

Edinburgh Research Explorer

Verifying safety and persistence in hybrid systems using
flowpipes and continuous invariants

Citation for published version:
Sogokon, A, Jackson, P & Johnson, TT 2019, 'Verifying safety and persistence in hybrid systems using
flowpipes and continuous invariants', Journal of Automated Reasoning, vol. 63, pp. 1005.
https://doi.org/10.1007/s10817-018-9497-x

Digital Object Identifier (DOI):
10.1007/s10817-018-9497-x

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of Automated Reasoning

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 11. May. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/322481588?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/persons/paul-jackson(010f9bf0-c04c-4cfb-ab3d-ca150de1e706).html
https://www.research.ed.ac.uk/portal/en/publications/verifying-safety-and-persistence-in-hybrid-systems-using-flowpipes-and-continuous-invariants(3f322913-778d-40e7-bd65-6d689c089b50).html
https://www.research.ed.ac.uk/portal/en/publications/verifying-safety-and-persistence-in-hybrid-systems-using-flowpipes-and-continuous-invariants(3f322913-778d-40e7-bd65-6d689c089b50).html
https://doi.org/10.1007/s10817-018-9497-x
https://doi.org/10.1007/s10817-018-9497-x
https://www.research.ed.ac.uk/portal/en/publications/verifying-safety-and-persistence-in-hybrid-systems-using-flowpipes-and-continuous-invariants(3f322913-778d-40e7-bd65-6d689c089b50).html

Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

Verifying safety and persistence in hybrid systems using
flowpipes and continuous invariants.

Andrew Sogokon · Paul B. Jackson ·
Taylor T. Johnson

Received: date / Accepted: date

Abstract We describe a method for verifying the temporal property of persistence in non-
linear hybrid systems. Given some system and an initial set of states, the method establishes
that system trajectories always eventually evolve into some specified target subset of the
states of one of the discrete modes of the system, and always remain within this target re-
gion. The method also computes a time-bound within which the target region is always
reached. The approach combines flowpipe computation with deductive reasoning about in-
variants and is more general than each technique alone. We illustrate the method with a case
study showing that potentially destructive stick-slip oscillations of an oil-well drill eventu-
ally die away for a certain choice of drill control parameters. The case study demonstrates
how just using flowpipes or just reasoning about invariants alone can be insufficient and
shows the richness of systems that one can handle with the proposed method, since the sys-
tems features modes with non-polynomial ODEs. We also propose an alternative method for
proving persistence that relies solely on flowpipe computation.

Keywords persistence verification · safety verification · ordinary differential equations ·
hybrid systems · metric temporal logic · flowpipes · positively invariant sets

This material is based upon work supported by the UK Engineering and Physical Sciences Research Council
under grants EPSRC EP/I010335/1 and EP/J001058/1, the National Science Foundation (NSF) under grant
numbers CNS 1464311 and CCF 1527398, the Air Force Research Laboratory (AFRL) through contract
number FA8750-15-1-0105, and the Air Force Office of Scientific Research (AFOSR) under contract number
FA9550-15-1-0258.

A. Sogokon
GHC 9116, 5000 Forbes Ave., Pittsburgh, PA 15213, United States of America
E-mail: asogokon@cs.cmu.edu

P.B. Jackson
2.12 Informatics Forum, 10 Crichton Street, Edinburgh EH8 9AB, United Kingdom
E-mail: Paul.Jackson@ed.ac.uk

T.T. Johnson
Room 300, 1025 16th Ave. S., Nashville, TN 37212, United States of America
E-mail: taylor.johnson@vanderbilt.edu

2 A. Sogokon, P.B. Jackson and T.T. Johnson

1 Introduction

Hybrid systems combine discrete and continuous behaviour and provide a very general
framework for modelling and analysing the behaviour of systems such as those implemented
in modern embedded control software. Although a number of tools and methods have been
developed for verifying properties of hybrid systems, most are geared towards proving
bounded time safety properties, often employing set reachability computations based on
constructing over-approximating enclosures of the reachable states of ordinary differential
equations (e.g. [8,21,17,34]). Methods capable of proving unbounded time safety proper-
ties often rely (explicitly or otherwise) on constructing continuous invariants (e.g. [57,38],
and referred to in short as invariants); these invariants may be thought of as a generalization
of positively invariant sets (see e.g. [6]) and are analogous to inductive invariants used in
computer science to reason about the correctness of discrete programs using Hoare logic.

We argue that a combined approach employing bounded time reachability analysis and
reasoning about invariants can be effective in proving persistence and safety properties in
non-polynomial (non-linear) hybrid systems. We illustrate the combined approach using a
detailed case study with non-polynomial ODEs for which neither approach individually was
sufficient to establish the desired safety and persistence properties.

Methods for bounded time safety verification cannot in general be applied to prove
safety for all time and their accuracy tends to degrade for large time bounds, especially
for non-linear systems. Verification using invariants, while a powerful technique that can
prove strong properties about non-linear systems, relies on the ability to find invariants that
are sufficient for proving the unbounded time safety property. In practice, many invariants
for the system can be found which fall short of this requirement, often for the simple rea-
son that they do not include all the initial states of the system. We show how a combined
approach employing both verification methods can, in some cases, address these limitations.

Overview

We (I) show that bounded time safety verification based on flowpipe construction can be
naturally combined with invariants to verify persistence and unbounded time safety prop-
erties, addressing some of the limitations of each verification method when considered in
isolation. (II) To illustrate the approach, we consider a simplified torsional model of a
conventional oil well drill string that has been the subject of numerous studies by Navarro-
López et al. [49]. (III) We illustrate an alternative approach to proving persistence prop-
erties which does not require directly reasoning about invariants and only requires flowpipe
computation. (IV) We discuss some of the challenges that currently stand in the way of fully
automatic verification using this approach. Additionally, we provide a readable overview of
the methods employed in the verification process and the obstacles that present themselves
when these methods are applied in practice.

2 Safety and Persistence for Hybrid Automata

2.1 Preliminaries

A number of formalisms exist for specifying hybrid systems. The most popular framework
at present is that of hybrid automata [2,29], which are essentially discrete transition systems

Verifying safety and persistence in hybrid systems using flowpipes and continuous invariants. 3

in which each discrete state represents an operating mode inside which the system evolves
continuously according to an ODE under some evolution constraint. Additionally, transition
guards and reset maps are used to specify the discrete transition behaviour (i.e. switching)
between the operating modes. A sketch of the syntax and semantics of hybrid automata is
as follows.

Definition 1 (Hybrid automaton [39]) Formally, a hybrid automaton is given by
(Q,Var , f, Init , Inv , T,G,R), where

• Q = {q0, q1, . . . , qk} is a finite set of discrete states (modes),
• Var = {x1, x2, . . . , xn} is a finite set of continuous variables,
• f : Q× Rn → Rn gives the vector field defining continuous evolution in each mode,
• Init ⊂ Q× Rn is the set of initial states,
• Inv : Q→ 2R

n

gives the mode invariants constraining evolution in discrete states,
• T ⊆ Q×Q is the transition relation,
• G : T → 2R

n

gives the guard conditions for enabling transitions,
• R : T × Rn → 2R

n

gives the reset map.

A hybrid state of the automaton is of the form (q,x) ∈ Q×Rn. A hybrid time trajectory is a
sequence (which may be finite or infinite) of intervals τ = {Ii}Ni=0, for which Ii = [τi, τ

′
i]

for all i < N and τi ≤ τ ′i = τi+1 for all i. If the sequence is finite, then either IN =
[τN , τ

′
N] or IN = [τN , τ

′
N). Intuitively, one may think of τi as the times at which discrete

transitions occur. An execution (or a run or trajectory) of a hybrid automaton defined to be
(τ, q,x), where τ is a hybrid time trajectory, q : 〈τ〉 → Q (where 〈τ〉 is defined to be the
set {0, 1, . . . , N} if τ is finite and {0, 1, . . . } otherwise) and x = {xi : i ∈ 〈τ〉} is a
collection of differentiable functions xi : Ii → Rn such that (q(0), x0(0)) ∈ Init , for all
t ∈ [τi, τ

′
i), ẋ

i(t) = f(q(i), xi(t)) and xi(t) ∈ Inv(q(i)). For all i ∈ 〈τ〉 \ {N} it is also
required that transitions respect the guards and reset maps, i.e. e = (q(i), q(i + 1)) ∈ T ,
xi(τ ′i) ∈ G(e) and xi+1(τi+1) ∈ R(e, xi(τ ′i)).

We consider MTL1 formulas satisfied by trajectories. The satisfaction relation is of form
ρ |=p φ, read as “trajectory ρ at position p satisfies temporal logic formula φ”, where a
position p on a trajectory is identified by a pair of form (ip, tp) where ip ≤ N and time
tp ∈ Iip . We use the MTL modality 2Iφ which states that formula φ always holds in
time interval I in the future. Formally, this can be defined as ρ |=p 2Iφ ≡ ∀p′ ≥
p s.t. (tp′ − tp) ∈ I. ρ |=p

′
φ, where p′ ≥ p ≡ ip′ > ip ∨ (ip′ = ip ∧ tp′ ≥ tp). Similarly

we can define the modality 3Iφ which states that formula φ eventually holds at some time
in the time interval I in the future. An MTL formula is valid for a given hybrid automaton if
it is satisfied by all trajectories of that automaton starting at position (0, 0). For clarity when
writing MTL formulas, we assume trajectories are not restricted to start in Init states and
instead introduce Init predicates into the formulas when we want restrictions.

Alternative formalisms for hybrid systems, such as hybrid programs [56], enjoy the
property of having a compositional semantics and can be used to verify properties of systems
by verifying properties of their parts in a theorem prover [58,22]. Other formal modelling
frameworks for hybrid systems, such as Hybrid CSP [37], have also found application in
theorem provers [77,79].

1 Metric Temporal Logic; see e.g. [35].

4 A. Sogokon, P.B. Jackson and T.T. Johnson

2.2 Bounded Time Safety and Eventuality

The bounded time safety verification problem (with some finite time bound t > 0) is con-
cerned with establishing that given an initial set of states Init ⊆ Q × Rn and a set of
safe states Safe ⊆ Q × Rn, the state of the system may not leave Safe within time t
along any valid trajectory τ of the system. In the absence of closed-form solutions to the
ODEs, this property may be established by verified integration, i.e. by computing succes-
sive over-approximating enclosures (known as flowpipes) of the reachable states in discrete
time steps. Bounded time reachability analysis can be extended to full hybrid systems by
also computing/over-approximating the discrete reachable states (up to some finite bound
on the number of discrete transitions).

A number of bounded time verification tools for hybrid systems have been developed
based on verified integration using interval enclosures. For instance, iSAT-ODE, a verifica-
tion tool for hybrid systems developed by Eggers et al. [17] relies on the verified integration
tool VNODE-LP by Nedialkov [52] for computing the enclosures. Other examples include
dReach, a reachability analysis tool for hybrid systems developed by Kong et al. [34], which
uses the CAPD library [32]. Over-approximating enclosures can in practice be very precise
for small time horizons, but tend to become conservative when the time bound is large (due
to the so-called wrapping effect, which is a problem caused by the successive build-up of
over-approximation errors that arises in interval-based methods; see e.g. [53]). An alterna-
tive verified integration method using Taylor models was introduced by Makino and Berz
(see [5,53]) and can address some of these drawbacks, often providing tighter enclosures of
the reachable set. Implementations of the method have been reported in COSY INFINITY,
a scientific computing tool by Makino and Berz [43]; VSPODE, a tool for computing val-
idated solutions to parametric ODEs by Lin and Stadtherr [36]; and in Flow∗, a bounded
time verification for hybrid systems developed by Chen et al. [8].

Because flowpipes provide an over-approximation of the reachable states at a given time,
verified integration using flowpipes can also be used to reason about liveness properties such
as eventuality, i.e. when a system is guaranteed to eventually enter some target set having
started off at some point in an initial set. The bounded time safety and eventuality properties
may be more concisely expressed by using MTL notation, i.e. by writing Init→ 2[0,t] Safe,
and Init → 3[0,t] Target, where Init describes the initial set of states, Safe ⊆ Q × Rn is
the set of safe states and Target ⊆ Q × Rn is the target region which is to be eventually
attained.

Remark 1 The bounded time eventuality properties we will consider are more restrictive
than the general (unbounded time) case. For instance, consider a continuous 2-dimensional
system governed by ẋ1 = x2, ẋ2 = 0 and confined to evolve in the region where x2 > 0.
If one starts this system inside a state where x1 = 0, it will eventually evolve into a state
where x1 = 1 by following the solution, however one may not put a finite bound on the
time for this to happen. Thus, while x1 = 0 → 3[0,∞) x1 = 1 is true for this system the
bounded time eventuality property x1 = 0 → 3[0,t] x1 = 1, will not hold for any finite
t > 0.

2.3 Unbounded Time Safety

A safety property for unbounded time may be more concisely expressed using an MTL
formula:

Init→ 2[0,∞) Safe.

Verifying safety and persistence in hybrid systems using flowpipes and continuous invariants. 5

A proof of such a safety assertion is most commonly achieved by finding an appropriate
invariant, I ⊆ Q × Rn, which contains no unsafe states (i.e. I ⊆ Safe) and such that the
state of the system may not escape from I into an unsafe state along any valid trajectory
of the system. Invariance is a special kind of safety assertion and may be written as I →
2[0,∞) I. A number of techniques have been developed for proving invariance properties
for continuous systems without the need to compute solutions to the ODEs [63,56,74,38,
24,68].

2.4 Combining Unbounded Time Safety with Eventuality to Prove Persistence

In linear temporal logic, a persistence property [44] states that a formula is ‘eventually
always’ true. For instance, using persistence one may express the property that a system
starting in any initial state always eventually reaches some target set and then always stays
within this set. Using MTL notation, we can write this as:

Init→ 3[0,∞) 2[0,∞) Target.

Persistence properties generalize the concept of stability. With stability one is concerned
with showing that the state of a system always converges to some particular equilibrium
point. With persistence, one only requires that the system state eventually becomes always
trapped within some set of states.

Here we are concerned with a slightly stronger form of persistence, where one ensures
that the target set is always reached within some specified time t:

Init→ 3[0,t] 2[0,∞) Target.

We observe that a way of proving this is to find a set I ⊆ Target such that:

1. Init→ 3[0,t] I holds, and
2. I is an invariant for the system.

This fact can be stated more formally as a rule of inference:

(Persistence)
Init→ 3[0,t] I I → 2[0,∞) I I → Target

Init→ 3[0,t] 2[0,∞) Target
.

Previous Sections 2.2 and 2.3 respectively surveyed how the eventuality premise Init →
3[0,t] I and invariant premise I → 2[0,∞) I can be established by a variety of automated
techniques. In Section 5 we explore automation challenges further and remark on ongoing
work addressing how to automatically generate suitable invariants I .

2.5 Using Persistence to Prove Safety

Finding appropriate invariants to prove unbounded time safety as explained above in Sec-
tion 2.3 can in practice be very difficult. It might be the case that invariants I ⊆ Safe for the
system can be found, but also ensuring that Init ⊆ I is infeasible. Nevertheless it might be
the case that one of these invariants I is always eventually reached by trajectories starting
in Init and all those trajectories are contained within Safe. In such cases, Safe is indeed
a safety property of the system when starting from any point in Init. More precisely, if

6 A. Sogokon, P.B. Jackson and T.T. Johnson

one can find an invariant I as explained above in Section 2.4 to show the persistence prop-
erty: Init → 3[0,t] 2[0,∞) Safe, and further one can show for the same time bound t that:
Init → 2[0,t] Safe, then one has: Init → 2[0,∞) Safe. As a result, one may potentially
utilize invariants I that were by themselves insufficient for proving the safety property. This
approach to safety verification can be summarized in the following rule:

(Safety)
Init→ 2[0,t] Safe Init→ 3[0,t] I I → 2[0,∞) I I → Safe

Init→ 2[0,∞) Safe
.

Remark 2 The problem of showing that a state satisfying 2[0,∞) Safe is reached in finite
time t, while ensuring that the formula 2[0,t] Safe also holds (i.e. states satisfying ¬Safe
are avoided up to time t) is sometimes called a reach-avoid problem [78].

Even if one’s goal is to establish bounded (rather than unbounded) time safety properties,
this inference scheme could still be of use, as it could significantly reduce the time bound
t needed for bounded time reachability analysis. In practice, successive over-approximation
of the reachable states using flowpipes tends to become conservative for large values of
t. In highly non-linear systems one can realistically expect to compute flowpipes only for
very modest time bounds (e.g. in chaotic systems flowpipes are guaranteed to ‘blow up’, but
invariants may still sometimes be found). Instead, it may in some cases be possible to prove
the safety property by computing flowpipes up to some small time bound, after which the
system can be shown to be inside an invariant that implies the safety property for all times
thereafter.

3 An example persistence verification problem

Stick-slip oscillations are commonly encountered in mechanical engineering in the context
of modelling the effects of dynamic friction. Informally, the phenomenon manifests itself in
the system becoming “stuck” and “unstuck” repeatedly, which results in unsteady “jerky”
motions. In engineering practice, stick-slip oscillations can often degrade performance and
cause failures when operating expensive machinery [51]. Although the problem of demon-
strating absence of stick-slip oscillations in a system is primarily motivated by safety con-
siderations, it would be misleading to call this a safety verification problem. Instead, the
problem may broadly be described as that of demonstrating that the system (in finite time)
enters a state in which no stick-slip motion is possible and remains there indefinitely. Using
MTL one may write:

Init→ 3[0,t] 2[0,∞) Steady,

where Steady describes the states in which harmful oscillations cannot occur. The formula
may informally be read as saying that “from any initial configuration, the system will even-
tually evolve within time t into a state region where it is always steady”.

As an example of a system in which eventual absence of stick-slip oscillations is impor-
tant, we consider a model of a simplified conventional oil well drill string (due to Navarro-
López et al. [49]). The system can be characterized in terms of the following variables:
ϕr , the angular displacement of the top rotary system; ϕb, the angular displacement of the
drilling bit; ϕ̇r , the angular velocity of the top rotary system; and ϕ̇b, the angular velocity of
the drilling bit. The continuous state of the system x(t) ∈ R3 can be described in terms of
these variables, i.e. x(t) = (ϕ̇r, ϕr − ϕb, ϕ̇b)T . The system has two control parameters:

Verifying safety and persistence in hybrid systems using flowpipes and continuous invariants. 7

Wob giving the weight applied on the drilling bit, and u = Tm giving the surface motor
torque. The dynamics is governed a non-linear system of ODEs ẋ = f(x), given by:

ẋ1 =
1

Jr

(
− (ct + cr)x1 − ktx2 + ctx3 + u

)
, (1)

ẋ2 = x1 − x3, (2)

ẋ3 =
1

Jb

(
ctx1 + ktx2 − (ct + cb)x3 − Tfb(x3)

)
. (3)

The term Tfb(x3) denotes the friction modelling the bit-rock contact and is responsible for
the non-polynomial non-linearity. It is given by

WobRb

(
µcb + (µsb − µcb)e

− γb
νf
|x3|
)
sgn(x3),

where sgn(x3) =
x3

|x3| if x3 6= 0 and sgn(x3) ∈ [−1, 1] if x3 = 0. Constants used in the
model [49] are as follows: cb = 50Nms/rad, kt = 861.5336 Nm/rad, Jr = 2212 kgm2,
Jb = 471.9698 kgm2,Rb = 0.155575m, ct = 172.3067 Nms/rad, cr = 425Nms/rad,
µcb = 0.5, µsb = 0.8, γb = 0.9, νf = 1 rad/s. Even though at first glance the system looks
like a plain continuous system with a single set of differential equations, it is effectively a
hybrid system with at least 3 modes, where the drilling bit is: “rotating forward” (x3 > 0),
“stopped” (x3 = 0), and “rotating backward” (x3 < 0). A sub-mode of the stopped mode
models when the drill bit is stuck. In this sub-mode, the torque components on the drill bit
due to ct, cb and kt are insufficient to overcome the static friction WobRbµcb , and sgn(x3)
is further constrained so as to ensure ẋ3 = 0.

Once the drill is in operation, so-called stick-slip oscillations can cause damage when
the bit repeatedly becomes stuck and unstuck due to friction in the bottom hole assembly.
In the model this behaviour would correspond to the system entering a state where x3 = 0
repeatedly. The objective is to verify the eventual absence of stick-slip oscillations in the
system initialized at the origin (i.e. at rest) for some given choice of the control parame-
ters Wob and u. Previous work by Navarro-López and Carter [49] explored modelling the
simplified model of the drill as a hybrid automaton and simulated the resulting models in
Stateflow and Modelica.

Simulations, such as those obtained in [49], using different models and control parame-
ters for the drill can suggest stick-slip oscillations or their absence (illustrated in Fig. 1) in a
particular model, however the task of verifying their eventual absence cannot be adequately
addressed with simulation alone. In practice however, simulation is incredibly useful in pro-
viding some degree of confidence in the overall result, which is very important to know
before attempting verification.

A simulation of the system with a concrete choice for the control parameters Wob =
50, 000 N and u = 6, 000 Nm, shown as a trajectory in the 3-dimensional state space in
Fig 6a, suggests that the system does not exhibit stick-slip oscillations, because the trajectory
is observed to start at the origin, escape the surface (x3 = 0)2 and stabilize around a point
where the angular velocity of the drilling bit is positive (x3 > 0).

4 Verifying Persistence

The property of interest, i.e. the eventual absence of stick-slip oscillation that we ob-
serve in the simulation, may be phrased as the following formula in metric temporal logic:

2 The system exhibits sliding behaviour on a portion of this surface known as the sliding set. See [49].

8 A. Sogokon, P.B. Jackson and T.T. Johnson

x1 = 0 ∧ x2 = 0 ∧ x3 = 0 → 3[0,t] 2[0,∞) x3 > 0, which informally asserts that
the system initialized at the origin will eventually (diamond modality) enter a state where
it is always (box modality) the case that x3 > 0. In the following sections we describe a
method for proving this assertion. Following our approach, we break the problem down into
the following two sub-problems:

1. Finding an appropriate invariant I in which the property 2[0,t] x3 > 0 holds. For this
we employ continuous/positive invariants, discussed in the next section.

2. Proving that the system reaches a state in the set I in finite time when initialized at the
origin, i.e. x1 = 0 ∧ x2 = 0 ∧ x3 = 0→ 3[0,t] I .

4.1 Continuous Invariant

Finding continuous invariants that are sufficient to guarantee a given property is in practice
remarkably difficult. Methods for automatic continuous invariant generation have been re-
ported by numerous authors [63,75,27,68,67,38,80,23,65,70], but in practice often result
in “coarse” invariants that cannot be used to prove the property of interest, or require an

0
Time (s)

0

Bit angular velocity (rad/s)

(a) Stick-slip motion (undesirable)

0
Time (s)

0

Bit angular velocity (rad/s)

(b) Stabilization (desired behaviour)

Figure 1: Simulations can exhibit stabilization with positive bit angular velocity and stick-
slip bit motion.

Verifying safety and persistence in hybrid systems using flowpipes and continuous invariants. 9

unreasonable amount of time due to their reliance on expensive real quantifier elimination
algorithms.

In order to craft a suitable invariant for our system manually, we will first consider
simplified linear dynamics governing the motion in the mode where the drill bit is spinning
with sufficiently-positive angular velocity x3 that the non-linearity of the bit-rock friction
Tfb(x3) is negligible. The linearization is obtained by replacing the non-linear dynamic
friction term Tfb with Tcb =WobRbµcb, the Coulomb friction torque:

ẋ3 =
1

Jb

(
ctx1 + ktx2 − (ct + cb)x3 −WobRbµcb

)
,

where ẋ1 and ẋ2 are the same as in (1) and (2), respectively. This linearization results in an
affine system with an equilibrium x∗ at

x∗1 =
u− µcbRbWob

cb + cr
,

x∗2 =
cbu+ crµcbRbWob

cbkt + crkt
,

x∗3 =
u− µcbRbWob

cb + cr
.

By applying a simple transformation that moves the equilibrium to the origin, i.e.

(x1, x2, x3) 7→ (x1 + x∗1, x2 + x∗2, x3 + x∗3),

one obtains the following (purely linear) system:

ẋ1 =
1

Jr

(
− (cr + ct)x1 − ktx2 + ctx3

)
,

ẋ2 = x1 − x3,

ẋ3 =
1

Jb

(
ctx1 + ktx2 − (cb + ct)x3

)
,

which may be written down in matrix form as

ẋ =

−(cr+ct)

Jr

−kt
Jr

ct
Jb

1 0 −1
ct
Jb

kt
Jb

−(cb+ct)
Jr

x.

One popular technique for testing stability of linear systems of the form

ẋ = Ax

involves solving the so-called Lyapunov equation [33]

AX +XAT +Q = 0.

One may conclude that the linear system is stable if one finds positive definite matrices X
and Q satisfying the equation. In practice, one is required to choose Q to be some partic-
ular positive definite matrix and then search for the matrix X . For example, if one has the
means of generating (pseudo-)random numbers, one may generate a square matrix R with
random entries. From this, provided that R is invertible, one may obtain a positive definite
matrix Q with random entries by setting Q = RTR. One may further use the solution X to

10 A. Sogokon, P.B. Jackson and T.T. Johnson

the Lyapunov equation to obtain a (necessarily quadratic) Lyapunov function for the linear
system, which is given by xTXx. This can be readily turned into a Lyapunov function for
the original affine linearization with an equilibrium at x∗, i.e.

V (x) = (x− x∗)
TX(x− x∗). (4)

A concrete example of a Lyapunov function obtained by following this method is 3

V (x) = 50599.6− 14235.7x1 + 1234.22x21 − 4351.43x2 + 342.329x1x2 + 288.032x22

− 3865.81x3 + 367.657x1x3 + 18.2594x2x3 + 241.37x23.

(a) V (x) ≤ 2400. (b) V (x) ≤ 1400.

Figure 2: Ellipsoidal sub-level sets V (x) ≤ k (in red) and surfaces where
V̇ ≡ ∇V · f(x) = 0 (in red.) Region where V̇ < 0, i.e. the derivative of V along the solu-
tions of the original non-linear system is negative is shaded above the blue surface increasing
along axis x3).

The sub-level sets of V are guaranteed to define positively invariant sets [6] (i.e. trapping
regions from which solutions cannot escape) of the affine linearization; however, this need
not be true of the original non-linear dynamics. A sufficient condition for ensuring that
the sub-level set V (x) ≤ k, where k > 0, is positively invariant under the flow of an
autonomous (perhaps non-linear) system ẋ = f(x) is 4

∀ x ∈ R3. V (x) = k → ∇V · f(x) < 0.

In our case the system is 3-dimensional and autonomous, hence we can visualize both the
surfaces defined by V = k and regions where the rate of change of V along the solutions is
negative , i.e. V̇ ≡ ∇V · f(x) < 0, as 3-dimensional geometric objects (Fig. 2).

3 The Lyapunov function in fact has rational coefficients, but their representation is too bulky to be given
here exactly.

4 Here∇ denotes the gradient of V , i.e. the vector of partial derivatives (∂V
∂x1

, . . . , ∂V
∂xn

).

Verifying safety and persistence in hybrid systems using flowpipes and continuous invariants. 11

By inspecting the 3-dimensional plots in Fig. 2, we see that the surface corresponding
to V (x) = 2400 in Fig. 2a intersects with the regions where the rate of change of V along
the solutions of the system is negative (part of the red ellipsoid above the blue surface) and
positive (part of the red ellipsoid visible below the blue surface). This suggests that there are
solutions of the system that escape from the red ellipsoid. On the other hand, in Fig. 2b we
observe that the surface V (x) = 1400 appears to be entirely contained in the region above
(increasing along x3) the blue surface, suggesting that everywhere on the surface, the rate
of change of the function V along the solutions of the system is negative.

Remark 3 There is a significant body of existing work devoted to the problem of estimat-
ing domains of attraction using Lyapunov functions. Forsman [20] developed a method for
maximizing the invariant sub-level set of polynomial Lyapunov functions using Gröbner ba-
sis computations; this method applies only to polynomial systems of ODEs. The method of
Davison and Kurak [13] seeks to maximize the hypervolume enclosed by the Lyapunov sub-
level sets. Vannelli and Vidyasagar [76] reported a powerful method for domain of attraction
estimation which uses rational functions as Lyapunov function candidates. More recently,
Goubault et al. [25] studied the problem of generating non-polynomial Lyapunov functions
and positive invariants using so-called Darboux polynomials.

In order to prove the continuous invariance property for I ≡ V (x) ≤ 1400, it is suffi-
cient to show that the following holds:

∀ x ∈ R3. V (x) = 1400→ ∇V · f(x) < 0. (5)

Unfortunately, in the presence of non-polynomial terms 5 a first order sentence will in
general not belong to a decidable theory [66], although there has recently been progress
in broadening the scope of the popular CAD real quantifier elimination algorithm (origi-
nally due to Collins [11])6 to work with restricted classes of non-polynomial problems (by
Strzeboński [73]).

In practice, this conjecture is easily proved in under 5 seconds using MetiTarski, an
automatic theorem prover, developed by L.C. Paulson and co-workers at the University of
Cambridge, designed specifically for proving universally quantified first order conjectures
featuring transcendental functions, such as sin,cos, ln, exp, etc. The interested reader may
find more details about the MetiTarski system in [1,55].

Remark 4 Although Wolfram’s Mathematica 10 computer algebra system also provides
some functionality for proving first-order conjectures featuring non-polynomial expressions
using its Reduce[] function, we were unable (on our system7) to prove conjecture (5) this
way after over an hour of computation, after which the Mathematica kernel crashed.

The automatic proof of conjecture (5) obtained using MetiTarski (provided we trust the
system) establishes that V (x) ≤ 1400 defines a positively invariant set, and thus we are
guaranteed that solutions initialized inside this set remain there at all future times. In order
to be certain that no outgoing discrete transitions of the hybrid system are possible when
the system is evolving inside V (x) ≤ 1400, we further require a proof of the following
conjecture featuring only polynomial terms:

∀ x ∈ R3. V (x) ≤ 1400→ x3 > 0. (6)

5 E.g. those featured in the right-hand side of the ODE, i.e. f(x).
6 The interested reader may find a superbly readable elementary introduction to the CAD algorithm in [31]

and a good overview of current state of the art in [12].
7 Intel i5-2520M CPU @ 2.50GHz, 4GB RAM, running Arch Linux kernel 4.2.5-1.

12 A. Sogokon, P.B. Jackson and T.T. Johnson

An automatic proof of this conjecture may be obtained using an implementation of a deci-
sion procedure for first-order real arithmetic. Currently, this functionality is available in e.g.
Mathematica, QEPCAD-B, Reduce/Redlog and other packages.

Remark 5 As of 2018, there is yet no formally verified implementation of any decision pro-
cedure for first-order real arithmetic, or its universally/existentially-quantified fragment. The
existing implementations of CAD and other algorithms found in modern computer algebra
systems comprise thousands of lines of code into which the user has presently no choice
but to put his/her trust [12]. MetiTarski is likewise exposed to potential bugs in the imple-
mentations with which it interfaces. Some of the recent efforts in verified real arithmetic are
described in [10,40,45].

4.2 Verified Integration

In order to show that the system does indeed enter the positively invariant ellipsoid V (x) ≤
1400 in finite time, it is not sufficient to observe this in a simulation (as in Fig. 6b), which
is why we use a tool employing verified integration based on Taylor models. Flow∗ (imple-
mented by Chen et al. [8]) is a bounded time safety verification tool for hybrid systems that
computes Taylor models to analyse continuous reachability.

Remark 6 An earlier implementation of Taylor models for verified integration of non-
linear (and even parametric) ODEs was reported by Lin and Stadtherr [36] in a tool called
VSPODE.

The tool works by computing successive over-approximations (flowpipes) of the reachable
set of the system, which are internally represented using Taylor models (but which may in
turn be over-approximated by a bounding hyper-box and easily rendered).

Fig. 3 shows the bounding boxes of solution enclosures computed from the point initial
condition at the origin using Flow∗ with adaptive time steps and Taylor models of order
13, a time bound of 12.7 and the same control parameters used in the simulation (i.e. u =
6, 000 Nm, Wob = 50, 000 N). We observe that once solutions escape to the region where
x3 > 0, they maintain a positive x3 component for the duration of the time bound.

The last flowpipe computed by Flow∗ for this problem can be bounded inside the hyper-
rectangle BoundBox characterized by the formula

BoundBox ≡ 39

10
≤ x1 ≤ 4 ∧ 51

10
≤ x2 ≤

26

5
∧ 7

2
≤ x3 ≤

37

10
.

Once more, using a decision procedure for real arithmetic, we can check that the following
sentence is true:

∀ x ∈ R3. BoundBox→ V (x) ≤ 1400.

Verifying safety and persistence in hybrid systems using flowpipes and continuous invariants. 13

 0

 1

 2

 3

 4

 5

 6

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x
3

x1

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7 8 9

x
3

x2

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x
2

x1

Figure 3: Verified integration up to time t = 12.7 from a point initial condition at the origin.

14 A. Sogokon, P.B. Jackson and T.T. Johnson

 0

 1

 2

 3

 4

 5

 6

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

x
3

x1

 0

 1

 2

 3

 4

 5

 6

-1 0 1 2 3 4 5 6 7 8 9

x
3

x2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

x
2

x1

Figure 4: Verified integration up to time t = 12.2 from an interval initial condition.

Verifying safety and persistence in hybrid systems using flowpipes and continuous invariants. 15

 0

 1

 2

 3

 4

 5

 6

 0 0.5 1 1.5 2 2.5 3 3.5 4

x3

x1

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7 8 9

x3

x2

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 0.5 1 1.5 2 2.5 3 3.5 4

x2

x1

Figure 5: Verified integration with affine disturbance input from a point initial condition at
the origin.

16 A. Sogokon, P.B. Jackson and T.T. Johnson

If we are able to establish the following facts:

1. I → 2[0,∞) I (I is a continuous invariant),
2. I → Steady (inside I , there are no harmful oscillations), and
3. Init→ 3[0,t] I (the system enters the region I in finite time),

then we can conclude that Init → 3[0,t] 2[0,∞) Steady is also true and the system does
not exhibit harmful stick-slip oscillations when started inside Init. By taking Init to be the
origin x1 = 0∧x2 = 0∧x3 = 0, I to be the positively invariant sub-level set V (x) ≤ 1400
and Steady to be x3 > 0, we are able to conclude the temporal property:

x1 = 0 ∧ x2 = 0 ∧ x3 = 0→ 3[0,t] 2[t,∞) x3 > 0.

Verified integration using Taylor models also allows us to consider sets of possible initial
conditions, rather than initial points. This is useful when there is uncertainty about the sys-
tem’s initial configuration; however, in practice this comes with a significant performance
overhead for verified integration. Nevertheless, we were able to compute flowpipes for 12.2
time units from an interval initial condition x1 ∈ [−0.1, 0.1], x2 ∈ [−0.1, 0.1] and x3 = 0
(since it is reasonable to assume the bit to be at rest initially). The result of this verified
integration is illustrated in Fig. 4.

(a) Simulation showing stabilization with positive bit
angular velocity.

(b) Simulation showing eventual entry into an ellip-
soidal invariant.

Figure 6: Simulation of the hybrid system initialized at the origin withWob = 50, 000 N and
u = 6000 Nm. The trajectory is contained by the flowpipes shown in Fig. 3 and is observed
to enter the positively invariant ellipsoid V (x) ≤ 1400, illustrating the persistence property
of eventual absence of stick-slip oscillations.

Remark 7 Another way of increasing confidence in the robustness of verification results us-
ing flowpipes is to introduce bounded disturbance into the ODEs in the Flow∗ model, e.g. by
adding a bounded interval di ⊆ R to each fi in the right-hand side of the ODEs, i.e. setting
ẋi = fi(x) + di for each i = 1, 2, 3. However, this makes verified integration significantly
more coarse and slow, even for relatively small disturbances. For example, in Fig. 5 one can
observe the flowpipes from a point initial condition becoming more conservative and ‘blow-
ing up’ (after about 9 time units) for a disturbance di = [−0.000001, 0.000001] added
to the right-hand side in the positive bit spinning mode (even as the Taylor model order is
increased from 13 to 14).

Verifying safety and persistence in hybrid systems using flowpipes and continuous invariants. 17

5 Flowpipes for proving persistence

With the above-described invariant approach, one identifies an invariant subset I of the target
region, a subset from which trajectories never exit once they have entered. As an alternative
to using continuous invariants, in some cases it is possible to prove persistence properties
by relying entirely on bounded time reachability analysis using flowpipes. For example, it
is sufficient to find some subset of the target region S ⊆ Target with the property that all
trajectories starting from S eventually return to S in some bounded time while never passing
outside of the target region. This property of always eventually returning in bounded time
is one that can be checked by flowpipe computations. Many such S will not be invariants,
and we have the freedom to choose perhaps very simple representations of sets S; interval
boxes, for example. Formally, this reasoning can be packaged into an alternative rule:

(Persistence2)
Init→ 3[0,t] S S → 3[τ,τ] S S → 2[0,τ] Target

Init→ 3[0,t] 2[0,∞) Target
.

where t ≥ 0 and τ > 0. All premises of this rule can be addressed by computing flowpipes.

Remark 8 In practice, numerical simulations can provide reasonable candidates for the time
τ at which trajectories return back into S in the above rule.

Example 1 (Damped oscillator) Simple harmonic motion can be observed in a massm (kg)
suspended from an spring with stiffness constant k (Figure 7a), which obeys Hooke’s law,
i.e. the linear relationship F = −kx, where F (N) is the force required to displace the
mass by x (m) from the point of equilibrium. From Newton’s second law, i.e. F = mẍ, the
motion of the mass on a spring is governed by the differential equation:mẍ+kx = 0,more

commonly written as ẍ+ ω2x = 0, where ω =
√

k
m is the frequency of oscillation.

(a) Harmonic oscillator. (b) Damped oscillator.

Figure 7: Oscillator model.

If one introduces damping (with viscous damping coefficient c) into the system (il-
lustrated in Figure 7b), the differential equation becomes ẍ + 2dωẋ + ω2x = 0, where
d = c

2
√
km

is known as the damping factor. By setting x1 = x and x2 = ẋ, one may write:

ẋ1 = x2,

ẋ2 = −ω2x1 − 2dωx2.

Setting ω = 1 and d = 0.25, the phase portrait of the resulting stable system is illus-
trated in Fig. 8a. By selecting S to be the hyperbox [−0.5, 0.5]× [−0.5, 0.5] and computing
flowpipes from S, one may observe the bounding boxes of the flowpipes first expanding

18 A. Sogokon, P.B. Jackson and T.T. Johnson

but then eventually converging to inside of S. Bounding boxes at successive time steps are
shown in Fig. 8b where the initial bounding box is highlighted in green. Fig. 9a and Fig. 9b
show how the bounding box dimensions vary over time. This eventual convergence to within
S in can be used to e.g. establish the property S → 3[4,4] S.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x1

x
2

(a) Phase portrait.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

x
2

x1

(b) Converging flowpipes from S.

Figure 8: Damped oscillator.

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 2 4 6 8 10 12 14 16

x
1

t

(a) Bounds on the x1 component.

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 2 4 6 8 10 12 14 16

x
2

t

(b) Bounds on the x2 component.

Figure 9: Bounds on flowpipes from an initial box S.

We should note that this approach is in practice highly sensitive to the amount of damp-
ing, i.e. it is often easier to show that flowpipes return into the initial set when there is a
greater rate of convergence towards the stable equilibrium. This can already be observed
in the damped oscillator model. For example, after decreasing the damping factor d in the
model to 0.05, one may observe a much slower convergence of flowpipe enclosures, which
forces one to consider larger time bounds in order to apply this technique. By further de-
creasing d from 0.05 to 0.005, one is no longer able to show that flowpipe enclosures return
into the original set using the same Taylor model orders and time bound (e.g. 10 and 15
respectively (see Appendix, Fig. 10).

Remark 9 While in principle this alternative technique could be applied to show persistence
of our drill-string example, our experiments in this application have so far have not been
successful: the flowpipe computations are much more expensive fail to produce eventually
convergent enclosures with the time bounds and Taylor model parameters that we tried.

Verifying safety and persistence in hybrid systems using flowpipes and continuous invariants. 19

6 Outlook and Challenges to Automation

Correctness of reachability analysis tools based on verified integration is soundness criti-
cal to the overall verification approach, which makes for a strong case in favour of using
formally verified implementations. At present few are available, e.g. recent work by Imm-
ler [30] which presented a formally verified continuous reachability algorithm based on
adaptive Runge-Kutta methods. Verified implementations of Taylor model-based reachabil-
ity analysis algorithms for continuous and hybrid systems would clearly be very valuable.
One alternative to over-approximating reachable sets of continuous systems using flowpipes
is based on simulating the system using a finite set of sampling trajectories and employs
sensitivity analysis to address the coverage problem. This technique was explored by Donzé
and Maler in [14]. A similar approach employing matrix measures has more recently been
studied by Maidens and Arcak [41,42], as well as Fan et al. [19,18] (the latter exhibiting
particularly encouraging results).

As an alternative to using verified integration, a number of deductive methods are avail-
able for proving eventuality properties in continuous and hybrid systems (e.g. [57,72]).
These approaches can be much more powerful since they allow one to work with more gen-
eral classes of initial and target regions that are necessarily out of scope for methods based
on verified integration (e.g. they can work with initial sets that are unbounded, disconnected,
etc). Making effective use of deductive verification tools currently in existence typically re-
quires significant input and expertise on part of the user (finding the right invariants being
one of the major stumbling blocks in practice), in stark contrast to the near-complete level of
automation offered by tools based on verified integration. Methods for automatic continu-
ous invariant generation are crucial to the mechanization of the overall verification approach.
Progress on this problem would be hugely enabling for non-experts and specialists alike, as
it would relieve them from the task of manually constructing appropriate invariants, which
often requires intuition and expertise. Work in this area is ongoing (see e.g. [57,38,70]).

A no less important problem than verification itself concerns the correct formal mod-
elling of systems with discontinuous ODEs, such as the drill string model, using hybrid
automata. This problem was studied in the work of Navarro-López and Carter [49]. A dif-
ferent approach, applicable to discontinuous ODEs that are piecewise polynomial, has been
pursued more recently in [71].

7 Related Work

Combining elements of qualitative and quantitative reasoning8 to study the behaviour of
dynamical systems has previously been explored in the case of planar systems by Nishida et
al. [54]. The idea of combining bounded time reachability analysis with qualitative analysis
in the form of discrete abstraction was investigated by Clarke et al. in [9].

Similar ideas to ours have been employed by Carter [7] and Navarro-López in [50],
where the concept of deadness is introduced and used as a way of disproving liveness prop-
erties. Intuitively, deadness is a formalization of an idea that inside certain regions the system
cannot be live, i.e. some desired property may never become true as the system evolves in-
side a “deadness region”. These ideas were used in a case study [7, Chapter 5] also featuring
the drill system studied in [49], but with a different set of control parameters and in which
the verification objective was to prove the existence of a single trajectory for which the drill

8 e.g numerical solution computation with “qualitative” features, such as invariance of certain regions.

20 A. Sogokon, P.B. Jackson and T.T. Johnson

eventually gets “stuck”, which is sufficient to disprove the liveness (oscillation) property.
In this regard, inner approximating (i.e. under-approximating) flowpipes of reachable sets
of ODEs (such as those explored in the recent work of Goubault and Putot [26]) provide a
natural tool for studying deadness questions, whereas over-approximating flowpipes that we
use in our work are more appropriate for persistence, safety, and eventuality.

Region stability is similar to our notion of persistence [59], which requires all trajectories
to eventually reach some region of the state space. Sound and complete proof rules for
establishing region stability have been explored and automated [61], as have more efficient
encodings of the proof rule that scale better in dimensionality [46]. However, all algorithms
we are aware of for checking region stability require linear or simpler (timed or rectangular)
ODEs [59,61,60,46,15,62]. Strong attractors are basins of attraction where every state in
the state space eventually reaches a region of the state space [59]. Some algorithms do not
check region stability, but actually check stronger properties such as strong attraction, that
imply region stability [59]. In contrast to these works, our method checks the weaker notion
of persistence for non-linear ODEs.

She and Ratschan studied methods of proving set eventuality in continuous systems
under constraints using Lyapunov-like functions [64]. Duggirala and Mitra also employed
Lyapunov-like function concepts to prove inevitability properties in hybrid systems [16].
Möhlmann et al. developed Stabhyil [48], which can be applied to non-linear hybrid sys-
tems and checks classical notions of Lyapunov stability, which is a strictly stronger property
than persistence. In [47] Möhlmann et al. extended their work and applied similar ideas,
using information about (necessarily invariant) sub-level sets of Lyapunov functions to ter-
minate reachability analysis used for safety verification. Prabhakar and Soto have explored
abstractions that enable proving stability properties without having to search for Lyapunov
functions, albeit these are not currently applicable to non-linear systems [62]. In summary,
in contrast to other works listed above, our approach enables proving persistence properties
in conjunction with safety properties for non-linear, non-polynomial hybrid systems and
does not put restrictions on the form or the type of the invariant used in conjunction with
bounded time reachability analysis.

8 Conclusion

We explored a combined technique for safety and persistence verification employing con-
tinuous invariants and reachable set computation based on constructing flowpipes. The ap-
proach was illustrated on a model of a simplified oil well drill string system studied by
Navarro-López et al. [49,51], where the verification objective is to prove absence of dam-
aging stick-slip oscillations. The system was useful in highlighting many of the existing
practical challenges to applying and automating the proposed verification method. Many
competing approaches already exist for verifying safety in hybrid systems, but these rarely
combine different methods for reachability analysis and deductive verification, which our
approach combines. We demonstrate that a combination of different approaches can be more
practically useful than each constituent approach taken in isolation.

Acknowledgements The authors wish to thank the anonymous reviewers for their careful
reading and valuable suggestions for improving this work and extend special thanks to Dr.
E.M. Navarro-López for pointing out the highly relevant work on deadness [50] before it
appeared in print.

Verifying safety and persistence in hybrid systems using flowpipes and continuous invariants. 21

References

1. B. Akbarpour and L. C. Paulson. MetiTarski: An automatic theorem prover for real-valued special
functions. Journal of Automated Reasoning, 44(3):175–205, 2010.

2. R. Alur, C. Courcoubetis, T. A. Henzinger, and P. Ho. Hybrid automata: An algorithmic approach to
the specification and verification of hybrid systems. In R. L. Grossman, A. Nerode, A. P. Ravn, and
H. Rischel, editors, Hybrid Systems, volume 736 of LNCS, pages 209–229. Springer, 1992.

3. C. Baier and C. Tinelli, editors. Tools and Algorithms for the Construction and Analysis of Systems -
21st International Conference, TACAS 2015, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, volume 9035 of
LNCS. Springer, 2015.

4. A. Bemporad, A. Bicchi, and G. C. Buttazzo, editors. Hybrid Systems: Computation and Control, 10th
International Workshop, HSCC 2007, Pisa, Italy, April 3-5, 2007, Proceedings, volume 4416 of LNCS.
Springer, 2007.

5. M. Berz and K. Makino. Verified integration of ODEs and flows using differential algebraic methods on
high-order Taylor models. Reliable Computing, 4(4):361–369, 1998.

6. F. Blanchini. Set invariance in control. Automatica, 35(11):1747–1767, 1999.
7. R. A. Carter. Verification of liveness properties on hybrid dynamical systems. PhD thesis, University of

Manchester, School of Computer Science, 2013.
8. X. Chen, E. Ábrahám, and S. Sankaranarayanan. Flow*: An analyzer for non-linear hybrid systems. In

Sharygina and Veith [69], pages 258–263.
9. E. M. Clarke, A. Fehnker, Z. Han, B. H. Krogh, J. Ouaknine, O. Stursberg, and M. Theobald. Abstraction

and counterexample-guided refinement in model checking of hybrid systems. International Journal of
Foundations of Computer Science, 14(4):583–604, 2003.

10. C. Cohen and A. Mahboubi. Formal proofs in real algebraic geometry: from ordered fields to quantifier
elimination. Logical Methods in Computer Science, 8(1), 2012.

11. G. E. Collins. Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic de-
composition. In H. Barkhage, editor, Automata Theory and Formal Languages, 2nd GI Conference,
Kaiserslautern, May 20-23, 1975, volume 33 of LNCS, pages 134–183. Springer, 1975.

12. J. H. Davenport and M. England. Recent advances in real geometric reasoning. In F. Botana and
P. Quaresma, editors, Automated Deduction in Geometry - 10th International Workshop, ADG 2014,
Coimbra, Portugal, July 9-11, 2014, Revised Selected Papers, volume 9201 of LNCS, pages 37–52.
Springer, 2014.

13. E. Davison and E. Kurak. A computational method for determining quadratic Lyapunov functions for
non-linear systems. Automatica, 7(5):627 – 636, 1971.

14. A. Donzé and O. Maler. Systematic simulation using sensitivity analysis. In Bemporad et al. [4], pages
174–189.

15. P. S. Duggirala and S. Mitra. Abstraction refinement for stability. In 2011 IEEE/ACM International
Conference on Cyber-Physical Systems, ICCPS 2011, Chicago, Illinois, USA, 12-14 April, 2011, pages
22–31. IEEE Computer Society, 2011.

16. P. S. Duggirala and S. Mitra. Lyapunov abstractions for inevitability of hybrid systems. In T. Dang and
I. M. Mitchell, editors, Hybrid Systems: Computation and Control (part of CPS Week 2012), HSCC’12,
Beijing, China, April 17-19, 2012, pages 115–124. ACM, 2012.

17. A. Eggers, N. Ramdani, N. S. Nedialkov, and M. Fränzle. Improving the SAT modulo ODE approach
to hybrid systems analysis by combining different enclosure methods. Software and System Modeling,
14(1):121–148, 2015.

18. C. Fan, J. Kapinski, X. Jin, and S. Mitra. Locally optimal reach set over-approximation for nonlinear
systems. In 2016 International Conference on Embedded Software, EMSOFT 2016, Pittsburgh, Penn-
sylvania, USA, October 1-7, 2016, pages 6:1–6:10. ACM, 2016.

19. C. Fan, J. Kapinski, X. Jin, and S. Mitra. Simulation-driven reachability using matrix measures. ACM
Transactions on Embedded Computing Systems, 17(1):21:1–21:28, 2018.

20. K. Forsman. Construction of Lyapunov functions using Gröbner bases. In Proceedings of the 30th IEEE
Conference on Decision and Control, volume 1, pages 798–799. IEEE, Dec. 1991.

21. G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang,
and O. Maler. SpaceEx: Scalable verification of hybrid systems. In G. Gopalakrishnan and S. Qadeer,
editors, Computer Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA,
July 14-20, 2011. Proceedings, volume 6806 of LNCS, pages 379–395. Springer, 2011.

22. N. Fulton, S. Mitsch, J. Quesel, M. Völp, and A. Platzer. KeYmaera X: an axiomatic tactical theorem
prover for hybrid systems. In A. P. Felty and A. Middeldorp, editors, Automated Deduction - CADE-25
- 25th International Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceed-
ings, volume 9195 of LNCS, pages 527–538. Springer, 2015.

22 A. Sogokon, P.B. Jackson and T.T. Johnson

23. K. Ghorbal and A. Platzer. Characterizing algebraic invariants by differential radical invariants. In
E. Ábrahám and K. Havelund, editors, Tools and Algorithms for the Construction and Analysis of Systems
- 20th International Conference, TACAS 2014, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014. Proceedings, volume 8413
of LNCS, pages 279–294. Springer, 2014.

24. K. Ghorbal, A. Sogokon, and A. Platzer. A hierarchy of proof rules for checking positive invariance of
algebraic and semi-algebraic sets. Computer Languages, Systems & Structures, 47:19–43, 2017.

25. E. Goubault, J. Jourdan, S. Putot, and S. Sankaranarayanan. Finding non-polynomial positive invariants
and Lyapunov functions for polynomial systems through Darboux polynomials. In American Control
Conference, ACC 2014, Portland, OR, USA, June 4-6, 2014, pages 3571–3578. IEEE, 2014.

26. E. Goubault and S. Putot. Forward inner-approximated reachability of non-linear continuous systems.
In G. Frehse and S. Mitra, editors, Proceedings of the 20th International Conference on Hybrid Systems:
Computation and Control, HSCC 2017, Pittsburgh, PA, USA, April 18-20, 2017, pages 1–10. ACM,
2017.

27. S. Gulwani and A. Tiwari. Constraint-based approach for analysis of hybrid systems. In Gupta and
Malik [28], pages 190–203.

28. A. Gupta and S. Malik, editors. Computer Aided Verification, 20th International Conference, CAV 2008,
Princeton, NJ, USA, July 7-14, 2008, Proceedings, volume 5123 of LNCS. Springer, 2008.

29. T. A. Henzinger. The theory of hybrid automata. In Proceedings, 11th Annual IEEE Symposium on
Logic in Computer Science, New Brunswick, New Jersey, USA, July 27-30, 1996, pages 278–292. IEEE
Computer Society, 1996.

30. F. Immler. Verified reachability analysis of continuous systems. In Baier and Tinelli [3], pages 37–51.
31. M. Jirstrand. Cylindrical algebraic decomposition - an introduction. Technical Report 1807, Linköping

University, Automatic Control, 1995.
32. T. Kapela, M. Mrozek, P. Pilarczyk, D. Wilczak, and P. Zgliczyński. CAPD - a rigorous toolbox for

computer assisted proofs in dynamics. Technical report, Jagiellonian University, Krakow, Poland, 2010.
Online http://capd.ii.uj.edu.pl/.

33. H. K. Khalil. Nonlinear Systems. Prentice Hall, third edition, 2002.
34. S. Kong, S. Gao, W. Chen, and E. M. Clarke. dreach: δ-reachability analysis for hybrid systems. In Baier

and Tinelli [3], pages 200–205.
35. R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time Systems, 2(4):255–

299, 1990.
36. Y. Lin and M. A. Stadtherr. Validated solutions of initial value problems for parametric ODEs. Applied

Numerical Mathematics, 57(10):1145–1162, 2007.
37. J. Liu, J. Lv, Z. Quan, N. Zhan, H. Zhao, C. Zhou, and L. Zou. A calculus for hybrid CSP. In K. Ueda,

editor, Programming Languages and Systems - 8th Asian Symposium, APLAS 2010, Shanghai, China,
November 28 - December 1, 2010. Proceedings, volume 6461 of LNCS, pages 1–15. Springer, 2010.

38. J. Liu, N. Zhan, and H. Zhao. Computing semi-algebraic invariants for polynomial dynamical systems.
In S. Chakraborty, A. Jerraya, S. K. Baruah, and S. Fischmeister, editors, Proceedings of the 11th In-
ternational Conference on Embedded Software, EMSOFT 2011, part of the Seventh Embedded Systems
Week, ESWeek 2011, Taipei, Taiwan, October 9-14, 2011, pages 97–106. ACM, 2011.

39. J. Lygeros, K. H. Johansson, S. N. Simić, J. Zhang, and S. S. Sastry. Dynamical properties of hybrid
automata. IEEE Transactions on Automatic Control, 48(1):2–17, 2003.

40. A. Mahboubi. Programming and certifying a CAD algorithm in the Coq system. In T. Coquand,
H. Lombardi, and M. Roy, editors, Mathematics, Algorithms, Proofs, 9.-14. January 2005, volume 05021
of Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum für Informatik
(IBFI), Schloss Dagstuhl, Germany, 2005.

41. J. N. Maidens and M. Arcak. Trajectory-based reachability analysis of switched nonlinear systems using
matrix measures. In 53rd IEEE Conference on Decision and Control, CDC 2014, Los Angeles, CA, USA,
December 15-17, 2014, pages 6358–6364. IEEE, 2014.

42. J. N. Maidens and M. Arcak. Reachability analysis of nonlinear systems using matrix measures. IEEE
Transactions on Automatic Control, 60(1):265–270, Jan 2015.

43. K. Makino and M. Berz. COSY INFINITY version 9. Nuclear Instruments and Methods in Physics
Research Section A, 558(1):346–350, 2006.

44. Z. Manna and A. Pnueli. A hierarchy of temporal properties. In C. Dwork, editor, Proceedings of the
Ninth Annual ACM Symposium on Principles of Distributed Computing, Quebec City, Quebec, Canada,
August 22-24, 1990, pages 377–410. ACM, 1990.

45. É. Martin-Dorel and P. Roux. A reflexive tactic for polynomial positivity using numerical solvers and
floating-point computations. In Y. Bertot and V. Vafeiadis, editors, Proceedings of the 6th ACM SIGPLAN
Conference on Certified Programs and Proofs, CPP 2017, Paris, France, January 16-17, 2017, pages
90–99. ACM, 2017.

http://capd.ii.uj.edu.pl/

Verifying safety and persistence in hybrid systems using flowpipes and continuous invariants. 23

46. C. Mitrohin and A. Podelski. Composing stability proofs for hybrid systems. In U. Fahrenberg and
S. Tripakis, editors, Formal Modeling and Analysis of Timed Systems - 9th International Conference,
FORMATS 2011, Aalborg, Denmark, September 21-23, 2011. Proceedings, volume 6919 of LNCS, pages
286–300. Springer, 2011.

47. E. Möhlmann, W. Hagemann, and O. E. Theel. Hybrid tools for hybrid systems - proving stability
and safety at once. In S. Sankaranarayanan and E. Vicario, editors, Formal Modeling and Analysis of
Timed Systems - 13th International Conference, FORMATS 2015, Madrid, Spain, September 2-4, 2015,
Proceedings, volume 9268 of LNCS, pages 222–239. Springer, 2015.

48. E. Möhlmann and O. E. Theel. Stabhyli: a tool for automatic stability verification of non-linear hybrid
systems. In C. Belta and F. Ivančić, editors, Proceedings of the 16th international conference on Hybrid
systems: computation and control, HSCC 2013, April 8-11, 2013, Philadelphia, PA, USA, pages 107–
112. ACM, 2013.

49. E. M. Navarro-López and R. Carter. Hybrid automata: an insight into the discrete abstraction of discon-
tinuous systems. International Journal of Systems Science, 42(11):1883–1898, 2011.

50. E. M. Navarro-López and R. Carter. Deadness and how to disprove liveness in hybrid dynamical systems.
Theoretical Computer Science, 642(C):1–23, Aug. 2016.

51. E. M. Navarro-López and R. Suárez. Practical approach to modelling and controlling stick-slip oscilla-
tions in oilwell drillstrings. In Control Applications, 2004. Proceedings of the 2004 IEEE International
Conference on, volume 2, pages 1454–1460. IEEE, 2004.

52. N. S. Nedialkov. Interval Tools for ODEs and DAEs. In 12th GAMM - IMACS International Sympo-
sium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN 2006), Duisburg,
Germany, 26–29 Sept 2006.

53. M. Neher, K. R. Jackson, and N. S. Nedialkov. On Taylor model based integration of ODEs. SIAM
Journal on Numerical Analysis, 45(1):236–262, 2007.

54. T. Nishida, K. Mizutani, A. Kubota, and S. Doshita. Automated phase portrait analysis by integrating
qualitative and quantitative analysis. In T. L. Dean and K. R. McKeown, editors, Proceedings of the 9th
National Conference on Artificial Intelligence, Anaheim, CA, USA, July 14-19, 1991, Volume 2., pages
811–816. AAAI Press / The MIT Press, 1991.

55. L. C. Paulson. MetiTarski: Past and future. In L. Beringer and A. P. Felty, editors, Interactive The-
orem Proving - Third International Conference, ITP 2012, Princeton, NJ, USA, August 13-15, 2012.
Proceedings, volume 7406 of LNCS, pages 1–10. Springer, 2012.

56. A. Platzer. Differential dynamic logic for hybrid systems. Journal of Automated Reasoning, 41(2):143–
189, 2008.

57. A. Platzer and E. M. Clarke. Computing differential invariants of hybrid systems as fixedpoints. In
Gupta and Malik [28], pages 176–189.

58. A. Platzer and J. Quesel. KeYmaera: A hybrid theorem prover for hybrid systems (system description).
In A. Armando, P. Baumgartner, and G. Dowek, editors, Automated Reasoning, 4th International Joint
Conference, IJCAR 2008, Sydney, Australia, August 12-15, 2008, Proceedings, volume 5195 of LNCS,
pages 171–178. Springer, 2008.

59. A. Podelski and S. Wagner. Model checking of hybrid systems: From reachability towards stability.
In J. P. Hespanha and A. Tiwari, editors, Hybrid Systems: Computation and Control, 9th International
Workshop, HSCC 2006, Santa Barbara, CA, USA, March 29-31, 2006, Proceedings, volume 3927 of
LNCS, pages 507–521. Springer, 2006.

60. A. Podelski and S. Wagner. Region stability proofs for hybrid systems. In J. Raskin and P. S. Thia-
garajan, editors, Formal Modeling and Analysis of Timed Systems, 5th International Conference, FOR-
MATS 2007, Salzburg, Austria, October 3-5, 2007, Proceedings, volume 4763 of LNCS, pages 320–335.
Springer, 2007.

61. A. Podelski and S. Wagner. A sound and complete proof rule for region stability of hybrid systems. In
Bemporad et al. [4], pages 750–753.

62. P. Prabhakar and M. G. Soto. Abstraction based model-checking of stability of hybrid systems. In
Sharygina and Veith [69], pages 280–295.

63. S. Prajna and A. Jadbabaie. Safety verification of hybrid systems using barrier certificates. In R. Alur
and G. J. Pappas, editors, Hybrid Systems: Computation and Control, 7th International Workshop, HSCC
2004, Philadelphia, PA, USA, March 25-27, 2004, Proceedings, volume 2993 of LNCS, pages 477–492.
Springer, 2004.

64. S. Ratschan and Z. She. Providing a basin of attraction to a target region of polynomial systems by
computation of Lyapunov-like functions. SIAM Journal of Control and Optimization, 48(7):4377–4394,
July 2010.

65. R. Rebiha, A. V. Moura, and N. Matringe. Generating invariants for non-linear hybrid systems. Theo-
retical Computer Science, 594:180–200, 2015.

24 A. Sogokon, P.B. Jackson and T.T. Johnson

66. D. Richardson. Some undecidable problems involving elementary functions of a real variable. Journal
of Symbolic Logic, 33(4):514–520, 12 1968.

67. S. Sankaranarayanan. Automatic invariant generation for hybrid systems using ideal fixed points. In
K. H. Johansson and W. Yi, editors, Proceedings of the 13th ACM International Conference on Hybrid
Systems: Computation and Control, HSCC 2010, Stockholm, Sweden, April 12-15, 2010, pages 221–230.
ACM, 2010.

68. S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Constructing invariants for hybrid systems. Formal
Methods in System Design, 32(1):25–55, 2008.

69. N. Sharygina and H. Veith, editors. Computer Aided Verification - 25th International Conference, CAV
2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings, volume 8044 of LNCS. Springer, 2013.

70. A. Sogokon, K. Ghorbal, P. B. Jackson, and A. Platzer. A method for invariant generation for polynomial
continuous systems. In B. Jobstmann and K. R. M. Leino, editors, Verification, Model Checking, and
Abstract Interpretation - 17th International Conference, VMCAI 2016, St. Petersburg, FL, USA, January
17-19, 2016. Proceedings, volume 9583 of LNCS, pages 268–288. Springer, 2016.

71. A. Sogokon, K. Ghorbal, and T. T. Johnson. Operational models for piecewise-smooth systems. ACM
Transactions on Embedded Computing Systems, 16(5):185:1–185:19, 2017.

72. A. Sogokon and P. B. Jackson. Direct formal verification of liveness properties in continuous and hy-
brid dynamical systems. In N. Bjørner and F. S. de Boer, editors, FM 2015: Formal Methods - 20th
International Symposium, Oslo, Norway, June 24-26, 2015, Proceedings, volume 9109 of LNCS, pages
514–531. Springer, 2015.

73. A. W. Strzeboński. Cylindrical decomposition for systems transcendental in the first variable. Journal
of Symbolic Computation, 46(11):1284–1290, 2011.

74. A. Taly and A. Tiwari. Deductive verification of continuous dynamical systems. In R. Kannan and
K. N. Kumar, editors, IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2009, December 15-17, 2009, IIT Kanpur, India, volume 4 of LIPIcs, pages
383–394. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2009.

75. A. Tiwari. Generating box invariants. In M. Egerstedt and B. Mishra, editors, Hybrid Systems: Compu-
tation and Control, 11th International Workshop, HSCC 2008, St. Louis, MO, USA, April 22-24, 2008.
Proceedings, volume 4981 of LNCS, pages 658–661. Springer, 2008.

76. A. Vannelli and M. Vidyasagar. Maximal Lyapunov functions and domains of attraction for autonomous
nonlinear systems. Automatica, 21(1):69 – 80, 1985.

77. S. Wang, N. Zhan, and L. Zou. An improved HHL prover: An interactive theorem prover for hybrid
systems. In M. J. Butler, S. Conchon, and F. Zaı̈di, editors, Formal Methods and Software Engineering -
17th International Conference on Formal Engineering Methods, ICFEM 2015, Paris, France, November
3-5, 2015, Proceedings, volume 9407 of LNCS, pages 382–399. Springer, 2015.

78. B. Xue, A. Easwaran, N. Cho, and M. Fränzle. Reach-avoid verification for nonlinear systems based on
boundary analysis. IEEE Transaction on Automatic Control, 62(7):3518–3523, 2017.

79. H. Zhao, M. Yang, N. Zhan, B. Gu, L. Zou, and Y. Chen. Formal verification of a descent guidance
control program of a lunar lander. In C. B. Jones, P. Pihlajasaari, and J. Sun, editors, FM 2014: Formal
Methods - 19th International Symposium, Singapore, May 12-16, 2014. Proceedings, volume 8442 of
LNCS, pages 733–748. Springer, 2014.

80. H. Zhao, N. Zhan, and D. Kapur. Synthesizing switching controllers for hybrid systems by generating
invariants. In Theories of Programming and Formal Methods - Essays Dedicated to Jifeng He on the
Occasion of His 70th Birthday, pages 354–373, 2013.

Verifying safety and persistence in hybrid systems using flowpipes and continuous invariants. 25

9 Appendix A.

(a) d = 0.05. (b) d = 0.005.

Figure 10: Flowpipes from an initial box S (in green) around a stable equilibrium of an
oscillator under different damping. Taylor model order: 10; time bound: 15. Flowpipe con-
vergence is easier to show for larger damping factors.

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 2 4 6 8 10 12 14 16

x
1

t

(a) Bounds on the x1 component; d = 0.05.

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 2 4 6 8 10 12 14 16

x
1

t

(b) Bounds on the x1 component; d = 0.005.

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 2 4 6 8 10 12 14 16

x
2

t

(c) Bounds on the x2 component; d = 0.05.

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 2 4 6 8 10 12 14 16

x
2

t

(d) Bounds on the x2 component; d = 0.005.

Figure 11: Bounds on flowpipes from an initial box S.

	Introduction
	Safety and Persistence for Hybrid Automata
	An example persistence verification problem
	Verifying Persistence
	Flowpipes for proving persistence
	Outlook and Challenges to Automation
	Related Work
	Conclusion
	Appendix A.

