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Abstract
Every graph G can be represented by a collection of equi-radii spheres in a d-dimensional metric
∆ such that there is an edge uv in G if and only if the spheres corresponding to u and v intersect.
The smallest integer d such that G can be represented by a collection of spheres (all of the same
radius) in ∆ is called the sphericity of G, and if the collection of spheres are non-overlapping,
then the value d is called the contact-dimension of G. In this paper, we study the sphericity and
contact dimension of the complete bipartite graph Kn,n in various Lp-metrics and consequently
connect the complexity of the monochromatic closest pair and bichromatic closest pair problems.
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28:2 On the Complexity of Closest Pair via Polar-Pair of Point-Sets

1 Introduction

This paper studies the geometric representation of a complete bipartite graph in Lp-metrics
and consequently connects the complexity of the closest pair and bichromatic closest pair
problems beyond certain dimensions. Given a point-set P in a d-dimensional Lp-metric, an
α-distance graph is a graph G = (V,E) with a vertex set V = P and an edge set

E = {uv : ‖u− v‖p ≤ α;u, v ∈ P ;u 6= v}.

In other words, points in P are centers of spheres of radius α/2, and G has an edge uv if
and only if the spheres centered at u and v intersect. The sphericity of a graph G in an
Lp-metric, denoted by sphp(G), is the smallest dimension d such that G is isomorphic to
some α-distance graph in a d-dimensional Lp-metric, for some constant α > 0. The sphericity
of a graph in the L∞-metric is known as cubicity. A notion closely related to sphericity is
contact-dimension, which is defined in the same manner except that the spheres representing
G must be non-overlapping. To be precise, an α-contact graph G = (V,E) of a point-set
P is an α-distance graph of P such that every edge uv of G has the same distance (i.e.,
‖u− v‖p = α). Thus, G has the vertex set V = P and has an edge set E such that

∀uv ∈ E, ‖u− v‖p = α and ∀uv 6∈ E, ‖u− v‖p > α.

The contact-dimension of a graph G in the Lp-metric, denoted by cdp(G), is the smallest
integer d ≥ 1 such that G is isomorphic to a contact-graph in the d-dimensional Lp-metric.
We will use distance and contact graphs to means 1-distance and 1-contact graphs.

We are interested in determining the sphericity and the contact-dimension of the biclique
Kn,n in various Lp-metrics. For notational convenience, we denote sphp(Kn,n) by bsph(Lp),
the biclique sphericity of the Lp-metric, and denote cdp(Kn,n) by bcd(Lp), the biclique
contact-dimension of the Lp-metric. We call a pair of point-sets (A,B) polar if it is the
partition of the vertex set of a contact graph isomorphic to Kn,n. More precisely, a pair of
point-sets (A,B) is polar in an Lp-metric if there exists a constant α > 0 such that every
inner-pair u, u′ ∈ A (resp., v, v′ ∈ B) has Lp-distance greater than α while every crossing-pair
u ∈ A, v ∈ B has Lp-distance exactly α.

The biclique sphericity and contact-dimension of the L2 and L∞ metrics are well-studied
in literature (see [25, 21, 22, 11, 23, 9]). Maehara [23, 21] showed that n < bsph(L2) ≤ (1.5)n,
and Maehara and Frankl & Maehara [22, 11] showed that (1.286)n− 1 < bcd(L2) < (1.5)n.
For cubicity, Roberts [25] showed that bcd(L∞) = bsph(L∞) = 2 log2 n. Nevertheless, for
other Lp-metrics, contact dimension and sphericity are not well-studied.

1.1 Our results and contributions

Our main conceptual contribution is connecting the complexity of the (monochromatic)
closest pair problem (Closest Pair) to that of the bichromatic closest pair problem (BCP)
through the contact dimension of the biclique. This is discussed in subsection 1.1.1. Our main
technical contributions are bounds on the contact dimension and sphericity of the biclique
for various Lp-metrics. This is discussed in subsection 1.1.2. Finally, as an application of
the connection discussed in subsection 1.1.1 and the bounds discussed in subsection 1.1.2,
we show computational equivalence between monochromatic and bichromatic closest pair
problems.
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1.1.1 Connection between Closest Pair and BCP
In Closest Pair, we are asked to find a pair of points in a set of m points with minimum
distance. BCP is a generalization of Closest Pair, in which each point is colored red or
blue, and we are asked to find a pair of red-blue points (i.e., bichromatic pair) with minimum
distance. It is not hard to see that BCP is at least as hard as Closest Pair since we can
apply an algorithm for BCP to solve Closest Pair with the same asymptotic running time.
However, it is not clear whether the other direction is true. We will give a simple reduction
from BCP to Closest Pair using a polar-pair of point-sets. First, take a polar-pair (A,B),
each with cardinality n = m/2, in the Lp-metric. Next, pair up vectors in A and B to red
and blue points, respectively, and then attach a vertex u ∈ A (resp., v ∈ B) to its matching
red (resp., blue) point. This reduction increases the distances between every pair of points,
but by the definition of the polar-pair, this process has more effect on the distances of the
monochromatic (i.e., red-red or blue-blue) pairs than that of bichromatic pairs, and the
reduction, in fact, has no effect on the order of crossing-pair distances at all. By scaling
the vectors in A and B appropriately, this gives an instance of Closest Pair whose closest
pair of points is bichromatic. Consequently, provided that the polar-pair of point-sets (A,B)
in a d-dimensional metric can be constructed within a running time at least as fast as the
time for computing Closest Pair in the same metric, this gives a reduction from BCP to
Closest Pair, thus implying that they have the same running time lower bound.

1.1.2 Bounds on contact dimension and sphericity of biclique
Our main technical results are lower and upper bounds on the biclique contact-dimension for
the Lp-metric space where p ∈ R≥1 ∪ {0}.

I Theorem 1. The following are upper and lower bounds on biclique contact-dimension for
the Lp-metric.

bsph(L0) = bcd(L0) = n (1)
n ≤ bsph(L0

{0,1})) ≤ bcd(L0
{0,1}) ≤ n2 (i.e., P ⊆ {0, 1}d) (2)

Ω(logn) ≤ bsph(L1) ≤ bcd(L1) ≤ n2 (3)
Ω(logn) ≤ bsph(Lp) ≤ bcd(Lp) ≤ 2n for p ∈ (1, 2) (4)

bsph(Lp) = Θ(bcd(Lp)) = Θ(logn) for p > 2 (5)

Note that bsph(∆) ≤ bcd(∆) for any metric ∆. Thus, it suffices to prove a lower bound
for bsph(∆) and prove an upper bound for bcd(∆).

We note that the bounds on the sphericity and the contact dimension of the L1-metric in
(3) are obtained from (5) and (1), respectively. We are unable to show a strong (e.g., linear)
lower bound for the L1-metric. However, we prove the weaker (average-case) result below
for the L1-metric which can be seen as a progress toward proving stronger lower bounds
on the sphericity of the biclique in this metric (see Corollary 7 for more discussion on its
applications).

I Theorem 2. For any integer d > 0, there exist no two finite-supported random variables
X,Y taking values from Rdsuch that the following hold.

E
x1,x2∈RX

[‖x1 − x2‖1] > E
x1∈RX, y1∈RY

[‖x1 − y1‖1]

E
y1,y2∈RY

[‖y1 − y2‖1] > E
x1∈RX, y1∈RY

[‖x1 − y1‖1] .

SoCG 2018
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Table 1 Known bounds on sphericity and contact dimension of biclique.

Metric Bound From
L0 bsph(L0) = bcd(L0) = n This paper
L1 Ω(log n) ≤ bsph(L1) ≤ bcd(L1) ≤ n2 This paper
Lp, p ∈ (1, 2) Ω(log n) ≤ bsph(Lp) ≤ bcd(Lp) ≤ 2n This paper
L2 n < bsph(L2) ≤ bcd(L2) < 1.5 · n [23, 11]
Lp, p > 2 bsph(Lp) = Θ(bcd(Lp)) = Θ(log n) This paper
L∞ bsph(L∞) = bcd(L∞) = 2 log2 n [25]

For an overview on the known bounds on bsph and bcd (including the results in this
paper), please see Table 1.

In the full version of the paper, we give an alternate proof of the linear lower bound on
bsph(L2) using spectral analysis similar to that in [9]. While our lower bound is slightly
weaker than the best known bounds [11, 23], our arguments require no heavy machinery and
thus are arguably simpler than the previous works [11, 23, 9].

Alman and Williams [3] showed the subquadratic-time hardness for BCP in Lp-metrics,
for all p ∈ R≥1 ∪ {0}, under the Orthogonal Vector Hypothesis (OVH). From Theorem 1 and
the connection between BCP and Closest Pair described in subsection 1.1.1, we have the
following hardness of Closest Pair.

I Theorem 3. Let p > 2. For any ε > 0 and d = ω(logn), the closest pair problem in the
d-dimensional Lp-metric admits no (n2−ε)-time algorithm unless the Orthogonal Vectors
Hypothesis is false.

We remark here that showing conditional hardness for Closest Pair in the Lp metric
for p ≤ 2 remains an outstanding open problem4. Recently, Rubinstein [26] showed that
the subquadratic-time hardness holds even for approximating BCP: Assuming OVH, for
every p ∈ R≥1 ∪ {0} and every ε > 0, there is a constant γ(ε, p) > 0 such that there is no
(1 + γ)-approximation algorithm running in time O(n2−ε) for BCP in the Lp-metric. By
using the connection between BCP and Closest Pair described in subsection 1.1.1 and
the bounds in Theorem 1 (to be precise we need the efficient construction with appropriate
gap as given by Theorem 17), the hardness of approximation result can be extended to
Closest Pair for Lp metrics where p > 2.

I Theorem 4. Let p > 2. For every ε > 0 and d = ω(logn), there exists a constant
γ = γ(p, ε) > 0 such that the closest pair problem in the d-dimensional Lp-metric admits no
(n2−ε)-time (1 + γ)-approximation algorithm unless the Orthogonal Vectors Hypothesis is
false.

We remark that the hardness for the case of the L∞-metric does not follow (at least
directly) from [3] or [26]. For independent interest, we show the subquadratic-time hardness
of BCP and Closest Pair in the L∞-metric.

I Theorem 5. For any ε > 0 and d = ω(logn), the closest pair problem in the d-dimensional
L∞-metric admits no (n2−ε)-time (2− o(1))-approximation algorithm unless the Orthogonal
Vectors Hypothesis is false.

4 The subquadratic-time hardness of Closest Pair in the Lp-metric for p ∈ R≥1 ∪ {0} was claimed in
[1] but later retracted [2].
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We note that the lower bounds on bsph act as barriers for gadget reductions from BCP
to Closest Pair. This partially explains why there has been no progress in showing
conditional hardness for Closest Pair in the Euclidean metric for d = ω(logn) dimensions
(as bsph(L2) = Ω(n)). In addition, Rubinstein noted in [26] that one obstacle in proving
inapproximability results for Closest Pair is due to the triangle inequality – any two point-
sets A and B in any metric space cannot have distinct points a, a′ ∈ A and b ∈ B such that
‖a− a′‖ > 2 ·max{‖a− b‖, ‖a′ − b‖} (as it would violate the triangle inequality). This rules
out the possibility of obtaining the conditional hardness for 2-approximating Closest Pair
for any metric via simple gadget reductions. We note that the inapproximability factor of
Theorem 5 matches the triangle inequality barrier (for the L∞ metric).

1.2 Related works

While our paper studies sphericity and contact-dimension of the complete bipartite graph,
determining the contact-dimension of a complete graph in Lp-metrics has also been extensively
studied in the notion of equilateral dimension. To be precise, the equilateral dimension of a
metric ∆ which is the maximum number of equidistant points that can be packed in ∆. An
interesting connection is in the case of the L1-metric, for which we are unable to establish a
strong lower bound for bsph(L1). The equilateral dimension of L1 is known to be at least
2d, and this bound is believed to be tight [14]. This is a notorious open problem known
as Kusner’s conjecture, which is confirmed for d = 2, 3, 4 [5, 20], and the best upper bound
for d ≥ 5 is O(d log d) by Alon and Pavel [4]. If Kusner’s conjecture is true for all d, then
sph1(Kn) = n/2.

The complexity of Closest Pair has been a subject of study for many decades. There
have been a series of developments on Closest Pair in the Euclidean space (see, e.g.,
[7, 15, 19, 27, 8]), which culminates in a deterministic O(2O(d)n logn)-time algorithm [8] and
a randomized O(2O(d)n)-time algorithm [24, 19]. For low (i.e., constant) dimensions, these
algorithms are tight as the matching lower bound of Ω(n logn) was shown by Ben-Or [6] and
Yao [33] for the algebraic decision tree model, thus settling the complexity of Closest Pair
in low dimensions. For high dimensions (i.e., d = ω(logn)), there is no known algorithm that
runs in time significantly better than a trivial O(n2d)-time algorithm for general d except for
the case that d ≥ Ω(n) whereas there are subcubic-time algorithms in L1 and L∞ metrics
[12, 16].

In the last few years, there has been a lot of progress in our understanding of BCP,
Closest Pair, and related problems. Alman and Williams [3] showed subquadratic time
hardness for BCP in d = ω(logn) dimensions under OVH in the Lp metric for every
p ∈ R≥1 ∪ {0}. Williams [30] extended the result of [3] and showed the above subquadratic-
time hardness for BCP even for dimensions d = ω((log logn)2) under OVH. In a recent
breakthrough on hardness of approximation in P, Abboud et al. [2] showed the subquadratic-
time hardness for approximating the Bichromatic Maximum Inner Product problem under
OVH in the Lp metric for every p ∈ R≥1 ∪ {0}, and the result holds for almost polynomial
approximation factors. More recently, building upon the ideas in [2], Rubinstein [26] showed
under OVH the inapproximablility of BCP for every Lp-metric for p ∈ R≥1 ∪ {0}.

2 Preliminaries

We use the following standard terminologies and notations.

SoCG 2018
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Distance measures. For any vector x in Rd, we denote by ‖x‖p the Lp-norm of x and

is equal to
(∑d

i=1 |xi|p
)1/p

. The L∞-norm of x is denoted by ||x||∞ = max
i∈[d]

{|xi|}, and

the L0-norm of x is denoted by ||x||0 = |{xi 6= 0 : i ∈ [d]}|, i.e., the number of non-zero
coordinates of x. These norms define distance measures in Rd. The distance of two points x
and y w.r.t. the Lp-norm, say Lp-distance, is thus ||x − y||p. The distance measures that
are well studied in literature are the Hamming distance L0-norm, the Rectilinear distance
L1-norm, the Euclidean distance L2-norm, the Chebyshev distance (a.k.a, Maximum-norm)
L∞-norm.

Problems. Here we give formal definitions of Closest Pair and BCP. In Closest Pair,
we are given a collection of points P ⊆ Rd in a d-dimensional Lp-metric, and the goal is find
a pair of distinct points a, b ∈ P that minimizes ‖u− v‖p. In BCP, the input point-set is
partitioned into two color classes (the collections of red and blue points) A and B, and the
goal is find a pair of points u ∈ A and v ∈ B that minimizes ‖u− v‖p.

Fine-grained complexity and conditional hardness. Conditional hardness is the current
trend in proving running-time lower bounds for polynomial-time solvable problems. This
has now developed into the area of Fine-Grained Complexity. Please see, e.g., [31, 32] and
references therein.

The Orthogonal Vectors Hypothesis (OVH) is a popular complexity theoretic assumption
in Fine-Grained Complexity. OVH states that in the Word RAM model with O(logn) bit
words, any algorithm requires n2−o(1) time in expectation to determine whether collections
of vectors A,B ⊆ {0, 1}d with |A| = |B| = n/2 and d = ω(logn) contain an orthogonal pair
u ∈ A and v ∈ B (i.e.,

∑d
i=1 ui · vi = 0).

Another popular conjecture is the Strong Exponential-Time Hypothesis for SAT (SETH),
which states that, for every ε > 0, there exists an integer kε such that kε-SAT on n variables
cannot be solved in O(2(1−ε)n)-time. Williams showed that SETH implies OVH [29].

3 Representing biclique in L1

In this section, we discuss the case of the L1-metric. As discussed in the introduction, this
is the only case where we are unable to prove neither strong lower bound nor linear upper
bound. A weak lower bound bsph(L1) ≥ Ω(logn) follows from the proof for the Lp-metric
with p > 2 in Section 6.1 (Theorem 16), and a quadratic upper bound bcd(L1) ≤ n2 follows
from the proof for the L0-metric in Section 4.2 (Corollary 12). However, we cannot prove
any upper bound smaller than Ω(n2) or any lower bound larger than O(logn). Hence, we
study an average case relaxation of the question.

We show in Theorem 2 that there is no distribution whose expected distances simulate
a polar-pair of point-sets in the L1-metric. Consequently, even though we could not prove
the biclique sphericity lower bound for the L1-metric, we are able to refute an existence of
a geometric representation with large gap for any dimension as shown in Corollary 7. (A
similar result was shown in [10] for the L2-metric.)

I Definition 6 (L1-distribution). For any d > 0, let X,Y be two random variables taking
values from Rd. An L1-distribution is constructed by X,Y if the following holds.

E
x1,x2∈RX

[‖x1 − x2‖1] > E
x1∈RX, y1∈RY

[‖x1 − y1‖1] ,

E
y1,y2∈RY

[‖y1 − y2‖1] > E
x1∈RX, y1∈RY

[‖x1 − y1‖1] .
(6)
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I Theorem 2 (Restated). For any two finite-supported random variables X,Y that are taking
values from Rd, there is no L1-distribution.

Proof. Assume towards a contradiction that there exist two finite-supported random variables
X,Y that are taking values in Rd and that are satisfying Eq. 6 of Definition 6. Given a
vector x ∈ Rd, we denote by x (i) the value of the i-th coordinate of x. Hence the following
inequalities hold,

0 > E
x1∈RX, y1∈RY

[‖x1 − y1‖1]− E
x1,x2∈RX

[‖x1 − x2‖1]

= E
x1,x2∈RX, y1∈RY

[‖x1 − y1‖1 − ‖x1 − x2‖1]

= 1
d
· E
x1,x2∈RX, y1∈RY

[
E

i∈R[1...d]
[|x1 (i)− y1 (i) | − |x1 (i)− x2 (i) |]

]
= 1
d
· E
i∈R[1...d]

[
E

x1,x2∈RX, y1∈RY
[|x1 (i)− y1 (i) | − |x1 (i)− x2 (i) |]

]
.

Thus for some i? ∈ [d] the following holds,

0 > E
x1,x2∈RX, y1∈RY

[|x1 (i?)− y1 (i?) | − |x1 (i?)− x2 (i?) |] . (7)

Fix i? ∈ [d] satisfying the above inequality. For the sake of clarity, we assume that the
random variables X,Y are taking values in R (i.e., projection on the i?th coordinate). We
can assume that the size of supp (X) ∪ supp (Y ) is greater than 1 because, if supp (X) ∪
supp (Y ) contains a single point then E

x1∈RX, y1∈RY
[‖x1 − y1‖1] = E

x1,x2∈RX
[‖x1 − x2‖1] = 0,

contradicting Eq. 7. Let supp (X) ∪ supp (Y ) contains t ≥ 2 points. We prove by induction
on t, that there are no X,Y over R satisfying Eq. 7. The base case is when t = 2. By Eq. 7,
there exists 3 points x̃1, x̃2, ỹ1 in R such that,

0 > ‖x̃1 − ỹ1‖1 − ‖x̃1 − x̃2‖1 . (8)

Since supp (X)∪supp (Y ) contains exactly two points, x̃1, x̃2, ỹ1 are supported by two distinct
points in R. Hence, there are two cases, either that x1 = x2 (and y1 6= x1) or that x1 6= x2
(and either ỹ1 = x̃1 or ỹ1 = x̃2). It is easy to see that none of these cases satisfy Eq. 8, a
contradiction.

Assume the induction hypothesis that there are no X,Y taking values from R satisfying
Eq. 7 when the size of supp (X) ∪ supp (Y ) is equal to k ≥ 2. Then consider the case when
t = k + 1 ≥ 3. Sort the points in supp (X) ∪ supp (Y ) by their values, and denote by si
the value of the i-th point of supp (X) ∪ supp (Y ). For the sake of simplicity, we say that
we change the value of st−1 to s̃t−1, where st−2 ≤ s̃t−1 ≤ st, if after changing its value we
change the values of (at least one of) X,Y to X̃, Ỹ in such a way that the value of the
(t− 1)-th point (after sorting) of supp

(
X̃
)
∪ supp

(
Ỹ
)
is equal to s̃t−1 (if st−2 = s̃t−1, then

the value of the (t− 2)-th point of supp
(
X̃
)
∪ supp

(
Ỹ
)
is equal to s̃t−1). Define the function

f : [st−2, st]→ R as follows:

f (x) = E
x1∈RX̃, y1∈RỸ

[‖x1 − y1‖1]− E
x1,x2∈RX̃

[‖x1 − x2‖1] ,

where X̃, Ỹ are obtained after changing st−1 to x ∈ [st−2, st]. The crucial observation is
that the function f is linear. Hence, either f (st−2) ≥ f (st−1) or f (st) ≥ f (st−1), and we
can reduce the size of supp (X) ∪ supp (Y ) by 1. However, this contradicts our induction
hypothesis. J

SoCG 2018
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The following corollary refutes the existence of a polar-pair of point-sets with large gap
in any dimension. The proof follows from Theorem 2 and is given in the full version of the
paper.

I Corollary 7 (No Polar-Pair of Point-Sets in L1 with Large Gap). For any α > 0, there exist
no subsets A,B ⊆ Rd of n/2 vectors with d < n/2 such that

For any u, v both in A, or both in B, ‖u− v‖1 ≥ 1
1−2/n · α.

For any u ∈ A and v ∈ B, ‖u− v‖1 < α.

We can show similar results that there are no polar-pairs of point-sets with large gap
in the L0 and L2 metrics. The case of the L0-metric follows directly from Theorem 2 when
the alphabet set is {0, 1}. (Please also see Lemma 9 for an alternate proof.) The case of
the L2-metric follows from the fact that bsph(L2) = Ω(n) [11, 23] and that we can reduce
the dimension of a polar-pairs of point-sets with constant gap to O(logn) using dimension
reduction [17].

4 Geometric representation of biclique in L0

In this section, we prove a lower bound on bsph(L0) and an upper bound on bcd(L0). We
start by providing a real-to-binary reduction below. Then we proceed to prove the lower
bound on bsph(L0) in Section 4.1 and then the upper bounds on bcd(L0) in Section 4.2.

First we state the following (trivial) lemma, which allows mapping from vectors in Rd to
zero-one vectors. The proof of the lemma can be found in the full version of the paper.

I Lemma 8 (Real to Binary Reduction). Let S ⊆ R be a finite set of real numbers. Then
there exists a transformation φ : Sd → {0, 1}d|S| such that, for any x, y ∈ Sd,

‖x− y‖0 = 1
2 · ‖φ(x)− φ(y)‖0

4.1 Lower bound on the biclique-sphericity
Now we will show that bsph(L0) ≥ n. Our proof requires the following lemma, which rules
out a randomized algorithm that generates a polar-pair of point-sets.

I Lemma 9 (No Distribution for L0). For any α > β ≥ 0, regardless of dimension, there
exist no distributions A and B of points in Rd with finite supports such that

Ex,x′∈RA[‖x− x′‖0] ≥ α.
Ey,y′∈RB[‖y − y′‖0] ≥ α.
Ex∈RA,y∈RB[‖x− y‖0] ≤ β.

Proof. We prove by contradiction. Assume to a contrary that such distributions exist. Then

Ex,x′∈RA[‖x− x′‖0] + Ey,y′∈RB[‖y − y′‖0]− 2Ex∈RA,y∈RB[‖x− y‖0] > 0. (9)

Let A and B be supports of A and B, respectively. By Lemma 8, we may assume that
vectors in A and B are binary vectors. Observe that each coordinate of vectors in A and B
contribute to the expectations independently. In particular, Eq. (9) can be written as

2
∑
i

ρA0,iρ
A
1,i + 2

∑
i

ρB0,iρ
B
1,i + 2

∑
i

(
ρA0,iρ

B
1,i + ρB0,iρ

A
1,i
)
> 0 (10)

where ρA0,i, ρA1,i, ρB0,i and ρB1,i are the probability that the i-th coordinate of x ∈ A (resp.,
y ∈ B) is 0 (resp., 1). Thus, to show a contradiction, it is sufficient to consider the coordinate
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which contributes the most to the summation in Eq. (10). The contribution of this coordinate
to the summation is

2ρA0 ρA1 + 2ρB0 ρB1 − 2(ρA0 ρB1 + ρA1 ρ
B
0 ) = 2(ρA0 − ρB0 )(ρA1 − ρB1 ) (11)

Since ρA0 + ρA1 = 1 and ρB0 + ρB1 = 1, the summation in Eq.(11) can be non-negative only if
ρA0 = ρB0 and ρA1 = ρB1 . But, then this implies that the summation in Eq.(11) is zero. We
have a contradiction since this coordinate contributes the most to the summation in Eq. (10)
which we assume to be positive. J

The next Theorem shows that bsph(L0) ≥ n.

I Theorem 10 (Lower Bound for L0 with Arbitrary Alphabet). For any integers α > β ≥ 0
and n > 0, there exist no subsets A,B ⊆ Rd of n vectors with d < n such that

For any a, a′ ∈ A, ‖a− a′‖0 ≥ α.
For any b, b′ ∈ B, ‖b− b′‖0 ≥ α.
For any a ∈ A and b ∈ B, ‖a− b‖0 ≤ β.

Proof. Suppose for a contradiction that such subsets A and B exist with d < n. We
build uniform distributions A and B by uniformly at random picking a vector in A and B,
respectively. Then it is easy to see that the expected value of inner distance is

Ex,x′∈RA[‖x− x′‖0] ≥ α− α

n

The intra distance of B is similar. We know that α− β ≥ 1 because they are integers and so
are L0-distances. But, then if α < n, we would have distributions that contradict Lemma 9.
Note that α and β are at most d (dimension). Therefore, we conclude that d ≥ n. J

4.2 Upper bound on the biclique contact-dimension
Now we show that bcd(L0) ≤ n.

I Theorem 11 (Upper Bound for L0 with Arbitrary Alphabet). For any integer n > 0 and
d = n, there exist subsets A,B ⊆ Rd each with n vectors such that

For any a, a′ ∈ A, ‖a− a′‖0 = d.
For any b, b′ ∈ B, ‖b− b′‖0 = d.
For any a ∈ A and b ∈ B, ‖a− b‖0 = d− 1.

Proof. First we construct a set of vectors A. For i = 1, 2, . . . , n, we define the i-th vector a
of A so that a is an all-i vector. That is, a = (i, i, . . . , i). Next we construct a set of vectors
B. The first vector of B is (1, 2, . . . , n). Then the (i+ 1)-th vector of B is the left rotation
of the i-th vector. Thus, the i-th vector of B is b = (i, i+ 1, . . . , n, 1, 2, . . . , i− 1).

It can be seen that the L0-distance between any two vectors from the same set is d
because all the coordinates are different. Any vectors from different set, say a ∈ A and b ∈ B,
must have at least one common coordinate. Thus, their L0-distance is d− 1. This proves the
lemma. J

Below is the upper bound for zero-one vectors, which is a corollary of Theorem 11. The
proof can be found in the full version of the paper.

I Corollary 12 (Upper Bound for L0 with Binary Vectors). For any integer n > 0 and d = n2,
there exist subsets A,B ⊆ Rd each with n vectors such that

For any a, a′ ∈ A, ‖a− a′‖0 = n.
For any b, b′ ∈ B, ‖b− b′‖0 = n.
For any a ∈ A and b ∈ B, ‖a− b‖0 = n− 1.
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5 Geometric representation of biclique in Lp for p ∈ (1, 2)

In this section, we prove the upper bound on bcd(Lp) for p ∈ (1, 2). We are unable to show
any lower bound for these Lp-metrics except for the lower bound of Ω(logn) obtained from
the ε-net lower bound in Theorem 16 (which will be proven in the next Section).

I Theorem 13 (Upper Bound for Lp with 1 < p < 2). For every 1 < p < 2 and for all
integers n ≥ 1, there exist two sets A,B ⊆ R2n each of cardinality n such that the following
holds:
1. For every distinct points u, v ∈ A, ‖u− v‖p = 21/p.
2. For every distinct points u, v ∈ B, ‖u− v‖p = 21/p.
3. For every points u ∈ A and v ∈ B, ‖u− v‖p < 21/p.

Proof. We will construct point-sets as claimed in the theorem for given p and n. Let α be a
parameter depending on p and n, which will be set later. For each i ∈ [n], we create a point
a ∈ A by setting

aj =


0 if 1 ≤ j ≤ n and j 6= i

1 if 1 ≤ j ≤ n and i = j

α if n+ 1 ≤ j ≤ 2n

Similarly, for each i ∈ [n], we create a point b ∈ B by setting

bj =


α if 1 ≤ j ≤ n
0 if n+ 1 ≤ j ≤ 2n and j 6= n+ i

1 if n+ 1 ≤ j ≤ 2n and j = n+ i

By construction, for every pair of points u, v both in A or both in B, their Lp-distance is
‖u− v‖p = 21/p, and for every pair of points from different sets, say u ∈ A and v ∈ B, their
Lp-distance is

‖u− v‖p = 21/p · ((1− α)p + (n− 1) · αp)1/p ≤ 21/p · ((1− α)p + n · αp)1/p (12)

Now let us choose α > n−1/(p−1), and consider the term (1 − α)p + n · αp in Eq. (12).
Observe that α < n · αp for 1 < p < 2. Define a function f(x) = (1 − α)x + n · αx. We
know that f(x) is less than 1 as x goes from ∞ to 1 (i.e., limx→1+((1− α)x + n · αx) < 1).
Moreover, f(x) is decreasing for 0 < α < 1, which means that f(p) < 1. Consequently,
‖u− v‖p < 21/p, and the theorem follows.

To finish the proof, we will show that f(x) is decreasing for x > 1 provided that 0 < α < 1.
It suffices to show that f ′(x) < 0 for all values of x.

f ′(x) = ∂

∂x
((1− α)x + n · αx) = (1− α)x ln (1− α) + n · αx ln (α) < 0.

The last inequality follows from the fact ln(x) < 0 for 0 < x < 1 and that 0 < α, 1−α < 1. J

6 Geometric representation of biclique in Lp for p > 2

In this section, we show the lower bound on bsph(Lp) and an upper bound on bcd(Lp) for
p > 2. Both bounds are logarithmic. The latter upper bound is constructive and efficient (in
the sense that the polar-pair of point-sets can be constructed in Õ(n)-time). This implies
the subquadratic-time equivalence between Closest Pair and BCP.
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6.1 Lower bound on the biclique sphericity
Now we show the lower bound on the biclique sphericity of a complete bipartite graph in
Lp-metrics with p > 2. In fact, we prove the lower bound for the case of a star graph on
n vertices, denoted by Sn, and then use the fact that bsph(H) ≤ bsph(G) for all induced
subgraph H of G (i.e., bsph(Kn/2,n/2, L

p) ≥ bsph(Sn/2, L
p)).

In short, we show in Lemma 16 that O(logn) is the maximum number of Lp-balls of
radius 1/2 that we can pack in an Lp-ball of radius one so that no two of them intersect or
touch each other. This upper bounds, in turn, implies the lower bound on the dimension.
We proceed with the proof by volume arguments, which are commonly used in proving the
minimum number of points in an ε-net that are sufficient to cover all the points in a sphere.

I Definition 14 (ε-net). The unit Lp-ball in Rd centered at o is denoted by

B
(
Ldp, o

)
=
{
x ∈ Rd | ‖x− o‖p ≤ 1

}
.

For brevity, we write B
(
Ldp
)
to mean B

(
Ldp, o

)
. Let (X, d) be a metric space and let S be a

subset of X and ε be a constant greater than 0. A subset Nε of X is called an ε-net of S
under d if for every point x ∈ S it holds for some point y ∈ Nε that d (x, y) ≤ ε.

The following lemma is well known in literature (see, e.g., [28]). For the sake of complete-
ness, we provide a proof in the full version of the paper.

I Lemma 15. There exists an ε-net for B
(
Ldp
)
under the Lp-metric of cardinality

(
1 + 2

ε

)d.
I Theorem 16. For every N, d ∈ N, for p ≥ 1, and for any two sets A,B ⊆ Rd, each of
cardinality N , suppose the following holds for some non-negative real numbers α and β with
α > β.
1. For every u and v both in A, ‖u− v‖p > α.
2. For every u and v both in B, ‖u− v‖p > α.
3. For every u in A and v in B, ‖u− v‖p ≤ β.
Then the dimension d must be at least log5(N).

Proof. Scale and translate the sets A,B in such a way that β = 1 and that ~0 ∈ B. It follows
that A ⊆ B

(
Ldp
)
. By Lemma 15, we can fix a 1/2-net N1/2 for B

(
Ldp
)
of size 5d. Note that,

for every x ∈ N1/2, the ball 1/2 · B
(
Ldp, x

)
contains at most one point from A. Note also

that N1/2 covers B
(
Ldp
)
. Thus, |A| ≤ 5d which implies that d ≥ log5(N). J

6.2 Upper bound on the biclique contact-dimension
We first give a simple randomized construction that gives a logarithmic upper bound on
the biclique contact-dimension of Lp. The construction is simple. We uniformly at random
take a subset A of n vectors from {−1, 1}d/2 × {0}d/2 and a subset B of n vectors from
{0}d/2 × {−1, 1}d/2. Observe that, for any p > 2, the Lp-distance of any pair of vectors
u ∈ A and v ∈ B is exactly d while the expected distance between the inner pair u, u′ ∈ A
(resp., v, v′ ∈ B) is strictly larger than d. Thus, if we choose d to be sufficiently large, e.g.,
d ≥ 10 lnn, then we can show by a standard concentration bound (e.g., Chernoff’s bound)
that the probability that the inner-pair distance is strictly larger than d is at least 1− 1/n3.
Applying the union bound over all inner-pairs, we have that the d-neighborhood graph of
A ∪B is a bipartite complete graph with high probability. Moreover, the distances between
any crossing pairs u ∈ A and v ∈ B are the same for all pairs. This shows the upper bound
for the contact-dimension of a biclique in the Lp-metric for p > 2.
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The above gives a simple proof of the upper bound on the biclique contact-dimension
of the Lp-metric. Moreover, it shows a randomized construction of the polar-pair in the
O(logn)-dimensional Lp-metric, for p > 2, thus implying that Closest Pair and BCP are
equivalent for these Lp-metrics.

For algorithmic purposes, we provide a deterministic construction below using appropriate
binary codes.

I Theorem 17. For any p > 2, let ζ = 2p−3. There exist two sets |A| = |B| = n of vectors
in Rd, where d = 2α log2 n, for some constant α ≥ 1, such that the following holds.
1. For all u, u′ ∈ A, ‖u− u′‖p > ((ζ + 1/2)d)1/p.
2. For all v, v′ ∈ B, ‖v − v′‖p > ((ζ + 1/2)d)1/p.
3. For all u ∈ A, v ∈ B, ‖u− v‖p = d1/p.
Moreover, there exists a deterministic algorithm that outputs A and B in time Õ(n).

Proof. In literature, we note that for any constant δ > 0, there is an explicit binary code of
(some) constant relative rate and relative distance at least 1

2 − δ and the entire code can be
listed in quasilinear time with respect to the size of the code (see Appendix E.1.2.5 from
[13], or Justesen codes [18]). To be more specific, we can construct in O(n logO(1) n)-time
a set C ⊆ {−1, 1}d′ such that (1) |C| = n, (2) d′ = d/2 = α log2 n for some constant α ≥ 1
and (3) for every two vectors x, y ∈ C, x and y differ on at least

( 1
2 − δ

)
d′ coordinates, for

some constant δ ∈
(
0, 1

4 −
1

2p

)
.

We construct the sets A and B as subsets of {−1, 0, 1}d. For every i ∈ [n], the ith point
of A is given by the concatenation of the ith point of C with 0d′ . Similarly, the ith point of
B is given by the concatenation of 0d′ with the ith point of C (note the reversal in the order
of the concatenation). In particular, points in A and B are of the form (xi,~0) and (~0, xi),
respectively, where xi is the ith point in C and ~0 is the zero-vector of length α log2 n.

First, consider any two points in the same set, say u, u′ ∈ A (resp., v, v′ ∈ B). We have
from the distance of C that on at least

( 1
2 − δ

)
d′ coordinates the two points differ by 2, thus

implying that their Lp-distance is at least((
1
2 − δ

)
d′2p

)1/p
>

((
1
4 + 1

2p

)
d′2p

)1/p
=
((

2p−3 + 1
2

)
d

)1/p
.

This proves the first two items of the theorem. Next we prove the third item. Consider any
two points from different sets, say u ∈ A and v ∈ B. It is easy to see from the construction
that u and v differ in every coordinate by exactly 1. Thus, the Lp-distance between any two
points from different set is exactly

(2d′)1/p = d1/p. J

7 Fine-grained complexity of CLOSEST PAIR in L∞

In this section, we prove the quadratic-time hardness of Closest Pair in the L∞-metric.
Our reduction is from the Orthogonal Vectors problem (OV), which we phrase it as follows.
Given a pair of collections of vectors U,W ⊆ {0, 1}d, the goal is to find a pair of vectors
u ∈ U and w ∈ W such that (ui, wi) ∈ {(0, 0), (0, 1), (1, 0)} for all i ∈ [d]. Throughout, we
denote by n the total number of vectors in U and W .

Let U,W ⊆ {0, 1}d be an instance of OV. We may assume that U and W have no
duplicates. Otherwise, we may sort vectors in U (resp., W ) in lexicographic order and then
sequentially remove duplicates; this preprocessing takes O(dn logn)-time.
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We construct a pair of sets A,B ⊆ Rd of BCP from U,W as follows. For each vector
u ∈ U (resp., w ∈W ), we create a point a ∈ A (resp., b ∈ B) such that

aj =
{

0 if uj = 0,
2 if uj = 1.

bj =
{

1 if wj = 0,
−1 if wj = 1.

Observe that, for any vectors a ∈ A and b ∈ B, |aj − bj | = 3 only if uj = wj = 1;
otherwise, |aj − bj | = 1. It can be seen that ‖a− b‖p = d if and only if their corresponding
vectors u ∈ U and w ∈ W are orthogonal. Thus, this gives an alternate proof for the
quadratic-time hardness of BCP under OVH.

Here we show that the reduction above rules out both exact and (2− o(1))-approximation
algorithm for Closest Pair in L∞ that runs in subquadratic-time (unless OVH is false).
That is, we prove Theorem 5, which follows from the theorem below whose proof is in the
full version of the paper. In short, given an instance (U,W ) of the OV problem, the instance
of Closest Pair that is constructed in the reduction in simply A ∪B.

I Theorem 18. Assuming OVH, for any ε > 0 and d = ω(logn), there is no O
(
n2−ε)-time

algorithm that, given a point-set P ⊆ Rd, distinguishes between the following two cases:
There exists a pair of vectors in P with L∞-distance one.
Every pair of vectors in P has L∞-distance two.

In particular, approximating Closest Pair in the L∞-metric to within a factor of two is at
least as hard as solving the Orthogonal Vectors problem.

8 Conclusion and discussion

We have studied the sphericity and contact dimension of the complete bipartite graph in
various metrics. We have proved lower and upper bounds on these measures for some metrics.
However, biclique sphericity and biclique contact dimension in the L1-metric remains poorly
understood as we are unable to show any strong upper or lower bounds. However, we believe
that both L1 and L2 metrics have linear upper and lower bounds. To be precise, we raise
the following conjecture:

I Conjecture 19 (L1-Biclique Sphericity Conjecture).

bsph(L1) = Ω(n).

We have also shown conditional lower bounds for the Closest Pair problem in the Lp-
metric, for all p ∈ R>2 ∪ {∞}, by using polar-pair of point-sets. However, it is unlikely
that our techniques could get to the regime of L2, L1, and L0, which are popular metrics.
An open question is thus whether there exists an alternative technique to derive a lower
bound from OVH to the Closest Pair problem for these metrics. The answer might be on the
positive side, i.e., there might exist an algorithm that performs well in the L2-metric because
there are more tools available, e.g., Johnson-Lindenstrauss’ dimension reduction. Thus, it
is possible that there exists a strongly subquadratic-time algorithm in the L2-metric. This
question remains an outstanding open problem.
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