4 research outputs found

    On the Complexity of Closest Pair via Polar-Pair of Point-Sets

    Get PDF
    Every graph G can be represented by a collection of equi-radii spheres in a d-dimensional metric Delta such that there is an edge uv in G if and only if the spheres corresponding to u and v intersect. The smallest integer d such that G can be represented by a collection of spheres (all of the same radius) in Delta is called the sphericity of G, and if the collection of spheres are non-overlapping, then the value d is called the contact-dimension of G. In this paper, we study the sphericity and contact dimension of the complete bipartite graph K_{n,n} in various L^p-metrics and consequently connect the complexity of the monochromatic closest pair and bichromatic closest pair problems

    On Closest Pair in Euclidean Metric: Monochromatic is as Hard as Bichromatic

    Get PDF
    Given a set of n points in R^d, the (monochromatic) Closest Pair problem asks to find a pair of distinct points in the set that are closest in the l_p-metric. Closest Pair is a fundamental problem in Computational Geometry and understanding its fine-grained complexity in the Euclidean metric when d=omega(log n) was raised as an open question in recent works (Abboud-Rubinstein-Williams [FOCS\u2717], Williams [SODA\u2718], David-Karthik-Laekhanukit [SoCG\u2718]). In this paper, we show that for every p in R_{>= 1} cup {0}, under the Strong Exponential Time Hypothesis (SETH), for every epsilon>0, the following holds: - No algorithm running in time O(n^{2-epsilon}) can solve the Closest Pair problem in d=(log n)^{Omega_{epsilon}(1)} dimensions in the l_p-metric. - There exists delta = delta(epsilon)>0 and c = c(epsilon)>= 1 such that no algorithm running in time O(n^{1.5-epsilon}) can approximate Closest Pair problem to a factor of (1+delta) in d >= c log n dimensions in the l_p-metric. In particular, our first result is shown by establishing the computational equivalence of the bichromatic Closest Pair problem and the (monochromatic) Closest Pair problem (up to n^{epsilon} factor in the running time) for d=(log n)^{Omega_epsilon(1)} dimensions. Additionally, under SETH, we rule out nearly-polynomial factor approximation algorithms running in subquadratic time for the (monochromatic) Maximum Inner Product problem where we are given a set of n points in n^{o(1)}-dimensional Euclidean space and are required to find a pair of distinct points in the set that maximize the inner product. At the heart of all our proofs is the construction of a dense bipartite graph with low contact dimension, i.e., we construct a balanced bipartite graph on n vertices with n^{2-epsilon} edges whose vertices can be realized as points in a (log n)^{Omega_epsilon(1)}-dimensional Euclidean space such that every pair of vertices which have an edge in the graph are at distance exactly 1 and every other pair of vertices are at distance greater than 1. This graph construction is inspired by the construction of locally dense codes introduced by Dumer-Miccancio-Sudan [IEEE Trans. Inf. Theory\u2703]

    Hardness of Approximate Nearest Neighbor Search

    Full text link
    We prove conditional near-quadratic running time lower bounds for approximate Bichromatic Closest Pair with Euclidean, Manhattan, Hamming, or edit distance. Specifically, unless the Strong Exponential Time Hypothesis (SETH) is false, for every δ>0\delta>0 there exists a constant ϵ>0\epsilon>0 such that computing a (1+ϵ)(1+\epsilon)-approximation to the Bichromatic Closest Pair requires n2−δn^{2-\delta} time. In particular, this implies a near-linear query time for Approximate Nearest Neighbor search with polynomial preprocessing time. Our reduction uses the Distributed PCP framework of [ARW'17], but obtains improved efficiency using Algebraic Geometry (AG) codes. Efficient PCPs from AG codes have been constructed in other settings before [BKKMS'16, BCGRS'17], but our construction is the first to yield new hardness results
    corecore