-grained complexity theory has had impressive success in
showing the fixed polynomial time (“fine-grained”) hardness of many practical problems by

assuming the fine-grained hardness of four “key” well-studied problems, as discussed in [8].

We obtain our results under hardness conjectures about two of these four key problems: the
k-Orthogonal Vectors (k-OV) problem and the k-CLIQUE problem.

k-CLIQUE. Denote the matrix multiplication constant by w. The fastest known algorithm
for deciding if a graph has a k-CLIQUE (given its adjacency matrix) runs in time O(n“*/3),
and was discovered in 1985 [34] for & a multiple of three (for other k different ideas are needed

[14]). It is conjectured that no algorithm can improve the exponent to a better constant.

The parameterized version of the famous NP-hard MAX-CLIQUE problem [30], k-CLIQUE is
one of the most heavily studied problems in theoretical computer science and is the canonical
intractable (W[1]-complete) problem in parameterized complexity (see [1] for a review of the
copious evidence of k-CLIQUE’s hardness and consequences of its algorithm’s exponent being
improved). Recent work has shown that conjecturing k-CLIQUE to require pwh/3=ol
for k a multiple of three, leads to interesting hardness results for other important problems
such as parsing languages and RNA folding [1, 12, 5, 7], and it is known that refuting this
conjecture deterministically would give a faster exact algorithm for MAX-CUT [40]. Our
results hold under a much weaker version of the conjecture:

D time,

» Definition 1 (Weak k-CLIQUE Conjecture). There exists an absolute constant ¢y > 1/2
such that, for all K € N a multiple of three, any randomized algorithm that counts the number

E(Jk'

of k-CLIQUE’s in an n node graph requires n”* time.

Note that this conjecture gives leeway for the exponent of the k-CLIQUE algorithm to
be improved so long as it doesn’t get down to k/2; even finding a linear time algorithm for
Boolean matrix multipliaction (w = 2) would not contradict this conjecture! Further, even if
it is possible to decide the k-CLIQUE problem that quickly, this conjecture still holds unless
it is possible to count all of the k-CLIQUE’s in that time.

k-Orthogonal Vectors. Although the k-CLIQUE problem is certainly at least as important
as the k-OV problem, for concreteness we will use the k-OV problem to demonstrate our
techniques throughout the paper. Proofs based on hardness of k-CLIQUE follow identically.

» Definition 2 (k-Orthogonal Vectors Problem, k-OV,, 4). For an integer k > 2, the k-OV,, 4
problem on vectors of dimension d is to determine, given k sets (Uy,...,Uy) of n vectors
from {0, 1}d each, whether there exist u; € U; for each i such that over Z,

E Ull"'ukézo

Le(d]

If left unspecified, d is to be taken to be d(n) = [log”n].
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» Definition 3 (k-Orthogonal Vectors Conjecture, k-OVC). For any d = w(logn), for all k > 2,
any randomized algorithm for the k-OV,, 4 problem requires nF=°) time.

For k = 2 the Orthogonal Vectors conjecture for deterministic algorithms has been
extensively studied and is supported by the Strong Exponential Time Hypothesis (SETH)
[40], which states that there is no € > 0 such that t-SAT can be solved in time O(2"(1=9)) for
all values of t. The natural generalization to k-OV is studied in [8, 18] and its deterministic
hardness is also supported by SETH. While SETH has been controversial , the deterministic
k-QOV conjecture seems to be a much weaker assumption and is independently believable and
supported: it has been shown that it holds unless all first-order graph properties become
easy to decide [18] and the 2-OV conjecture has recently been proven unconditionally when
the model of computation is restricted to branching programs [29]. This conjecture has also
been used to support the hardness of many practical and well-studied fine-grained problems
[3, 6, 13]. As with k-CLIQUE, our main results will hold using a much weaker version of the
randomized k-OV conjecture introduced below.

» Definition 4 (Weak k-Orthogonal Vectors Conjecture). For any d = w(logn), there exists
an absolute constant ¢y > 1/2 such that, for all £ > 2, any randomized algorithm counting

egk‘

the number of k-OV,, 4 solutions requires n* time.

» Remark. For all of these conjectures we will also consider the strengthened versions that
assume that all algorithms running in time less than what is required will fail on all but
finitely many input lengths, as opposed to only on infinitely many input lengths. For natural
problems we expect that hardness grows, instead of oscillates, asymptotically.

For the purposes of derandomization, for a given k, we will use a family of polynomials

introduced in [8], { Fk”d —F } , such that the variables are grouped into sets

,d,pEN
of size nd in the form of a matrix U; € ]Fp"Xd where the n rows u; € U; are each collections

of d variables:

fndp(U1>~-~7Uk): Z H l—ulg ’LLM)

u1€UL,...,up €Uy Ke[d

n,d,p *

The worst-case hardness of evaluating these polynomials was related to the worst-case
hardness of k-OV,, in [8].

» Lemma 5. Let p be the smallest prime number larger than n* and d = ﬂog2(nﬂ, If fT’id)p

can be computed in O(nk/2+c) time for some ¢ > 0, then k-OV,, can be counted in time
6(nk/2+c)

Derandomization from uniform assumptions typically requires two other properties of the
assumed hard problem: random self-reducibility and downward self-reducibility. We recall
from [8] that ff,f_’ 4,p satisfies both of these properties. We give a polynomial for k-CLIQUE
and show that it also has the necessary properties in the full version.

Random Self-Reducible. f,’f,dm is random self-reducible by the following classical lemma
[32, 15] (see [8] for a proof). Note that degree log®n adds negligibly to the random self-
reduction time.

» Lemma 6 (Random Self-Reducibility of Polynomials). If f : FX — Fp is a degree 9 <
D < P/12 polynomial, then there exists a randomized algorithm that takes a circuit C
3/4-approximating f and produces a circuit C' exactly computing f, such that the algorithm
succeeds with high probability and runs in time poly(N, D, log P, |5|)
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Downward Self-Reducible. We will show that f,’i a,p 18 downward self-reducible in the sense
that, if we we have a way to produce an oracle for f \k/ﬁ 4.p> We can quickly compute ff dp
with it. Compare this to downward self reducibility going from input size n to n — 1 in
previous uniform derandomizations. We exploit our more dramatic shrinkage and parallelism
to later give an almost-everywhere derandomization, instead of an infinitely-often one. The

proof of the following lemma is in the full version.

» Lemma 7. If there exists an algorithm A that, on input 1™, oulputs a circuit C' computing
f\k/ﬁdp, then there exists an algorithm that computes f7’f7d7p in time O(n*/2|C| + TIME(A)).

2.2 Derandomization

We now define pseudorandom generators (PRGs) in terms of their distinguishers.

» Definition 8 (Distinguishers). A test T : {0, 1}’”2 — {0, 1} is an e-distinguisher against
G :{0,1}™ — {0,1}™", denoted T € DIS(G, ), if:

Pr [T(r)]— Pr [T(G(2))]| >e¢

TNZ/lmg ZNUm

We also will consider the seemingly weaker object of distinguishers that succeed if they are
also given the seed to the PRG. These were studied in [38] to relate uniform derandomization
to average-case hardness and in [31] to derandomize over the uniform distribution by using
the random input itself as the seed to the PRG.

> Definition 9 (Seed-Aware Distinguishers). A test T : {0,1}™ x {0,1}™" — {0,1} is an
e-seed-aware distinguisher against G, denoted T € DIS(G, ¢), if:

[T(xz,r)]— Pr [T(x,G(x))]| >e€

T~ Uy, r~U, 0 U,

Standard hardness-to-randomness arguments typically derandomize using generators
that are based on some ‘hard’ function by contrapositive: if derandomization fails, then
a distinguisher for the generator can be produced. Further, from a distinguisher, we can
create a small circuit for the supposedly hard function that the generator was based on. For
our purposes, we require an algorithmic version of this argument for derandomization from
uniform hardness assumptions. More specifically, we will use the following lemma which was
originally proved for distinguishers [38, 25] but Lemma 2.9 of [31] proves that it also holds
for seed-aware distinguishers (while the proof of [31] is non-uniform, it is easy to see that
it can be made constructive, in the same way that [25] gave a constructive version of [35]).
Thus, DIS(G, €) in the lemma below can be thought to refer to either regular or seed-aware
distinguishers (which justifies overloading this notation).

» Lemma 10 (Algorithmic Distinguishers to Predictors ([38, 25])). For every random self-
reducible f, there exists a function G with stretch m bits to m® bits and a constant ¢ such
that
G(2) is in time (|z|)¢ with oracle access to f on inputs of length at most |z|
There exists a polynomial-time randomized algorithm A that, with high probability, given
as input circuit D € DIS(G, €) for € at least inverse polynomial and an oracle for f, prints
a circuit computing f exactly.
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2.3  Uniform Derandomization

Average-Case Tractability. We give standard definitions of average-case tractability (for
an extensive survey of these notions, see [10]).

» Definition 11 (¢(n)-Samplable Ensemble). An ensemble p = {u,,} is t(n)-samplable if there
is a randomized algorithm A that, on input a number n, outputs a string in {0, 1}* and:

A runs in time at most ¢(n) on input n, regardless of its internal coin tosses

for every n and for every = € {0,1}*, Pr[A(n) = z] = pn(z)

With this notion of samplable ensemble we can now consider heuristic algorithms that
perform well on some language £ : {0,1}* — {0,1} over some p. The pair (£, u) is a
distributional problem.

» Definition 12 (Heuristics for Distributional Problems). For ¢ : N = N, § : N — R, we say
(L, ) € Heurs(,) DTIME[t(n)] if there is a time £(n) deterministic algorithm A such that, for
all but finitely many n: Pry.,, [A(z) # L(x)] < §(n).

For a class of languages C we say (C,u) € Heurs,)DTIME[t(n)] if (L,pu) €
Heur;(,,)DTIME[t(n)] for all £ € C. As in [10], HeursP is defined as the union over all
polynomials p of HeursDTIME(p(n)) and HeurP is the intersection over all inverse polyno-
mial §(n) of HeursP. HeurSUBEXP is defined similarly where SUBEXP = N.~oDTIME [2”6].
Finally, to discuss the randomness-reduced simulations we construct, we define BPTIME with
a limited number of random coins in the natural way.

» Definition 13 (Randomized Heuristics with Bounded Coins). For t : N - N, ¢ : N — R*,
and coin bound r : N — N we say (£, ) € Heur,,yBPTIME(,.(,,)[t(n)] if there is randomized
algorithm A running in time ¢(n) and flipping r(n) coins such that, for all but finitely many
n: Promp, [Prreu, ., [A(z,7) # L(x)] > 1/3] < d(n)

For example, HeurBPP/,(,,); denotes the class of distributional problems that, for every
inverse polynomial error, have a polynomial time randomized algorithm using only r(n)
random coins.

Infinitely-Often Simulation. As opposed to an algorithm that decides a language (possibly
on average) “for all but finitely many n” as in Definition 12, an infinitely-often (io-) qualifier
can be added to any complexity class to specify that an algorithm need only succeed on
infinitely many input lengths within the time and error bounds. Thus, to derandomize BPP
into io-HeurP over the uniform distribution is to say that every language in BPP can be
simulated on average in polynomial time by an algorithm that is only guaranteed to succeed
for infinitely many input lengths. There is no guarantee on what those input lengths are or
how large the gaps could be between them. This is obviously a very undesirable notion of
‘tractability’.

Non-uniform hardness to randomness trade-offs can derandomize almost-everywhere (the
desired notion of tractability for asymptotics) by assuming almost-everywhere hardness:
that no algorithm works for all sufficiently large input lengths. That is, the ‘infinitely-
often’ qualifier on the consequent can be flipped across the implication to be an ‘almost-
everywhere’ qualifier on the assumption and vice-versa. Thus, the unrealistic ‘infinitely-often’
notion of tractability can be dropped by slightly strengthening the assumption to the (as
argued in Section 2.1’s remark) realistic ‘almost-everywhere’ hardness. For non-uniform
derandomizations this is possible.
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Starting with [25] and the techniques it introduced, all uniform derandomizations have
been infinitely-often derandomizations without being able to flip the io- qualifier to an
‘almost-everywhere’ assumption. Our work is the first that is able to do this in the uni-
form derandomization framework, thus removing the ‘infinitely-often’ qualifier from our
derandomizations.

3 Fine-Grained Derandomization

We will prove our main derandomization results (Theorems 17 and 20) here. Under either the
(weak) k-OV or k-CLIQUE conjectures, we derandomize BPP on average, where ‘on average’
will have two different flavors. Although all techniques apply to k-CLIQUE, for concreteness
we will use k-OV throughout this section.

We show in Section 3.1 that if we base pseudorandom generators on f:f d4,p> then an
algorithm printing distinguishers for this PRG can be used to count k-OV solutions quickly.
We will then show in Section 3.2 how to attain these distinguisher-printing algorithms if
derandomization doesn’t work on average (for both flavors of on average). Thus, a failed
derandomization using these PRGs refutes the k-OV conjecture (similarly for k-CLIQUE).

3.1 Counting k-OV from Distinguishers

In this section we show that any algorithm producing a distinguisher for G/ . (the generator
guaranteed to exist from Lemma 14, using the hard function fffl d,p) can be used to quickly
count k-OV solutions. First, Lemma 14 follows immediately by combining the distinguisher
to predictor algorithm of Lemma 10 with the fact that ff,fL d4,p 18 random self-reducible as in
Lemma 6.

» Lemma 14. There is a randomized algorithm Afman that takes any circuit D that is a
k

distinguisher for Gfm.a» and produces a circuit C exactly computing f?ﬁl,d,p’ such that A

succeeds with high probability and runs in time poly(m, d,logp, |D|)

As fk ap is efficiently computable (unlike the hard problems of [25]) in time

O(mkpoly(d logp)), we get the following theorem without an oracle by running the algorithm

guaranteed in Lemma 14 with each oracle call answered by naive brute force computation of
k

m,d,p"
» Lemma 15. There is a randomized algorithm B that takes any circuit D that is a distin-
k
guisher for GIm.a. and produces a circuit C of size poly(m, d,logp, |D|) exactly computing

ey dp B succeeds with high probability and runs in time O(mFpoly(m,d,logp,|D])).

Now we show that, if we have an algorithm producing a distinguisher, then we have an
algorithm counting k-OV.

» Theorem 16. Let p be the smallest prime number larger than n* and d = ﬂogQ(n)—‘.
If there is an algorithm A that, on input 1", outputs a distinguisher D of poly(n) size
for Gf%vdvp, then there exists a randomized algorithm counting k-OV,, that runs in time
O(n*/?+¢ 4 TIME(A)), where ¢ only depends on |D|.

Proof. Using A, we print a distinguisher circuit D for Gfkﬁvd)p. Then, by Lemma 15, we
know there exists a randomized algorithm running in time O(n*/?poly(y/n, d,logp, |D|)) =
O(n%*/?*¢1) that yields a circuit exactly computing ff of size only poly(y/n, d,logp, |D|) =

O(n®?), where ¢; and ¢y only depend on |D|. Thus, by Lemma 7, there exists an algorithm
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computing fF , in time O(nk/2te2 4 (nk/2ter L TIME(A))) = O(nk/3¢ + TIME(A)) for
¢ = max{cy, c;}. Finally, this gives us an algorithm running in time O(n*/2¢ 4+ TIME(A))

to count k-OV,, by Lemma 5. <

3.2 Printing Distinguishers from Failed Derandomization
3.2.1 Randomness-Reduced Heuristics Over Any Efficient Distribution

Our first main result in derandomizing BPP is to reduce the amount of randomness required
to arbitrarily small quantities, over any eflicient distribution of inputs. This simulation trades
time for reduced randomness under fine-grained hardness assumptions.

» Theorem 17. If the weak k-OV conjecture holds almost everywhere, then, for all polyno-
mially samplable ensembles p and for all constants a > 0, (BPP, u) € HeurBPPy,,q1.

Thus, for any efficient distribution over inputs that nature might be drawing from and
for any inverse polynomial error rate we specify, we can simulate BPP using only n® random
bits for any constant a > 0 we want. In contrast to typical full derandomizations which
brute-force all seeds to a pseudorandom generator and take majority answer (which we can
also do with our randomness-reduced derandomization to get a subexponential-time full
derandomization), we show that choosing a single random seed and using the generator’s
output as our randomness yields randomness-reduced simulations so long as the generator
is efficient enough (which it typically is not; ‘quick’ complexity-theoretic PRGs are usually
given exponential time in their seed length).

» Definition 18 (Randomness-Reduced Simulations). Let A : {0,1}" x {0,1}Y" — {0,1}
be a randomized algorithm that uses N* random bits and let G : {0,1}¥" — {0,1}"
be a function. Then for constant o > 0, define the randomness-reduced simulation to be
a randomized algorithm B : {0,1}" x {0,1}¥" — {0,1} using only N® random bits as
B(z,r) = A(z,G(r)).

Lemma 19 states that if this simulation fails, we can uniformly print a distinguisher for
the function G. This proof is identical to that of Lemma 18 in [25] and is recalled in the full
version.

» Lemma 19 (Failed Randomness-Reduction to Distinguishers). Let A, B, and G be as in
Definition 18 such that for language L : {0,1}N — {0,1}, Pryy, [A(x,7) # L(x)] < 1/10.
That is, that A as a good randomized algorithm deciding L for all x € {0,1}Y. Yet, also
assume that, for p samplable in time N and 6(n) = 1/N, it holds that

Pr Pr [B(z,r) # L(z)] > 1/3| > §(N)
x~uN | reUna
So B is a (randomness-reduced) randomized algorithm that does not decide L on average
over p. Then 1V + DIS(G,1/5) is in randomized time N¢ TIME(G) for ¢ depending on a;
and as.

Randomness-Reduced Simulation from k-OV. To finish defining a randomness-reduced
simulation, we need to use a specific pseudorandom generator G that, for input length N,
stretches N coins to N*. Thus, consider the family of simulations By using the standard
generators Gf\k/ﬁvd’p of Lemma 10 that map /n’ bits to \/ﬁb bits, for some fixed s and
any b we choose, using f\k/ﬁ’ 4p A our hard function, for d = log?n and p the smallest
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prime number larger than n*. Set b = s¢/a and \/n = N®/*. Note that TII\/IE(Gf\kﬁvd»P) =
poly(N) nk/? = poly(NN) by naively evaluating f\k/ﬁ dp at each oracle call, giving an efficient

randomness-reduced simulation. Further, since N = poly(n), TIME(GY %M) also equals
n¥/2+¢ for some constant ¢ not depending on k (this will be useful in quickly counting k-OV,,
using downward self-reducibility in the following proof). Thus, given an N*-coin machine
A, we have the N®-coin machine By(z,r) = A (m,Gf%%P(r)). We now prove our main

Theorem 17 using this simulation and the above lemma.

Proof of Theorem 17. We proceed by contradiction. Assume that the weak k-OV,, conjec-
ture holds for all but finitely many input lengths, where ¢ = 1/2 4 « for some constant
v > 0, but that there exists £ € BPP, a polynomially samplable distribution p, constant «,
and an inverse polynomial function §(N) such that any polynomial-time randomness-reduced
algorithm with coin bound N¢ fails in deciding £ on average over p within 6(N) error for
infinitely many input lengths N.

Since £ € BPP there is a randomized algorithm A deciding £ with probability of error at
most 1/10 over its randomness yet, since any polynomial-time randomness-reduced algorithm
fails to decide £ on average, By, the randomness-reduced simulation of A described above,
fails on average infinitely often, for any constant k. Thus, the antecedents of Lemma 19 are
satisfied and we can uniformly print D € DIS(Gf\k/?dvp, 1/5) in time n° TIME (Gfbﬁdvp) =

net nepk/2,

This uniform printing of D allows us to apply Theorem 16 to count k-OV,, in time
O(nk/?tes 4 pk/2tatey = O(pk/2te) = O(n(%+%)k) for any k, where ¢ = max{c; + ca,c3}.
Setting k such that { <~ yields our contradictions: on the infinitely many input lengths
where By, fails to derandomize £, the algorithm counts k-OV faster than n®* time. <

3.2.2 Fast Heuristics for BPP Over the Uniform Distribution

Here we present our second flavor of derandomization: a fully deterministic heuristic for BPP
when inputs are sampled according to the uniform distribution.

» Theorem 20. If the weak k-OV conjecture holds almost everywhere, then
(BPP,U) € HeurP.

This strictly improves previous uniform derandomizations over the uniform distribution.
Specifically, [21] can be seen to achieve our derandomization identically from a worst-case
uniform assumption if combined with techniques from [31] ezcept only on infinitely many
input lengths.

We proceed by showing that if a PRG fails to give a good heuristic for BPP over the
uniform distribution, a seed-aware distinguisher for the PRG can be produced uniformly and
efficiently, which can then be used to count k-OV solutions quickly using Theorem 16.

» Definition 21 (Input-As-Seed Heuristics). Let 4 : {0,1}" x {0,1}¥" — {0,1} be a
polynomial-time randomized algorithm using N* random bits. Let G : {0,1}¥ — {0, 1}N’Z
be a deterministic function. Define the heuristic B : {0,1}" — {0,1} that uses its input as
G’s seed as B(z) = A(z, G(x)).

We prove a uniform analog of the Main Lemma of [31], which gave the consequences of
failed heuristics in the non-uniform setting. Namely, we prove:
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» Lemma 22 (Failed Heuristics to Distinguishers). Let A : {0,1}Y x {0, 1} — {0,1} and
L£:{0,1}N — {0,1} be functions such that Procuty oty [A(T,7) # L(2)] < p. Let B be the
input-as-seed heuristic for A using function G. Then, if B does not succeed on a (5p + €)
fraction of the inputs of a given length, the map 1V s DIS(G, €) is uniform and in randomized
polynomial time, for infinitely many N.

We sketch the proof here (see the full version for a proof). If B is a bad heuristic for £,
then we could use B(z) = A(x,G(z)) as a seed-aware distinguisher for G by comparing B(z)
to L(z). Unfortunately we cannot afford to print distinguishers with £-oracles. But since we
are guaranteed that A is a good heuristic for £, we can obtain a deterministic circuit close to
L from A, by fixing a string of good random bits r’. The proof of the analogous lemma in
[31] uses non-uniformity to obtain a good r’ for distinguishing, but we can instead obtain
good strings 7’ by showing that there are many good random strings. We find a good r’ by
a sample-and-test procedure. If we compare B(zx) and the fixed-coin algorithm A(z,r’), they
will also tend to disagree, giving the necessary distinguishing gap.

Fully Deterministic Heuristics from k-OV. Here we specify a family of heuristics By, by
specifying the generator G, that stretches a seed of length N to N*, as the generators G’ Ve
of Lemma 10. These map /n’ bits to \/ﬁb bits, for some fixed s and any b we choose, using
f\k'/ﬁyd’p7 for d = log?n and p the smallest prime number larger than n*. Set b = s¢ and
v/n = N5 All comments about the runtime of the randomness-reduced heuristic in Section
3.2.1 also apply to this fully deterministic heuristic. Thus, given an N*-coin machine A, we
have the deterministic machine By (z) = A (x, Gf\k/ﬁ-dvp(:c) .

This can now be used to prove Theorem 20, although we defer this proof to the full
version as it is very similar to the proof of Theorem 17 in Section 3.2.1.

4 Open Questions

We derandomize under hardness conjectures about two of four ‘key’ problems in fine-
grained complexity: k-OV and k-CLIQUE. What about k-SUM and APSP? APSP doesn’t
seem to have a natural hierarchy and so doesn’t fit our framework (although it does
reduce to ZERO-TRIANGLE which generalizes to ZERO-k-CLIQUE and should easily work
in our framework using polynomials similar to those in [8]). k-SUM however is actually
computable in O(n““/ 2W) time and so our downward self-reducibility techniques are not
fast enough to break this conjecture in the contrapositive. The clearest path we see to
getting derandomization without reintroducing the io- qualifier is to find a polynomial
for k-SUM that is also computable in O(n!*/21) time (unlike the one found in [8]).

Our derandomizations hold under (randomized) SETH, since SETH implies the k-OV
conjecture. Can a better derandomization be obtained directly from SETH, the stronger
assumption? A stumbling block here is the random self-reduction, an ingredient in all
known uniform derandomization techniques: If ¢-SAT has a straightforward and efficient
random-self-reduction, PH collapses [16, 11]. So derandomizing from SETH directly
could require new ideas, or a strange random self-reduction. An inefficient random
self-reduction for ¢-SAT shouldn’t collapse PH except to say that ¢-SAT has a mildly
exponential MA proof which is already known to be true [39], although most random
self-reductions we know are through arithmetization which seems to always have ‘low’
degree to the point that such a polynomial would still collapse PH.

Is a strong “derandomization to hardness” converse possible for these heuristic simulations
of BPP? In the full version of this paper, we show a weak converse: our simulation
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