38 research outputs found

    Time- and value-continuous explainable affect estimation in-the-wild

    Get PDF
    Today, the relevance of Affective Computing, i.e., of making computers recognise and simulate human emotions, cannot be overstated. All technology giants (from manufacturers of laptops to mobile phones to smart speakers) are in a fierce competition to make their devices understand not only what is being said, but also how it is being said to recognise user’s emotions. The goals have evolved from predicting the basic emotions (e.g., happy, sad) to now the more nuanced affective states (e.g., relaxed, bored) real-time. The databases used in such research too have evolved, from earlier featuring the acted behaviours to now spontaneous behaviours. There is a more powerful shift lately, called in-the-wild affect recognition, i.e., taking the research out of the laboratory, into the uncontrolled real-world. This thesis discusses, for the very first time, affect recognition for two unique in-the-wild audiovisual databases, GRAS2 and SEWA. The GRAS2 is the only database till date with time- and value-continuous affect annotations for Labov effect-free affective behaviours, i.e., without the participant’s awareness of being recorded (which otherwise is known to affect the naturalness of one’s affective behaviour). The SEWA features participants from six different cultural backgrounds, conversing using a video-calling platform. Thus, SEWA features in-the-wild recordings further corrupted by unpredictable artifacts, such as the network-induced delays, frame-freezing and echoes. The two databases present a unique opportunity to study time- and value-continuous affect estimation that is truly in-the-wild. A novel ‘Evaluator Weighted Estimation’ formulation is proposed to generate a gold standard sequence from several annotations. An illustration is presented demonstrating that the moving bag-of-words (BoW) representation better preserves the temporal context of the features, yet remaining more robust against the outliers compared to other statistical summaries, e.g., moving average. A novel, data-independent randomised codebook is proposed for the BoW representation; especially useful for cross-corpus model generalisation testing when the feature-spaces of the databases differ drastically. Various deep learning models and support vector regressors are used to predict affect dimensions time- and value-continuously. Better generalisability of the models trained on GRAS2 , despite the smaller training size, makes a strong case for the collection and use of Labov effect-free data. A further foundational contribution is the discovery of the missing many-to-many mapping between the mean square error (MSE) and the concordance correlation coefficient (CCC), i.e., between two of the most popular utility functions till date. The newly invented cost function |MSE_{XY}/σ_{XY}| has been evaluated in the experiments aimed at demystifying the inner workings of a well-performing, simple, low-cost neural network effectively utilising the BoW text features. Also proposed herein is the shallowest-possible convolutional neural network (CNN) that uses the facial action unit (FAU) features. The CNN exploits sequential context, but unlike RNNs, also inherently allows data- and process-parallelism. Interestingly, for the most part, these white-box AI models have shown to utilise the provided features consistent with the human perception of emotion expression

    Combining Representation Learning with Logic for Language Processing

    Get PDF
    The current state-of-the-art in many natural language processing and automated knowledge base completion tasks is held by representation learning methods which learn distributed vector representations of symbols via gradient-based optimization. They require little or no hand-crafted features, thus avoiding the need for most preprocessing steps and task-specific assumptions. However, in many cases representation learning requires a large amount of annotated training data to generalize well to unseen data. Such labeled training data is provided by human annotators who often use formal logic as the language for specifying annotations. This thesis investigates different combinations of representation learning methods with logic for reducing the need for annotated training data, and for improving generalization.Comment: PhD Thesis, University College London, Submitted and accepted in 201

    Natural Language Processing: Emerging Neural Approaches and Applications

    Get PDF
    This Special Issue highlights the most recent research being carried out in the NLP field to discuss relative open issues, with a particular focus on both emerging approaches for language learning, understanding, production, and grounding interactively or autonomously from data in cognitive and neural systems, as well as on their potential or real applications in different domains

    Ranking and Retrieval under Semantic Relevance

    Get PDF
    This thesis presents a series of conceptual and empirical developments on the ranking and retrieval of candidates under semantic relevance. Part I of the thesis introduces the concept of uncertainty in various semantic tasks (such as recognizing textual entailment) in natural language processing, and the machine learning techniques commonly employed to model these semantic phenomena. A unified view of ranking and retrieval will be presented, and the trade-off between model expressiveness, performance, and scalability in model design will be discussed. Part II of the thesis focuses on applying these ranking and retrieval techniques to text: Chapter 3 examines the feasibility of ranking hypotheses given a premise with respect to a human's subjective probability of the hypothesis happening, effectively extending the traditional categorical task of natural language inference. Chapter 4 focuses on detecting situation frames for documents using ranking methods. Then we extend the ranking notion to retrieval, and develop both sparse (Chapter 5) and dense (Chapter 6) vector-based methods to facilitate scalable retrieval for potential answer paragraphs in question answering. Part III turns the focus to mentions and entities in text, while continuing the theme on ranking and retrieval: Chapter 7 discusses the ranking of fine-grained types that an entity mention could belong to, leading to state-of-the-art performance on hierarchical multi-label fine-grained entity typing. Chapter 8 extends the semantic relation of coreference to a cross-document setting, enabling models to retrieve from a large corpus, instead of in a single document, when resolving coreferent entity mentions

    Advances in Artificial Intelligence: Models, Optimization, and Machine Learning

    Get PDF
    The present book contains all the articles accepted and published in the Special Issue “Advances in Artificial Intelligence: Models, Optimization, and Machine Learning” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of artificial intelligence and its subfields. These topics include, among others, deep learning and classic machine learning algorithms, neural modelling, architectures and learning algorithms, biologically inspired optimization algorithms, algorithms for autonomous driving, probabilistic models and Bayesian reasoning, intelligent agents and multiagent systems. We hope that the scientific results presented in this book will serve as valuable sources of documentation and inspiration for anyone willing to pursue research in artificial intelligence, machine learning and their widespread applications

    Women in Artificial intelligence (AI)

    Get PDF
    This Special Issue, entitled "Women in Artificial Intelligence" includes 17 papers from leading women scientists. The papers cover a broad scope of research areas within Artificial Intelligence, including machine learning, perception, reasoning or planning, among others. The papers have applications to relevant fields, such as human health, finance, or education. It is worth noting that the Issue includes three papers that deal with different aspects of gender bias in Artificial Intelligence. All the papers have a woman as the first author. We can proudly say that these women are from countries worldwide, such as France, Czech Republic, United Kingdom, Australia, Bangladesh, Yemen, Romania, India, Cuba, Bangladesh and Spain. In conclusion, apart from its intrinsic scientific value as a Special Issue, combining interesting research works, this Special Issue intends to increase the invisibility of women in AI, showing where they are, what they do, and how they contribute to developments in Artificial Intelligence from their different places, positions, research branches and application fields. We planned to issue this book on the on Ada Lovelace Day (11/10/2022), a date internationally dedicated to the first computer programmer, a woman who had to fight the gender difficulties of her times, in the XIX century. We also thank the publisher for making this possible, thus allowing for this book to become a part of the international activities dedicated to celebrating the value of women in ICT all over the world. With this book, we want to pay homage to all the women that contributed over the years to the field of AI

    Preface

    Get PDF

    Advances in Intelligent Vehicle Control

    Get PDF
    This book is a printed edition of the Special Issue Advances in Intelligent Vehicle Control that was published in the journal Sensors. It presents a collection of eleven papers that covers a range of topics, such as the development of intelligent control algorithms for active safety systems, smart sensors, and intelligent and efficient driving. The contributions presented in these papers can serve as useful tools for researchers who are interested in new vehicle technology and in the improvement of vehicle control systems
    corecore