6 research outputs found

    Mining domain knowledge from app descriptions

    Get PDF
    Domain analysis aims at obtaining knowledge to a particular domain in the early stage of software development. A key challenge in domain analysis is to extract features automatically from related product artifacts. Compared with other kinds of artifacts, high volume of descriptions can be collected from app marketplaces (such as Google Play and Apple Store) easily when developing a new mobile application (App), so it is essential for the success of domain analysis to obtain features and relationship from them using data technologies. In this paper, we propose an approach to mine domain knowledge from App descriptions automatically. In our approach, the information of features in a single app description is firstly extracted and formally described by a Concern-based Description Model (CDM), this process is based on predefined rules of feature extraction and a modified topic modeling method; then the overall knowledge in the domain is identified by classifying, clustering and merging the knowledge in the set of CDMs and topics, and the results are formalized by a Data-based Raw Domain Model (DRDM). Furthermore, we propose a quantified evaluation method for prioritizing the knowledge in DRDM. The proposed approach is validated by a series of experiments

    Supporting feature-level software maintenance

    Get PDF
    Software maintenance is the process of modifying a software system to fix defects, improve performance, add new functionality, or adapt the system to a new environment. A maintenance task is often initiated by a bug report or a request for new functionality. Bug reports typically describe problems with incorrect behaviors or functionalities. These behaviors or functionalities are known as features. Even in very well-designed systems, the source code that implements features is often not completely modularized. The delocalized nature of features makes maintaining them challenging. Since maintenance tasks are expressed in terms of features, the goal of this dissertation is to support software maintenance at the feature-level. We focus on two tasks in particular: feature location and impact analysis via feature coupling.;Feature location is the process of identifying the source code that implements a feature, and it is an essential first step to any maintenance task. There are many existing techniques for feature location that incorporate various types of analyses such as static, dynamic, and textual. In this dissertation, we recognize the advantages of leveraging several types of analyses and introduce a new approach to feature location based on combining dynamic analysis, textual analysis, and web mining algorithms applied to software. The use of web mining for feature location is a novel contribution, and we show that our new techniques based on web mining are significantly more effective than the current state of the art.;After using feature location to identify a feature\u27s source code, maintenance can be completed on that feature. Impact analysis should then be performed to revalidate the system and determine which other features may have been affected by the modifications. We define three feature coupling metrics that capture the relationship between features based on structural information, textual information, and their combination. Our novel feature coupling metrics can be used for impact analysis to quantify the strength of coupling between pairs of features. We performed three empirical studies on open-source software systems to assess the feature coupling metrics and established three major results. First, there is a moderate to strong statistically significant correlation between feature coupling and faults. Second, feature coupling can be used to correctly determine about half of the other features that would be affected by a change to a given feature. Finally, we found that the metrics align with developers\u27 opinions about pairs of features that are actually coupled

    Fujaba days 2009 : proceedings of the 7th international Fujaba days, Eindhoven University of Technology, the Netherlands, November 16-17, 2009

    Get PDF
    Fujaba is an Open Source UML CASE tool project started at the software engineering group of Paderborn University in 1997. In 2002 Fujaba has been redesigned and became the Fujaba Tool Suite with a plug-in architecture allowing developers to add functionality easily while retaining full control over their contributions. Multiple Application Domains Fujaba followed the model-driven development philosophy right from its beginning in 1997. At the early days, Fujaba had a special focus on code generation from UML diagrams resulting in a visual programming language with a special emphasis on object structure manipulating rules. Today, at least six rather independent tool versions are under development in Paderborn, Kassel, and Darmstadt for supporting (1) reengineering, (2) embedded real-time systems, (3) education, (4) specification of distributed control systems, (5) integration with the ECLIPSE platform, and (6) MOF-based integration of system (re-) engineering tools. International Community According to our knowledge, quite a number of research groups have also chosen Fujaba as a platform for UML and MDA related research activities. In addition, quite a number of Fujaba users send requests for more functionality and extensions. Therefore, the 7th International Fujaba Days aimed at bringing together Fujaba developers and Fujaba users from all over the world to present their ideas and projects and to discuss them with each other and with the Fujaba core development team

    Fujaba days 2009 : proceedings of the 7th international Fujaba days, Eindhoven University of Technology, the Netherlands, November 16-17, 2009

    Get PDF
    Fujaba is an Open Source UML CASE tool project started at the software engineering group of Paderborn University in 1997. In 2002 Fujaba has been redesigned and became the Fujaba Tool Suite with a plug-in architecture allowing developers to add functionality easily while retaining full control over their contributions. Multiple Application Domains Fujaba followed the model-driven development philosophy right from its beginning in 1997. At the early days, Fujaba had a special focus on code generation from UML diagrams resulting in a visual programming language with a special emphasis on object structure manipulating rules. Today, at least six rather independent tool versions are under development in Paderborn, Kassel, and Darmstadt for supporting (1) reengineering, (2) embedded real-time systems, (3) education, (4) specification of distributed control systems, (5) integration with the ECLIPSE platform, and (6) MOF-based integration of system (re-) engineering tools. International Community According to our knowledge, quite a number of research groups have also chosen Fujaba as a platform for UML and MDA related research activities. In addition, quite a number of Fujaba users send requests for more functionality and extensions. Therefore, the 7th International Fujaba Days aimed at bringing together Fujaba developers and Fujaba users from all over the world to present their ideas and projects and to discuss them with each other and with the Fujaba core development team

    Rethinking Consistency Management in Real-time Collaborative Editing Systems

    Get PDF
    Networked computer systems offer much to support collaborative editing of shared documents among users. Increasing concurrent access to shared documents by allowing multiple users to contribute to and/or track changes to these shared documents is the goal of real-time collaborative editing systems (RTCES); yet concurrent access is either limited in existing systems that employ exclusive locking or concurrency control algorithms such as operational transformation (OT) may be employed to enable concurrent access. Unfortunately, such OT based schemes are costly with respect to communication and computation. Further, existing systems are often specialized in their functionality and require users to adopt new, unfamiliar software to enable collaboration. This research discusses our work in improving consistency management in RTCES. We have developed a set of deadlock-free multi-granular dynamic locking algorithms and data structures that maximize concurrent access to shared documents while minimizing communication cost. These algorithms provide a high level of service for concurrent access to the shared document and integrate merge-based or OT-based consistency maintenance policies locally among a subset of the users within a subsection of the document – thus reducing the communication costs in maintaining consistency. Additionally, we have developed client-server and P2P implementations of our hierarchical document management algorithms. Simulations results indicate that our approach achieves significant communication and computation cost savings. We have also developed a hierarchical reduction algorithm that can minimize the space required of RTCES, and this algorithm may be pipelined through our document tree. Further, we have developed an architecture that allows for a heterogeneous set of client editing software to connect with a heterogeneous set of server document repositories via Web services. This architecture supports our algorithms and does not require client or server technologies to be modified – thus it is able to accommodate existing, favored editing and repository tools. Finally, we have developed a prototype benchmark system of our architecture that is responsive to users’ actions and minimizes communication costs
    corecore