1,352 research outputs found

    A Smart Assistant for Visual Recognition of Painted Scenes

    Get PDF
    Nowadays, smart devices allow people to easily interact with the surrounding environment thanks to existing communication infrastructures, i.e., 3G/4G/5G or WiFi. In the context of a smart museum, data shared by visitors can be used to provide innovative services aimed to improve their cultural experience. In this paper, we consider as case study the painted wooden ceiling of the Sala Magna of Palazzo Chiaramonte in Palermo, Italy and we present an intelligent system that visitors can use to automatically get a description of the scenes they are interested in by simply pointing their smartphones to them. As compared to traditional applications, this system completely eliminates the need for indoor positioning technologies, which are unfeasible in many scenarios as they can only be employed when museum items are physically distinguishable. Experimental analysis aimed to evaluate the performance of the system in terms of accuracy of the recognition process, and the obtained results show its effectiveness in a real-world application scenario

    Electronic Imaging & the Visual Arts. EVA 2013 Florence

    Get PDF
    Important Information Technology topics are presented: multimedia systems, data-bases, protection of data, access to the content. Particular reference is reserved to digital images (2D, 3D) regarding Cultural Institutions (Museums, Libraries, Palace – Monuments, Archaeological Sites). The main parts of the Conference Proceedings regard: Strategic Issues, EC Projects and Related Networks & Initiatives, International Forum on “Culture & Technology”, 2D – 3D Technologies & Applications, Virtual Galleries – Museums and Related Initiatives, Access to the Culture Information. Three Workshops are related to: International Cooperation, Innovation and Enterprise, Creative Industries and Cultural Tourism

    Twitter-based analysis of the dynamics of collective attention to political parties

    Get PDF
    Large-scale data from social media have a significant potential to describe complex phenomena in the real world and to anticipate collective behaviors such as information spreading and social trends. One specific case of study is represented by the collective attention to the action of political parties. Not surprisingly, researchers and stakeholders tried to correlate parties' presence on social media with their performances in elections. Despite the many efforts, results are still inconclusive since this kind of data is often very noisy and significant signals could be covered by (largely unknown) statistical fluctuations. In this paper we consider the number of tweets (tweet volume) of a party as a proxy of collective attention to the party, identify the dynamics of the volume, and show that this quantity has some information on the election outcome. We find that the distribution of the tweet volume for each party follows a log-normal distribution with a positive autocorrelation of the volume over short terms, which indicates the volume has large fluctuations of the log-normal distribution yet with a short-term tendency. Furthermore, by measuring the ratio of two consecutive daily tweet volumes, we find that the evolution of the daily volume of a party can be described by means of a geometric Brownian motion (i.e., the logarithm of the volume moves randomly with a trend). Finally, we determine the optimal period of averaging tweet volume for reducing fluctuations and extracting short-term tendencies. We conclude that the tweet volume is a good indicator of parties' success in the elections when considered over an optimal time window. Our study identifies the statistical nature of collective attention to political issues and sheds light on how to model the dynamics of collective attention in social media

    Energy Optimization and Management of Demand Response Interactions in a Smart Campus

    Get PDF
    The proposed framework enables innovative power management in smart campuses, integrating local renewable energy sources, battery banks and controllable loads and supporting Demand Response interactions with the electricity grid operators. The paper describes each system component: the Energy Management System responsible for power usage scheduling, the telecommunication infrastructure in charge of data exchanging and the integrated data repository devoted to information storage. We also discuss the relevant use cases and validate the framework in a few deployed demonstrators

    Exploiting satellite SAR for archaeological prospection and heritage site protection

    Get PDF
    Optical and Synthetic Aperture Radar (SAR) remote sensing has a long history of use and reached a good level of maturity in archaeological and cultural heritage applications, yet further advances are viable through the exploitation of novel sensor data and imaging modes, big data and high-performance computing, advanced and automated analysis methods. This paper showcases the main research avenues in this field, with a focus on archaeological prospection and heritage site protection. Six demonstration use-cases with a wealth of heritage asset types (e.g. excavated and still buried archaeological features, standing monuments, natural reserves, burial mounds, paleo-channels) and respective scientific research objectives are presented: the Ostia-Portus area and the wider Province of Rome (Italy), the city of Wuhan and the Jiuzhaigou National Park (China), and the Siberian “Valley of the Kings” (Russia). Input data encompass both archive and newly tasked medium to very high-resolution imagery acquired over the last decade from satellite (e.g. Copernicus Sentinels and ESA Third Party Missions) and aerial (e.g. Unmanned Aerial Vehicles, UAV) platforms, as well as field-based evidence and ground truth, auxiliary topographic data, Digital Elevation Models (DEM), and monitoring data from geodetic campaigns and networks. The novel results achieved for the use-cases contribute to the discussion on the advantages and limitations of optical and SAR-based archaeological and heritage applications aimed to detect buried and sub-surface archaeological assets across rural and semi-vegetated landscapes, identify threats to cultural heritage assets due to ground instability and urban development in large metropolises, and monitor post-disaster impacts in natural reserves

    E-health-IoT Universe: A Review

    Get PDF
    The Internet of Things (IoT) devices are able to collect and share data directly with other devices through the cloud environment, providing a huge amount of information to be gathered, stored and analyzed for data-analytics processes. The scenarios in which the IoT devices may be useful are amazing varying, from automotive, to industrial automation or remote monitoring of domestic environment. Furthermore, has been proved that healthcare applications represent an important field of interest for IoT devices, due to the capability of improving the access to care, reducing the cost of healthcare and most importantly increasing the quality of life of the patients. In this paper, we analyze the state-of-art of IoT in medical environment, illustrating an extended range of IoT-driven healthcare applications that, however, still need innovative and high technology-based solutions to be considered ready to market. In particular, problems regarding characteristics of response-time and precision will be examined.  Furthermore, wearable and energy saving properties will be investigated in this paper and also the IT architectures able to ensure security and privacy during the all data-transmission process. Finally, considerations about data mining applications, such as risks prediction, classification and clustering will be provided, that are considered fundamental issues to ensure the accuracy of the care processes
    • …
    corecore