7 research outputs found

    Eight Biennial Report : April 2005 – March 2007

    No full text

    GPU-based volume deformation.

    Get PDF

    Comparing Features of Three-Dimensional Object Models Using Registration Based on Surface Curvature Signatures

    Get PDF
    This dissertation presents a technique for comparing local shape properties for similar three-dimensional objects represented by meshes. Our novel shape representation, the curvature map, describes shape as a function of surface curvature in the region around a point. A multi-pass approach is applied to the curvature map to detect features at different scales. The feature detection step does not require user input or parameter tuning. We use features ordered by strength, the similarity of pairs of features, and pruning based on geometric consistency to efficiently determine key corresponding locations on the objects. For genus zero objects, the corresponding locations are used to generate a consistent spherical parameterization that defines the point-to-point correspondence used for the final shape comparison

    Methods for transform, analysis and rendering of complete light representations

    Get PDF
    Recent advances in digital holography, optical engineering and computer graphics have opened up the possibility of full parallax, three dimensional displays. The premises of these rendering systems are however somewhat different from traditional imaging and video systems. Instead of rendering an image of the scene, the complete light distribution must be computed. In this thesis we discuss some different methods regarding processing and rendering of two well known full light representations: the light field and the hologram. A light field transform approach, based on matrix optics operators, is introduced. Thereafter we discuss the relationship between the light field and the hologram representations. The final part of the thesis is concerned with hologram and wave field synthesis. We present two different methods. First, a GPU accelerated approach to rendering point-based models is introduced. Thereafter, we develop a Fourier rendering approach capable of generating angular spectra of triangular mesh models.Aktuelle Fortschritte in den Bereichen der digitalen Holographie, optischen Technik und Computergrafik ermöglichen die Entwicklung von vollwertigen 3D-Displays. Diese Systeme sind allerdings auf Eingangsdaten angewiesen, die sich von denen traditioneller Videosysteme unterscheiden. Anstatt für die Visualisierung ein zweidimensionales Abbild einer Szene zu erstellen, muss die vollständige Verteilung des Lichts berechnet werden. In dieser Dissertation betrachten wir verschiedene Methoden, um dies für zwei verschiedene gebräuchliche Darstellungen der Lichtverteilung zu erreichen: Lichtfeld und Hologramm. Wir stellen dafür zunächst eine Methode vor, die Operatoren der Strahlenoptik auf Lichtfelder anzuwenden, und diskutieren daraufhin, wie die Darstellung als Lichtfeld mit der Darstellung als Hologramm zusammenhängt. Abschliessend wird die praktische Berechnung von Hologrammen und Wellenfeldern behandelt, wobei wir zwei verschiedene Ansätze untersuchen. Im ersten Ansatz werden Wellenfelder aus punktbasierten Modellen von Objekten erzeugt, unter Einsatz moderner Grafikhardware zur Optimierung der Rechenzeit. Der zweite Ansatz, Fourier-Rendering, ermöglicht die Generierung von Hologrammen aus Oberflächen, die durch Dreiecksnetze beschrieben sind

    Industrial Applications: New Solutions for the New Era

    Get PDF
    This book reprints articles from the Special Issue "Industrial Applications: New Solutions for the New Age" published online in the open-access journal Machines (ISSN 2075-1702). This book consists of twelve published articles. This special edition belongs to the "Mechatronic and Intelligent Machines" section

    New advances in vehicular technology and automotive engineering

    Get PDF
    An automobile was seen as a simple accessory of luxury in the early years of the past century. Therefore, it was an expensive asset which none of the common citizen could afford. It was necessary to pass a long period and waiting for Henry Ford to establish the first plants with the series fabrication. This new industrial paradigm makes easy to the common American to acquire an automobile, either for running away or for working purposes. Since that date, the automotive research grown exponentially to the levels observed in the actuality. Now, the automobiles are indispensable goods; saying with other words, the automobile is a first necessity article in a wide number of aspects of living: for workers to allow them to move from their homes into their workplaces, for transportation of students, for allowing the domestic women in their home tasks, for ambulances to carry people with decease to the hospitals, for transportation of materials, and so on, the list don’t ends. The new goal pursued by the automotive industry is to provide electric vehicles at low cost and with high reliability. This commitment is justified by the oil’s peak extraction on 50s of this century and also by the necessity to reduce the emissions of CO2 to the atmosphere, as well as to reduce the needs of this even more valuable natural resource. In order to achieve this task and to improve the regular cars based on oil, the automotive industry is even more concerned on doing applied research on technology and on fundamental research of new materials. The most important idea to retain from the previous introduction is to clarify the minds of the potential readers for the direct and indirect penetration of the vehicles and the vehicular industry in the today’s life. In this sequence of ideas, this book tries not only to fill a gap by presenting fresh subjects related to the vehicular technology and to the automotive engineering but to provide guidelines for future research. This book account with valuable contributions from worldwide experts of automotive’s field. The amount and type of contributions were judiciously selected to cover a broad range of research. The reader can found the most recent and cutting-edge sources of information divided in four major groups: electronics (power, communications, optics, batteries, alternators and sensors), mechanics (suspension control, torque converters, deformation analysis, structural monitoring), materials (nanotechnology, nanocomposites, lubrificants, biodegradable, composites, structural monitoring) and manufacturing (supply chains). We are sure that you will enjoy this book and will profit with the technical and scientific contents. To finish, we are thankful to all of those who contributed to this book and who made it possible.info:eu-repo/semantics/publishedVersio
    corecore