1,396 research outputs found

    Towards the use of unmanned aerial systems for providing sustainable services in smart cities

    Get PDF
    La sostenibilidad está en el centro de muchos campos de aplicación en los que el uso de los sistemas aéreos no tripulados (SUA) es cada vez más importante (por ejemplo, la agricultura, la detección y predicción de incendios, la vigilancia ambiental, la cartografía, etc.). Sin embargo, su uso y evolución están muy condicionados por el campo de aplicación específico para el que están diseñados y, por lo tanto, no pueden ser fácilmente reutilizados entre los diferentes campos de aplicación. Desde este punto de vista, al no ser polivalentes, podemos decir que no son totalmente sostenibles. Teniendo esto en cuenta, el objetivo de este trabajo es doble: por un lado, identificar el conjunto de características que debe proporcionar un UAS para ser considerado sostenible y demostrar que no hay ningún UAS que satisfaga todas estas características; por otra parte, presentar una arquitectura abierta y sostenible de los UAS que pueda utilizarse para construir UAS a petición para proporcionar las características necesarias en cada campo de aplicación. Dado que esta arquitectura se basa principalmente en la adaptabilidad del software y el hardware, contribuye a la sostenibilidad técnica de las ciudades.Sustainability is at the heart of many application fields where the use of Unmanned Aerial Systems (UAS) is becoming more and more important (e.g., agriculture, fire detection and prediction, environmental surveillance, mapping, etc.). However, their usage and evolution are highly conditioned by the specific application field they are designed for, and thus, they cannot be easily reused among different application fields. From this point of view, being that they are not multipurpose, we can say that they are not fully sustainable. Bearing this in mind, the objective of this paper is two-fold: on the one hand, to identify the whole set of features that must be provided by a UAS to be considered sustainable and to show that there is no UAS satisfying all these features; on the other hand, to present an open and sustainable UAS architecture that may be used to build UAS on demand to provide the features needed in each application field. Since this architecture is mainly based on software and hardware adaptability, it contributes to the technical sustainability of cities.• Ministerio de Economía y Competitividad y Fondos FEDER. Proyecto TIN2015-69957-R (I+D+i) • Junta de Extremadura y Fondo Europeo de Desarrollo Regional. Ayuda GR15098 y IB16055 • Parcialmente financiado por Interreg V-A España-Portugal (POCTEP) 2014-2020 program. Proyecto 0045-4IE-4-PpeerReviewe

    No Provisioned Concurrency: Fast RDMA-codesigned Remote Fork for Serverless Computing

    Full text link
    Serverless platforms essentially face a tradeoff between container startup time and provisioned concurrency (i.e., cached instances), which is further exaggerated by the frequent need for remote container initialization. This paper presents MITOSIS, an operating system primitive that provides fast remote fork, which exploits a deep codesign of the OS kernel with RDMA. By leveraging the fast remote read capability of RDMA and partial state transfer across serverless containers, MITOSIS bridges the performance gap between local and remote container initialization. MITOSIS is the first to fork over 10,000 new containers from one instance across multiple machines within a second, while allowing the new containers to efficiently transfer the pre-materialized states of the forked one. We have implemented MITOSIS on Linux and integrated it with FN, a popular serverless platform. Under load spikes in real-world serverless workloads, MITOSIS reduces the function tail latency by 89% with orders of magnitude lower memory usage. For serverless workflow that requires state transfer, MITOSIS improves its execution time by 86%.Comment: To appear in OSDI'2

    On Evaluating Commercial Cloud Services: A Systematic Review

    Full text link
    Background: Cloud Computing is increasingly booming in industry with many competing providers and services. Accordingly, evaluation of commercial Cloud services is necessary. However, the existing evaluation studies are relatively chaotic. There exists tremendous confusion and gap between practices and theory about Cloud services evaluation. Aim: To facilitate relieving the aforementioned chaos, this work aims to synthesize the existing evaluation implementations to outline the state-of-the-practice and also identify research opportunities in Cloud services evaluation. Method: Based on a conceptual evaluation model comprising six steps, the Systematic Literature Review (SLR) method was employed to collect relevant evidence to investigate the Cloud services evaluation step by step. Results: This SLR identified 82 relevant evaluation studies. The overall data collected from these studies essentially represent the current practical landscape of implementing Cloud services evaluation, and in turn can be reused to facilitate future evaluation work. Conclusions: Evaluation of commercial Cloud services has become a world-wide research topic. Some of the findings of this SLR identify several research gaps in the area of Cloud services evaluation (e.g., the Elasticity and Security evaluation of commercial Cloud services could be a long-term challenge), while some other findings suggest the trend of applying commercial Cloud services (e.g., compared with PaaS, IaaS seems more suitable for customers and is particularly important in industry). This SLR study itself also confirms some previous experiences and reveals new Evidence-Based Software Engineering (EBSE) lessons

    Simurgh: a fully decentralized and secure NVMM user space file system

    Get PDF
    The availability of non-volatile main memory (NVMM) has started a new era for storage systems and NVMM specific file systems can support extremely high data and metadata rates, which are required by many HPC and data-intensive applications. Scaling metadata performance within NVMM file systems is nevertheless often restricted by the Linux kernel storage stack, while simply moving metadata management to the user space can compromise security or flexibility. This paper introduces Simurgh, a hardware-assisted user space file system with decentralized metadata management that allows secure metadata updates from within user space. Simurgh guarantees consistency, durability, and ordering of updates without sacrificing scalability. Security is enforced by only allowing NVMM access from protected user space functions, which can be implemented through two proposed instructions. Comparisons with other NVMM file systems show that Simurgh improves metadata performance up to 18x and application performance up to 89% compared to the second-fastest file system.This work has been supported by the European Comission’s BigStorage project H2020-MSCA-ITN2014-642963. It is also supported by the Big Data in Atmospheric Physics (BINARY) project, funded by the Carl Zeiss Foundation under Grant No.: P2018-02-003.Peer ReviewedPostprint (author's final draft

    Revisiting the high-performance reconfigurable computing for future datacenters

    Get PDF
    Modern datacenters are reinforcing the computational power and energy efficiency by assimilating field programmable gate arrays (FPGAs). The sustainability of this large-scale integration depends on enabling multi-tenant FPGAs. This requisite amplifies the importance of communication architecture and virtualization method with the required features in order to meet the high-end objective. Consequently, in the last decade, academia and industry proposed several virtualization techniques and hardware architectures for addressing resource management, scheduling, adoptability, segregation, scalability, performance-overhead, availability, programmability, time-to-market, security, and mainly, multitenancy. This paper provides an extensive survey covering three important aspects-discussion on non-standard terms used in existing literature, network-on-chip evaluation choices as a mean to explore the communication architecture, and virtualization methods under latest classification. The purpose is to emphasize the importance of choosing appropriate communication architecture, virtualization technique and standard language to evolve the multi-tenant FPGAs in datacenters. None of the previous surveys encapsulated these aspects in one writing. Open problems are indicated for scientific community as well

    Overlay virtualized wireless sensor networks for application in industrial internet of things : a review

    Get PDF
    Abstract: In recent times, Wireless Sensor Networks (WSNs) are broadly applied in the Industrial Internet of Things (IIoT) in order to enhance the productivity and efficiency of existing and prospective manufacturing industries. In particular, an area of interest that concerns the use of WSNs in IIoT is the concept of sensor network virtualization and overlay networks. Both network virtualization and overlay networks are considered contemporary because they provide the capacity to create services and applications at the edge of existing virtual networks without changing the underlying infrastructure. This capability makes both network virtualization and overlay network services highly beneficial, particularly for the dynamic needs of IIoT based applications such as in smart industry applications, smart city, and smart home applications. Consequently, the study of both WSN virtualization and overlay networks has become highly patronized in the literature, leading to the growth and maturity of the research area. In line with this growth, this paper provides a review of the development made thus far concerning virtualized sensor networks, with emphasis on the application of overlay networks in IIoT. Principally, the process of virtualization in WSN is discussed along with its importance in IIoT applications. Different challenges in WSN are also presented along with possible solutions given by the use of virtualized WSNs. Further details are also presented concerning the use of overlay networks as the next step to supporting virtualization in shared sensor networks. Our discussion closes with an exposition of the existing challenges in the use of virtualized WSN for IIoT applications. In general, because overlay networks will be contributory to the future development and advancement of smart industrial and smart city applications, this review may be considered by researchers as a reference point for those particularly interested in the study of this growing field

    Verifying safety and persistence in hybrid systems using flowpipes and continuous invariants

    Get PDF
    We describe a method for verifying the temporal property of persistence in non-linear hybrid systems. Given some system and an initial set of states, the method establishes that system trajectories always eventually evolve into some specified target subset of the states of one of the discrete modes of the system, and always remain within this target region. The method also computes a time-bound within which the target region is always reached. The approach combines flowpipe computation with deductive reasoning about invariants and is more general than each technique alone. We illustrate the method with a case study showing that potentially destructive stick-slip oscillations of an oil-well drill eventually die away for a certain choice of drill control parameters. The case study demonstrates how just using flowpipes or just reasoning about invariants alone can be insufficient and shows the richness of systems that one can handle with the proposed method, since the systems features modes with non-polynomial ODEs. We also propose an alternative method for proving persistence that relies solely on flowpipe computation
    • …
    corecore