
ZygOS: Achieving Low Tail Latency for
Microsecond-scale Networked Tasks

George Prekas*

EPFL, Switzerland
Marios Kogias*

EPFL, Switzerland
Edouard Bugnion

EPFL, Switzerland

ABSTRACT
This paper focuses on the efficient scheduling on multicore
systems of very fine-grain networked tasks, which are the
typical building block of online data-intensive applications.
The explicit goal is to deliver high throughput (millions of
remote procedure calls per second) for tail latency service-
level objectives that are a small multiple of the task size.

We present ZYGOS, a system optimized for µs-scale, in-
memory computing on multicore servers. It implements a
work-conserving scheduler within a specialized operating
system designed for high request rates and a large num-
ber of network connections. ZYGOS uses a combination
of shared-memory data structures, multi-queue NICs, and
inter-processor interrupts to rebalance work across cores.

For an aggressive service-level objective expressed at the
99th percentile, ZYGOS achieves 75% of the maximum pos-
sible load determined by a theoretical, zero-overhead model
(centralized queueing with FCFS) for 10µs tasks, and 88%
for 25µs tasks.

We evaluate ZYGOS with a networked version of Silo, a
state-of-the-art in-memory transactional database, running
TPC-C. For a service-level objective of 1000µs latency at the
99th percentile, ZYGOS can deliver a 1.63× speedup over
Linux (because of its dataplane architecture) and a 1.26×
speedup over IX, a state-of-the-art dataplane (because of its
work-conserving scheduler).

KEYWORDS
Tail latency, Microsecond-scale computing

ACM Reference Format:
George Prekas, Marios Kogias, and Edouard Bugnion. 2017. Zy-
gOS: Achieving Low Tail Latency for Microsecond-scale Networked

*co-equal first author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SOSP ’17, October 28, 2017, Shanghai, China
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5085-3/17/10. . . $15.00
https://doi.org/10.1145/3132747.3132780

Tasks. In Proceedings of SOSP ’17. ACM, New York, NY, USA,
17 pages. https://doi.org/10.1145/3132747.3132780

1 INTRODUCTION
To meet service-level objectives (SLO), web-scale online data-
intensive applications such as search, e-commerce, and social
applications rely on the scale-out architectures of modern,
warehouse-scale datacenters [2]. In such deployments, a sin-
gle application can comprise of hundreds of software compo-
nents, deployed on thousands of servers organized in multiple
tiers and interconnected by commodity Ethernet switches.
Such applications must support high concurrent connection
counts and operate with user-facing SLO, often defined in
terms of tail latency to meet business objectives [1, 12, 47].
To meet these objectives, most such applications distribute
all critical data (e.g., the social graph) in the memory of hun-
dreds of data services, such as memory-resident transactional
databases [20, 62, 65, 67, 68], NoSQL databases [44, 55], key-
value stores [15, 39, 43, 74], or specialized graph stores [6].

These in-memory data services typically service requests
from hundreds of application servers (high fan-in). Because
each user request often involves hundreds of data services
(high fan-out) and must wait for the laggard for completion,
the SLO of the data services must consider the long tail of
the latency distributions of requests [12]. Individual task sizes
often require only a handful of µs of user-level execution
each. These services would therefore ideally execute at the
highest throughput, efficiently use all system resources (CPU,
NIC, and memory), and deliver a tail-latency SLO that is only
a small multiple of the typical task service time [3].

This hunt for the killer microseconds [3] requires researchers
to revisit assumptions across the network and compute stacks,
whose policies and implementations play a significant role in
exacerbating the problem [34].

Our work focuses on the efficient scheduling on multi-
core systems of these very fine-grain in-memory services.
The theoretical answer is well understood: (a) single-queue,
multiple-processor models deliver lower tail latency than par-
allel single-queue, single-processor models and (b) FCFS
delivers the best tail latency for low-dispersion tasks while
processor sharing delivers superior results in high dispersion
service time distributions [70].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148033308?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3132747.3132780
https://doi.org/10.1145/3132747.3132780

SOSP ’17, October 28, 2017, Shanghai, China G.Prekas, M.Kogias and E.Bugnion

The systems answer is, unfortunately, a lot less obvious,
in particular when considering high request rates consist-
ing of short messages and small processing times. In such
situations, the state-of-the-art uses multi-queue NICs (e.g.,
RSS [57]) to scale the networking stack across the multiple
cores of the system. Current designs force users to choose be-
tween conventional operating systems (i.e., typically Linux),
and more specialized kernel-bypass approaches. The for-
mer can efficiently schedule the resources of a multi-core
server and prioritize latency-sensitive tasks [8] but suffers
from high overheads for µs-scale tasks. The latter improves
throughput substantially (by up to 6× for key-value stores [5])
through sweeping simplifications such as separation of control
from the dataplane execution, polling, run-to-completion, and
synchronization-free, flow-consistent mapping of requests to
cores [5, 26, 27, 39, 42, 51].

These sweeping simplifications lead to two related forms
of inefficiencies: (a) the dataplane is not a work conserving
scheduler, i.e., a core may be idle while there are pending re-
quests; and (b) the dataplane suffers from head-of-line block-
ing, i.e., a request may be blocked until the previous tasks
complete execution. While these limitations might be accept-
able to workloads with near-deterministic task execution time
and relatively loose SLO (e.g., some widely-studied mem-
cached workloads [1, 43] with an SLO at > 100× the mean
service time [5]), such assumptions break down when consid-
ering more complex workloads, e.g., in-memory transaction
processing with a TPC-C-like mix of requests or with more
aggressive SLO targets.

We present ZYGOS1, a new approach to system software
optimized for µs-scale, in-memory computing. ZYGOS im-
plements a work-conserving scheduler free of any head-of-
line blocking. While the design decisions voluntarily deviate
from dataplane principles, ZYGOS retains the bulk of their
performance advantages. The design, implementation, and
evaluation of ZYGOS makes the following contributions:

(1) The design of ZYGOS, which leverages many con-
ventional operating system building blocks such as the use
of symmetric multiprocessing networking stacks, alternate
use of polling and interrupts, inter-processor interrupts (IPI),
and task stealing with the overall goal of delivering a work-
conserving schedule. ZYGOS is architected into three distinct
layers: (a) a lower networking layer, which runs in strict iso-
lation on each core, (b) a middle shuffle layer which allows
idle cores to aggressively steal pending events, and (c) an
upper execution layer, which exposes a commutative API to
applications for scalability [10]. The shuffle layer eliminates
head-of-line-blocking while also offering strong ordering se-
mantics of events associated with the same connection.

1The Greek word for balancing scales.

(2) The implementation of ZYGOS, which includes an idle
loop logic designed to aggressively identify task stealing op-
portunities throughout the operating system and down to the
NIC hardware queues. Our implementation leverages hard-
ware virtualization and the Dune framework [4] and handles
IPIs in an exit-less manner similar to ELI [22].

(3) A methodology using microbenchmarks with synthetic
service times to identify system overheads as a function of
task size and distribution. This methodology allows us to
identify both design limitations and implementation over-
heads. We apply this approach to Linux for event-driven
execution models (using both partitioned and floating con-
nections among threads), IX and ZYGOS and show that all
converge as the task granularity increases, but at noticeably
different rates, to distinct, well-understood models. For an
SLO of 10× the mean service time at the 99th percentile, ZY-
GOS achieves 75% of the maximum possible theoretical load
for 10µs tasks, and 88% of the equivalent load for 25µs tasks
(§6.1).

(4) We compare ZYGOS to IX, a state-of-the-art data-
plane with strict run-to-completion that partitions flows onto
cores [5]. While ZYGOS’s scheduler introduces some neces-
sary buffering, communication and synchronization (which
are measurable for extremely small tasks), it eliminates head-
of-line blocking and clearly outperforms IX for tasks ≥10µs
(§6.1). IX does outperform ZYGOS for workloads with very
small task sizes such as memcached. The difference is pri-
marily due to IX’s adaptive bounded batching, which is not
currently supported in ZYGOS. (§6.2)

(5) Last but not least, we evaluate the benefits of ZYGOS
for an in-memory, transactional database running the TPC-
C workload. Our setup uses Silo [65], a state-of-the-art, in-
memory transactional database prototype. As Silo is only a
library, we added client/server support to Silo, ported it to
Linux, IX, and ZYGOS, and benchmarked it using an open-
loop load generator for an SLO of 1000µs at the 99th per-
centile tail latency. ZYGOS can deliver a 1.63× speedup over
Linux and a 1.26× speedup over IX. The speedup over Linux
is explained by the use of many dataplane implementation
principles in ZYGOS. The speedup over IX is explained by
ZYGOS’s work-conserving scheduler, which rebalances tasks
to deliver consistently low tail latency nearly up to the point
of saturation (§6.3).

The source code of ZYGOS, along with benchmarks, scripts
and simulation models, is available in open source [75].

The rest of the paper is organized as follows: §2 provides
background on the problem and the theory. §3 describes the
experimental methodology and characterizes existing systems.
We describe the design (§4), implementation (§5) and evalua-
tion of ZYGOS (§6). We discuss a key tradeoff (§7), related
work (§8), and conclude.

ZygOS: Achieving Low Tail Latency for µs-scale Networked Tasks SOSP ’17, October 28, 2017, Shanghai, China

2 BACKGROUND
2.1 Scaling remote procedure calls
In-memory data services are typically exposed by remote
procedure calls (RPC). The problem of efficiently handling
incoming RPCs dates back to the original C10k problem [7]
when socket scalability was the primary bottleneck. Today,
fine-tuned commodity operating systems can serve millions
of requests per second and over a million of concurrent con-
nections on a commodity server [50, 69, 72].

The initial approaches to building scalable applications al-
located a kernel thread or process per connection; servicing a
new request required a scheduling decision. However, despite
the sophistication of modern operating system schedulers
such as Completely Fair Scheduler (CFS) [8] and Borrowed
Virtual Time (BVT) [16], context switch and stack manage-
ment overheads made developers move to more performant
designs to serve incoming requests.

Today’s scalable designs fall into two main event-oriented
patterns: symmetrical and asymmetrical ones. Symmetrical
designs split connections onto threads, and each thread in-
teracts with the operating system using non-blocking system
calls. This pattern is used by the popular libevent and
libuv frameworks [37, 38]. On Linux, this pattern typically
relies on the epoll system call, which has long provided
a way to statically map connections to threads. To avoid
cases of load imbalance across cores because of imbalance
across connections, developers tried sharing the same con-
nection among multiple threads. However, this led to thun-
dering herd problems [32]. The recent addition in Linux 4.5
of EPOLLEXCLUSIVE avoids such problems since in most
cases only one thread is woken up to serve epoll [19].

In the asymmetrical pattern, a small number of threads han-
dle all network I/O, identify RPC boundaries and add RPC
requests to a centralized queue from which other tasks pull re-
quests. This pattern is used by frameworks such as gRPC [23]
and applications such as recent versions of nginx [46] and
Apache Lucene [41]. While this pattern may increase the la-
tency of an individual request and impact throughput when
the tasks are small, it provides for an elegant separation of
concerns and enables the efficient use of all worker cores.

2.2 Kernel bypass and sweeping
simplifications

Data plane approaches such as IX [5], Arrakis [51] and user-
level stacks [14, 26, 52, 56, 59, 63] bypass the kernel and rely
on I/O polling to both increase throughput and reduce latency
jitter [34, 36]. For example, IX increases the throughput of
memcached by up to 6.4× over Linux [5].

While these sweeping simplifications provide substantial
throughput improvements, they come at a key cost when it
comes to resource efficiency: the synchronization-free nature

FCFS

FCFS

(c) M/G/2/PS

ƛ

(b) 2xM/G/1/FCFS

FCFS

ƛ

FCFS

random

selector

(a) M/G/2/FCFS

PS

PS
ƛ ƛ

random

selector

PS

PS

(d) 2xM/G/1/PS

Figure 1: Queuing models for n = 2 processors.

of dataplanes forces each thread to process only the packets
that were directed to it by the NIC hardware. Assuming a
balanced, high-connection count fan-in pattern, such a design
does not substantially impact throughput or even mean latency
as all cores would get on average the same amount of work. It,
however, has a dramatic impact on tail latency when the load
is below saturation as some cores may be idle while others
have a backlog. Dataplanes that rely on historical information
to rebalance future traffic from the NIC can only address
persistent imbalances and resource allocations problems [5].
The same limitation exists for applications that are explicitly
designed to statistically distribute the load on all cores such
as MICA in its CREW and CRCW execution models [39].
While such a design prevents any sustained imbalance, the
randomized selection process of mapping requests to cores
does nothing to prevent temporary imbalance between cores.

2.3 Just enough queuing theory
There are at least three distinct forms of imbalance which
impact tail latency that can be observed in systems:

(1) Persistent imbalance occurs when different NIC queues
observe different packet arrival rates over long intervals.
Unless the system can share the load dynamically, some
cores will be busier than others. This situation can occur
if there is connection skew when some clients request
substantially more data than the average, or if there is
data access skew (e.g., the CREW protocol in MICA
balances reads but not writes across cores [39]).

(2) Arrival bursts cause temporary queuing even when the
system is not saturated. The well-known Poisson ar-
rival process has such bursts which cause the gradual
increase in tail latency as a function of load, even if the
time to process each request is fixed. In a multi-queue
system, the Poisson arrival process generates bursts on
different cores at different points in time. This creates
a form of temporary imbalance that also impacts tail
latency.

SOSP ’17, October 28, 2017, Shanghai, China G.Prekas, M.Kogias and E.Bugnion

16xM/G/1/PS 16xM/G/1/FCFS M/G/16/FCFS M/G/16/PS

0.25 0.50 0.75 1.00

Load

0

2

4

6

8

10

12

14

L
a
te

n
c
y

(a) Deterministic

0.25 0.50 0.75 1.00

Load

0

2

4

6

8

10

12

14

(b) Exponential

0.25 0.50 0.75 1.00

Load

0

2

4

6

8

10

12

14

(c) Bimodal-1

0.25 0.50 0.75 1.00

Load

0

2

4

6

8

10

12

14

(d) Bimodal-2

Figure 2: Simulation results for the 99th percentile tail latency for four service time distributions with S̄ = 1.

(3) Service time variability will also create backlog and
head-of-line blocking. A long request can occupy the
processor for a long time, thus leading to a backlog of
pending requests and a severe increase in tail latency.

We use four open-loop queuing models to build an intuition
for the impact of arrival bursts and service time variability
on tail latency. We use Kendall’s notation to describe the
models, where in the following expression A/S/n/K, A is
the inter-arrival distribution, S is the service time distribution,
n is the number of workers and K is the policy implemented,
i.e., first-come-first-serve (FCFS) or processor sharing (PS).
For simplicity of the analysis, all models assume a Poisson
inter-arrival time of requests (A=M). This is expected of many
open-queuing models and representative of datacenter traffic
with high fan-in connection counts. The Poisson process will
generate arrival bursts and temporary imbalance in the multi-
queue models, but no persistent imbalance.

Figure 1 illustrates the four different modes. Each delivers
the same maximum throughput at saturation (λ = n/S̄), but
with different tail latencies. The models idealize the imple-
mentations of the systems of §2.

• The centralized-FCFS model (formally M/G/n/FCFS)
idealizes event-driven applications that process events
from a single queue or that float connections across
cores (e.g., using the epoll exclusive flag).
• The partitioned-FCFS model (formally n×M/G/1/FCFS)

idealizes event-driven applications that partition con-
nections among cores (e.g., libevent-based applica-
tions) and associate each core with its own private work
queue. This model can be deployed on conventional
operating systems or shared-nothing dataplanes

• M/G/n/PS idealizes the thread-oriented pattern (1 thread
per connection) deployed on time-sharing operating sys-
tems. In practice, the task size granularity must be a
multiple of the operating system time quantum.
• n×M/G/1/PS similarly idealizes the thread-oriented pat-

tern when the operating system does not rebalance
threads among cores.

Figure 2 illustrates simulation results for these idealized
queueing models for a system with n = 16 processors. The
figure shows the result for four well-known distributions [40]:
• deterministic P[X = S̄] = 1
• exponential with mean service time S̄
• bimodal-1:P[X = S̄/2] = .9; P[X = 5.5 × S̄] = .1
• bimodal-2:P[X = S̄/2] = .999; P[X = 500.5×S̄] = .001

For each distribution, Figure 2 shows the tail request la-
tency (queuing delay + service time) at the 99th percentile as
a function of the load. Intuitively we understand that as the
system load increases and approaches the system’s limits, the
number of requests in the queues also increases. That leads to
an increase in the queueing time and tail latency. As expected,
the minimum 99th-percentile latency is 1 for the deterministic
distribution and 4.6 for the exponential distribution. As for
the two bimodal distribution, b1 has a minimum tail latency
of 5.5, which corresponds to the slow requests and b2 has
a minimum tail latency of 0.5, which corresponds to its fast
requests.

We make two observations that inform our system design:

Observation 1: Single-queue systems (i.e., M/G/n/*) per-
form better compared to systems with multiple queues
(i.e., n×M/G/1/*): Systems with multiple queues, even with
random assignment of events to queues, suffer from tempo-
rary load imbalance. This imbalance can create a backlog on
some processors while other queues are empty. The lack of

ZygOS: Achieving Low Tail Latency for µs-scale Networked Tasks SOSP ’17, October 28, 2017, Shanghai, China

work conservation in such models limits performance. In con-
trast, single-queue models with a work-conserving scheduler
(whether FCFS or PS) can immediately schedule the next task
on any available processor.

Observation 2: FCFS performs better in regards to tail
latency for distributions with low dispersion: This result
has also been theoretically analyzed by Wierman et al. [70].
In Figure 2, FCFS outperforms PS for the deterministic, ex-
ponential and bimodal-1 distribution. PS only outperforms
FCFS when the variance in service times increases, as in the
case for bimodal-2. Note that partitioned-FCFS performs that
poorly in bimodal-2 that is not obvious in these axis scales.

3 EXPERIMENTAL METHODOLOGY
We now describe the experimental methodology used to eval-
uate existing low-latency systems. The challenge is to define
metrics that help determine (a) the inherent design tradeoffs
by comparing real-life systems with the idealized models of
§2.3; and (b) the sweet spot, in terms of mean service time and
distribution, of each system. We use synthetic microbench-
marks to compare analytical results with experimental base-
line results for three OS configurations.

3.1 Approach and metrics
We rely on microbenchmarks with synthetic execution times
to systematically compare different systems approaches for
different task granularities. From the perspective of user-level
execution, the applications are trivial: for each request, the
application spins for an amount of time randomly selected to
match both service time (S̄) and distribution. From a systems
perspective, the application follows the event-driven model
to accept remote procedure calls sent over TCP/IP socket
by client machines. The clients approximate an open-loop
load-generator where incoming requests follow a Poisson
inter-arrival time on randomly-selected connections [58]. All
throughputs (requests per second) and 99th percentile tail
latencies are measured on the client-side.

We use two metrics to compare systems: (a) the conven-
tional "tail latency vs. throughput" is used to compare the
efficiency of different systems for a given task granularity
and distribution; (b) the "maximum load @ SLO" is used to
compare the efficiency across timescales, for a given SLO
expressed as a multiple of the mean service time.

This second metric is used to determine how fast different
systems converge (or not) to the expected behavior of their
idealized model, as the service time increases. For example,
consider an SLO that requires 99% of requests to complete
within ≤ 10 × S̄ . Queuing theory predicts a maximum load
for each configuration, e.g., for the exponential distribution a

load of 53.7% for the partitioned-FCFS model and of 96.3%
for centralized-FCFS.

3.2 Experimental Environment
Our experimental setup consists of a cluster of 11 clients and
one server connected by a Quanta/Cumulus 48x10GbE switch
with a Broadcom Trident+ ASIC. The client machines are a
mix of Xeon E5-2637 @ 3.5 GHz and Xeon E5-2650 @ 2.6
GHz. The server is a Xeon E5-2665 @ 2.4 GHz with 8 cores
(16 hyperthreads) and 256 GB of DRAM. All machines are
configured with Intel x520 10GbE NICs (82599EB chipset).
We connect the clients and the server to the switch through a
single NIC port each. The client machines run mutilate [34] as
a load generator: 10 machines generate load and the 11th one
measures latency. The machines connect to the server over a
total of 2752 TCP/IP connections. To minimize client laten-
cies, we modified the latency-measurement agent of mutilate
to use a DPDK-based, simple TCP/IP stack.

The machines run an Ubuntu LTS 16.04 distribution run-
ning Linux kernel version 4.11. Systems are tuned to reduce
jitter: all power management features, including CPU fre-
quency governors and TurboBoost, and support for transpar-
ent huge pages, are disabled.

3.3 Evaluated Systems
The synthetic microbenchmark models an event-oriented,
scalable RPC server. During the setup phase, it accepts all
connections from the client machines. During the benchmark,
it simply receives request messages from the open connec-
tions, spins during the requested amount of time and returns
a response. The server is setup as a 16-way multi-threaded
application that uses all cores (and hyperthreads) and mem-
ory of the CPU socket connected to the NIC. We deliberately
leave the other socket unused to eliminate the potential impact
of NUMA policies in this study. We compare three config-
urations designed to support a large number of incoming
connections:

• Linux-partitioned: This mode minimizes communi-
cation and application logic at the expense of load-
imbalance: each thread accepts its set of connections
(as directed by the RSS in the NIC [57]) and then polls
on that same set during the benchmark. Partitioned-
FCFS models the performance upper bound.
• Linux-floating: In this mode, all open connections are

put into a single pool from which all threads may poll.
Our implementation uses a simple locking protocol to
serialize access to the same socket. Centralized-FCFS
models the upper bound of performance.
• IX: The application uses the native dataplane ABI to re-

ceive socket events and respond correspondingly. This
is also modeled as centralized-FCFS.

SOSP ’17, October 28, 2017, Shanghai, China G.Prekas, M.Kogias and E.Bugnion

M/G/16/FCFS 16xM/G/1/FCFS Linux (floating connections) IX Linux (partitioned connections)

0 50 100 150 200

Service time (µs)

0.0

0.2

0.4

0.6

0.8

1.0

L
o
a
d

(a) Deterministic

0 50 100 150 200

Service time (µs)

0.0

0.2

0.4

0.6

0.8

1.0

(b) Exponential

0 50 100 150 200

Service time (µs)

0.0

0.2

0.4

0.6

0.8

1.0

(c) Bimodal-1

Figure 3: Maximum load that meets the SLO as a function of the mean service time S̄ . The SLO is set at ≤ (10 × S̄)
at the 99th percentile. The grey lines correspond to the ideal upper bounds determined by the centralized-FCFS and
partitioned-FCFS models.

Linux configuration: The Linux systems were tuned to min-
imize latency and maximize throughput, by settling them on
a configuration that limits the number of returned events by
epoll to 1. We did observe that some of these settings had
a surprisingly small, or even negative impact on either la-
tency or throughput (e.g., the EPOLLEXCLUSIVE commit
evaluated the impact on thundering herds on a 250-thread
setup whereas we only use one per core [19]). We attribute
this to the fact that we pinned each application thread to a
distinct core, thereby avoiding many of the subtle interactions
associated with CPU scheduling.

IX configuration: IX can process bounded batches of packets
to completion, which improves throughput only for very small
task sizes. Unless when explicitly mentioned, we disabled it
in our experiments as disabling batching noticeably improves
tail latency. We also disabled the control plane and configured
IX to use all 16 hardware threads of the socket and use the
CPU at its nominal frequency of 2.4GHz.

3.4 Baseline results
Figure 3 shows the maximum load that meets the SLO of the
99th percentile ≤ 10 × S̄ for three baseline operating system
configurations described in §3.3. We include in greyscale two
horizontal lines that correspond to the upper bound in perfor-
mance, as predicted by the partitioned-FCFS and centralized-
FCFS, respectively. These upper bounds assume zero operat-
ing system overheads, no scheduling overheads, no propaga-
tion delays, no head-of-line blocking, no interrupt delays, etc.

In addition, the centralized model assumes a perfect, global
FCFS order of the allocation of requests to idle processors.

Figure 3 shows the result for three of the four distributions
studied analytically in Figure 2. We omit the bimodal-2 results
as the analysis of §2.3 showed that multi-queue systems have
pathological tail latency with an FCFS scheduler. The figure
shows clearly that:

(a) IX and Linux-partitioned both converge asymp-
totically to the expected 16×M/G/1 level of performance. In-
tuitively, we understand that as the service time increases, the
overhead of the operating system becomes less prevalent. IX,
which is optimized for small tasks, reaches 90% efficiency
with tasks ≥25µs, ≥25µs, and ≥60µs for the deterministic,
exponential, and bimodal-1 distributions. Larger tasks are
required for Linux-partitioned to reach the same level of effi-
ciency, i.e., ≥120µs, ≥120µs, and ≥90µs, respectively.

(b) Yet, Linux-floating actually provides the best
performance for larger tasks and slowly converges to the upper
bound predicted by the centralized-FCFS model. The ability
to rebalance tasks across cores allows it to outperform IX for
tasks that are ≥50µs, ≥20µs, and ≥14µs for the deterministic,
exponential and bimodal-1 distributions.

4 DESIGN
4.1 Requirements
The theoretical analysis suggests, and in fact proves, that
synchronization-free dataplane approaches cannot provide
a robust solution to the tail latency problem, in particular
when the service time distribution has a high dispersion. Yet,

ZygOS: Achieving Low Tail Latency for µs-scale Networked Tasks SOSP ’17, October 28, 2017, Shanghai, China

app

tcp/ip

in

tcp/ip

out

home core

1

2

4

3

5

k
e
r
n
e
l

u
s
e
r

tcp/ip

in

remote core

steal

app

ø

ø

ø

a

bshuffle queue Remote

batched syscalls

3

shuffle

layer

tcp/ip

out

Event

Conditions

Batched

syscalls

Figure 4: Dataflow in the ZYGOS operating system. Steps (1) – (6) correspond to the normal execution on the home core.
Steps (a)-(b) occur during stealing and involve the home and remote cores.

synchronization-free dataplanes provide substantial through-
put improvements over conventional operating systems.

We design ZYGOS, a single-address space operating sys-
tem for the latency-sensitive data services, components of
large-scale, online, data-intensive applications. Our design
does not make any client-side assumptions or require any
changes to the network protocol stack. We set the following
hard requirements for our system design:

(1) Designed for current-generation datacenter architec-
tures: Xeon multicore processors, 10GbE+ NICs with state-
less offloads, Ethernet connectivity.

(2) Build a robust, multi-core, work-conserving scheduler
free of head-of-line blocking for event-driven applications.

(3) Provide clean, ordering semantics of task-stealing oper-
ations to multi-threaded applications when handling back-to-
back events for the same socket.

(4) Minimally degrade the throughput of short tasks when
compared with state-of-the-art, shared-nothing dataplanes.

These hard requirements constrain the design space. While
commodity operating systems such as Linux meet require-
ments #1 and #2, they provide only partial support for #3,
which we will discuss in §4.3. As discussed in §3, the strict
run-to-completion approach of dataplanes and their shared-
nothing design is not an appropriate architectural foundation.
We also rule out asymmetrical approaches which dedicate
some cores to specific purposes (such as network process-
ing) as the partitioning of resources is highly sensitive to
assumptions on task granularities.

4.2 ZYGOS High-level Design
ZYGOS shares a number of architectural and implementation
building blocks with IX [5]: each ZYGOS instance runs a
single application in a single address space, and accesses
the network through its dedicated NIC (physical or virtual
function) with a dedicated IP address; each ZYGOS instance
runs on top of the Dune framework [4]; a separate control
plane can adjust resource allocations among instances.

Despite the lineage, ZYGOS is designed with radically
different scheduling and communication principles than IX:
IX is designed around a coherency-free execution model, i.e.,
no cache-coherence traffic among cores is necessary, in the
common case, to receive packets, open connections, or exe-
cute application tasks; ZYGOS is optimized for task stealing
which has intrinsic communication requirements. IX achieves
high throughput through adaptive batching, an approach that
ensures that a batch of packets is first carried through the
networking stack and then —without further buffering— pro-
cessed by the application; ZYGOS uses intermediate buffering
to enable stealing. Finally, IX is also designed around a run-
to-completion model where it alternates execution between
network processing and application execution, which cannot
be interrupted; ZYGOS relies on intermediate buffering and
IPIs to eliminate head-of-line blocking.

ZYGOS achieves work-conservation with minimal through-
put impact by architecturally separating the execution stack
into three distinct layers, illustrated in Figure 4:

(1) the lower networking layer executes independently on
each core, in a coherency-free manner. This includes the hard-
ware/software driver layer, which relies on RSS to dispatch
flow-consistent traffic to one receive queue per core. This also

SOSP ’17, October 28, 2017, Shanghai, China G.Prekas, M.Kogias and E.Bugnion

includes the layer-4 TCP/IP and UDP/IP layer, all of their
associated data structures, intermingled queues, and timers.
This design eliminates the need for any locking within the
networking stack and ensures good cache locality.

(2) the intermediate shuffle layer introduces a new data
structure per core: the shuffle queue is a single-producer,
multiple-consumer queue which contains the list of ready
connections originating from a given core. Connections in the
shuffle queue contain at least one outstanding event and can
be consumed by the core that produced it —the home core—,
or atomically stolen by another remote core.

(3) the application execution layer manages the interac-
tions between the kernel and the application through event
conditions and batched system calls [61]. Each core has its
own data structures and also operates in a coherency-free exe-
cution manner within that layer. Obviously, the application
itself may have synchronization or shared-memory commu-
nication between cores and does not, in the general case,
execute in a coherency-free manner.

Figure 4 shows the typical flow of events. Events numbered
(1) – (5) occur when the packet is processed on its home core
(i.e., when no stealing occurs): (1) the driver dequeues packets
from the hardware ring into a software queue; (2) the TCP/IP
stack processes a batch of packets and enqueues ready con-
nections into the shuffle queue; (3) the application execution
layer dequeues the top entry, generates corresponding event
conditions for the application and transfers execution to it.
This, in turn, generates batched, system calls; (4) some system
calls may call back into the network stack leading to execution
of timers and/or (5) packet transmits. While the control flow
resembles that of IX, the data flow is distinct as the shuffle
queue breaks the run-to-completion assumptions as data is
asynchronously produced into it and consumed from it.

Figure 4 also shows the interactions during a steal as the
steps (a)-(b) in red. Consider the case where the remote core
has no pending packets in the hardware queue, no pending
packets in the software queue and no pending events in its
shuffle queue. In step (a), it can then steal from another shuffle
queue, which leads to the normal execution of the events in
userspace, as step (3). The resulting batched system calls
that relate to the networking stack are then enqueued for
processing back at the home core in a multiple-producer,
single-consumer queue, shown in step (b). Similar to the TCP
input path, the TCP output path therefore also executes in a
coherency-free manner on the home core.

Figure 4 is only a high-level illustration of the system. In
ZYGOS, each core is the home core of a set of flow-groups,
as defined by the NIC RSS configuration and can act as the
remote core for any other flow whenever it is idle. We now
describe the ordering semantics that enable stealing (§4.3)

and the data structures of the shuffle queue that eliminates
head-of-line blocking (§4.4).

4.3 Ordering semantics in multi-threaded
applications

When TCP sockets are statically assigned to threads, applica-
tions can rely on intuitive ordering and concurrency seman-
tics [33]. The situation changes dramatically when sockets
can float across cores as the read system call is not commu-
tative when two threads access the same socket. Even though
the Linux system call epoll allows it, and was even recently
optimized for this use case [19], the implications on applica-
tions are far from trivial. Consider the case of back-to-back
messages sent to the same socket (e.g., two distinct RPC of
the memcached protocol) for a multi-threaded application
that uses the Linux-floating model of §3.3. Unless the applica-
tion takes additional steps at user-level to synchronize across
requests, race conditions lead to broken parsing of requests,
out-of-order responses, or worse, intermingled responses on
the wire. As a practical manner, applications or frameworks
must, therefore, build their own synchronization and lock-
ing layer to eliminate these system races. This is sufficiently
non-trivial that no known popular applications have done it to
date, to the best of our knowledge. A related approach is the
recent KCM kernel patch that provides a multiplexing layer
of messages to TCP connections [28, 29].

With its goal to ensure very fine-grain work-stealing, we
designed ZYGOS to free the application layer from the bur-
den of synchronizing access to connection-oriented TCP/IP
sockets. In this case, ZYGOS has an ownership model that
ensures the events that relate to the same socket are implicitly
ordered without the need for synchronization: whenever the
home core or a remote core grabs an event for processing
at the application layer, it grabs the exclusive access to the
socket until the event execution has completed, including
sending the replies on the TCP socket.

4.4 Eliminating Head-of-Line Blocking
The ordering semantics of §4.3 introduce a substantial compli-
cation to the design of the shuffle queue. ZYGOS eliminates
head-of-line blocking by grouping events in the home core by
socket. The shuffle queue has the ordered subset of sockets
that are (a) not currently being processed on a core and (b)
have pending data. The event queues are held in the per-socket
protocol control block (PCB). While it offers strong ordering
semantics to applications, this pre-sorting step does have an
implication on the global order of packets, which is no longer
guaranteed to be FCFS.

Figure 5 shows the state machine diagram that controls the
decisions for each socket. Changes to the state machine and
to the shuffle queue are atomic.

ZygOS: Achieving Low Tail Latency for µs-scale Networked Tasks SOSP ’17, October 28, 2017, Shanghai, China

 Busy

Ready Idle

appEvent

Conditions

Batched

syscalls
Remote

batched

syscalls

pending

events?

yes
no

dequeue

enqueue

on tcp-in

home core remote core

Figure 5: Connection state machine transitions for the
general case where an event is executed on a remote core
(in blue). The connection is present in the shuffle queue
exactly once when it is in the “ready” state, and never
otherwise.

• idle: Sockets in this state have no pending incoming
events, events currently processed by the application,
or outgoing batched system calls.
• ready: The socket has pending incoming events, but is

not currently being processed by the application and
has no pending system calls.
• busy: The socket is associated with an execution core,

which is either the home or remote core.

The execution core dequeues the first ready connection and
creates the event conditions for the application. As previously
discussed, system calls are returned back to the home core
for processing. System calls may each generate asynchronous
responses for that socket. After the execution of all system
calls, the socket transitions either into the idle state if there
is nothing further to process or into the ready state otherwise.
In the latter case, the PCB is once-again enqueued into the
shuffle queue.

4.5 Inter-processor Interrupts
The design in §4.4 eliminates head-of-line blocking concerns
from the shuffle queue itself. In a purely cooperative imple-
mentation of ZYGOS, the cores poll on each other’s data
structures, which causes head-of-line blocking situations both

before network processing as well as after application execu-
tion, since network processing explicitly takes place in the
home core.

First, consider the case where packets are available for
network processing in the hardware NIC queue but the shuffle
queue is empty. This is the queue shown around step (1) in
Figure 4. As long as that core is executing application code,
no remote core can steal the task. Idle cores poll both software
and hardware remote packets queues. If pending packets exist,
it sends an IPI to the remote core can force the execution of
the networking stack, which replenishes the shuffle queue.

Second, remote batched system calls are enqueued by the
remote core for execution on the home core (shown as step
(b) of Fig 4). In a cooperative model, these system calls are
only executed after the completion of application code, which
unfortunately directly impacts RPC latency as some of these
system calls write responses on the socket. Here also, an IPI
ensures the timely execution of these remote system calls.

The shared IPI handler, therefore, performs two simple
tasks when interrupting user-level execution: (1) process in-
coming packets if the shuffle queue is empty and (2) execute
all remote system calls and transmit outgoing packets on the
wire. The IPI interrupts only user-level execution since kernel
processing is short and bounded. The kernel executes with
interrupts disabled, thus avoiding starvation or reentrancy
issues in the TCP/IP stack.

5 IMPLEMENTATION
The system architecture of ZYGOS is derived from the IX
open-source release v1.0 [53]: it relies on hardware virtualiza-
tion and the Dune framework [4] to host a protected operating
system with direct access to VMX non-root mode ring 0 in the
x86-64 architecture [66]. The kernel links in with DPDK [14]
for NIC drivers and lwIP for TCP/IP [17]. The modifications
to the application libraries are minor, but the kernel changes
are extensive. Specifically, we modified ∼2000 LOC of the
IX kernel and ∼200 LOC of Dune. While we retain the tight
code base of IX, we revisit many of its fundamental design
assumptions and principles.

The shuffle layer: We chose a simple implementation to
ensure the atomic transitions described in §4.4. There is one
spinlock per core which protects the shuffle queue of that
core as well as the state machine transitions for sockets that
call that core home. The lightweight nature of the operations
that access it makes such a coarse-grain approach possible.
Remote cores rely on trylock for their steal attempts to
further reduce contention. Each PCB maintains a distinct
event queue of pending events. This is a single-producer (the
home core) and single consumer (the execution core) queue,
implemented with one spinlock per PCB. The transitions from

SOSP ’17, October 28, 2017, Shanghai, China G.Prekas, M.Kogias and E.Bugnion

the busy state must test whether the PCB queue is empty and
must first grab that lock.

Idle loop polling logic: The core design principle of ZYGOS
is to ensure that an idle core will aggressively identify pending
work. A core is idle when its shuffle queue, remote batch
system call queue, and software raw packet queue are all
empty. When it enters its idle mode, it starts to poll a sequence
of memory locations, all of which are reads from cacheable
locations. These locations include, in order of priority (a)
the head of its own NIC hardware descriptor ring, (b) the
shuffle queue of all other cores, (c) the head of all unprocessed
software packet queues of all other cores, and (d) the head of
the NIC hardware descriptor of all other cores. For steps (b-c-
d), the order of access is randomized. While heuristics could
tradeoff a reduction of interrupts for a slight degree of non-
work conservation, our current implementation aggressively
sends interrupts as soon as a remote core detects a pending
packet in the hardware queue and the home core is executing
at user-level.

Exit-less Inter-processor Interrupts: ZYGOS relies on inter-
processor interrupts to force a home core to process pending
packets identified in steps (c) and (d) of the idle loop and to
execute remote system calls back on the home core. Using an
approach similar to ELI [22], we added support in Dune for
exit-less interrupts in non-root mode, based on the assump-
tion that ZYGOS kernel’s interrupt handler will redirect to the
Linux host operating system the interrupts that are destined to
it. There is, however, no guarantee that the destination CPU
will be VMX non-root mode when it receives the interrupt.
We use interrupt 242, which is also used by KVM [30]. Inter-
rupts received in root-mode are simply ignored by the KVM
handler. As interrupts are used exclusively as hints, the unre-
liability of delivery impacts tail latency, but not correctness.

Control plane interactions: The IX control plane implement
energy proportionality or workload consolidation by dynami-
cally adjusting processor frequency and core allocation [54].
It operates in conjunction with the IX dataplane, which re-
programs the NIC RSS settings. In principle, ZYGOS is com-
patible with these RSS settings changes, although policies
and mechanisms would have to be adjusted as ZYGOS in-
troduces new forms of buffering. We leave the evaluation of
these interactions to future work.

6 EVALUATION
We use the same experimental setup explained in Section 3 to
evaluate ZYGOS in a series of microbenchmarks, use mem-
cached [43] to evaluate overheads on tiny tasks, and with a
real application running TPC-C [64].

6.1 Synthetic micro-benchmarks
Figure 6 shows the latency vs. throughput of the three syn-
thetic micro-benchmarks of §3. We compare ZYGOS with
existing systems (IX and Linux) as well as the theoretical
performance of a zero-overhead M/G/16/FCFS model for two
granularities of interest, namely 10µs and 25µs. We observe
that:

• ZYGOS and Linux-floating both approximate
the theoretical model, with ZYGOS substantially reduc-
ing tail latency over IX;
• ZYGOS and IX have comparable throughput, even for

tasks as small as 10µs; both clearly outperform Linux;
• for the exponential distribution, ZYGOS achieves 75%

throughput efficiency at the SLO at 10× S̄ for S̄ = 10µs
(Figure 6b) and 88% for S̄ = 25µs (Figure 6e);
• interrupts are necessary to eliminate head-of-line block-

ing with medium and high dispersion workloads, and
the cooperative model of Zygos-no-interrupts,
which is typical of pure user-level application, visibly
impacts tail latency.

Efficiency for the 10 × S̄ tail latency SLO: Figure 7 reports
the efficiency (in terms of max load at SLO) as a function
of task size. We compare ZYGOS with the baseline shown
in Figure 3. We note the reduced X-axis truncated to 50µs
for visibility; efficiency is stable beyond that point. ZYGOS
clearly outperforms IX and Linux for any tasks sizes ≥5
µs and all three distributions for such a tight SLO. ZYGOS
reaches 90% of the maximum possible load as determined
by the zero-overhead centralized-FCFS theoretical model
for tasks ≥30µs for the deterministic distribution, ≥40µs for
exponential and ≥40µs for bimodal-1.

How much task stealing occurs?: Figure 8 provides an in-
sight into the rate of stealing events as a function of load. The
results are for the exponential distribution of Figure 6e but
are remarkably similar for other distributions and timescales.
As expected, there are few steals at low loads as more cores
are near idle, and no steals at saturation as all cores are busy
processing their own queue.

Without interrupts, temporary imbalances lead to a steal
rate that peaks at ∼33%. This rate is consistent with the peak
of ∼35% measured in a discrete event simulator that emulates
the shuffle queue in a cooperative model without interrupts.
Interrupts, —which are necessary to eliminate head-of-line
blocking—, substantially increase the steal rate. At the peak,
which corresponds to 77% of saturation, steals, and therefore
interrupts are very frequent. Stealing opportunities become
less frequent as the load further increases.

ZygOS: Achieving Low Tail Latency for µs-scale Networked Tasks SOSP ’17, October 28, 2017, Shanghai, China

SLO Linux (floating connections) IX ZygOS (no interrupts) ZygOS Theoretical M/G/16/FCFS

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Throughput (MRPS)

0

20

40

60

80

100

120

140

L
a
te

n
c
y
 (

µ
s
)

(a) Fixed (S̄ = 10µs)

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Throughput (MRPS)

0

20

40

60

80

100

120

140

(b) Exponential (S̄ = 10µs)

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Throughput (MRPS)

0

20

40

60

80

100

120

140

(c) Bimodal-1 (S̄ = 10µs)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Throughput (MRPS)

0

50

100

150

200

250

300

350

L
a
te

n
c
y
 (

µ
s
)

(d) Fixed (S̄ = 25µs)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Throughput (MRPS)

0

50

100

150

200

250

300

350

(e) Exponential (S̄ = 25µs)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Throughput (MRPS)

0

50

100

150

200

250

300

350

(f) Bimodal-1 (S̄ = 25µs)

Figure 6: 99th percentile tail latency according to throughput for three distributions, each with 10µs and 25µs mean task
granularity. The horizontal line corresponds to the SLO of ≤ 10 × S̄ .

M/G/16/FCFS 16xM/G/1/FCFS ZygOS Linux (floating connections) IX Linux (partitioned connections)

0 10 20 30 40 50

Service time (µs)

0.0

0.2

0.4

0.6

0.8

1.0

L
o
a
d

(a) Deterministic

0 10 20 30 40 50

Service time (µs)

0.0

0.2

0.4

0.6

0.8

1.0

(b) Exponential

0 10 20 30 40 50

Service time (µs)

0.0

0.2

0.4

0.6

0.8

1.0

(c) Bimodal-1

Figure 7: Maximum load that meets the SLO of the 99th percentile ≤ 10× S̄ . The grey lines correspond to the ideal upper
bounds of the two theoretical, zero-overheads, models (centralized-FCFS and partitioned-FCFS).

SOSP ’17, October 28, 2017, Shanghai, China G.Prekas, M.Kogias and E.Bugnion

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Throughput (MRPS)

0

10

20

30

40

50

60

S
te

a
ls

 /
 e

ve
n

t
(%

)

ZygOS

ZygOS (no interrupts)

Figure 8: Normalized rate of stealing vs throughput for
exponential service time with mean 25 µs

6.2 Overheads of ZYGOS on tiny tasks:
memcached

We compare the overheads of ZYGOS to IX for tiny tasks
with the goal of identifying the task granularity where the
sweeping simplifications of shared-nothing dataplanes such as
IX noticeably improve throughput. We use memcached as an
application (< 2µs mean task size), and use the methodology
and reproduce the results from IX [5]. We consider mem-
cached a near worst case for ZYGOS as the application has
very small task size with a small dispersion best approximated
by a deterministic distribution.

Figure 9 shows the latency vs. throughput for the USR
and ETC workloads, [1], as modelled by mutilate [34]. We
compare Linux, ZYGOS, and IX. For IX, we choose two con-
figurations: with adaptive batching disabled (B=1) and with
adaptive batching enabled with the default setting (B=64).

First, we observe that ZYGOS and IX both clearly outper-
form Linux. We then note that for this particular SLO (500
µs), ZYGOS outperforms IX with batching disabled but lags
behind IX with adaptive bounded batching. IX implements
a strict run-to-completion model bounded by the batch size
(B). ZYGOS currently implements adaptive bounded batching
only on the receive path. It then processes events individually,
interleaving between user and kernel code. While this hurts
cache locality, it avoids head-of-line blocking. Similarly, it
eagerly sends packets through the TX TCP/IP path and the
NIC, also to avoid head-of-line blocking.

Of note, ZYGOS has a differently shaped latency vs through-
put curve for this workload. As described in §4.3 and §4.4,
ZYGOS does not respect strict FIFO ordering on servicing
packets across different connections. For this workload con-
figuration, up to four distinct memcached requests can be
pipelined onto the same connection. The resulting reordering
leads to a form of implicit batching of events, but only for
those corresponding to the same flow. This implicit batching

improves throughput but at an increase in tail latency. Such
a behaviour is hard to restrict since ZYGOS doesn’t know
the boundaries of the requests in the TCP byte stream. Linux
applications which use KCM sockets [28] can potentially
handle this situation.

6.3 A real application: Silo running TPC-C
We validate the tail latency benefits of ZYGOS using Silo [65],
a state-of-the-art in-memory database optimized for multicore
scalability.

6.3.1 Application setup. Silo was originally implemented
and evaluated as a library linked in with the benchmark. In the
original evaluation, each thread runs as a closed loop issuing
transaction requests, and in particular the TPC-C mix.

We ported Silo to run as a networked server accepting
requests over sockets. We replaced the main loop of Silo with
an event loop, which we used to run the workload on top of
Linux, IX, and ZYGOS. The workload uses mutilate [34] with
the same setup described in §3.2 to initiate transactions that
then execute totally within the database server. Each remote
procedure call generates one transaction from the TPC-C mix
of requests.

We did not attempt to implement a marshalling of the full
SQL queries and their responses, e.g., over a JDBC-like pro-
tocol, as this falls outside the scope of the research question.
We also note that Silo has a garbage-collection phase tied to
its epoch-based commit protocol, which introduces a periodic
barrier for all threads, with transaction latencies exceeding
1ms. We disabled garbage collection for our measurements
as it adds experimental variability, especially at the 99th per-
centile, depending on the experiment (and that taming the
tail latency impact of Silo’s GC also falls clearly outside the
scope of this work)

6.3.2 Results. Figure 10a shows the complementary cu-
mulative distribution of service time for the TPC-C bench-
mark for each of the five transaction types of the benchmark as
well as the mix. The results were computed using Silo’s mas-
ter branch [60], with Silo locally driving the TPC-C bench-
mark. There is, therefore, no network activity, and indeed
nearly no operating system activity. We run with GC disabled
across all 16 hardware threads of a single CPU socket. The
Figure reports the service time rather than that the end-to-end
latency (i.e., it excludes any queueing delays).

In this setup, the achieved transaction rate was 460 KTPS,
which corresponds to the maximal throughput of the appli-
cation, excluding any SLO and operating system overheads.
Note that this TPS is consistent with the reported results in
[65], given the differences in thread counts and processors.
For the full mix, the average service time is 33µs, the me-
dian is 20µs, and the 99th percentile is 203µs. The figure

ZygOS: Achieving Low Tail Latency for µs-scale Networked Tasks SOSP ’17, October 28, 2017, Shanghai, China

Linux IX B=1 ZygOS IX B=64 SLO

0 1 2 3

Throughput (MRPS)

0

100

200

300

400

500

600

700

L
a
te

n
c
y
 (

µ
s
)

(a) ETC

0 1 2 3 4 5 6

Throughput (MRPS)

0

100

200

300

400

500

600

700

L
a
te

n
c
y
 (

µ
s
)

(b) USR

Figure 9: 99th percentile tail latency vs. throughput for two memcached workloads for Linux, IX and, ZYGOS.

0 100 200 300 400 500

Service time (µs)

10-4

10-3

10-2

10-1

100

C
C

D
F

99th percentile

OrderStatus

Payment

NewOrder

StockLevel

Delivery

Mix

(a) Complementary CDF of task execution time (Linux)

0 50 100 150 200 250 300 350 400

Throughput (KRPS)

0

200

400

600

800

1000

1200

1400

L
a

te
n

c
y
 (

µ
s
)

SLO

Linux

IX

ZygOS

(b) 99th percentile end-to-end latency vs. throughput

Figure 10: Silo running the TPC-C benchmark.

System Max load@SLO Speedup Tail Lat.@50% Tail Lat.@75% Tail Lat.@90%
Linux 211 KTPS 1.00× 310µs (1.5×) @111 KTPS 335µs (1.6×)@156 KTPS 356µs (1.8×) @189 KTPS
IX 267 KTPS 1.26× 379µs (1.9×) @133 KTPS 530µs (2.6×)@200 KTPS 774µs (3.8×) @256 KTPS
Zygos 344 KTPS 1.63× 265µs (1.3×) @178 KTPS 279µs (1.4×)@266 KTPS 323µs (1.6×) @311 KTPS

Table 1: Maximum throughput under the SLO of 1000 µs and respective latencies at approximately 50%, 75%, and
90% of that load for each Silo running the TPC-C benchmark. The number in the parentheses is the ratio of the 99th
percentile end-to-end latency to Silo’s 99th percentile service time (203µs).

clearly shows that Silo’s service time distribution is overall
multi-modal with small task granularity in the µs-scale.

Figure 10b shows the tail latency at the 99th percentile for
Silo as a function of the load. To compare maximum loads,
we selected a stringent SLO of 1000µs, which corresponds
to ∼33× the average and ∼5× the 99th percentile tail latency.
We observe:

• ZYGOS can support 344 KTPS without violating the
SLO; this corresponds to a speedup of 1.63× over
Linux. This demonstrates the benefits of our approach
for real-life in-memory applications. The achieved trans-
action rate corresponds to 75% of the ideal, zero-overhead
load with no SLO restrictions.

SOSP ’17, October 28, 2017, Shanghai, China G.Prekas, M.Kogias and E.Bugnion

• This rate also corresponds to a speedup of 1.26× over
IX. ZYGOS’s work-conserving scheduler and its ability
to rebalance requests across cores avoids SLO viola-
tions until the system becomes CPU bound on all cores.

Table 1 further quantifies the benefits of ZYGOS in terms
of throughput at SLO and tail latency at a specific fraction
of their respective maximum load. ZYGOS and Linux both
deliver low end-to-end tail latencies for up to 90% of their
respective capacity: 1.6× the 99th percentile service time
for ZYGOS and 1.8× for Linux. This is anticipated by the
centralized-FCFS model. In contrast, as anticipated by the
partitioned-FCFS model, IX delivers substantially higher tail
latencies, e.g.,1.9× when operating at half capacity, 2.6× at
75% capacity, and 3.8× at 90% capacity.

7 DISCUSSION: THE IMPACT OF SLO ON
SYSTEMS

The choice of an SLO is driven by application requirements
and scale, with the intuitive understanding that a more strin-
gent SLO reduces the delivery capacity of the system. We
show that the choice of an SLO also informs on the choice of
the underlying operating system and scheduling strategy.

Figure 11 illustrates the tradeoff through the latency vs.
throughput curves for the synthetic benchmark of §6.1 with
an exponential service time of S̄ =10 µs. Figure 11a and
11b actually show the results of the same experiment but
on two different Y-axis corresponding to two different SLO.
ZYGOS consistently shines on the more stringent SLO of
100µs (Figure 11a, 10 × S̄) as the work-conserving scheduler
tames the tail latency, followed by IX with batching disabled.
For this SLO, IX (with batching enabled) consistently delivers
the highest tail latency and violates the SLO with the lowest
throughput.

However, for a more lenient SLO (Figure 11b, 100 × S̄),
IX’s adaptive batching delivers marginally higher throughput
than ZYGOS before violating the SLO.

8 RELATED WORK

Traditional event-driven models: This is the de-facto stan-
dard approach for online data-intensive services with high
connection fan-in. On Linux, the use of the epoll has sub-
stantially improved system scalability. While epoll can be
used in a floating model, and the recent epoll-exclusive
eliminates thundering herds [19], applications must still rely
on additional, complex synchronization to take advantage of
the feature. ZYGOS delivers built-in, ordered semantics that
guarantee that the replies from back-to-back remote procedure
calls on the same socket will be returned in order. However,
unlike the case of Affinity-accept [50] where each connection
remains local to the core that accepted it, ZYGOS enables

a connection to be served by any available core. Hanford
et al. [24] investigated the impact of affinity on application
throughput and proposed to distribute packet processing tasks
across multiple CPU cores to improve CPU cache hit ratio.
Although our work does not consider cache effects, we also
conclude that strict request affinity can harm performance.

Traditional multi-threading model: Operating systems pre-
emptive schedulers such as CFS [8], BVT [16] favor latency-
sensitive tasks. Applications can benefit from multithreading
to lower tail latency of completion of tasks when the granular-
ity is a multiple of the scheduling quantum and the distribution
has a high dispersion.

Shared-nothing dataplanes architectures: Systems such as
Arrakis [51], IX [5], mTCP [26], MICA [39], Seastar [59]
and Sandstorm [42] bypass the kernel(via frameworks such
as DPDK [14] or netmap [56]) and rely on NIC RSS to
partition flows among cores. These shared-nothing architec-
tures (at the system-level) with run-to-completion approaches
completely eliminate the need to make scheduling decisions.
These sweeping simplifications noticeably increase through-
put but are oblivious to temporary imbalances across cores.
MICA uses a client-side randomizing protocol (CREW or
CRCW) to eliminate some causes for persistent imbalances
among cores but does not address temporary imbalances.
Decibel [45] and Reflex [31] are designed for storage disag-
gregation, depend on the shared-nothing assumption and sim-
ilarly do not handle imbalance. ZYGOS is designed to elim-
inate such cases of imbalance though work-stealing. RAM-
cloud clients leverage RDMA hardware to bypass the kernel
and communicate with a cluster of RAMcloud servers, with
an asymmetric, push-based approach to task scheduling [48].
ZYGOS works with commodity Ethernet NICs and handles
I/O and protocol processing symmetrically on all cores, with
a pull-based, work-stealing scheme for task execution.

Work-stealing within applications: This commonly-used
technique that has been mostly implemented either within
the application or in a userspace run-time that runs on top of
the operating system. Run-times such as Intel’s Cilk++, In-
tel’s C++ Threading Building Blocks (TBB), Java’s Fork/Join
Framework and OpenMP implement work-stealing schemes.
Optimizing or building such run-times has also been stud-
ied intensely academically, e.g., [9, 11, 13]. Statically map-
ping connections to cores can result in load imbalance in
event-based programs and requires a solution at the library
level [21, 73]. Recent focus on work stealing for latency-
critical applications is at coarser timescales. [25, 35, 71]. The
prior work largely targets applications with millisecond-scale
task granularities that are easily accommodated by conven-
tional operating systems. ZYGOS implements work-stealing

ZygOS: Achieving Low Tail Latency for µs-scale Networked Tasks SOSP ’17, October 28, 2017, Shanghai, China

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Throughput (MRPS)

0

20

40

60

80

100

120

140

L
a
te

n
c
y
 (

µ
s
)

(a) 100 µs SLO

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Throughput (MRPS)

0

200

400

600

800

1000

1200

1400

L
a
te

n
c
y
 (

µ
s
)

SLO

IX B=64

IX B=1

ZygOS

(b) 1000 µs SLO

Figure 11: Comparison of IX (batch size 1 and 64) and ZYGOS for a deterministic service time of 10 µs and 2 different
SLOs.

within the operating system itself for network-driven to elimi-
nate both persistent and temporary imbalances and is suitable
for µs-scale tasks. As an operating system, ZYGOS’s use
of IPIs eliminates all cooperative multitasking assumptions
between the threads.

Cluster-level work-stealing: Finally, load imbalance has
been extensively studied at cluster-scale. Lu et al. [40] pro-
posed a 2-level load balancing scheme based on the power
of two to load balance traffic towards the front-end of cloud
services. Sparrow [49] also relies on power-of-two choices
for batch job scheduling. Google’s Maglev [18] is a generic
distributed network load balancer that leverages consistent
hashing to load balance packets across the corresponding
services.

9 CONCLUSION
We presented ZYGOS, a work-conserving operating system
designed for latency-critical, in-memory applications with
high connection fan-in, high requests rates, and short individ-
ual task execution times. ZYGOS applies some well-proven
work-stealing ideas within the framework of an execution
environment but avoids the fundamental limitations of dat-
aplane designs with static partitioning of connections. We
validate our ideas on a series of synthetic microbenchmarks
(with known theoretical bounds) and with a state-of-the-art,
in-memory transactional database. ZYGOS demonstrates that
it is possible to schedule µs-scale tasks on multicore sys-
tems to deliver high throughout together with low tail latency,
nearly up to the point of saturation.

ACKNOWLEDGEMENTS
We thank Katerina Argyraki, Ashvin Goel, James Larus, the
SOSP anonymous reviewers and our shepherd Ion Stoica for
their detailed comments. Moreover, we would like to thank
Christos Kozyrakis and Mia Primorac for participating in
many early discussions that lead to ZYGOS. Finally, we grate-
fully acknowledge Adrien Ghosn and Utku Sirin that helped
understanding Silo and setting up the related experiments.

This work was funded in part by the Microsoft-EPFL Joint
Research Center, the NanoTera YINS project, and a VMware
Research Grant. George Prekas is supported by a Google
Graduate Research Fellowship.

REFERENCES
[1] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG, S., AND

PALECZNY, M. Workload analysis of a large-scale key-value store. In
Proceedings of the 2012 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems (2012), pp. 53–64.

[2] BARROSO, L. A., CLIDARAS, J., AND HÖLZLE, U. The Datacenter
as a Computer: An Introduction to the Design of Warehouse-Scale Ma-
chines, Second Edition. Synthesis Lectures on Computer Architecture.
Morgan & Claypool Publishers, 2013.

[3] BARROSO, L. A., MARTY, M., PATTERSON, D., AND RAN-
GANATHAN, P. Attack of the killer microseconds. Commun. ACM 60,
4 (2017), 48–54.

[4] BELAY, A., BITTAU, A., MASHTIZADEH, A. J., TEREI, D., MAZ-
IÈRES, D., AND KOZYRAKIS, C. Dune: Safe User-level Access to
Privileged CPU Features. In Proceedings of the 10th Symposium on
Operating System Design and Implementation (OSDI) (2012), pp. 335–
348.

[5] BELAY, A., PREKAS, G., PRIMORAC, M., KLIMOVIC, A., GROSS-
MAN, S., KOZYRAKIS, C., AND BUGNION, E. The IX Operating
System: Combining Low Latency, High Throughput, and Efficiency
in a Protected Dataplane. ACM Trans. Comput. Syst. 34, 4 (2017),
11:1–11:39.

[6] BRONSON, N., AMSDEN, Z., CABRERA, G., CHAKKA, P., DIMOV,
P., DING, H., FERRIS, J., GIARDULLO, A., KULKARNI, S., LI,

SOSP ’17, October 28, 2017, Shanghai, China G.Prekas, M.Kogias and E.Bugnion

H. C., MARCHUKOV, M., PETROV, D., PUZAR, L., SONG, Y. J.,
AND VENKATARAMANI, V. TAO: Facebook’s Distributed Data Store
for the Social Graph. In Proceedings of the 2013 USENIX Annual
Technical Conference (ATC) (2013), pp. 49–60.

[7] 10 thousand connections problem. http://www.kegel.com/c10k.html,
1999.

[8] Linux cfs scheduler. https://www.kernel.org/doc/Documentation/
scheduler/sched-design-CFS.txt.

[9] CHASE, D., AND LEV, Y. Dynamic circular work-stealing deque. In
Proceedings of the 17th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA) (2005), pp. 21–28.

[10] CLEMENTS, A. T., KAASHOEK, M. F., ZELDOVICH, N., MORRIS,
R. T., AND KOHLER, E. The Scalable Commutativity Rule: Designing
Scalable Software for Multicore Processors. ACM Trans. Comput. Syst.
32, 4 (2015), 10:1–10:47.

[11] CONTRERAS, G., AND MARTONOSI, M. Characterizing and improv-
ing the performance of Intel Threading Building Blocks. In Proceedings
of the 2008 IEEE International Symposium on Workload Characteriza-
tion (IISWC) (2008), pp. 57–66.

[12] DEAN, J., AND BARROSO, L. A. The tail at scale. Commun. ACM 56,
2 (2013), 74–80.

[13] DINAN, J., LARKINS, D. B., SADAYAPPAN, P., KRISHNAMOORTHY,
S., AND NIEPLOCHA, J. Scalable work stealing. In Proceedings of the
2009 ACM/IEEE Conference on Supercomputing (SC) (2009).

[14] Data plane development kit. http://www.dpdk.org/.
[15] DRAGOJEVIC, A., NARAYANAN, D., CASTRO, M., AND HODSON, O.

FaRM: Fast Remote Memory. In Proceedings of the 11th Symposium
on Networked Systems Design and Implementation (NSDI) (2014),
pp. 401–414.

[16] DUDA, K. J., AND CHERITON, D. R. Borrowed-virtual-time (BVT)
scheduling: supporting latency-sensitive threads in a general-purpose
schedular. In Proceedings of the 17th ACM Symposium on Operating
Systems Principles (SOSP) (1999), pp. 261–276.

[17] DUNKELS, A. Design and Implementation of the lwIP TCP/IP Stack.
Swedish Institute of Computer Science 2 (2001), 77.

[18] EISENBUD, D. E., YI, C., CONTAVALLI, C., SMITH, C., KONONOV,
R., MANN-HIELSCHER, E., CILINGIROGLU, A., CHEYNEY, B.,
SHANG, W., AND HOSEIN, J. D. Maglev: A Fast and Reliable Soft-
ware Network Load Balancer. In Proceedings of the 13th Symposium
on Networked Systems Design and Implementation (NSDI) (2016),
pp. 523–535.

[19] Epollexclusive kernel patch. https://lwn.net/Articles/667087/, 2015.
[20] FÄRBER, F., CHA, S. K., PRIMSCH, J., BORNHÖVD, C., SIGG, S.,

AND LEHNER, W. SAP HANA database: data management for modern
business applications. SIGMOD Record 40, 4 (2011), 45–51.

[21] GAUD, F., GENEVES, S., LACHAIZE, R., LEPERS, B., MOTTET, F.,
MULLER, G., AND QUÉMA, V. Efficient Workstealing for Multi-
core Event-Driven Systems. In Proceedings of the 30th IEEE Interna-
tional Conference on Distributed Computing Systems (ICDCS) (2010),
pp. 516–525.

[22] GORDON, A., AMIT, N., HAR’EL, N., BEN-YEHUDA, M., LANDAU,
A., SCHUSTER, A., AND TSAFRIR, D. ELI: bare-metal performance
for I/O virtualization. In Proceedings of the 17th International Con-
ference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-XVII) (2012), pp. 411–422.

[23] gRPC. http://www.grpc.io/.
[24] HANFORD, N., AHUJA, V., BALMAN, M., FARRENS, M. K.,

GHOSAL, D., POUYOUL, E., AND TIERNEY, B. Characterizing the
impact of end-system affinities on the end-to-end performance of high-
speed flows. In Proceedings of the Third International Workshop on
Network-Aware Data Management (2013), pp. 1:1–1:10.

[25] HAQUE, M. E., EOM, Y. H., HE, Y., ELNIKETY, S., BIANCHINI, R.,
AND MCKINLEY, K. S. Few-to-Many: Incremental Parallelism for Re-
ducing Tail Latency in Interactive Services. In Proceedings of the 20th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-XX) (2015), pp. 161–175.

[26] JEONG, E., WOO, S., JAMSHED, M. A., JEONG, H., IHM, S., HAN,
D., AND PARK, K. mTCP: a Highly Scalable User-level TCP Stack
for Multicore Systems. In Proceedings of the 11th Symposium on
Networked Systems Design and Implementation (NSDI) (2014), pp. 489–
502.

[27] KAPOOR, R., PORTER, G., TEWARI, M., VOELKER, G. M., AND

VAHDAT, A. Chronos: predictable low latency for data center ap-
plications. In Proceedings of the 2012 ACM Symposium on Cloud
Computing (SOCC) (2012), p. 9.

[28] Kernel connection multiplexer. https://lwn.net/Articles/657999/, 2015.
[29] Kernel connection multiplexer patch. https://lwn.net/Articles/657970/,

2015.
[30] KIVITY, A., KAMAY, Y., LAOR, D., LUBLIN, U., AND LIGUORI, A.

kvm: the Linux virtual machine monitor. In Proceedings of the Linux
symposium (2007), vol. 1, pp. 225–230.

[31] KLIMOVIC, A., LITZ, H., AND KOZYRAKIS, C. ReFlex: Remote Flash
≈ Local Flash. In Proceedings of the 22nd International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-XXII) (2017), pp. 345–359.

[32] LAADAN, O., NIEH, J., AND VIENNOT, N. Structured linux kernel
projects for teaching operating systems concepts. In Proceedings of
the 42nd ACM Technical Symposium on Computer Science Education
(SIGCSE) (2011), pp. 287–292.

[33] LEUNG, K.-C., LI, V. O. K., AND YANG, D. An Overview of Packet
Reordering in Transmission Control Protocol (TCP): Problems, Solu-
tions, and Challenges. IEEE Trans. Parallel Distrib. Syst. 18, 4 (2007),
522–535.

[34] LEVERICH, J., AND KOZYRAKIS, C. Reconciling high server utiliza-
tion and sub-millisecond quality-of-service. In Proceedings of the 2014
EuroSys Conference (2014), pp. 4:1–4:14.

[35] LI, J., AGRAWAL, K., ELNIKETY, S., HE, Y., LEE, I.-T. A., LU, C.,
AND MCKINLEY, K. S. Work stealing for interactive services to meet
target latency. In Proceedings of the 21st ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP) (2016),
pp. 14:1–14:13.

[36] LI, J., SHARMA, N. K., PORTS, D. R. K., AND GRIBBLE, S. D.
Tales of the Tail: Hardware, OS, and Application-level Sources of
Tail Latency. In Proceedings of the 2014 ACM Symposium on Cloud
Computing (SOCC) (2014), pp. 9:1–9:14.

[37] libevent. http://libevent.org/.
[38] libuv. http://libuv.org/.
[39] LIM, H., HAN, D., ANDERSEN, D. G., AND KAMINSKY, M. MICA:

A Holistic Approach to Fast In-Memory Key-Value Storage. In Pro-
ceedings of the 11th Symposium on Networked Systems Design and
Implementation (NSDI) (2014), pp. 429–444.

[40] LU, Y., XIE, Q., KLIOT, G., GELLER, A., LARUS, J. R., AND GREEN-
BERG, A. G. Join-Idle-Queue: A novel load balancing algorithm for
dynamically scalable web services. Perform. Eval. 68, 11 (2011), 1056–
1071.

[41] Apache lucene. https://lucene.apache.org/.
[42] MARINOS, I., WATSON, R. N. M., AND HANDLEY, M. Network stack

specialization for performance. In Proceedings of the ACM SIGCOMM
2014 Conference (2014), pp. 175–186.

[43] Memcached. https://memcached.org/.
[44] In-memory mongodb. https://docs.mongodb.com/manual/core/

inmemory/.

http://www.kegel.com/c10k.html
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
http://www.dpdk.org/
https://lwn.net/Articles/667087/
http://www.grpc.io/
https://lwn.net/Articles/657999/
https://lwn.net/Articles/657970/
http://libevent.org/
http://libuv.org/
https://lucene.apache.org/
https://memcached.org/
https://docs.mongodb.com/manual/core/inmemory/
https://docs.mongodb.com/manual/core/inmemory/

ZygOS: Achieving Low Tail Latency for µs-scale Networked Tasks SOSP ’17, October 28, 2017, Shanghai, China

[45] NANAVATI, M., WIRES, J., AND WARFIELD, A. Decibel: Isolation
and Sharing in Disaggregated Rack-Scale Storage. In Proceedings of
the 14th Symposium on Networked Systems Design and Implementation
(NSDI) (2017), pp. 17–33.

[46] Nginx thread pool usage. https://www.nginx.com/blog/
thread-pools-boost-performance-9x/.

[47] NISHTALA, R., FUGAL, H., GRIMM, S., KWIATKOWSKI, M., LEE,
H., LI, H. C., MCELROY, R., PALECZNY, M., PEEK, D., SAAB,
P., STAFFORD, D., TUNG, T., AND VENKATARAMANI, V. Scaling
Memcache at Facebook. In Proceedings of the 10th Symposium on
Networked Systems Design and Implementation (NSDI) (2013), pp. 385–
398.

[48] OUSTERHOUT, J. K., GOPALAN, A., GUPTA, A., KEJRIWAL, A.,
LEE, C., MONTAZERI, B., ONGARO, D., PARK, S. J., QIN, H.,
ROSENBLUM, M., RUMBLE, S. M., STUTSMAN, R., AND YANG,
S. The RAMCloud Storage System. ACM Trans. Comput. Syst. 33, 3
(2015), 7:1–7:55.

[49] OUSTERHOUT, K., WENDELL, P., ZAHARIA, M., AND STOICA, I.
Sparrow: distributed, low latency scheduling. In Proceedings of the
24th ACM Symposium on Operating Systems Principles (SOSP) (2013),
pp. 69–84.

[50] PESTEREV, A., STRAUSS, J., ZELDOVICH, N., AND MORRIS, R. T.
Improving network connection locality on multicore systems. In Pro-
ceedings of the 2012 EuroSys Conference (2012), pp. 337–350.

[51] PETER, S., LI, J., ZHANG, I., PORTS, D. R. K., WOOS, D., KRISH-
NAMURTHY, A., ANDERSON, T. E., AND ROSCOE, T. Arrakis: The
Operating System Is the Control Plane. ACM Trans. Comput. Syst. 33,
4 (2016), 11:1–11:30.

[52] Pf_ring. http://www.ntop.org/products/packet-capture/pf_ring/.
[53] PREKAS, G., BELAY, A., PRIMORAC, M., KLIMOVIC, A., GROSS-

MAN, S., KOGIAS, M., GÜTERMANN, B., KOZYRAKIS, C., AND

BUGNION, E. IX Open-source version 1.0 – Deployment and Evalua-
tion Guide. Tech. rep., EPFL Technical Report 218568, 2016.

[54] PREKAS, G., PRIMORAC, M., BELAY, A., KOZYRAKIS, C., AND

BUGNION, E. Energy proportionality and workload consolidation
for latency-critical applications. In Proceedings of the 2015 ACM
Symposium on Cloud Computing (SOCC) (2015), pp. 342–355.

[55] Redis. https://redis.io/.
[56] RIZZO, L. netmap: A Novel Framework for Fast Packet I/O. In

Proceedings of the 2012 USENIX Annual Technical Conference (ATC)
(2012), pp. 101–112.

[57] Microsoft corp. receive side scaling. http://msdn.microsoft.com/library/
windows/hardware/ff556942.aspx.

[58] SCHROEDER, B., WIERMAN, A., AND HARCHOL-BALTER, M. Open
Versus Closed: A Cautionary Tale. In Proceedings of the 3rd Symposium
on Networked Systems Design and Implementation (NSDI) (2006).

[59] SCILLADB PROJECT. Seastar – high-performance service-application
framework. https://github.com/scylladb/seastar/.

[60] Silo: Multicore in-memory storage engine. https://github.com/
stephentu/silo.

[61] SOARES, L., AND STUMM, M. FlexSC: Flexible System Call Sched-
uling with Exception-Less System Calls. In Proceedings of the 9th
Symposium on Operating System Design and Implementation (OSDI)
(2010), pp. 33–46.

[62] STONEBRAKER, M., MADDEN, S., ABADI, D. J., HARIZOPOULOS,
S., HACHEM, N., AND HELLAND, P. The End of an Architectural
Era (It’s Time for a Complete Rewrite). In Proceedings of the 33rd
International Conference on Very Large DataBases (VLDB) (2007),
pp. 1150–1160.

[63] THEKKATH, C. A., NGUYEN, T. D., MOY, E., AND LAZOWSKA,
E. D. Implementing Network Protocols at User Level. In Proceedings
of the ACM SIGCOMM 1993 Conference (1993), pp. 64–73.

[64] TPC-C Benchmark. http://www.tpc.org/tpcc/, 2010.
[65] TU, S., ZHENG, W., KOHLER, E., LISKOV, B., AND MADDEN, S.

Speedy transactions in multicore in-memory databases. In Proceedings
of the 24th ACM Symposium on Operating Systems Principles (SOSP)
(2013), pp. 18–32.

[66] UHLIG, R., NEIGER, G., RODGERS, D., SANTONI, A. L., MARTINS,
F. C. M., ANDERSON, A. V., BENNETT, S. M., KÄGI, A., LEUNG,
F. H., AND SMITH, L. Intel Virtualization Technology. IEEE Computer
38, 5 (2005), 48–56.

[67] Voltdb. https://www.voltdb.com/.
[68] WEI, X., SHI, J., CHEN, Y., CHEN, R., AND CHEN, H. Fast in-

memory transaction processing using RDMA and HTM. In Proceedings
of the 25th ACM Symposium on Operating Systems Principles (SOSP)
(2015), pp. 87–104.

[69] What’sapp 2m connections. https://https://blog.whatsapp.com/196/
1-million-is-so-2011.

[70] WIERMAN, A., AND ZWART, B. Is Tail-Optimal Scheduling Possible?
Operations Research 60, 5 (2012), 1249–1257.

[71] YANG, X., BLACKBURN, S. M., AND MCKINLEY, K. S. Elfen
Scheduling: Fine-Grain Principled Borrowing from Latency-Critical
Workloads Using Simultaneous Multithreading. In Proceedings of the
2016 USENIX Annual Technical Conference (ATC) (2016), pp. 309–
322.

[72] YASUKATA, K., HONDA, M., SANTRY, D., AND EGGERT, L.
StackMap: Low-Latency Networking with the OS Stack and Dedi-
cated NICs. In Proceedings of the 2016 USENIX Annual Technical
Conference (ATC) (2016), pp. 43–56.

[73] ZELDOVICH, N., YIP, A., DABEK, F., MORRIS, R., MAZIÈRES, D.,
AND KAASHOEK, M. F. Multiprocessor Support for Event-Driven
Programs. In USENIX Annual Technical Conference (2003), pp. 239–
252.

[74] ZHANG, H., DONG, M., AND CHEN, H. Efficient and Available
In-memory KV-Store with Hybrid Erasure Coding and Replication.
In Proceedings of the 14th USENIX Conference on File and Storage
Technologie (FAST) (2016), pp. 167–180.

[75] Zygos kernel. https://github.com/ix-project/zygos, 2017.

https://www.nginx.com/blog/thread-pools-boost-performance-9x/
https://www.nginx.com/blog/thread-pools-boost-performance-9x/
http://www.ntop.org/products/packet-capture/pf_ring/
https://redis.io/
http://msdn.microsoft.com/library/windows/hardware/ff556942.aspx
http://msdn.microsoft.com/library/windows/hardware/ff556942.aspx
https://github.com/scylladb/seastar/
https://github.com/stephentu/silo
https://github.com/stephentu/silo
http://www.tpc.org/tpcc/
https://www.voltdb.com/
https://https://blog.whatsapp.com/196/1-million-is-so-2011
https://https://blog.whatsapp.com/196/1-million-is-so-2011
https://github.com/ix-project/zygos

	Abstract
	1 Introduction
	2 Background
	2.1 Scaling remote procedure calls
	2.2 Kernel bypass and sweeping simplifications
	2.3 Just enough queuing theory

	3 Experimental Methodology
	3.1 Approach and metrics
	3.2 Experimental Environment
	3.3 Evaluated Systems
	3.4 Baseline results

	4 Design
	4.1 Requirements
	4.2 ZygOS High-level Design
	4.3 Ordering semantics in multi-threaded applications
	4.4 Eliminating Head-of-Line Blocking
	4.5 Inter-processor Interrupts

	5 Implementation
	6 Evaluation
	6.1 Synthetic micro-benchmarks
	6.2 Overheads of ZygOS on tiny tasks: memcached
	6.3 A real application: Silo running TPC-C

	7 Discussion: the impact of SLO on systems
	8 Related Work
	9 Conclusion
	References

