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ABSTRACT PAGE 

Software maintenance is the process of modifying a software system to fix defects, 
improve performance, add new functionality, or adapt the system to a new environment. A 
maintenance task is often initiated by a bug report or a request for new functionality. Bug 
reports typically describe problems with incorrect behaviors or functionalities. These 
behaviors or functionalities are known as features. Even in very well-designed systems, 
the source code that implements features is often not completely modularized. The 
delocalized nature of features makes maintaining them challenging. Since maintenance 
tasks are expressed in terms of features, the goal of this dissertation is to support software 
maintenance at the feature-level. We focus on two tasks in particular: feature location and 
impact analysis via feature coupling. 

Feature location is the process of identifying the source code that implements a feature, 
and it is an essential first step to any maintenance task. There are many existing 
techniques for feature location that incorporate various types of analyses such as static, 
dynamic, and textual. In this dissertation, we recognize the advantages of leveraging 
several types of analyses and introduce a new approach to feature location based on 
combining dynamic analysis, textual analysis, and web mining algorithms applied to 
software. The use of web mining for feature location is a novel contribution, and we show 
that our new techniques based on web mining are significantly more effective than the 
current state of the art. 

After using feature location to identify a feature's source code, maintenance can be 
completed on that feature. Impact analysis should then be performed to revalidate the 
system and determine which other features may have been affected by the modifications. 
We define three feature coupling metrics that capture the relationship between features 
based on structural information, textual information, and their combination. Our novel 
feature coupling metrics can be used for impact analysis to quantify the strength of 
coupling between pairs of features. We performed three empirical studies on open-source 
software systems to asses the feature coupling metrics and established three major 
results. First, there is a moderate to strong statistically significant correlation between 
feature coupling and faults. Second, feature coupling can be used to correctly determine 
about half of the other features that would be affected by a change to a given feature. 
Finally, we found that the metrics align with developers' opinions about pairs of features 
that are actually coupled. 
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Supporting Feature-Level Software Maintenance 



Chapter 1 

Introduction 

Software maintenance is the process of modifying a software system after its initial devel-

opment and deployment [209]. Software systems undergo changes for a variety of reasons: 

to fix problems, to improve performance, to add new functionalities, or to be adapted to a 

new environment. The software maintenance process has three main steps [17, 16]. First, 

the programmer must understand the existing software, at least partially. This crucial step 

can take 50%-60% of the total time required for maintenance [51, 115, 232]. Second, once 

adequate comprehension is achieved, the programmer can modify the software. Finally, the 

programmer must revalidate the newly modified software to ensure proper functionality and 

performance. 

The software maintenance process is often triggered by a bug report or a feature re

quest. Bug reports typically describe problems related to incorrect system behaviors or 

functionalities. These program behaviors or functionalities are known as features 1 . In the 

literature, a feature is defined as "a requirement of a program that a user can exercise and 

which produces an observable behavior" [5]. For instance, an example of a feature from a 

web browser is the ability to save a bookmark for a web page. As another example, features 

of a word processor include the abilities to spell-check and print a document. 

Since many maintenance tasks are initiated by bug reports, and most bug reports are 

expressed in terms of features, it is the goal of this work to support software maintenance 

1Features are also sometimes referred to as concepts or concerns [175, 176]. The definitions of "concept" 
and "concern" are broader than the definition of "feature" because they cover behaviors of a software system 
that users cannot invoke or observe. This dissertation focuses on features. 
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tasks at the feature-level and to promote features to first-class entities [216] within at least 

one phase of the software life cycle. We focus on two software maintenance activities in 

particular: feature location and impact analysis. 

Feature location, also referred to as concept location, is the process of identifying the 

source code that implements a feature [5, 12]. Before maintainers can change a system, they 

must explore its source code in order to locate and understand the code that is relevant to 

the feature undergoing modification. Thus, feature location corresponds to the first step of 

the software maintenance process. Locating a feature's source code is a challenging task, 

especially in large systems with hundreds of classes, thousands of methods, and millions of 

lines of code. Compounding the problem is the fact that features' implementations are often 

not encapsulated in a single module [61, 111, 174, 213]. Even in well-designed systems, it 

is inevitable that some features will have to be implemented in multiple modules. 

Because features are scattered throughout the modules of a system, they are hard to 

locate and maintain. Feature location techniques seek to help maintainers more effectively 

and efficiently identify a feature's source code. Most existing feature location techniques 

locate features using textual, dynamic, or static analyses. Textual approaches leverage the 

semantic information embedded in source code comments and identifier names [45, 85, 103, 

142, 157, 201]. However, if the system has poor identifier names, textual feature location 

techniques may not perform well. Dynamic approaches identify a feature's relevant source 

code by analyzing execution traces [5, 65, 66, 77, 229]. These dynamic techniques are prone 

to 1) being noisy because of the difficulty of only invoking the feature of interest at runtime 

and 2) incomplete because all of a feature's relevant source code may not be executed in 

a trace. Static feature location techniques generally require more user input and involve a 

programmer exploring the structural dependencies of code known to implement a feature 

to find additional relevant code [39, 176, 214]. 

Researchers have recognized that textual, dynamic, and static feature location tech

niques have their limitations, but by combining them, their weaknesses can be mitigated 

[5, 65, 66, 77, 229]. This work also introduces new feature location techniques that are 

based on combining several types of analyses such as textual, dynamic, and static. In addi

tion, this work introduces the use of web mining algorithms for feature location and shows 
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that these new approaches are significantly more effective than existing techniques. 

Once maintainers locate and understand a feature's source code, they can make ap

propriate changes to the feature to satisfy the maintenance task. These actions cover the 

first two steps of the software maintenance process. The third step is to revalidate the 

software, and this step can be achieved by performing impact analysis. Impact analysis is 

the process of determining the effects of a change to a software system [18, 40, 189]. One 

way of performing impact analysis is to use coupling metrics [29]. For instance, if class A 

is modified and is also tightly coupled to class B, then B is likely to be affected by changes 

to A. 

Existing coupling metrics are defined for classes. However, features transcend the 

boundaries of classes, so these existing metrics cannot be applied to them. To more ef

fectively support software maintenance of features, this work introduces metrics that are 

specifically designed to capture the coupling among features. Maintainers can use these 

metrics to determine whether other features might be affected by the changes they make. 

The new metrics capture the coupling among features by relying on structural and textual 

sources of information in source code. 

This dissertation takes a novel view of supporting software maintenance by focusing on 

features. This work concentrates on the software maintenance tasks of feature location and 

feature-level impact analysis. Thus, this dissertation provides a comprehensive approach 

to supporting feature-level software maintenance tasks. 

1.1 Research Goals and Contributions 

Since the implementations of features are not always modularized, they are difficult to lo

cate. Also, determining the relationships between un-modularized features is challenging. 

This work aims to expressly support two maintenance tasks in terms of features: feature 

location and feature impact analysis via coupling. Both of these tasks are achieved by 

combining information from different sources, a process known as data fusion [112]. The 

principle behind data fusion is that combining information from different sources yields bet

ter results than if the data sources were used individually. This idea has been successfully 
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applied to feature location [62, 76, 102, 130, 160, 244] as well as other areas of software en

gineering research [60, 79, 223]. The sources of data that can be analyzed from software are 

structural dependencies among program elements, execution information derived dynami

cally at runtime, and textual information embedded in the identifiers and comments found 

in source code. This work proposes to combine these sources of information to support 

both feature location and feature coupling. 

Specifically, this dissertation makes the following research contributions: 

1. A survey of feature location research. 

We have conducted a comprehensive survey of existing feature location research and 

classified the literature within a taxonomy that has nine dimensions. The taxonomy 

captures key facets of typical feature location techniques and can be useful to both 

software engineering researchers and practitioners. Researchers can use this survey 

to identify related work as well as opportunities for future research. Practitioners 

can use this overview to determine which feature location approach is most suited to 

their needs. 

2. An exploration of the use of several types of analyses for feature location. 

We carried out an exploratory study of ten feature location techniques that use various 

combinations of textual, dynamic, and static analyses. A new way of applying textual 

analysis is introduced by which queries are automatically composed of the identifiers 

of a method known to be relevant to a feature. Our results show that this new type 

of query is just as effective as a query formulated by a human. We also provide 

insight into situations when certain feature location approaches are successful and 

unsuccessful. The results and observations of this exploratory study were used to 

guide the direction of the feature location research presented in this dissertation. 

3. Development and evaluation of new feature location technique based on 

web mining. 

We created a data fusion model for feature location which defines new feature location 

techniques based on combining information from textual, dynamic, and web mining 

analyses applied to software. A novel contribution of the proposed model is the use of 
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web mining algorithms to analyze execution information during feature location. The 

results of an extensive evaluation indicate that the new feature location techniques 

based on web mining improve the effectiveness of existing approaches by as much as 

62%. 

4. Development and evaluation of feature coupling metrics. 

We have defined new feature coupling metrics based on structural and textual source 

code information and extended the unified framework for coupling measurement to 

include these new metrics. We also conducted three extensive case studies to evaluate 

these new metrics. The first study examined the relationship between feature coupling 

and fault-proneness, the second assessed feature coupling in the context of impact 

analysis, and the third study surveyed developers to determine if the metrics align 

with what they consider to be coupled features. All three studies provide evidence 

that feature coupling metrics are indeed useful new measures that capture coupling at 

a higher level of abstraction than classes and can be useful for finding bugs, guiding 

testing efforts, and assessing change impact. 

5. Tool support for feature location and feature coupling. 

We have developed a tool called FLAT3 that integrates textual and dynamic feature 

location techniques along with feature annotation capabilities, a useful visualization 

technique, and the ability to compute the proposed feature coupling metrics. FLAT3 

provides a complete suite of tools that allows developers to quickly and easily lo

cate the code that implements a feature, save these annotations for future use, and 

compute feature coupling based on the saved annotations. 

1.2 Scope of this Dissertation 

Features, have been extensively studied in the literature. To clarify the scope of this 

dissertation, we discuss some of the research related to features and how our work differs. 

In this section, we cover other programming paradigms that have been introduced to work 

with features and research on feature analysis. 
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Feature-oriented programming (FOP) [10, 11] focuses on creating software product lines, 

which are families of software systems in which each program is composed of a unique set 

of features. In FOP, programs are layered, and each layer adds a new feature, thus features 

are modularized. FOP is a programming paradigm for synthesizing software, and there are 

also approaches for refactoring and remodularizing object-oriented systems into the FOP 

paradigm [131, 153]. In our work, we do not introduce any new paradigms but seek to 

support the maintenance of features within the object-oriented paradigm where features 

cannot always be modularized. 

Aspect-oriented programming (AOP) [111] is a paradigm that seeks to solve the problem 

of un-modularized features. In AOP, a new language construct called an aspect is created 

that modularizes a feature's implementation. Then a specialized compiler, called a weaver, 

follows instructions, called advice, on where to inject the aspect into the code base. AOP 

works well for a few types of features, such as logging, which have implementations that 

can be easily injected automatically by the weaver. However, AOP cannot entirely solve 

the problem of un-modularized features, and our work helps support maintainers who have 

to deal with the lack of localization. 

Besides programming paradigms meant to cope with features, there is a wealth of 

existing research on feature analysis, in which features are considered first-class entities of 

a software system. These approaches have focused on how programmers develop features 

[94], a feature-centric environment for source code browsing [188], identifying canonical sets 

of features [120, 121, 119], reverse engineering [91], and identifying and refactoring features 

that need evolution [149]. Our work focuses on locating features' implementations and on 

determining the relationships between features using coupling. 

1.3 Dissertation Organization 

Chapter 2 presents our survey of feature location literature. Eighty-eight research, tool, 

case, industrial, and user study articles from 30 software engineering venues have been 

reviewed and classified within a taxonomy in order to organize and structure existing work 

in the field of feature location. 
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Chapter 3 presents the results of an exploratory study of feature location techniques 

based on combining textual, dynamic, and static analyses. The goal of the study was to 

examine how well these techniques locate multiple methods that are relevant to a feature, 

whereas most previous studies focus on how well feature location techniques find a single 

relevant method. In addition, different parameters to the analyses used are explored. The 

results of a user study comparing the various techniques with different parameters are 

presented. 

Chapter 4 introduces a data fusion model for feature location. The model is based on 

combining textual analysis, dynamic analysis, and web mining. Web mining is a branch of 

data mining that extracts useful information from the structure of the World Wide Web. 

We employ web mining algorithms to extract useful information from a program's call 

graph. The extracted information is used to effectively filter out false positives from the 

results of a feature location technique based on combining textual and dynamic analyses. 

The results of two case studies on open source systems are presented. 

Chapter 5 defines three feature coupling metrics. One metric is based on structural 

information, one is based on textual information, and the final metric is based on a combi

nation of structural and textual information. The unified framework for coupling measure

ment [25] is extended to include these new metrics. The chapter also reports the results of 

three separate evaluations aimed at answering the question, "Are feature coupling metrics 

useful?" 

Chapter 6 presents a tool called FLAT3 , the Feature Location and Textual Tracing 

Tool, that implements the ideas proposed in this dissertation. FLAT3 supports several 

types of feature location. These techniques can be used to find features' implementations, 

and then the located code can be associated with features. These associations can be used 

to automatically compute our feature coupling metrics and to visualize the distribution of 

a feature throughout a system's classes. 
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Chapter 2 

Survey of Feature Location 

Research 

In software systems, a feature represents a functionality that is defined by requirements 

and accessible to developers and users. Software maintenance and evolution involves adding 

new features to programs, improving existing functionalities, and removing bugs. Identi

fying the parts of the source code that correspond to a specific functionality is known as 

feature (or concept) location [12, 168]. It is one of the most frequent maintenance activities 

undertaken by developers because it is part of the incremental change process [167]. During 

the incremental change process, programmers use feature location to find where in the code 

the first change to complete a task needs to be made. The full extent of the change is then 

handled by impact analysis, which starts with the source code found by feature location 

and finds all code affected by the change. Methodologically, the two activities of feature 

location and impact analysis are different and are treated separately in the literature. 

Feature location is one of the most important and common activities performed by 

programmers during software maintenance and evolution. No maintenance activity can 

be completed without first locating the code that is relevant to the task at hand, making 

feature location essential to software maintenance. For example, Alice is a new developer 

on a software project, and her manager has given her the task of fixing a bug that has been 

reported. Since Alice is new, she is unfamiliar with the large code base of the software 

system and does not know where to begin. Lacking sufficient documentation on the system 
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and the ability to ask the code's original authors for help, the only option Alice sees is to 

manually search for the code relevant to her task. 

Alice's situation is one faced by many programmers needing to understand and modify 

an unfamiliar code base. However, a manual search of a large amount of source code, even 

with the help of tools such as pattern matchers or an integrated development environment, 

can be frustrating and time-consuming. Recognizing this problem, software engineering 

researchers have developed numerous feature location techniques to aid programmers in 

Alice's position. The various techniques that have been introduced are all unique in terms 

of their input requirements, how they locate a feature's implementation, and how they 

present their results. Thus, even the task of choosing a suitable feature location technique 

can be challenging. 

The existence of such a large body of feature location research calls for a comprehen

sive overview. Since there currently is no broad summary of the field of feature location, 

this chapter provides a survey and operational taxonomy of this pertinent research area. 

The survey includes research articles that introduce new feature location approaches; case, 

industrial, and user studies; and tools that can be used in support of feature location. The 

articles are characterized within a taxonomy that has nine dimensions, and each dimension 

has a set of attributes associated with it. The dimensions and attributes of the taxonomy 

capture key facets of typical feature location techniques and can be useful to both software 

engineering researchers and practitioners [140]. Researchers can use this survey to identify 

what has been done in the area of feature location and what needs to be done; that is, they 

can use it to find related work as well as opportunities for future research. Practitioners 

can use this overview to determine which approach is most suited to their needs. 

This survey encompasses 88 articles (51 research articles and 37 tool and case study 

papers) from 30 venues published before October 2009. The research articles were selected 

because they either state feature/concept location as their goal or present a technique 

that is essentially equivalent to feature location. The tool papers include tools developed 

specifically for feature location as well a.'3 program exploration tools that support feature 

location. The case study articles include industrial and user studies as well as studies that 

compare existing approaches. 
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There are several research areas that are closely related to feature location such as trace

ability link recovery, impact analysis, and aspect mining. Traceability link recovery seeks 

to connect documentation with source code, while feature location is more concerned with 

identifying source code associated with functionalities, not specific sections of a document. 

Impact analysis is the step in the incremental change process performed after feature loca

tion with the purpose of expanding on feature location's results, especially after a change 

is made to the source code. Feature location focuses on finding the starting point for that 

change. The main goal of aspect mining is to identify cross-cutting concerns and determine 

the source code that should be refactored into aspects, meaning the aspects themselves are 

not known a priori. By contrast, in the contexts in which feature location is used, the fea

tures are already known and only the code that implements them is unknown. Therefore, 

articles and research from these related fields are not included here as they are beyond the 

scope of this survey. 

The work presented in this chapter has two main contributions. The first is a compre

hensive survey of feature location techniques, relevant case studies, and tools. The second 

is a taxonomy derived from those techniques. Appendix A lists all of the surveyed articles 

classified within the taxonomy. Section 2.1 introduces the dimensions of the taxonomy, 

and Section 2.2 provides brief descriptions of the surveyed research articles. Section 2.3 

overviews the tools and studies, and Section 2.4 discusses open issues in feature location. 

Section 2.5 concludes. 

2.1 Dimensions of the Survey 

The goal of this survey is to provide researchers and practitioners with an organized 

overview of existing feature location research. From a thorough inspection of the liter

ature, a number of key dimensions emerged. These dimensions objectively describe the 

different techniques and give structure to the surveyed literature. The dimensions are as 

follows. 

• The type of the article: Is it a research article, case study, or tool paper? 

• The type of analysis: What analyses are used to support feature location? 
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• The sources of information: What sources of information are used for feature location? 

• The granularity: What is the granularity of the located program elements? 

• Programming language support: To what languages has the technique been applied? 

• The presentation of the results: How are the located program elements presented to 

the user? 

• The evaluation of the approach: How is the technique assessed? 

• Comparison to other feature location techniques: To what other approaches is the 

new one compared, if any? 

• The systems used for evaluation: To what software systems has the technique been 

applied? 

The order in which these dimensions are presented does not imply any explicit priority or 

importance. 

Each dimension has a number of distinct attributes associated with it. For a given 

dimension, a feature location technique may be associated with multiple attributes. These 

dimensions and their attributes were derived by examining an initial set of articles of 

interest. They were then refined and generalized to succinctly characterize the properties 

that 1) make feature location techniques unique and 2) can be used to evaluate and compare 

them. The goal of the taxonomy is to allow researchers and practitioners to easily locate the 

feature location techniques that are most suited to their needs. The dimensions and their 

associated attributes are listed in Table A.1 in Appendix A along with their abbreviations 

(given in parentheses) that are used in the taxonomy of the surveyed articles. These 

dimensions and attributes are discussed in the remainder of this section. 

2.1.1 Type of Article 

This survey encompasses three types of feature location articles: research articles, tool 

papers, and case studies. The research articles introduce new feature location techniques. 

The tool papers describe applications that perform feature location and program explo

ration tools that, while not necessarily designed for feature location, support the search for 

a feature's implementation. The case study articles include direct comparisons of several 

feature location techniques, industrial case studies, and user studies. 
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2 .1. 2 Type of Analysis 

A primary distinguishing factor of feature location techniques is the type, or types, of 

analysis they employ to identify the code that pertains to a feature. The most common 

analyses include dynamic, static, and textual. While these are not the only analyses pos

sible, they are the ones used by the vast majority of feature location techniques, and some 

approaches even leverage more than one of these analyses. In Section 2.2, descriptions of 

all the surveyed articles are given, and the section is organized by the types of analyses 

used. 

Dynamic analysis refers to examining a software system's execution, and it is often used 

for feature location when features can be invoked and observed during runtime. Feature 

location using dynamic analysis generally relies on a post-mortem analysis of an execution 

trace. Typically, one or more feature-specific scenarios are developed that invoke only the 

desired feature. Then, the scenarios are run and execution traces are collected, record

ing information about the code that was invoked. These traces are captured either by 

instrumenting the system or through profiling. Once the traces are obtained, feature lo

cation can be performed in many ways. The traces can be compared to other traces in 

which the feature was not invoked to find code only invoked in the feature-specific traces 

[76, 229]. Alternatively, the frequency of execution of portions of code can be analyzed to 

locate a feature's implementation [5, 77, 190]. Using dynamic analysis for feature location 

is a popular choice since most features can be mapped to execution scenarios. However, 

there are some limitations associated with dynamic analysis. The collection of traces can 

impose significant overhead on a system's execution. Additionally, the scenarios used to 

collect traces may not invoke all of the code that is relevant to the feature, meaning some 

of the feature's implementation may not be located [233]. Conversely, it may be difficult 

to formulate a scenario that invokes only the desired feature, causing irrelevant code to be 

executed [68, 76, 233]. Dynamic feature location techniques are discussed in Section 2.2.1. 

Static analysis examines structural information such as control and data flow depen

dencies. In manual feature location, developers may follow program dependencies in a 

section of code they deem to be relevant in order to find additional useful code, and this 
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idea is used in some approaches to static feature location [39]. Other techniques analyze 

the topology of the structural information to point programmers to potentially relevant 

code [176]. While using static analysis for feature location is very close to what a human 

searching for code may do, it often overestimates what is pertinent to a feature and is prone 

to giving many false positive results. Static approaches to feature location are summarized 

in Section 2.2.2. 

Textual approaches to feature location analyze the words used in source code. The 

idea is that identifiers and comments encode domain knowledge, and a feature may be 

implemented using a similar set of words throughout a software system, making it possible 

to find a feature's relevant code textually. Textual analysis is performed using three main 

techniques: pattern matching, information retrieval (IR) and natural language processing 

(NLP). Pattern matching usually involves a textual search of source code using a utility 

such as grep1 . Information retrieval techniques, such as Latent Semantic Indexing (LSI) 

and Vector Space Model (VSM), are statistical methods used to find a feature's relevant 

code by looking for identifiers and comments that are similar to a query provided by a user. 

NLP approaches can also use a query, but they analyze the parts of speech of the words 

used in source code. Pattern matching is relatively robust but not very precise because 

of the vocabulary problem [81]; the chances of a programmer choosing query terms that 

match the vocabulary of unfamiliar source code are very low. On the other hand, NLP 

is more precise than pattern matching but much more expensive. Information retrieval 

lies between the two. No matter the type of textual analysis used, the quality of feature 

location is heavily tied to the quality of the source code naming conventions and/or the 

user-issued query. Textual feature location techniques are reviewed in Section 2.2.3. 

Feature location is not limited to just dynamic, static, or textual analysis. Many tech

niques draw on multiple analyses to find a feature's implementation, and some do not use 

any of these types of analyses. Existing approaches that combine analyses do so with the 

goal of using one type of analysis to compensate for the limitations of another, thus achiev

ing better results than standalone techniques. The unique ways in which multiple types 

of analyses are combined for feature location are described in Sections 2.2.4 through 2.2.6. 

1http://www.gnu.org/software/grep/ 
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Other approaches do not rely on dynamic, static, or textual analysis. For instance, two 

feature location techniques rely on historical analysis by mining repositories in order to 

identify lines of code [38] or artifacts related a feature [218]. Another technique examines 

the code visible to a programmer during a maintenance task and tries to infer what was 

important [180]. These exceptions are explained in Section 2.2.8. 

2.1.3 Sources of Information 

Related to the types of analyses used by a feature location technique are the sources of 

information used by that approach. In the same way that a technique can make use of 

multiple types of analyses, one or more sources of information can also be used for feature 

location. The analysis must be performed on some artifact(s) related to the software 

system such as source code, documentation, execution traces, and dependence graphs. 

Typically, the sources of information used match the type of analysis employed. Dynamic 

analysis uses execution traces captured when a feature is executed. Different representations 

of source code, such as a call graph, can be used by static analysis. Source code and 

documentation can be leveraged in textual analysis to find code that is relevant to a feature. 

For the exceptional cases, the two that use historical analysis mines version control systems, 

issue trackers, and communication archives, and the other exception uses a transcript of a 

program investigation listing the code visible to a programmer and how it was accessed. 

2.1.4 Granularity 

The purpose of feature location is to find the source code that implements a specific fea

ture. Existing feature location techniques identify code at different granularities: classes, 

methods, basic blocks, lines, decisions, or uses of variables. In this survey, the phrase pro

gram elements refers to portions of code at any of these levels of granularity. The more 

fine-grained the program elements located by a technique, the more specific and expressive 

the feature location technique is. For instance, all the basic blocks or variables may be 

relevant, but when classes are located, not all the methods in the class may pertain to 

the feature. Some approaches may be applicable to multiple levels of granularity, but only 
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those program elements that are actually shown to be supported in an article are reported 

in this survey. 

2.1.5 Programming Language Support 

The programming language in which a software system is written can play a factor in the 

types of feature location techniques that can be applied to it. Textual and historical analyses 

are programming language agnostic at the file level, but require parsers to be applied 

to methods or other levels of granularity. Static and dynamic analyses can be limited 

due to tool support for a given language. In this survey, all programming languages on 

which a technique has been applied are reported. The majority of existing feature location 

approaches have been exercised on Java or C/C++ systems since ample tool support is 

available for these languages. Other programming languages that have been supported 

include FORTRAN and COBOL. Knowing the languages under which an approach works 

can help researchers and practitioners select an appropriate technique, though the fact that 

an approach has not been used on a certain programming language does not imply that it 

is not applicable to systems implemented in that language. 

2.1.6 Presentation of the Results 

Once a feature location technique identifies candidate program elements for a feature, those 

results must be presented to the programmer. Existing feature location approaches have 

different ways of reporting their findings. One option is to present a list of candidate 

program elements ranked by their relevance to the feature [5, 77, 130, 142, 176]. Generally, 

the programmer only examines the top-ranked elements on the list, or only the most relevant 

program elements are reported to the programmer. Another way in which feature location 

results are presented is as an unordered set of program elements [62, 76, 229]. A set 

of elements is identified as being relevant to a feature, but no notion of their degree of 

relevance is given. Another alternative form of presentation is to visualize the software 

system and highlight the relevant program elements [22, 222, 235]. Finally, some feature 

location techniques do not automatically identify relevant program elements but describe 

a process a programmer can follow to manually search for a feature's implementation [39]. 
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Since different feature location techniques present their results in different ways, comparing 

approaches that use different reporting styles can be challenging. 

2.1.7 Evaluation 

The way in which a feature location technique is evaluated provides researchers and practi

tioners with useful information on the approach's quality, robustness, and practical appli

cability. Evaluating a feature location technique is difficult because defining the program 

elements that are relevant to a feature is subjective. Despite this difficulty, researchers 

have devised a number of ways to assess feature location techniques. The most simplistic 

evaluations are preliminary in nature and involve a small, toy system or anecdotal evidence 

that the approach works. More advanced evaluations adopt a benchmark that designates 

the program elements that are related to a feature. Common benchmarks include docu

mentation, patches submitted to an issue tracker, and program elements modified to fix a 

bug with a particular feature. Patches or bugs provide documented, reproducible gold sets 

of a feature's program elements. These benchmarks are generated by developers who are 

familiar with the software, so they carry more weight than anecdotal evidence. However, 

there is no guarantee that these benchmarks are 100% correct and complete. Patches and 

bugs may only pertain to a small portion of a feature and not touch all of its program 

elements. Another way to evaluate a feature location approach is to have system experts or 

even non-experts assess its results, which is an evaluation method often used by IR-based 

search engines. When multiple experts or non-experts are used, the intersection of their 

results can be used to create a benchmark. However, the agreement among programmers 

as to what program elements are relevant to a feature can be low [183]. 

2.1.8 Comparison to Other Feature Location Techniques 

When new feature location techniques are introduced, they should be directly compared 

with existing approaches in order to demonstrate their (expected) superior performance. 

Articles that include comparisons of feature location techniques are very useful to re

searchers and practitioners because they highlight the advantages and limitations of the 

compared approaches in certain situations. Feature location techniques that appear fre-
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quently in comparisons are Abstract System Dependence Graphs (ASDG) [39], Dynamic 

Feature Traces (DFT) [77], Formal Concept Analysis-based feature location (FCA) [76], La

tent Semantic Indexing-based feature location (LSI) [142], Probabilistic Ranking of Meth

ods based on Execution Scenarios and Information Retrieval (PROMESIR) [160], software 

reconnaissance [229], and Scenario-based Probabilistic Ranking (SPR) [5]. UNIX grep is 

also another popular point of comparison because programmers often use it to textually 

search for relevant source code. 

2.1.9 Systems used for Evaluation 

A wide variety of software systems have been studied in feature location research, and the 

size and type of systems used in a case study reflect, to a degree, the applicability of a 

technique. By reviewing the software systems that have previously been used for feature 

location, some de facto benchmarks emerge. Some of the more popular systems are web 

browsers like Mozilla2 , Firefox3 , Mosaic, and Chimera4 • Other systems that have been 

investigated frequently are Eclipse5 , jEdit6 , and JHotDraw7 . For some of these systems, 

there are a few features that are repeatedly used, but overall, no gold standard of features 

and their associated program elements has emerged. An abundance of other software 

systems have been studied. The systems on which a feature location technique has been 

applied are listed in the taxonomy. Having a comprehensive list of the software systems 

studied for feature location allows researchers to identify good candidates for systems to 

use in their own evaluations. Also, it lets practitioners recognize approaches that may 

be successfully applied to their own software system if the program they wish to apply a 

feature location technique to is similar to a system on which the approach has already been 

used. 
2http://www.mozilla.org/ 
3 http://www.mozilla.org/firefox 
4http://www.chimera.org/ 
5 http://www.eclipse.org/ 
6http://www.jedit.org/ 
7http://www.jhotdraw.org/ 
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2.2 Survey of Feature Location Techniques 

This section summarizes the 88 research, tool, and case study articles reviewed for this 

survey. An initial subset of articles of interest were selected, then additional relevant 

articles were found by following references, visiting authors' websites, and using online 

search tools. The articles were published in 30 different venues. Figure 2.1 shows the 

distribution of articles across venues, and Table 2.1 lists the abbreviations and names 

of the venues. The height of the bars represents the number of feature location articles 

published. Venues at which only one surveyed paper was published are grouped together 

in the "Other" bar. Black bars represent journals, and gray bars denote conferences and 

workshops. 

When summarizing the feature location techniques and multiple articles describe a given 

approach (such as conference and journal versions), both are cited but the summary primar

ily pertains to the journal version. The articles are classified by the types of analysis used 

for feature location, and other dimensions of the taxonomy are mentioned as appropriate. 

The types of analyzes employed is the most distinguishing characteristic of feature location 

approaches, so it is a logical choice for the organization of this survey. In the subsections 

below, the surveyed articles are categorized by their use of one or more types of analyses: 

dynamic; static; textual; dynamic and static; dynamic and textual; static and textual; 

dynamic, static, and textual; and other. Table A.2 (located in Appendix A) presents the 

articles and their classifications within the dimensions of the taxonomy. 

2.2.1 Dynamic Feature Location 

Dynamic feature location relies on collecting information from a system during runtime. 

Dynamic analysis has a rich history in the area program comprehension [53], and feature 

location is just one subfield in which it is used. A number of dynamic approaches exist that 

deal with feature interactions [69, 192, 194], feature evolution [93], hidden dependencies 

among features [80], as well as identifying a canonical set of features for a given software 

system [120]. These techniques are beyond the scope of this survey which focuses only 

of approaches that seek to identify candidate program elements that implement a feature. 
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Figure 2.1: Distribution of the surveyed articles across publication venues. Black bars 
represent journals, and gray bars denote conferences. 

Table 2.1: Venues which have published the articles included in this survey. 

Acronym 

JSME 
JSS 
TOSEM 
TSE 
AOSD 
ASE 
CSMR 
ESEC/FSE 

ICSE 
ICSM 
IWPC/ICPC 
VIS SOFT 

WCRE 

Description 

Journal on Software Maintenance and Evolution 
Journal on Systems and Software 
Transactions on Software Engineering 
Transactions on Software Engineering and Methodology 
Aspect-Oriented Software Development 
International Conference on Automated Software Engineering 
European Conference on Software Maintenance and Reengineering 
European Software Engineering Conference/Symposium on the 
Foundations of Software Engineering 
International Conference on Software Engineering 
International Conference on Software Maintenance 
International Workshop/Conference on Program Comprehension 
International Workshop on Visualizing Software for Understanding 
and Analysis 
Working Conference on Reverse Engineering 
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This subsection summarizes articles that achieve this goal using dynamic analysis. 

Software reconnaissance [228, 229] is one of the earliest feature location techniques, and 

it relies solely on dynamic information. Two sets of scenarios or test cases are defined, 

scenarios that activate a feature and scenarios that do not, and then execution traces 

of all the scenarios are collected. For example in a word processor, if the feature to be 

located is spell checking, feature-specific scenarios would activate the spell checker and the 

other scenarios would not. Feature location is then performed by analyzing the two sets 

of traces and identifying the program elements (methods) that only appear in the traces 

that invoked the feature. This idea of comparing traces from scenarios that do and do not 

invoke a feature has been heavily used and extended by other researchers in the field. 

One extension to the software reconnaissance approach is Dynamic Feature Traces 

(DFT) [77]. First, scenarios/test cases are grouped by feature, and then execution traces 

are collected. Next, all pairs of method callers and callees are identified from a trace, 

and each method is assigned a rank for the feature. The rank is based on the average of 

three heuristics: multiplicity, specialization, and depth. Multiplicity is the percentage of 

a feature's tests that exercise a method compared to the percentage of methods in each 

non-feature's set of tests. Specialization is the degree to which a method was only executed 

by a feature and no others. Depth measures how directly a set of tests exhibits a feature 

compared to the other test sets. Since DFT is a refinement of software reconnaissance, the 

two techniques were compared head-to-head on three Java systems, finding DFTs to be 

more useful because developers using them are more likely to discover a feature's relevant 

methods. 

Like software reconnaissance and DFT, Scenario-based Probabilistic Ranking (SPR) 

[4, 5] relies only on dynamic analysis to identify a feature's relevant program elements 

(methods). The idea behind SPR is to assign a probability that an event in an execu

tion trace is associated with a feature and then rank all events. In SPR, like in software 

reconnaissance, two sets of scenarios are defined, scenarios that do and do not exercise a 

feature, and method-level execution traces are collected for each scenario. The traces are 

partitioned in to intervals. Intervals correspond to a sub-sequence of contiguous events 

(method calls) from the traces, where I is an interval from a relevant scenario, and I' is 
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an interval from an irrelevant scenario. Events are classified as relevant to a feature or not 

by determining if their frequency in interval I is greater than their frequency in interval I'. 

For any interval, an event's frequency is computed as the ratio of the number of times the 

event appears in an interval over the total number of events in the interval. Essentially, 

determining whether an event is relevant to a feature or not is a statistical hypothesis test. 

The null hypothesis is that an event's frequency in the two types of intervals is the same. 

A threshold, 8, is chosen, and if an event is classified as relevant to a feature more than 8 

times, the null hypothesis is rejected with a confidence level a. Events are also ranked by 

their relevance to a feature using a relevance index score that is computed from the number 

of times an event appears in relevant intervals versus the number of times it appears in 

irrelevant intervals. SPR has been applied to a number of systems including Mozilla, Fire

fox, Chimera, JHotDraw, and XFig8 . Case studies have compared SPR directly to feature 

location using grep, information retrieval [142], and formal concept analysis [76]. Unlike 

the other two approaches in the comparison, SPR ranks its results, thus it is successful 

at reducing the amount of data a programmer needs to inspect to find relevant program 

elements. 

Similar to the way SPR uses a threshold to classify relevant events from execution traces, 

so does the approach introduced by Safyallah and Sartipi [190]. They apply a sequential 

pattern mining technique to execution traces to locate the methods that implement a 

feature. An execution pattern is a continuous portion of a trace that appears in at least a 

given number (called MinSupport) of a feature's traces. There are strategies for identifying 

execution patterns for a single feature or a group of features based on setting the MinSupport 

threshold. In a case study on XFig, not only was code for the invoked features located, 

but execution patterns for less visible features such as mouse pointer handling and canvas 

view updating were identified. 

While the dynamic approaches thus far have focused on locating a feature's methods or 

classes, Wong et al. [234] use execution slices to locate features at either the level of basic 

blocks, decisions, or uses of variables. A small set of carefully selected test cases that invoke 

the desired feature are run along with another set that does not execute the feature. From 

8http://www.xfig.org/ 
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these sets, they define heuristics for finding code that is unique to a feature or common to 

several features. Code that is in the union of the invoking sets but not in the union of the 

non-invoking sets is unique to the feature, while code in the intersection of the sets invoked 

by two separate features is common to those features. An evaluation of this execution slice 

technique was performed on five features of SHARPE [191], a stochastic model analyzer, 

in which system experts verified the results. Tool support for this approach was built into 

xVue [2], in which a system is instrumented at compile time, traces can be collected and 

assigned to be in the (non)invoking set, and source code related to a feature is highlighted 

in a development environment. 

The previous approaches are susceptible to imprecision when applied to multi-threaded 

and distributed systems. To overcome this problem, Edwards et al. [65] developed a 

dynamic approach for feature location in distributed systems. The technique is based on 

causal relationships among events (messages) and assumes a developer can identify the first 

and last events associated with a feature. An interval is defined as all events that causally 

follow or precede a feature's starting and ending events, respectively. Program elements 

are assigned a component relevance index, which is the proportion of executions of that 

element during a feature's interval. This score can be used to rank messages, and two case 

studies showed that the approach ranks relevant methods highly. 

A main shortcoming of dynamic analysis is the overhead it imposes on a system's ex

ecution. In distributed and time-sensitive systems, the use of dynamic analysis can be 

prohibitive. Edwards et al. [66] report on their experiences using dynamic analysis to per

form feature location in time-sensitive systems. Instrumenting a software system in order 

to collect execution traces of the program elements that are invoked affects the system's 

runtime performance. Edwards et al. developed a minimally intrusive instrumentation 

technique called minist that reduced the number of instrumentation points while still keep

ing test code coverage high. For an initial evaluation, Apache's httpd9 and several large 

in-house programs were used, and minist was compared to uninstrumented executions as 

well as several other tools for collecting traces. The minist approach increased execution 

time by only 1% on httpd, while the other tools caused increases of 7% to over 2,000%. 

9http://httpd.apache.org/ 
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2.2.2 Static Feature Location 

In contrast to dynamic feature location, static feature location does not involve executing 

a software system. Instead, source code is statically analyzed and its dependencies and 

structure are explored manually or automatically. Feature location techniques leverage 

several types of dependencies such as control and data. The structure of a software system's 

dependencies can also be exploited to locate candidate program elements. Generally, static 

analysis can be performed to construct a dependence graph, but the actual search requires 

some initial starting set of relevant program elements, which means this type of analysis 

involves some degree of human input. 

Abstract System Dependence Graphs (ASDG) [39] were introduced by Chen and Ra-

jlich as an aid to programmers who need to find the code related to a maintenance task. 

It is a feature location technique based on statically-built program dependence graphs. 

Nodes in an ASDG correspond to either methods or global data, and edges denote either 

control or data dependences between nodes. Using ASDG is a manual technique whereby 

programmers choose a starting point (e.g., a known relevant method or main by default) 

and then search the graph using a depth-first or breadth-first strategy until all relevant 

program elements are found. ASDGs have been used in a case study involving the Mosaic 

web browser, allowing partial comprehension of the system. 

Feature location with landmarks and barriers is a more automated approach than AS-

DGs. Developed by Walkinshaw et al. [222], it is a static feature location technique based 

on slicing a call graph. The first step of the approach is to identify landmark and barrier 

methods in a static call graph, where a landmark is a method that contributes to a feature 

and barriers are irrelevant methods. Direct paths between landmark nodes, known as ham-

mock graphs, are found, and additional dependencies are obtained via backward slicing. 

Barriers and their dependencies are removed from the call graph to prevent exploration of 

irrelevant methods. The output of this approach is a pruned call graph. The technique 

was evaluated on NanoXML10 , Freemind11 , and JHotDraw, finding that the landmark and 

barrier technique substantially reduces the size of the call graph that a programmer has to 

10http://devkix.com/nanoxml.php 
11http://freemind.sourceforge.net/ 
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investigate. 

Another approach that is more automated than ASDGs is topology analysis of the 

structural dependencies [175, 176] in a software system. The main thesis of the approach is 

that by analyzing a program's topology (method calls and field accesses), programmers can 

be guided towards relevant sections of code. The algorithm begins with an initial set I of 

program elements identified as relevant by the programmer. The algorithm then examines 

the structural dependencies of the elements in I and the rest of the system to produce a 

suggestion setS. Both sets are actually fuzzy sets, and each element inS is assigned a value 

signifying its relevance. The value is based on two heuristics: specificity and reinforcement. 

Specificity refers to how specific or unique a structural dependency is. If program element 

a is in I, and its only dependency is with b, then b would be ranked highly in S. The other 

heuristic, reinforcement, ranks program elements highly that appear to be odd ones out. 

For example, if element x from I has five dependencies, and four of them are already in 

I, then the fifth would be ranked highly in S. Tool support for this algorithm has been 

implemented in Suade12 [224] and works in conjunction with the ConcernMapper13 [184] 

Eclipse plug-in, which programmers use to define the initial set I. 

Saul et al. [197] developed an approach for recommending program elements that 

are relevant to a maintenance task (i.e., a feature) by approximating a random-walk of a 

system's call graph. The goal of their work is to find other methods that are related to 

a method by relying only on structural, call graph information. In their FRAN (Finding 

with RANdom walks) algorithm, a large set of related program elements are identified and 

ranked. Candidate related program elements are identified if they are on the same "layer" 

as the relevant program element, meaning they call or are called by the same methods. 

Relevance information about those program elements is then assigned using the HITS web 

mining algorithm [113]. An evaluation on Apache httpd shows that the FRAN algorithm 

improves upon the performance of Suade. 

While ASDGs and topology analysis use both control and data dependencies to some 

extent, Trifu [214] introduced an approach to feature location based only on dataflow. The 

12http://www.cs.mcgill.ca/-swevo/suade/ 
13http://www.cs.mcgill.ca/-martin/cm/ 
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technique identifies the implementation of the functionality needed to produce a certain set 

of values called information sinks. A programmer defines the information sinks as a starting 

point and then all other variables that contribute to them are found by tracking dataflow 

dependencies, making this approach more fine-grained than most other feature location 

techniques. Tool support for the approach is provided by CoDEx, and a case study was 

performed on JHotDraw. Vadables with no outgoing dataflow paths were automatically 

identified as information sinks, and the tool grouped 6,049 variables into 310 concerns 

(features). The approach was improved with the introduction of information sources [215], 

which define a boundary for a concern. 

2.2.3 Textual Feature Location 

Textual information embedded in source code comments and identifiers provides important 

clues about where features are implemented. This type of information has been used in 

many approaches for feature location in three mains ways: textual search with grep [157], 

information retrieval [45, 85, 142, 165], and natural language processing [103, 201]. The 

articles that introduce an approach to textual feature location are summarized below. 

One simple and straightforward way in which programmers often search for source 

code that is relevant to their task is by using a textual search. They formulate a query 

that describes what they are looking for and then use a tool such as grep to find and 

investigate lines of code that match the query. Petrenko et al. [157] developed a feature 

location technique based on grep and ontology fragments. The ontology fragments record 

programmers' knowledge of a feature. As programmers gain more knowledge of the system, 

the ontology fragments can grow and be extended. Petrenko et al. hypothesized that the use 

of ontology fragments would increase the effectiveness of query formulation which would also 

increase the effectiveness of feature location. Case studies on Eclipse and Mozilla showed 

that ontology fragments required, on average, nine methods in Mozilla and ten methods in 

Eclipse to be inspected. These results were comparable to other feature location techniques 

[130, 159] in which programmers also only had to examine about ten methods. 

Instead of pattern matching with grep, more sophisticated methods such as information 

retrieval can be used. Marcus et al. [134] employ Latent Semantic Indexing [59] to locate 
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features in source code. LSI is an advanced information retrieval technique that analyzes 

the relationships between words and passages in large bodies of text. LSI is applied to 

source code by extracting all identifiers and comments to form a corpus. As is common 

is most IR approaches, compound identifiers are split following observed naming conven

tions, and both the original identifier and its separate parts are added to the corpus. The 

corpus is partitioned into documents representing all terms found within a program ele

ment. Documents can be of different granularities such as classes or methods. The corpus 

is then transformed into an LSI subspace through Singular Value Decomposition (SVD). 

After SVD, each document in the corpus has a corresponding vector. To search for code 

relevant to a feature, a programmer formulates a query consisting of terms which describe 

the feature. The query is also transformed into a vector, and a similarity measure between 

the query vector and all the document vectors is used to rank documents by their relevance 

to the query. The similarity measure is known as the cosine similarity because it computes 

the cosine between the query and document vectors. The use of LSI for feature location 

was evaluated on the Mosaic web browser and compared to grep and ASDGs, and several 

advantages were found. LSI is almost as flexible as grep yet yields better results. Also, LSI 

was able to identify some relevant program elements missed by ASDGs. 

Poshyvanyk and Marcus [165] introduce an extension to feature location with LSI that 

uses formal concept analysis (FCA) [83] to cluster IR-based results. FCA takes as input a 

matrix specifying objects and their associated attributes and then produces clusters, called 

concepts, of the objects based on their shared attributes. These concepts can be organized 

hierarchically in a lattice. In this case, the objects are methods and the attributes are 

words that appear in the source code of those methods. To combine the two types of 

analyses, LSI's results are automatically organized using FCA. The top k attributes of 

the first n methods ranked by LSI are used to construct FCA's input matrix and create 

a lattice. Nodes in the lattice have associated attributes (terms) and objects (methods), 

and programmers can focus on the nodes with attributes similar to their query to find 

feature-relevant methods. Through an evaluation of Eclipse, this approach was compared 

to LSI and found to be more efficient in terms of the number of methods programmers 

must consider before locating a relevant one. 
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Cleary and Exton [44, 45] also use information retrieval for feature location, but their 

contribution is to incorporate non-source code artifacts. Their approach, called cognitive 

assignment, considers indirect correspondences between query and document terms so that 

relevant source code can be retrieved even if it does not contain the query term. Queries 

are expanded by analyzing term relationships from both source code and non-source code 

artifacts. An extensive case study was conducted on Eclipse in which cognitive assignment 

was compared to language modeling [241], dependency language model [84], vector space 

model [196], and LSI, and cognitive assignment was found to be competitive with the other 

approaches. 

The results of any textual feature location technique based on a query will only be as 

good as the query used. Often times, the query needs to be iteratively modified or refined. 

Gay et al. [85] introduce the notion of relevance feedback into textual feature location with 

IR. Relevance feedback incorporates user input to improve information retrieval results. 

After IR returns a ranked list of program elements relevant to a query, the developer rates 

the top n results as relevant or irrelevant. Then a new query is automatically formulated 

and new results are returned, and the process repeats. A case study was performed in which 

a single developer was asked to use IR and relevance feedback to locate the source code 

associated with change requests (representing features) in Eclipse, jEdit, and Adempiere14 . 

Each change request had approved patches that had already been implemented in the 

system. The results indicate that relevance feedback is more effective and efficient than a 

pure IR-based approach. 

Like information retrieval, Independent Component Analysis (ICA) [47] can examine 

source code text to identify features and their implementations [90]. ICA is a blind sig

nal analysis technique that separates a set of input signals into statistically independent 

components. To apply ICA for feature location, a term-by-document matrix is constructed 

in which the rows correspond to methods, columns represent terms, and cells contain the 

frequency of a term in a method. ICA factors the matrix into two new matrices. The 

first new matrix, called the source signal matrix, stores independent signals which can be 

thought of as features. The second new matrix, the mixing matrix, holds information about 

14http://sourceforge.net/projects/adempiere/ 
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how relevant each signal is to a method. Unlike feature location with LSI, feature location 

with ICA does not need a query for a specific feature since it seeks to identify multiple 

independent signals (features) at once. 

Textual analysis is not limited to information retrieval. Shepherd et al. [201] employ 

natural language processing. They observe that in source code, actions are represented 

by verbs, and nouns correspond to objects. Their technique, implemented in a tool called 

Find-Concept, leverages information about the use of verbs and their direct objects (nouns) 

in source code identifiers to create a natural language representation of the code called an 

action-oriented identifier graph (AOIG) [204]. In the AOIG, verb-direct object pairs are 

mapped to each of their occurrences in the code. The approach has three main steps: initial 

query formulation, query expansion, and a search of the AOIG. First, a user creates a query 

consisting of a verb and a direct object. Then, Find-Concept expands the query using NLP 

and its knowledge of the terms used within the software's source code to recommend new 

queries. Once the user refines the query, the tool locates nodes in the AOIG that contain a 

verb and direct object from the query and returns the methods to which they are mapped. 

Find-Concepts uses program analysis to identify any dependencies between the methods 

returned by the AOIG search and then presents the user with a visualization of the results 

as a graph. In a user study, Find-Concept's verb-direct object approach was compared to 

lexical searches using Eclipse and Google Eclipse Search [166] on a suite of open-source 

Java systems. Overall, Find-Concept was found to be the most effective search technique. 

Hill et al. [103] also use NLP and the idea of query expansion and refinement in their 

approach to feature location based on contextual searching. Instead of focusing on verbs 

and direct objects, their analysis centers on three types of phrases: noun phrases, verb 

phrases, and prepositional phrases. They extract phrases from method and field names and 

generate additional phrases by also looking at a method's parameters. Once the phrases 

are extracted, they are grouped into a hierarchy based on partial phrase matching. The 

phrases are linked to the source code from which they were extracted. A user looking 

for a particular feature formulates a query and the tool searches the extracted phrases 

for matches. The result returned to the user is a hierarchy of phrases and the method 

signatures associated with them, giving some context to the results. This approach was 
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compared to Shepherd et al. 's [201] on the same software systems. Contextual search has 

been shown to significantly outperform the verb-direct object approach in terms of effort 

(number of queries needed) and effectiveness (£-measure). 

2.2.4 Combined Dynamic and Static Feature Location 

The combination of dynamic and static analysis is a well-known and powerful combination 

in other areas of research such as testing and program analysis [60, 79]. Feature location 

researchers have also made use of this combination in their own work. Dynamic analysis 

can be used to reduce the search space to only those program elements that were executed 

in a trace, and then static analysis can work on the smaller set of program elements to rank 

them or find additional relevant elements. 

Eisenbarth et al. [73, 74, 75, 76] use FCA to cluster the information collected from 

dynamic information. FCA's input matrix is composed from execution traces. The objects 

are methods and the attributes are the features invoked during an execution scenario. After 

FCA is performed, the resulting concept lattice can be interpreted to identify candidate 

program elements that are solely relevant to a feature or contribute to a feature but are 

also used by other features. The program elements located by FCA are only a starting 

point, and programmers seeking additional relevant code can follow an approach similar 

ASDGs [39]. Eisenbarth et al.'s approach was evaluated at the method-level; Koschke and 

Quante [118] extended this work to locate features at the level of basic blocks. 

While Koschke and Quante combined dynamic and static analyses in an approach that is 

more fine-grained than methods, Rohatgi et al. [186, 187] combine the two at a coarser level 

of granularity: classes. Their approach uses an execution trace and a class or component 

dependency graph (CDG) for feature location based on impact analysis. Distinct classes 

are extracted from a feature-specific execution trace, and then the CDG is used to rank the 

classes by the impact a change to them would have on the software system. The classes 

with the least amount of impact are most likely related to the feature. In an evaluation on 

Weka 15 , a machine learning tool, the approach was able to identify and highly rank classes 

noted in the system's documentation. 

1.
5http: I /www. cs. waikato. ac. nz/ml/weka/ 
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2.2.5 Combined Dynamic and Textual Feature Location 

Dynamic and textual analyses are very synergistic when it comes to their use in feature 

location. Dynamic analysis generally yields good recall, while textual analysis has good 

precision. Their combination may lead to better results on both fronts. Both analyses can 

be used to rank program elements by their relevance to a feature, so a logical next step is to 

combine both of the rankings produced by these techniques. Another rational combination 

of dynamic and textual analyses is to use dynamic analysis to filter the program elements 

for textual analysis instead of ranking all the program elements in a software system. 

PROMESIR (Probabilistic Ranking of Methods Based on Execution Scenarios and 

Information Retrieval) [159, 160] performs feature location by combining "expert" opinions 

from two existing feature location techniques: SPR [5] and information retrieval with LSI 

[142]. The two approaches both rank program elements according to their relevance to 

the feature of interest. Those rankings are combined through an affine transformation to 

produce PROMESIR's results. The weight given to SPR or LSI can be varied to reflect 

the amount of confidence that should be assigned to each of the experts. Case studies 

performed on Eclipse and Mozilla show that PROMESIR typically outperforms the two 

techniques on which it is based. 

Like PROMESIR, the SITIR (Single Trace + Information Retrieval) [130] approach 

to feature location is to combine execution information and IR, but only a single execution 

trace is collected for a feature. Then using a query relevant to the feature and LSI, only 

executed methods from the trace are ranked by their similarity to the query instead of 

all methods in the system. In case studies on jEdit and Eclipse, SITIR generally ranked 

relevant methods higher than LSI [142], SPR [5], or PROMESIR [160]. Liu et al. [129] 

developed a variant of SITIR called TAG, short for TrAce+ Grep. TAG performs tracing 

first and uses grep instead of LSI with the reasoning that grep is more lightweight. Liu et 

al. replicated SITIR's case studies with TAG; however, the results could not be compared 

directly because TAG's output is not ordered. 
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2.2.6 Combined Static and Textual Feature Location 

Several researchers have combined static and textual analyses for feature location. This 

combination is a natural choice because either textual analysis can be used to reduce 

the overestimation that static analysis is prone to or static analysis can be used to find 

additional candidate program elements given a starting set of highly relevant ones from 

textual analysis. Thus, uniting these two types of analysis has the potential to yield better 

results than either static or textual analysis alone. 

SNIAFL [243, 244] is a static, non-interactive approach to feature location. SNIAFL 

uses information retrieval in conjunction with a branch-reserving call graph (BRCG), es

sentially an expanded version of a call graph with branch information. An initial set of 

program elements (methods) specific to the feature is located using information retrieval, 

and then additional relevant elements are found using the BRCG. The initial set is pro

duced by using the vector space model [196] to obtain and rank methods by their similarity 

to a query. A gap threshold technique is used to find the largest difference between the 

similarities of consecutively ranked methods. The methods above this gap are considered 

to be the initial elements specific to the feature. From the initial set, the BRCG is pruned 

to remove branches that are not in the initial set. Also, the relevance of branches that 

are included in the initial set is propagated through the graph's dependencies, essentially 

generating a static pseudo-execution trace. In case studies on two GNU software systems, 

SNIAFL had better precision and recall than both a pure IR approach and a purely dy

namic approach, lending evidence to the fact that combining static and textual analyses is 

more successful than using them as standalone techniques. 

Like SNIAFL, Dora [102] combines static and textual analysis to perform feature loca

tion. Programmers formulate a query which is used to compute a method relevance score 

that is based on the term frequency-inverse document frequency of words that appear in 

methods' names. Then, starting from a set of seed methods defined by the programmer, 

Dora follows static caller/ callee edges to identify additional relevant methods using the rel

evance score. Dora was evaluated on a number of open source Java systems and compared 

to Suade and two nai·ve textual and static approaches. The benchmark for these systems 
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was determined by a user study [183] in which programmers were asked to locate the im

plementations of several features. Dora was found to be the most successful technique in 

the evaluation. 

In Dora and SNIAFL, one type of analysis is used to prune another. Shao and Smith 

[200] combine information retrieval and static control flow information in a different manner 

for feature location. First, LSI is used to rank all the methods in a software system by their 

relevance to a query. Then, for each method in the ranked list, a call graph is constructed. 

A method's call graph is inspected to assign it a call graph score. The call graph score 

counts the number of a method's direct neighbors that also appear in LSI's ranked list. 

Finally, the method's cosine similarity from LSI and its call graph score are combined 

using an affine transformation, and a new ranked list is produced. This technique has only 

been evaluated in one case study where it was compared against LSI on a C++ program 

called iVistaDesktop, which simulates Microsoft's Windows Vista operating system. The 

study showed that this approach ranked the one relevant method of a change request first, 

while LSI ranked it seventh. 

Ratiu and Deissenboeck [169, 170] use ontologies to recover the mapping between source 

code and real-world concepts. Their approach is not explicitly aimed at feature location 

but at linking program elements to concepts, which could be features. They developed a 

framework that describes semantic defects caused by improper naming and an algorithm 

to recover the mappings between ontology elements and program elements. The algorithm 

maps concepts and program elements via graph matching. Concepts are graphed in an 

ontology and programs are represented by a UML-like dependency graph. The framework 

and algorithm have been applied to the Java standard library, finding actual examples of 

semantic defects. 

2.2. 7 Combined Dynamic, Static, and Textual Feature Location 

Cerberus [62] is a feature location technique that utilizes three types of analysis: dynamic, 

static, and textual. Currently, it is the only approach that leverages all three types of 

analysis. At the core of Cerberus is a technique called prune dependency analysis (PDA), 

whereby a relationship between a program element and a feature exists if the program 
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element should be removed or modified if the feature were to be pruned from the software 

system. Given an initial set of relevant elements to be pruned, PDA infers additional rele

vant elements. Cerberus uses PROMESIR to combine rankings of program elements from 

execution traces with rankings from information retrieval to produce seeds for PDA. Cer

berus' authors created a large benchmark for Rhino16 , an open source Java implementation 

of Javascript, in which the code for over 400 features defined in the system's documentation 

were manually located. This benchmark was used to evaluate and compare Cerberus to 

software reconnaissance [229], SPR [5], DFT [77], LSI [142], finding that combining the 

three types of analysis was the most effective approach. 

2.2.8 Other Feature Location Techniques 

Only four feature location techniques surveyed do not rely on dynamic, static, or textual 

analysis. Instead, they use other types of analysis and sources of information to locate 

features. One looks at a developer's program exploration behavior, while the others utilize 

historical, archived information. The use of alternative types of analysis in conjunction 

with dynamic, static, and textual analyses remains an open issue. 

Robillard and Murphy [180] propose a unique approach to feature location that au

tomatically analyses a transcript of a program investigation session in an integrated de

velopment environment. The transcript records which program elements were visible to a 

developer during a maintenance task and how they were accessed: through a code browser, 

following a cross-reference, recalling an open window or tab, scrolling, or keyword search. 

For each event in the transcript, all visible program elements are determined. Then, for 

each visible element, a probability that it is the element in which the programmer was in

terested is assigned to it. The probabilities are based on weights associated with each event 

type. Next, a correlation metric is calculated between all pairs of program elements. The 

correlation is based on how closely two elements were accessed in the transcript. Finally, 

concerns (features) are generated by clustering program elements, and the concerns can be 

named and saved for later retrieval. 
16http://www.mozilla.org/rhino/ 
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CVSSearch [38] is an approach and tool for feature location that searches for source 

code by using CVS log comments. CVS comments generally describe the change made to 

the lines of code which are being committed, and those comments typically hold true for 

many future revisions of the software. The tool maps CVS comments to their corresponding 

revision and then examines the changes between consecutive versions to map source code 

to comments. A user can enter a query, and CVSSearch 17 returns all lines of code whose 

comments contain at least one of the query words. Each returned line also has a score 

indicating how well it matches the query. 

Like CVSSearch, Robillard and Dagenais [178] also use historical information from a 

repository for feature location. They use change history to identify clusters of program 

elements related to a task (i.e., a feature). Given a query of a set of program elements, 

their approach groups repository transactions by the number of nearest-neighbor program 

elements they share and returns a cluster of elements related to the query. Various filtering 

heuristics can be applied to the results to remove program elements that are unlikely to 

be related. For instance, if a program element is modified in a high percentage of all of 

the transactions in the repository, it can be ignored. The approach was evaluated on 12 

years of change data for seven open source system and found that only a small fraction of 

changes would have been helped by change clusters. 

Hipikat [217, 218] is a feature location approach that also makes use of archival infor

mation for feature location, but instead of identifying candidate program elements, Hipikat 

recommends artifacts from a project's archives such as online documentation, versions, 

bugs, or communications. Hipikat forms a group memory [219] from a project's history 

as recorded in source code repositories, issue trackers, communication channels, and web 

documents. Links between these artifacts are inferred using IR. For example, a source code 

version can be linked to a bug report if the bug's id is included in a repository commit log 

message. This history is used to find relevant artifacts in response to a user query. The 

query consists of an artifact, potentially a program element, for which the user wants rec

ommendations of related artifacts. Hipikat responds with a list of artifacts ranked by their 

relevance. The tool has been used in two case studies. In the first, Hipikat was validated on 

17http://cvssearch.sourceforge.net/ 
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AVID18 , and in a second, it was used to aid programmers performing a change to Eclipse. 

2.3 Feature Location Tools and Studies 

In addition to the many research articles that introduce feature location techniques, there 

are numerous articles describing feature location tools, case studies, industrial studies, and 

user studies. This section summarizes these tools and studies. 

2.3.1 Tools 

Tool support for feature location removes much of the manual burden associated with 

searching for a feature's program elements. In addition to providing an overview of existing 

feature location techniques, this survey also describes tools that can be used for feature 

location. Some of the techniques summarized in Section 2.2 have prototype tools that 

are not available; therefore they are not listed here. Also, some tools are not directly 

associated with any particular approach, but they can be used for feature location, to 

document features, or program exploration, so they are included here. 

2.3.1.1 Tools for Dynamic Feature Location 

Some of the earliest feature location techniques relied on dynamic analysis since features 

are typically visible during the execution of a software system. Feature location tools take 

advantage of this visibility. 

RECON, RECON2, and RECON319 are tools that implement the software reconnais

sance [229] approach to feature location described in Section 2.2.1. Wilde and Casey [227] 

report on applying RECON to industrial software. In their study on using software recon-

naissance for program exploration, Wilde and Casey found the tool to be very selective 

because it never marked more than 13 methods for a feature. They also observed that the 

tool seemed to find code that was near relevant program elements. In a second part of their 

study, they examined using software reconnaissance for traceability to build a large map

ping of multiple features to code. The tool was used to run a large set of test cases that were 

18http://people.cs.ubc.ca/-murphy/AVID/ 
19http://www.cs.uwf.edu/-recon/ 
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marked with the features they exhibited, and then the collected traces were analyzed to 

find traceability relations that mapped features to code. With this traceability knowledge, 

a programmer modifying a program element is aware of the other features implemented in 

that program element. 

Ibrahim et al. [105] also report on their experiences applying RECON2 the Generate 

Index (GI) project. Their findings echo the conclusions of the previous study. Software 

reconnaissance is based on test cases, but selecting appropriate scenarios to execute can 

be difficult. However, only a few test cases are generally needed for a feature. After the 

analysis, software reconnaissance is good a locating a starting point for feature location, 

but further investigation for additional relevant program elements should be performed. 

STRADA (Scenario-based TRAce Detection and Analysis) [69] is a tool to help de-

velopers uncover the mappings between features and code during testing. It is based on 

Egyed's trace analysis research [67, 70, 71, 72]. Given a set of test cases for a feature, 

STRADA observes the code that is executed during testing, initially identifying all the ex-

ecuted code as relevant to the feature. However, since not all of the invoked code actually 

pertains to the feature, STRADA analyzes the traces using logical constraints to exclude 

irrelevant program elements. The tool visualizes its knowledge of feature-to-code mappings 

in a matrix. It has been evaluated on ArgoUML20 , GanttProject21 , and a video-on-demand 

player22 . 

2.3.1.2 Tools for Static Feature Location 

Static feature location tools analyze the dependencies and relationships among program 

elements, similar to the way a developer might explore a program. The two tools discussed 

here realize the ASDG and topology analysis static feature location techniques. 

Ripples [40] is a tool that implements the ASDG approach to feature location. The tool 

extracts an ASDG from C code and visualizes it for the programmer who can mark relevant 

nodes. JRipples23 [35] is a similar tool that supports the approach for Java source code in 

20http://argouml.tigris.org/ 
21 http://www.ganttproject.biz/ 
22http://peace.snu.ac.kr/dhkim/java/MPEG/ 
23http://jripples.sourceforge.net/ 
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Eclipse, except without the visualization. Both tools can also be used for impact analysis 

and change propagation by tracking and monitoring the status of program elements. 

Suade [224], an Eclipse plug-in, is another tool that statically performs feature location. 

It implements the topology analysis [176] approach discussed in Section 2.2.2. Suade has 

been used in a case study comparing several program exploration tools [56], and it has also 

been directly compared to Dora [102], another static feature location technique. 

2.3.1.3 Tools for Textual Feature Location 

Textual feature location tools search for relevant program elements based on a user query. 

The standard utilities for searching source code are grep or an integrated development 

environment's built-in search functionality. The tools presented here go beyond these basic 

search techniques by employing information retrieval. 

Google Eclipse Search24 (GES) [166] is an Eclipse plug-in that facilitates efficient source 

code searching and browsing by integrating Google Desktop Search (GDS) 25 and Eclipse. 

GDS is an off-the-shelf component that uses information retrieval. It allows users to search 

for files on their computer similar to they way they would search for information on the 

Internet by issuing a query. By integrating GDS with Eclipse, programmers can search 

source code in a similar fashion. One advantage of using GDS is it unobtrusively re-indexes 

the search space when the source code changes. Also, compared to Eclipse's file search 

functionality, GES is considerably faster. 

IRiSS [163] and JIRiSS [162] are both tools for textual feature location. IRiSS im-

plements information retrieval-based feature location as an add-on for MS Visual Studio 

.NET, while JIRiSS is an Eclipse plug-in. Both tools work like a development environ-

ment's built-in search functionality, but instead of only displaying the lines of code that 

match a query, those lines' corresponding classes and methods are also listed. This allows 

a programmer to sort the results by different levels of granularity and to visit the classes or 

methods with the most matches. Also, since IR is used, the results returned for a query can 

be ranked by their relevance. JIRiSS is an extension to IRiSS that also includes fragment-

24http://ges.sourceforge.net/ 
25http://desktop.google.com/ 
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based searches, software vocabulary extraction, query spell checking, and word suggestions 

to improve queries. 

2.3.1.4 Tools for Documenting Features 

Once a feature's relevant program elements have be found using feature location, they 

should be saved so that the search does not have to be repeated in the future. Features 

and their relevant program elements can be documented in ConcernGraphs [179, 182], 

a model that describes which program elements pertain to a feature. Tool support for 

ConcernGraphs is provided by FEAT26 [181], the Feature Exploration and Analysis Tool, 

as well as ConcernMapper [184]. ConcernTagger27 extends ConcernMapper with the ability 

to compute a number of concern-specific metrics. The Feature Location and Textual 

Tracing Tool28 (FLAT:3) [198] also extends ConcernMapper by adding automated support 

for textual and dynamic feature. FLAT3 is discussed in detail in Chapter 6. In each of 

these tools, programmers can define and name features and then associate entire or partial 

classes, methods, and fields with them. The tools, except for FLAT3 , leave feature location 

as a manual task and focus on documenting features and their related elements once they 

are found. However, once the features and their program elements are documented, they 

can be saved and retrieved at a later time, thus avoiding the need to repeat searches. 

2.3.1.5 Visualization Tools 

Visualization tools for feature location either allow for the exploration of dynamic informa

tion or highlight candidate program elements in source code. The visualizations generally 

create an abstracted global view of the system in which relevant program elements are 

emphasized. 

TraceGraph [133] is a feature location tool that allows for the visualization of execution 

traces. As a software system is running, TraceGraph analyzes the execution and visualizes 

which program elements were invoked during a time interval. The visualization is essen-

tially a matrix in which the rows represent program elements, the columns correspond to 

26 http://www.cs.mcgill.ca/-swevo/feat/ 
27http://www.cs.columbia.edu/-eaddy/concerntagger/ 
28http://www.cs.wm.edu/semeru/flat3/ 
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time intervals, and the cells indicate if the program elements were called during that time 

interval or not. Additionally, the first invocation of a program element is highlighted in 

the visualization. TraceGraph was evaluated on the Mosaic web browser as well as the 

Joint Surveillance Target Attack Radar Subsystem (Joint STARS), a proprietary system 

developed by Northop Grumman for the United States Air Force. The tool's visualization 

was useful for feature location because it emphasized the first time an element was called, 

which often corresponded to a feature being triggered. TraceGraph was also applied in 

an industrial case study on feature location [207] where it was used for trace differencing 

and identifying code uniquely executed by a feature, and in another study on distributed 

simulation software [230]. 

Like TraceGraph, the prototype tools created by Bohnet and Doellner [19, 20, 21, 22, 

23, 24] also visually explore dynamically extracted information, but in this case, as a call 

graph. Since a call graph can be large, in order to reduce the search space for the user, the 

tools provide cues to identify code relevant to the feature of interest. The tools also provide 

a number of different types of visualizations. In one prototype, a graph exploration view 

shows other methods that pass control flow to or receive control flow from a given method. 

In this view, the tool only shows methods in a neighborhood if they are judged to be relevant 

based on execution time, while another tool has textual and 3D landscape views. These 

tools effectively extract dynamic call graph information and guide programmers during 

navigation. 

Instead of relying on dynamic information, AspectBrowser [96] is a tool that assumes 

that features follow the idea of information transparency [95]: design decisions that cannot 

be encapsulated in a single module use a common signature or terminology that can easily be 

exploited by search tools. The AspectBrowser tool29 allows users to search a code base using 

pattern matching and then visualizes the results in two ways. All query matches can be 

highlighted in the source code, and the programmer can browse to find them. Alternatively, 

programmers can use a global view to see how a feature is scattered throughout the system. 

In the view, each line of code is represented by a row of pixels, and highlighted rows 

indicate lines of code that match the query. Multiple search results can be viewed at once 

29http://cseweb.ucsd.edu/-wgg/Software/AB/ 
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to understand the interaction between several features. 

Xie et al. [235] also developed a suite of tools that visualize based on textual analysis, 

but instead of grep, they use information retrieval. IRiSS [163] performs feature location 

via IR. Then, sv3D (source viewer 3D) [135] creates 3D renderings of the results, showing 

poly-cylinders that represent program elements. The colors of the poly-cylinders correspond 

to the elements' similarity to the query following a pre-defined color scheme. The height 

of the poly-cylinders represent browsing history, so the taller the cylinder, the more times 

the program element was visited in the past. 

2.3.1.6 Program Exploration Tools 

Program exploration tools support developers when performing a variety of maintenance 

tasks. Since feature location is central to many maintenance activities, program exploration 

tools can be used for feature location as well. 

JQuery [107], an Eclipse plug-in, is a source code browsing tool designed to help pro

grammers when dealing with features that have scattered implementations. The tool com

bines navigation based on relationships (as in a hierarchical browser) with the flexibility 

of query languages. Program exploration in JQuery begins with a query and a list of vari

ables. The query determines which elements to show in the browser, and the variables 

establish how to organize them into a tree. The query defines the type of program element 

to search for given some parameters such as its name or a type of relationship. The results 

of the query are returned in a hierarchical tree, and users can further explore the tree with 

additional queries that expand nodes into sub-trees. The tool aims to reduce the burden 

of program investigation on developers. It helps them remain oriented by not having to 

switch between multiple views, and it records their exploration path in the tree format. 

Ferret [55] is a tool for answering conceptual queries, which are questions about a 

software system a programmer may have. The model Ferret is based on supports the 

composition and integration of different sources of information into a queryable knowledge

base. A source of information is known as a sphere, and examples include structural 

relationships in source code, dynamic call information from an execution trace, and revision 

history recorded in a software repository. Ferret supports 36 different conceptual queries 
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such as "What calls this method?", "What are this class' subclasses?", "What are all the 

fields declared by this type?", and "What transactions changed this element?" These types 

of queries represent questions programmers may have when investigating a software system 

in order to locate a feature's implementation. 

De Alwis et al. [56] performed a comparative study of three program exploration tools: 

JQuery (107], Ferret [55], and Suade [224]. Eclipse was used as a baseline for comparison. 

They hypothesized that programmers would find it easier to work with a tool, need to 

examine less code as compared to using Eclipse, and generally gain a better understanding 

of the task at hand. The participants in the study were 18 professional programmers, 

and they were asked to investigate two change tasks in jEdit. In the first task, they 

used only Eclipse, and in the second task, they used one of the exploration tools. The 

order of the tasks and choice of tools was randomized. An instrumented version of Eclipse 

captured all events the programmers performed during their investigation. Additionally, 

the participants recorded the relevant elements they found in an Eclipse view built for 

the study. The NASA Task Load Index (TLX) [99] was used to assess task difficulty, and 

distance profiles were used to gauge the degree to which the participants remained on-task. 

The TLX scores showed no difference in task difficulty that could be attributed to using a 

tool or not. Similarly, the distance profiles did not indicate that the tools had any strong 

effect on the tasks. Overall, the authors concluded that program exploration tools had 

little effect on the tasks and that individual programmers' strategies caused them to be 

more or less efficient. 

2.3.2 Case Studies 

A number of case studies involving feature location have been performed, ranging from 

comparisons of existing techniques, industrial case studies, and user studies. Each type 

of study is useful. Comparisons evaluate several feature location techniques on the same 

systems and features, making it easier for researchers and practitioners to understand the 

strengths and weaknesses of each approach. Industrial case studies show the applicabil

ity of an approach in non-trivial settings. Finally, user studies provide insight into how 

programmers understand and search for code, and these insights can be incorporated into 
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feature location techniques and tools. 

2.3.2.1 Case Studies Comparing Feature Location Techniques 

Early feature location techniques were applied when procedural programming was the pre

dominant paradigm. After object-oriented programming gained popularity, Marcus et al. 

[141] studied whether feature location was still needed since object-oriented code is sup

posed to be structured such that classes implement singular concepts. They compared 

the performance of three static feature location techniques: pattern matching with grep, a 

depth-first dependency search [39], and information retrieval using LSI [142]. Three pro-

grammers, each assigned to a different technique, participated in a case study to locate fea

tures in Art of Illusion30 , a 3D modeling studio written in Java, and in Doxygen31 , a source 

code documentation generator written in C++. They concluded that object-orientation 

does not always allow for quick and easy identification of the program elements relevant 

to a feature. Therefore, feature location techniques are still needed for object-oriented 

systems. 

When a new feature location technique is introduced, it is often directly compared 

with similar existing approaches as part of its evaluation. Some articles related to feature 

location focus solely on case studies comparing several techniques. Wilde et al. [225, 226] 

compare software reconnaissance [229], ASDGs [39], and grep in a case study to locate 

two features in legacy FORTRAN code. The system, CONVERT3, is part of a suite of 

geometric modeling programs and is used to convert models to formats required by other 

tools. For the study, three teams each used one of the feature location techniques to find 

the code for two features of CONVERT3. The software reconnaissance and ASGD teams 

were able to gain sufficient understanding of the source code, but the team using grep was 

not. The authors concluded that grep was the least reliable approach but it is very quick 

and can locate features that cannot be explicitly invoked dynamically. After grep, software 

reconnaissance was deemed to be the next fastest method of feature location. However, 

its results may not present a user with enough context to be comprehensible. The ASDG 

30http://aoi.sourceforge.net/ 
31http://www.stack.nl/-dimitri/doxygen/ 

44 

http://aoi.sourceforge.net/
http://www.stack.nl/~


approach was the most difficult to apply but the most systematic and allows for the best 

understanding of the relevant code. 

Revelle and Poshyvanyk [173] performed an exploratory study evaluating several fea

ture location techniques that return ranked lists of program elements (methods). The 

approaches they compared were information retrieval (LSI-based feature location [142]), 

information retrieval plus dynamic analysis (SITIR [130]) , and information plus dynamic 

and static analysis (similar to Cerberus [62]). For IR, they assessed user-formulated queries 

as well as method seed queries in which the text of a method already known to be relevant 

to a feature was used as the query. For dynamic analysis, they used both full execution 

traces and marked traces in which only the portion of a system's execution when a feature 

is invoked was traced. Dynamic analysis was combined with IR by pruning unexecuted 

methods from the ranked list. When all three types of analyses were combined, a program 

dependence graph was traversed starting from a seed by following dependencies only if they 

were executed and had textual similarities to the query that were above a given threshold. 

Most feature location techniques that return a ranked list are evaluated in terms of where 

the first relevant element appears on the list. This case study aimed to evaluate these ap

proaches in terms of how well they find near-complete implementations of features, meaning 

how well they find as many relevant program elements as possible. Their conclusions were 

that none of these approaches perform particularly well in that regard since feature loca

tion is usually used to find a starting point and impact analysis tools are used to find more 

complete implementations. They did note that marked traces generally outperformed full 

traces and that the method seed queries, which can be automatically generated, performed 

just as well at user formulated queries. More details on this exploratory study are given in 

Chapter 3. 

2.3.2.2 Industrial Case Studies 

Most feature location case studies focus on open source software. However, case studies 

carried out on industrial software give a sense of a technique's real world applicability. 

Unfortunately, only a few such studies have been performed, and more are needed. As 

previously discussed, TraceGraph [133] was used in an industrial setting [133], and Wilde 
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et al. [226] compared a number of approaches on industrial software. In addition to these 

studies, Van Geet and Demeyer [221] report on their experiences of applying Eisenbarth 

et al. 's [76] formal concept analysis of execution traces feature location technique in an 

industrial setting. The context was a pre-study phase for the migration of a banking 

system written in COBOL. Scenarios for two features were executed using a web interface, 

and three separate iterations of the approach were conducted. Each iteration attempted 

to reduce the number of modules considered by using different combinations of scenarios 

that did and did not invoke the feature. A domain expert provided the modules relevant 

to each feature for evaluation purposes, and in two out of three iterations of the approach, 

all the relevant modules were in the generated concept lattice. Three additional relevant 

modules were also identified that had not previously been named by the domain expert. 

2.3.2.3 User Studies 

Studies that focus on how programmers search and comprehend source code are important 

to feature location research. These types of studies provide insights into how developers 

find a feature's implementation or gain understanding of a system. In turn, these insights 

can be incorporated into feature location research in order to develop approaches that are 

organic and easy for programmers to use. Four relevant user studies are discussed below, 

and while this is not an exhaustive list of user studies related to feature location, even more 

studies are necessary to advance the state of the art. 

LaToza et al. [123] performed a user study in which 13 participants worked for three 

hours on understanding and improving the design of two features in jEdit. The participants' 

activities were recorded using think-aloud, video, and Eclipse instrumentation. The goal of 

the study was to answer questions about how programmers' experience affects the changes 

they make to code, how it affects how they work, and how they reason about design during 

coding tasks. LaToza et al. found that the more experienced programmers addressed 

the causes of problems, beginners focused on the symptoms, and that the experienced 

programmers identified relevant methods and implemented changes more quickly than the 

novices. They also discovered that the participants' activities centered on fact finding. The 

programmers sought facts relevant to their task, so they investigated certain methods and 
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learned facts about the software system, and as they learned enough facts, they were able 

to propose design changes. Therefore, feature location techniques should not only help 

identify relevant program elements, but they should also aid in fact finding and program 

comprehension. 

Robillard et al. [177] also conducted a study on how programmers explore source code 

when performing a change task. Five programmers were asked to modify jEdit so that 

users can explicitly disable the autosave functionality. They were also given five require

ments for their solution. The data collected included artifacts produced or modified by the 

participants as well as video recordings of their screens. The programmers' success was 

judged in terms of time to complete the task and by how many of the task's requirements 

they successfully implemented. Robillard et al. analyzed the behavior of each participant 

by transcribing the screen videos into events. Each event recorded the time it occurred, the 

method being examined at that time, how the method was accessed (scrolling, browsing, 

searching, etc.), and whether the method was modified. Based on their observations, they 

concluded that a methodical, ordered investigation of a system's source code is more effec

tive than a systematic, opportunistic one. They found that programmers should follow a 

plan when exploring a program, that they should perform focused searches in the context 

of their plan, and that they should keep a record their findings. Based on these findings, 

feature location techniques should facilitate orderly program exploration. 

Revelle et al. [172] undertook two exploratory studies on how programmers identify 

features and their implementations in source code. In the first study, the features of GNU 

sort:32 plus their relevant source code were found manually by one programmer and then 

compared to those of Carver and Griswold [36]. In the second study, two programmers 

manually located features and their implementations for a Java implementation of the 

Minesweeper game. Revelle et al. compared the actual concepts recognized as features as 

well as the code associated with those features, looking for common trends in how developers 

identify and locate features. Based on their observations, they developed a set of guidelines 

for how to recognize the existence of a feature and how to record a feature's associated code 

in a tool called Spotlight [50]. The guidelines suggest relying on both static and textual 

32http://www.gnu.org/software/coreutils/ 
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information and mapping features to program elements at various levels of granularity. 

Ko et al. [114, 117] performed an exploratory study to investigate developers' strategies 

for understanding unfamiliar code. Ten participants worked using Eclipse on five mainte

nance tasks associated with the Paint:~3 application. Screen-capture videos recorded the 

developers' work during the study. To simulate a more realistic working environment, the 

programmers were interrupted every 2.5 to 3.5 minutes and required to answer a multipli

cation question. Monetary incentives were offered for correctly completing the tasks, and 

penalties were inflicted for ignoring or incorrectly answering the multiplication questions. 

The study found that programmers interleave three activities when exploring source code: 

searching for relevant code either manually or with tools, following the dependencies of 

found relevant code, and collecting relevant code and information in Eclipse's interface 

(i.e., package explorer, tabs, and scroll bars). However, searches often failed, Eclipse's nav

igation tools imposed overhead when following dependencies, and developers lost track of 

relevant code in the interface. On average, 35% of a developer's time was spent reviewing 

search results and on navigation. Based on the observations of this study, the Ko et al. 

make a number of suggestions for future tool development. First, tools need to provide bet

ter relevance cues so programmers do not miss important code or misinterpret irrelevant 

code. Second, dependency searches need to be more practical, such as by highlighting the 

dependencies of the currently selected program element. Third and finally, programmers 

need a better way to collect, organize, and view the relevant information they find, such as 

being able to see all relevant information for a given task at once. These recommendations 

may help programmers find task-relevant code more quickly and efficiently and were used 

in the design of a new debugging tool [116]. 

2.4 Discussion and Open Issues 

Feature location is an essential aspect of many software maintenance tasks, and because 

it can be challenging to perform manually, researchers have introduced many techniques 

to lessen the burden of searching for a feature's relevant code. Even with these numerous 

33http://www.cs.cmu.edu/-marmalade/studies.html 
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approaches and advancements, open issues remain in the field of feature location. One 

question that remains unanswered is, "What is the best way to perform feature location?" 

This question cannot be easily answered without an extensive comparison of analysis

specific issues and a comparison of all existing approaches. Such a comparison could be 

facilitated by well-established benchmarks. Currently, there is no commonly accepted set 

of features mapped to the code that implements them that could be used to compare 

feature location techniques. Such a benchmark is needed in the research area. Additionally, 

while there are various techniques that support feature location, not all approaches have 

publically available tools, and the tools that are available do not support both locating and 

documenting a feature's implementation. Other open issues are usability studies of feature 

location techniques and integrating feature location into software engineering courses. The 

remainder of this section discusses these open issues and their associated avenues for future 

research. While this discussion brings to light these important topics, more panels and 

workshops, like the one on the identification of concepts, features, and concerns in source 

code held at the International Conference on Software Maintenance in 2005 [140], are 

necessary to resolve many of these issues. 

2.4.1 Comparisons 

Given the wide variety of existing techniques, developers that need to perform feature lo

cation have many options, but which approach is the best for a specific situation? What 

parameters should be used for a certain type of analysis? Which type of analysis yields the 

best results, or is a combination of analyses the best? Some case studies have been per

formed comparing multiple feature location techniques [173, 225, 226], but they only have 

a few data points, which impedes the ability to draw statistically significant generalizations 

from their results. These studies are also limited in the number of examined approaches, 

focusing on a subset of approaches that present results in a similar fashion. An obstacle to 

comparing techniques is the presentation of their results. How does one evaluate one result 

set that ranks program elements to another that does not? Determining the best way to 

directly compare the performance of feature location techniques remains an open issue. 

Not only does there need to be a comparison of techniques based on different types of 
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analysis, but there also needs to be an evaluation of the best configuration of each type of 

analysis. For instance, dynamic analysis has many possible options for collecting traces. 

The granularity of execution traces can be classes, methods, or even lines of code. In 

addition, the entire execution can be logged from start up to shut down, or only select 

portions of the run can be captured. With static analysis, like with dynamic, granularity 

is also a parameter. Additionally, the type of dependencies (control or data) to take into 

account is another issue to consider. With textual analysis, preprocessing options such as 

stemming and stop word removal are commonly used, but their effect on feature location 

has not been fully studied. Also, textual analysis can be achieved through information 

retrieval methods or through natural language processing. While the varied IR methods 

have been compared, the effectiveness IR and NLP has not been compared in the context 

of feature location. A comparison would determine if the extra expense associated with 

NLP is worth the precision, or if the less expensive IR methods are sufficient. Thorough 

investigations comparing these different configurations of each type of analysis would reveal 

the most favorable settings for feature location. 

There are many other open issues in feature location that could potentially be resolved 

through comparisons. The main types of analyses are dynamic, static, and textual, but 

historical analysis has also been used, but not in conjunction with any other analysis. 

It remains to be seen if combining historical analysis with any of the others is a viable 

approach to feature location. Just as three types of analysis comprise the majority of 

existing techniques, two programming languages dominate the area of feature location. 

Most existing approaches have been applied to Java or C/C++. However, feature location 

should branch out to support more languages so it can be applied to more software systems. 

2.4.2 Benchmarks 

The comparison of feature location techniques would be facilitated by the existence of 

benchmarks that could be used to consistently evaluate the approaches. Currently, there 

are a number of systems that have been used in the evaluation of many feature location 

techniques such as Eclipse, JHotDraw, jEdit, Mozilla, and Firefox, but the features used 

for the evaluation are not consistent. Even if two approaches are evaluated on the same 

50 



system, if different features are used, comparing the two techniques is difficult. Another 

problem with assessing feature location is in knowing the "gold set" of program elements 

that implement a feature. The most commonly used method for determining the source 

code that is relevant to a feature is to mine bug tracking systems. However, the code 

associated with a feature may be incomplete if a bug fix only touches part of a feature's 

implementation. In the presence of these issues, the field of feature location research needs 

to establish standards for validation. The best solution may be benchmarks that can be 

used to easily compare approaches. The benchmarks would consist of a set of features from 

a software system or several systems. Each feature would be mapped to the source code 

that implements it. Ideally, the benchmarks would have variable granularity so that it could 

be applied to approaches that identify relevant classes, methods, and variables. Robillard 

et al. [183] and Eaddy et al. [61] have taken a step in this direction, making available their 

data sets in which programmers who were not necessarily systems experts mapped features 

to methods and fields in open source Java applications. Still, well-established and complete 

benchmarks of systems from a variety of domains and languages will make the evaluation 

and comparison of feature location techniques easier. 

2.4.3 Tools 

Even though this survey encompasses many tools that support feature location, the major

ity of feature location techniques do not have a publically available tool, meaning program

mers wanting to apply such an approach may need to recreate the technique's methodology. 

Additionally, some tools are useful for investigating a program and locating features (See 

Section 2.3.1), while other can be used to store the mappings between features and source 

code [181, 184], but currently only one tool does both [198]. Combining the functionalities 

of finding features' implementations and being able to save them is a logical next step for 

tool development. Finally, de Alwis et al. 's [56] found that existing tools have little effect 

on programmer's efficiency, so further research is needed to improve the effectiveness of 

tools. 

51 



2.4.4 User Studies 

While there have been several user studies investigating how programmers search and ex

plore source code during maintenance, these studies are based on a small number of users. 

Further studies are needed with more users to be able to derive conclusive results. Addi

tionally, there has been a lack of studies examining usability aspects of feature location. 

Do existing feature location techniques reduce the amount of time and effort developers 

spend on maintenance? What are the practical benefits and costs of using different types 

of approaches? For instance, collecting execution traces for an approach that uses dynamic 

analysis requires overhead in terms of the time spent to develop scenarios or test cases 

and capture traces. Information retrieval involves indexing the source code of a software 

system, which can be time-consuming. Studies are needed to determine whether or not the 

overhead of collecting traces or indexing a corpus yields improved feature location results 

and is worth the cost. 

2.4.5 Feature Location and Education 

Given that feature location is such an extensive area of research and also an important part 

of software maintenance, it should be taught in software engineering courses at universities 

and colleges. Petrenko et al. [34, 155] have argued for the inclusion of software maintenance 

and evolution in software engineering courses along with traditional development. Teaching 

maintenance exposes students to more realistic experiences since in industry, 70% or more 

of programmers' time is devoted to maintenance [199, 209]. Feature location is a significant 

part of the maintenance phase since before changes can be made to a system, the relevant 

program elements must be found. Therefore, feature location should be introduced as a 

topic in software engineering courses to better prepare students. 

2.5 Conclusion 

Through a comprehensive examination of 88 feature location articles encompassing re

search, tools, and case, industrial, and user studies, this survey has presented a taxon

omy that classifies the literature along nine key dimensions. The taxonomy facilitates the 
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comparison of existing feature location techniques and illuminates possible areas of future 

research. Researchers can use the taxonomy and survey as a basis for advancing the field, 

while practitioners can use it to identify techniques and tools that are well-suited to their 

needs. This survey has also shed light on open issues in feature location such as the need 

for comparisons and benchmarks. By structuring and organizing the research area of fea

ture location, this taxonomy and survey contributes clarity to the field and should aid in 

resolving some of the open issues. 

This chapter has given a comprehensive overview of existing work in feature location. 

The next two chapters cover our novel contributions to the area. Our work compares 

and expands on some of these existing techniques. Chapter 3 presents an exploratory 

study comparing feature location techniques based on combinations of dynamic, static, and 

textual analyses. Chapter 4 introduces new feature location techniques that incorporate 

web mining algorithms with textual and dynamic analyses. 
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Chapter 3 

An Exploratory Study on 

Assessing Feature Location 

Techniques 

Software maintenance and evolution tasks first require programmers to understand the 

implementation of specific parts of an existing software system [125]. To do so requires 

locating the source code that implements functionality, an activity known as concept as

signment [12] or feature location. The previous chapter gave an overview of this research 

area and described existing feature location approaches. Most feature location techniques 

have been shown to be effective at finding a starting point of a feature's implementation, 

i.e., one method that is relevant to that feature [130, 160, 165]. However, it is rarely the 

case that a single method is the sole contributor to a feature. These techniques leave it up 

to programmers to find the other methods that implement a feature. 

For feature location approaches to be truly effective, they need to find near-complete 

implementations of features. We define the term near-complete to denote a partial but 

close to total set of methods that implement a feature since knowing all the methods that 

implement a feature is rather subjective. One programmer may consider a method relevant, 

while another may not [183]. 

This chapter presents an exploratory study of ten feature location techniques that use 

various combinations of textual, dynamic, and static analyses. The approaches are evalu-
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ated in terms of how well they locate near-complete implementations of several features in 

the jEdit and Eclipse software systems. As part of the assessment, we designed easy-to

follow guidelines for evaluating feature location techniques. Additionally, we explored a new 

mechanism for formulating queries used by textual analysis that automatically constructs 

a query from the identifiers of a method. 

Our results highlight the challenge of feature location since no single technique was 

universally successful. We provide observations of situations when the approaches do and 

do not work well. One promising result is that our new means of automatically creating 

a query for textual analysis performs comparably to a query formed by a human. We 

used the results of this exploratory study to guide the development of new feature location 

techniques presented in Chapter 4. 

3.1 Feature Location Techniques 

A feature is a functional requirement of a program that produces an observable behavior 

which users can trigger. Examples include spell checking in a word processor or drawing a 

shape in a paint program. The term feature is intentionally defined weakly in the literature 

so it is suitable in many situations [5, 76]. 

Feature location is the activity of identifying the source code elements that implement a 

feature [12]. We investigate several approaches to locate the source code associated with a 

feature using textual, dynamic, and static analyses. Next, we explain each type of analysis 

and how we combined them in this work. 

3.1.1 Core Techniques 

Textual analysis. The implementation of a feature, even if dispersed among many meth

ods, may use a consistent vocabulary in terms of identifiers and the words appearing in 

comments [95]. One approach to locate features is to determine textual similarities among 

a user query and source code elements (e.g., methods). A query is a set of words formulated 

by a user that describe a feature. Alternatively, a query can be automatically comprised 

of the identifiers and comments in a method that is known to be relevant to a feature. In 
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either case, textual analysis and feature location can be performed using the information 

retrieval technique known as Latent Semantic Indexing (LSI) [59]. With LSI, the relation 

between terms (words) and documents (methods) can be discovered. In brief, comments 

and identifiers are extracted to form a corpus. LSI indexes the corpus and creates a signa

ture for each document (method), and these indices are used to define similarity measures 

between methods. Users can formulate queries in natural language ( nl-queries) or by using 

the identifiers of a known relevant method (method-queries). LSI returns a list of all the 

methods in the software ranked by their textual similarity to the query. An advantage of 

this approach is that a working version of the source code is not required. However, if a 

program's identifiers are not meaningful, the results can be negatively affected. 

For large systems, a ranked list with thousands of methods is a formidable amount of 

information, unless the majority of the methods that implement the feature appear near 

the top of the ranked list. Often, a threshold is set to limit the number of methods that 

users consider. The threshold may be set by a cut point, as in only the top n or only the 

top x percent of results are considered. The threshold can be set as at a specific value such 

that only the results with a similarity greater than or equal to the threshold are considered. 

Determining an appropriate threshold is an open research problem. 

Dynamic Analysis. Using dynamic information is another approach to feature lo

cation [229, 234]. Dynamic information complements textual information since not all 

methods relevant to a feature may use a similar vocabulary, but they may be executed 

when a system is run. To collect dynamic information, an executable version of the system 

must be available. Users develop scenarios that trigger a feature. A scenario is a sequence 

of user inputs to a system. As scenarios are being exercised, traces can be collected. A 

trace is a list of events that occurred during the system's execution. Events can be method 

invocations, object instantiations, and variable accesses. This work focuses on method 

calls. 

There are two types of traces that we consider. A full trace [229] captures all events 

from a system's start-up to shutdown. A marked trace [130, 192] only captures events 

during part of a system's execution. When the system is running, users can start and stop 

tracing. By starting tracing immediately before triggering a feature and stopping tracing 
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once the feature's behavior is observed, more of the events (methods) listed in the trace 

should pertain to the feature because irrelevant events are not traced. 

Static Analysis. Dynamic information is only as good as the scenarios used to collect 

traces. If scenarios fail to invoke a feature in a certain way, relevant methods may be 

missing from an execution trace. Since static analysis does not rely on a program's exe

cution, statically collected information can compensate for dynamic analysis' weaknesses 

[79]. Static analysis can provide a wealth of information on different types of dependencies 

such as control flow, data dependence, and inheritance. For this work, we use light-weight 

static analysis and focus on method caller-callee relationships by using a static call graph 

in which nodes are methods and edges represent method invocations. We obtain such a 

graph using JRipples1 [35]. 

Additional methods relevant to a feature can be found by exploring a static call graph. 

Starting at a seed method, one that is known to be relevant to a feature, other methods 

pertinent to the feature can be discovered by traversing the graph. Executing a program 

may not invoke a relevant method, but if that relevant method has a static dependency 

with the seed method, static analysis can locate it. However, in the case that a method 

related to a feature has no static dependencies with the seed, static analysis will fail to 

locate relevant source code. 

3.1.2 Combined Techniques 

Textual, dynamic, and static information compliment each other, so in theory when working 

in tandem, they should produce better results than when used individually. In this work, we 

investigate the following combinations of analyses that produce a ranked list of results. We 

limit this exploratory study to techniques that rank methods to be better able to compare 

and evaluate the techniques. 

Textual Analysis. The first feature location technique we consider employs only 

textual analysis, and we consider it to be our baseline approach. We evaluate two con

figurations of textual analysis, one using nl-queries as in [130] and one using our new 

method-queries. We call these approaches I Rquery and I Rseed, referring to the fact that 

1http://jripples.sourceforge.net/ 
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the textual analysis used is a form of information retrieval. The I Rquery approach was 

introduced by Marcus et al. [142], whereas I Rseed is a new version of this technique. 

Textual Analysis plus Dynamic Analysis. We also examine the combination of 

textual and dynamic analysis for feature location. To combine these analyses, methods 

that are not executed are removed from the ranked list provided by textual analysis [130]. 

We investigate all configurations of the different types of queries and traces. Abbreviated, 

these configurations are I Rquery + Dynmarked, I Rquery + Dyn full, I Rseed + Dynmarked, and 

IRseed+Dynfull, where "Dyn" stands for dynamic analysis and subscripts denote the type 

of trace (i.e., full or marked). IRquery + Dynmarked is like the SITIR approach [130], while 

IRquery + Dynfull is somewhat similar to the PROMESIR approach [160] because it uses 

LSI and full traces. The two other approaches are novel combinations. 

Textual, Dynamic, and Static Analyses. The final feature location technique we 

evaluate incorporates all three types of analyses. Again, we investigate all configurations 

of queries and traces in conjunction with static analysis: I Rquery + Dynmarked + Static, 

I Rquery + Dyn full + Static, I Rseed + Dyn full + Static, and I Rseed + Dyn full + Static. The 

IRquery + Dynfull +Static approach is conceptually similar to Cerberus [62], but instead 

of using prune-dependency analysis, it uses light-weight static analysis. The other three 

combinations are new. 

Unlike with combining textual and dynamic analysis, utilizing static analysis does not 

involve pruning an existing ranked list. Instead, static analysis entails exploring a call 

graph to find relevant methods and then ranking them once exploration stops. Searching 

begins at a seed method that is known to be relevant to the feature. The static neighbors 

of the seed (i.e., callers and callees) are examined to see if they meet textual and dynamic 

criteria. The textual criterion is a threshold similarity value, and the dynamic criterion is 

whether the method appears in a given trace. If the method's textual similarity is above 

the threshold and it was executed, it is added to the list of results, and its neighbors are 

added to a list of methods to be examined. Once the list of methods to examine is empty, 

exploration stops and the list of results is sorted by textual similarity. Cerberus [62] uses 

all three types of analyses. We did not use Cerberus because it does not produce a ranked 

list of methods and the other techniques in our evaluation do. Therefore for the sake of 
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comparison, we developed our own combination of textual, dynamic, and static analyses. 

In total, we investigate ten different feature location techniques, many of which are novel 

because they involve method-queries. There are other possible combinations of textual, 

dynamic, and static analysis that we decided not to study, such as dynamic and static 

analysis together. We decided against including these other approaches in our study since 

they do not produce a ranked list and the results of using standalone versions of static and 

dynamic analyses are available elsewhere [39, 130, 160]. The details of how we evaluated 

and compared the ten approaches described above are provided in the next section. 

3.2 Exploratory Study 

We performed an exploratory study to evaluate the feature location techniques described in 

the previous section. The goal of the study was to determine which combination of analyses 

provides the best results and under what circumstances. This section outlines the software 

systems used in the study, our research goals, and the specifics on how we used each type 

of analysis. 

3.2.1 Research Questions 

We set out to seek the answers to a number of research questions in this exploratory study. 

These research questions (RQ) are as follows: 

• RQl: What is the best combination of textual, dynamic, and static analyses for 

feature location? Specifically, which techniques are most effective at finding multiple 

feature- relevant methods? 

• RQ2: Which type of IR query produces better results in terms of finding multiple 

methods associated with a feature, an nl-query provided by a user (e.g. requires 

human effort in formulating a query) or a method-query using the text of a seed 

method (completely automatic)? 

• RQ3: Which type of execution trace, marked or full, is better at discovering numerous 

methods that implement a feature? 
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Since this study is exploratory in nature, we did not know what to expect as the 

outcome, so we did not formulate any hypotheses. However, intuition and previous research 

results led us to conjecture that the approaches that incorporated more types of analyses 

would perform better than those with fewer. 

3.2.2 Subject Systems 

For our study, we chose two open-source Java software systems of different sizes and from 

different domains. jEdit2 is a highly configurable and customizable text editor. We used 

version 4.3pre16, which consists of approximately 105KLOC in 910 classes and 5,530 meth-

ods. We selected four features from jEdit to study. These features were chosen from feature 

requests with submitted patches in the "Patches" section of the systems' online tracking 

software. 

• Patch #1608486, Support for "Thick" Caret- Add a configurable option to 

make the cursor two pixels wide instead of one so it is easier to see. 

• Patch #1818140, Edit History Text- Add the ability to edit the history text 

of searches. 

• Patch #1923613, Reverse Regex Search- Add the ability to search backwards 

with regular expressions. 

• Patch #1849215, Bracket Matching Enhancements - Add the ability to 

match angle brackets. 

Eclipse3 , the other system in our study, is a popular integrated development environ

ment. We used version 2.1, and it has approximately 2.3MLOC in over 7,000 classes and 

89,000 methods. Like with jEdit, we selected four features from its bug tracking system. 

With Eclipse, we chose fixed bugs corresponding to misbehaving features. These bugs are: 

• Bug #51384 -Double-click-drag to select multiple words is broken. 

• Bug #317795 - UnifiedTree should ensure file/folder exists. 

• Bug #198196 -Add support for Emacs-style incremental search. 

2http://www.jedit.org/ 
3http://www.eclipse.org/ 
4https://bugs.eclipse.org/bugs/show_bug.cgi?id=5138 
5 https://bugs.eclipse.org/bugs/show_bug.cgi?id=31779 
6https://bugs.eclipse.org/bugs/show_bug.cgi?id=19819 
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• Bug #32712 7 - Repeated error message when deleting and file is in use. 

3.2.3 Input to the Analyses 

Textual Analysis. We formulated the nl-queries used by textual analysis by reviewing the 

description and comments in the thread for the patch/bug in jEdit and Eclipse's tracking 

systems. The nl-queries are listed in Table 3.1. The method-queries consist of the identifiers 

from the seed methods also listed in the table. The seed methods were randomly chosen 

from the patch for each feature to ensure that they do actually pertain to the feature. 

Dynamic Analysis. We created one usage scenario per feature to collect traces in 

this study. Descriptions of the scenarios are in Table 3.1. We devised the jEdit scenarios 

by reading the description and comments for the patch in the bug tracking software. For 

Eclipse, two bug reports ( #5138 and #32712) had steps to reproduce the errors, and those 

steps were used as the scenarios for those two features. The scenario for bug #31779 is 

the same as the one use in [130]. For Bug #19819, a scenario was created in which the 

behaviors of the incremental search feature, as described in the bug report, were exercised. 

Static Analysis. The seed methods used as the starting point of static analysis are 

listed in Table 3.1. They were the same methods used for constructing the method-queries 

and were randomly selected from the feature's patch. As explained in Section 3.1.2, static 

analysis starts at the seed method and branches out in part based on a textual similarity 

threshold. To determine the textual similarity threshold to set for examining neighbors in 

a static call graph, we adapted the gap threshold technique [142, 244]. A gap threshold is 

found by determining the largest difference between two adjacent textual similarity values 

in a ranked list. The threshold is set as the larger of the two values at this location in the 

list. We adapted this technique to incorporate a relaxation strategy. If the size of a ranked 

list did not reach our minimum (e.g., ten methods), then we decreased the threshold by 

0.05 and repeated the procedure again. 

7https://bugs.eclipse.org/bugs/show_bug.cgi?id=32712 
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Feature 

jEdit Patch #1608486 

Support for "thick" caret. 

jEdit Patch #1818140 

Table 3.1: Queries, scenarios, and seed methods for each feature. 

Query Scenario Seed Method 

configuration global Start jEdit; click "Global Options" button EditPane.initPainter 

option thick caret then "Text Area;" start tracing; click "thick" (49LOC, 114 terms) 

text area block checkbox then "OK;" stop tracing; exit. 

history text edit Start jEdit; click "Find" button; start trac- ListModelEditor.createTableModel 

Edit the entries in the His- string menu 

tory Text. 

ing; right click in text area; select "Previously (9LOC, 18 terms) 

entered searches;" delete, insert, and modify 

an entry; click "OK;" stop tracing; exit. 

jEdit Patch #1923613 reverse regex search Start jEdit; place cursor at end of file; start SearchDialog.updateEnabled 

Reverse searching with reg~ regular expression 

ular expressions. 

jEdit Patch #1849215 angle right find next 

Match angle brackets. 

tracing; click "Find" button; select "Regu- (30LOC, 53 terms) 

lar Expressions" and "Backwards;" enter "[0-

9]+;" click "Find" several times; stop tracing; 

exit. 

Start jEdit; place start tracing; cursor to TextUtilities.findMatchingBracket 

right of "<" whose match is on same line; (147LOC, 117 terms) 

place cursor to right of "<" whose match is 

on another line; stop tracing; exit. 
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w 

Table 3.1: (continued). 

Feature Query Scenario Seed Method 

Eclipse Bug #5138 mouse double click up Start Eclipse; start tracing; click and release TextViewer.mouseUp 

Double-click-drag to select down drag release the mouse button; click a second time quickly (11LOC, 36 terms) 

multiple words. and hold the mouse button down, drag and 

select some text; release the mouse button; 

stop tracing, exit. 

Eclipse Bug #31779 unified tree node file Start Eclipse; start tracing; create a file from UnifiedTtee.addChildren 

Unified'Tl"ee should ensure system folder location the file system in a project; refresh; stop trac- (53 LOC, 108 terms) 

file/ folder exists. 

Eclipse Bug #19819 

Emacs-style incremental 

search. 

Eclipse Bug #32712 

Repeated error message. 

incremental search 

ing; exit. 

Start Eclipse; start tracing; press Ctrl+J; IncrementalFindAction.run 

type search criteria; use up and down arrow (14LOC, 23 terms) 

keys to find matches; stop tracing; exit. 

delete resource Start Eclipse; create a simple project; add ResourceTl"ee.standardDeleteProject 

project file folder fail a file; edit foo.doc externally; start tracing; (78LOC, 216 terms) 

delete the project; stop tracing, exit. 



3.2.4 Relevancy Assessment 

Each combination of analyses is a feature location technique that produces a ranked list 

of methods suggested to be relevant to a feature. We restrict our evaluation to the top 

ten methods of each list because other researchers have shown that users are generally 

unlikely to look at more than ten elements on a list [157, 247]. If most of the top ten 

suggestions provided by a feature location approach are false positives, then the effort 

that would be needed to examine more results lower in the list is likely to not be worth 

the cost. In reviewing the top ten methods returned by each technique, there needs to 

be well-defined criteria for judging whether a method is relevant to a feature or not. In 

almost all cases, the methods that implement a feature are not documented; otherwise 

feature location would not be necessary. Therefore, other ways of determining a method's 

relevance to a feature are needed. One option is to present the top ten suggestions to an 

expert. If no expert is available, then if a bug related to the feature has been fixed, the 

methods in the patch can be used. However, the bug may only pertain to a small subset of 

the feature's relevant methods, so relying on a patch may give an incomplete picture of a 

feature's implementation. For this reason, we decided not to use this evaluation approach, 

even though we had patches for each feature. 

An alternative is to ask programmers to identify relevant methods by exploring the 

source code. Robillard et al. [183] provided some guidance to participants asked to locate 

methods relevant to features. The participants were instructed to decide if a method was 

relevant by asking if it would be useful to know if the method was related to the feature if 

the feature had to be modified in the future. We take a similar but adapted approach in 

our evaluation. Instead of asking programmers to locate relevant methods on their own, we 

present them with lists of methods and ask them to determine the relevance of each method. 

In our study, the participants were provided with code and an executable, a description 

of a feature and how to invoke it, and the following guidelines for how to determine if a 

method is relevant to the feature or not. 

1. Method names that are similar to the words in the feature's description are good 

indicators of possibly relevant code, but the method's source code should be inspected 
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to ensure the method is actually relevant to the feature. 

2. Determine if the method is relevant to the feature by asking "Would it be useful to 

know that this method is associated with the feature if I had to modify the feature in 

the future?" 

3. If most of the code in the method seems relevant to the feature, classify the method 

as Relevant. If some code within the method seems relevant but other code in the 

method is irrelevant to the feature, classify the method as Somewhat Relevant. If no 

code within the method seems relevant to the feature, classify it as Not Relevant. 

4. If unable to classify the method by reviewing its code, explore the method's structural 

dependencies, i.e. what other methods call it and are called by it. If the method's 

dependencies seem relevant, then the method probably is also. 

Having a number of programmers follow these guidelines and focusing on the agreement 

between the programmers eliminates any one individual's bias. We classified every method 

in the resulting ranked lists for all eight features without knowing which technique produced 

each list. To give support to the resulting categorizations, we solicited volunteers to also 

classify methods and compared them to ours. Four students volunteered to participate 

in this study. The students were enrolled in a graduate-level software engineering course. 

They were given ten ranked lists each containing ten methods. The ten lists corresponded 

to the ten different feature location techniques under evaluation. The students were not 

aware to which feature location technique the lists pertained. They were instructed8 to 

classify the methods based on the guidelines above, and jEdit's thick caret feature was 

used. The patch for this feature has six methods, and the feature location techniques were 

able to find between one and three of these methods in the top ten of their ranked lists. 

Figure 3.1 shows the average agreement between our classifications and the student 

volunteers'. To demonstrate how percent agreement was calculated, consider the following 

example. We classified four methods from a list of ten as relevant and six as not rele

vant, and a volunteer classified only three methods as relevant and seven as not relevant. 

8 See Appendix B for the instructions given to the students. 
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Figure 3.1: Percent agreement among the volunteers and our classifications for the jEdit 
thick caret feature. 

The volunteer's three methods were included in the four identified by us, so the percent 

agreement is 90%. Nine out of ten times, both programmers agree that a method either 

belonged in the relevant or not relevant categories. The percent agreement was averaged 

over all ten lists generated by the different feature location techniques. When computing 

agreement between more than two programmers, all individuals involved had to categorize 

a method in the same way for there to be agreement. The percent agreement between us 

and the volunteers is high; it is always greater than 70%. The agreement declines only 

slightly when more individuals are taken into account. Agreement about relevant methods 

was highest, followed by agreement about irrelevant methods, suggesting that it is easiest 

to identify methods that definitely do or do not implement a feature. 

The average agreement among programmers about a method's relevance in this study 

was higher than that observed by Robillard et al. [183]. The two approaches to evaluating 

method relevance differ: our study provided lists of methods for programmers to judge while 

Robillard et al. asked programmers to find the methods implementing a feature themselves. 

Also, our study allowed programmers to place methods into one of three categories to allow 

for uncertainty instead of a binary yes/no classification. 
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Table 3.2: Average percentage of the number of methods classified as relevant, somewhat 
relevant, and not relevant in the top ten results returned by each feature location technique 
for jEdit. 

Relevant Somewhat Relevant Not Relevant 

I Rquery [142] 12.5% 15% 72.5% 
IRseed 12.5% 20% 67.5% 
I Rquery + Dynmarked [130] 30% 20% 50% 
IRquery + Dynfull [160] 15% 22.5% 62.5% 
I Rseed + Dynmarked 20% 15% 65% 
I Rseed + Dyn full 15% 27.5% 57.5% 
I Rquery + Dynmarked + Static 30% 17.5% 52.5% 
IRquery + Dynfull +Static [61] 12.5% 25% 62.5% 
I Rseed + Dynmarked + Static 17.5% 17.5% 65% 
I Rseed + Dyn full + Static 12.5% 30% 57.5% 
Average 17.5% 21.25% 61.25% 
Standard Deviation 7.1% 5.2% 6.9% 

3.3 Results 

In our study, only the top ten ranked methods returned by a feature location technique 

for each feature were examined. Those methods were then classified into three categories 

(relevant, somewhat relevant, or not relevant) as described in the previous section. The 

results of the jEdit and Eclipse studies are discussed in the next sections. An online 

appendix9 contains the source code, classifications, and other data related to this evaluation. 

3.3.1 jEdit Study Findings 

The average percentage of relevant, somewhat relevant, and not relevant methods found 

in the top ten lists of each feature location technique are in Table 3.2 and Table 3.3. An 

in-depth discussion of the results is below. 

RQl. Table 3.2 lists the average number of relevant, somewhat relevant, and not 

relevant methods found in the top ten lists of each technique in jEdit. For jEdit, the 

techniques that found the most relevant methods on average were I Rquery + Dynmarked and 

I Rquery + Dynmarked + Static with 30% of the top ten methods being relevant, meaning 

three methods in the top ten were relevant on average. These approaches found nearly 

double the amount of relevant code than most of the other techniques which averaged 

between 12.5% and 20%. Different programmers may consider the methods classified as 

9http://www.cs.wm.edu/semeru/data/icpc09-feature-location/ 
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somewhat relevant as pertaining to the implementation of a feature, while others might not. 

If the somewhat relevant methods are considered important to a feature's implementation, 

then I Rquery + Dynmarked is the best performing technique in the jEdit study with 50% of 

the located methods being relevant on average. At least for jEdit, the I Rquery + Dynmarked 

feature location technique is readily able to locate many methods implementing a feature 

and not just a single method. 

Since the I Rquery + Dynmarked and I Rquery + Dynmarked + Static approaches per

formed the same, these results suggest that adding static analysis provides no addi

tional benefits over a combination of only textual and dynamic analysis. However, the 

approach that located the most relevant methods for the edit history text feature was 

I Rquery + Dynmarked + Static. Seventy percent of the methods in its top ten list were 

relevant. The methods implementing this feature have very clear structural dependencies 

because they can be found along the same branch of the call graph. Therefore, static anal

ysis was easily able to identify multiple methods related to this feature. With the three 

other jEdit features, static analysis did not perform as expected and improve the number of 

relevant methods located. Incorporating static analysis yielded no more relevant methods 

than using a combination of textual and dynamic analysis. For jEdit's reverse regex search 

feature, a different seed than the one listed in Table 3.1 was originally selected. However, 

the seed method was isolated in the call graph, so static analysis could not expand far be

yond it to locate more potentially relevant methods. This is one of the observed limitations 

of static analysis for feature location. 

Another reason static analysis may not produce improved results is even when there is 

a dependency between a seed method and a relevant method, they may be distant from 

each other in the call graph. If one method along a branch in a call graph between the 

seed and a relevant method is not executed or has a textual similarity below the threshold, 

static analysis will be unable to locate the relevant method. Therefore, the ranked list is 

populated with other, irrelevant methods that meet both the textual and dynamic criteria 

when searching the call graph. 

In general, combining just textual and dynamic analysis either did not affect the number 

of relevant methods located (reverse regexp feature) or slightly improved the results (edit 
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history text and angle bracket matching features) by pruning unexecuted methods from 

the ranked list. This result supports the findings of previous studies [130]. However, the 

combination of the two analyses did not find a substantial number of relevant methods for 

each feature. 

For jEdit's thick caret feature, surprisingly, we observed that adding dynamic anal

ysis to textual produced worse results than textual analysis alone. The Standalone

TextArea.initPainter method appears to be a code clone of EditPane.initPainter, the seed 

method, meant to be used when jEdit is embedded in another system. The I Rseed approach 

locates this method, but neither the IRseed+Dynmarked nor the IRseed+Dynfull approach 

can identify this method because it was not executed. This case highlights a challenge as

sociated with using dynamic analysis for feature location. One solution is to create a better 

scenario, or perhaps when combining textual and dynamic analysis, if a method has a high 

enough textual similarity, the fact that it was not executed should be ignored. 

Our goal was to locate as many methods relevant to a feature as possible. If we had 

set out to find only a single method to use as a starting point for searching for more 

methods associated with a feature, the techniques we evaluated performed with effectiveness 

comparable to that reported in previous studies [130, 160]. On average, at least one relevant 

method was found in the top ten for each feature by every technique. However, since the 

average number of relevant methods found by the feature location techniques is low, this 

work highlights the fact that finding a near-complete set of methods that implement a 

feature is not simple. 

RQ2. Based on the jEdit data, there is no consensus on whether an nl-query or a 

method-query is best. For the reverse regexp feature, the nl-query performed better, while 

for the thick caret feature, the method-query was best. For the two other features, both 

queries returned the same number of relevant methods. This result suggests that using an 

automatically generated query of identifiers from a seed method performs just as well as a 

query constructed by a human, which could eliminate much of the subjectivity inherent in 

formulating a query. 

Even though there is no clear winner, some interesting observations can still be drawn. 

The nl-queries consisted of a few words, while the method-queries were comprised of many 
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identifiers. The larger the seed methods, the more identifiers there generally were. The seed 

methods (refer to Table 3.1) varied in size from 9LOC and fewer than 20 identifiers (edit 

history text) to 14 7LOC and over 100 identifiers (match angle brackets). Considering only 

the I Rquery and I Rseed results, the method-query for the thick caret feature (114 terms) 

performed better than the nl-query (8 terms) with 30% relevant vs. 10%. The wealth of 

identifiers in larger methods may aid textual analysis by providing more query terms, but 

this trend is not universal. The seed for the angle bracket matching feature has over 100 

terms, but the two types of queries performed the same. 

RQ3. On average, the use of marked traces produced better results than full traces 

when locating relevant methods for features in jEdit, which supports the results of previous 

studies as well [130]. Using marked traces limits the number of methods that are traced, 

meaning more irrelevant methods will be pruned from a ranked list. On the other hand, 

full traces were better at finding methods categorized as somewhat relevant. The methods 

classified as somewhat relevant generally seem to be in the call chain of relevant methods 

but do not directly implement the feature. We can find no explanation for why full traces 

found more somewhat relevant methods and conjecture it may be coincidental. 

The nature of a feature should be considered before deciding to use marked traces over 

full traces. A feature like angle bracket matching that does not have a menu interface is 

suitable for marked traces, but for features that involve setting options in a dialog or menu, 

like jEdit's thick caret and reverse regex features, full traces might be the better option. 

Consider the method TextAreaOptionPane._init that adds various options for jEdit's main 

text area, including the thick caret option, to a dialog. This method was executed, but 

it did not appear in the marked trace since tracing was started after the dialog opened. 

Marked traces run the risk of omitting initialization code that full traces include. 

3.3.2 Eclipse Study Findings 

Table 3.3lists the average number of relevant, somewhat relevant, and not relevant methods 

found in the top ten lists of each technique in Eclipse. Below, we discuss the results with 

regards to our research questions. 

RQl. For Eclipse, there were three approaches that, on average, performed the best 
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Table 3.3: Average percentage of the number of methods classified as relevant, somewhat 
relevant, and not relevant in the top ten results returned by each feature location technique 
for Eclipse. 

I Rquery [142] 
IRseed 

I Rquery + Dynmar·ked [130] 
IRquery + Dynfull [160] 
I Rseed + Dynmarked 

I Rseed + Dyn full 

I Rquery + Dynmarked + Static 
IRquery + Dynfull +Static [61] 
I Rseed + Dynmarked + Static 
I Rseed + Dyn full + Static 
Average 
Standard Deviation 

Relevant 

22.5% 
12.5% 
25% 
25% 

27.5% 
27.5% 
30% 
30% 
30% 

27.5% 
24.75% 

5.6% 

Somewhat Relevant 

12.5% 
22.5% 

5% 
12.5% 
25% 
35% 

12.5% 
12.5% 
15% 

22.5% 
19.5% 
9.6% 

Not Relevant 

65% 
65% 
70% 

67.5% 
47.5% 
42.5% 
57.5% 
57.5% 
55% 
50% 

55.75% 
11.2% 

at finding relevant methods: I Rquery + Dynmarked + Static, I Rquery + Dyn full + Static, 

and I Rseed + Dynmarked + Static. Thirty percent of the top ten methods identified were 

relevant. When taking both relevant and somewhat relevant methods into account, the best 

performing approach was I Rseed + Dynmarked + Static, with on average 62.5% or slightly 

better than six methods out of the top ten. 

Unlike in jEdit, these results suggest that static analysis does aid feature location. 

Examining individual features, a mixed story emerges. For bugs #19819 and #32712, 

adding static analysis produced no improvement over a combination of textual and dynamic 

analysis. Bug #5138 actually saw the number of relevant methods decrease when static 

analysis was used. Combining textual and dynamic analysis essentially involves eliminating 

unexecuted methods from a ranked list, but using static analysis entails building a new list 

from scratch. Only methods with a static dependency to the seed are included. Therefore, 

methods that are located by a combined textual dynamic approach may not be found by 

one that uses static analysis. This is exactly what happened in the case of bug #5138. The 

seed method was isolated in the call graph, so static analysis was not able to branch out. 

Feature location on bug #31779 resulted in the biggest improvement when adding static 

analysis. Ninety percent of the methods in the top ten list for I Rquery + Dynmarked +Static 

were relevant, while 100% of the methods for IRquery+Dynfuzt+Static were. Static analysis 

was able to succeed with this feature because many of the relevant methods were located 
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in the same class as the seed. The results for these two approaches for this feature may 

have skewed Eclipse's averages. Nevertheless, this case shows that it is possible to locate 

near-complete feature implementations and that static analysis is a useful tool to do so. 

Overall, the combination of textual and dynamic information improved results over only 

textual analysis, but for one feature the use of textual and dynamic information caused the 

number of relevant methods located to decrease. The I Rquery technique identified J avadoc

DoubleClickStrategy.doubleClicked as relevant to bug #5138. However, this method is not 

executed in the scenario because no Javadoc comments were double clicked. Therefore, this 

method has no chance of being identified by an approach that uses dynamic analysis unless 

a new scenario is used. Alternatively, since this method has a high textual similarity, a 

revised combination of textual and dynamic analysis that allows for cases when a method 

is unexecuted but has high similarity could also solve this problem. 

The purpose of this exploratory study was to learn how effective feature location tech

niques are at finding multiple methods relevant to a feature instead of just a single starting 

point. In Eclipse, all but one approach had at least 20% of its top ten located methods 

categorized as relevant. Most approaches found closer to 30%. These results are more 

encouraging and those for jEdit, but they still show room for improvement. Being able 

to fully locate the implementation of a feature is a difficult problem that requires further 

research. 

RQ2. The Eclipse data showed that method-queries perform comparably to nl-queries. 

This outcome is similar to what was observed in jEdit. Considering the I Rquery and I Rseed 

results for bugs #5138 and #19819, the seed methods were short (llLOC/36 terms and 

14LOC/23 terms), and nl-queries performed better for these features. For bug #31779, 

the two types of queries achieved comparable results to each other, but for bug #32712 

(78LOC/216 terms), the method-query was the winner. This possible trend of method

queries from longer methods performing better was also seen in jEdit, adding weight to the 

idea of automatically constructing queries from the identifiers of seed methods. 

RQ3. In Eclipse, marked traces outperformed full traces slightly. When the same type 

of query was used, marked traces found about 5% more relevant methods than full traces. 

We attribute this outcome to marked traces limiting the method invocations recorded, thus 
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removing much noise from the resulting trace. Collecting full traces is difficult because they 

are very large and take time to collect, especially for a system like Eclipse. This fact plus 

the better performance of marked traces make them the ideal choice in most cases. 

3.3.3 Discussion 

Based on this exploratory study, we draw a number of notable conclusions, which are 

discussed below. 

Method-queries perform as well as nl-queries. There was no clear winner when 

it comes to nl-queries vs. method-queries. This result is promising because it means 

that automatically generated queries perform just as well as ones created by humans. We 

observed that method-queries from larger seeds seem to perform the best. These results 

motivate further exploration into strategies for formulating queries automatically. 

No feature location technique is universally successful at finding near

complete implementations of features. At best, they are good at locating a few 

relevant methods. This research motivates the need for feature location techniques that 

successfully discover as many feature-relevant methods as possible. 

The effectiveness of static analysis might be tied to the effectiveness of tex

tual analysis. The biggest difference between the results of the two systems concerns the 

use of static analysis. In jEdit, feature location with static analysis did not produce better 

results than approaches without it. In Eclipse, the best techniques used static analysis. 

One possible reason for this discrepancy stems from textual analysis. Static exploration of 

a call graph was performed using textual and dynamic criteria. If a method did not meet 

the textual similarity threshold, then exploration down that path of the call graph would 

halt. LSI generated better results for Eclipse, therefore, it is possible that static analysis 

was able to explore a call graph more fully and find more relevant methods in Eclipse than 

jEdit. Using additional types of static dependencies along with light-weight analysis may 

improve results. 

Marked traces slightly outperform full traces. In both systems, marked traces 

were able to find slightly more relevant methods than full traces due to the fact that 

73 



marked traces capture a higher concentration of feature-relevant methods. However, full 

traces should be used for features that are invoked through menus. 

LSI performs better on larger systems. One difference between the results of 

the two systems is that textual analysis yielded better results in Eclipse. There are two 

possible reasons for this outcome. First, Eclipse is a professional-grade system, so its 

naming conventions may be stricter than in jEdit, which would aid LSI. Another possible 

reason is that the performance of LSI has been shown to degrade on smaller corpora [62]. 

jEdit's corpus is small (about 7K terms and 5K methods) in comparison to Eclipse's (56K 

terms and 89K methods), therefore LSI's ranking strategies may be more effective with 

Eclipse. 

The textual similarity threshold selected by the gap technique was too high. We adapted 

the gap threshold technique with a relaxation strategy in the case fewer than ten methods 

were found. The initial textual similarity selected was always too high. The relaxation 

strategy that we incorporated had to be used in every feature location technique involving 

static exploration of a call graph. In each case, the threshold had to be lowered significantly, 

sometimes by as much as 0.5. This observation suggests that feature-relevant methods are 

not always located close to each other in a call graph. 

3.3.4 Threats to Validity 

There are several issues that may limit the generalizations that can be drawn from our 

results. Foremost is the subjective manner in which the results were judged. We determined 

the relevance of the methods found by the feature location techniques. To minimize bias, 

we did not know to which approach each top ten list belonged. Also, we formalized how 

methods were classified by creating guidelines. For one feature, we also asked several 

programmers to categorize the methods and compared them to ours. Since the agreement 

between us and the students was high, it is reasonable to assume that the our classifications 

are representative of the features. 

Another subjective aspect of this work is the construction of the nl-queries and the 

selection of the seed methods. To form the nl-queries, we used words from the change 

requests and bug reports. The seed methods were randomly selected from methods that 
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were submitted in patches to the features/bugs. Since those methods had to be changed to 

perform maintenance on the features, they must be relevant to the feature. However, the 

use of different queries and different seeds could alter the results. 

Another threat to validity is that only one scenario was used to collect execution traces. 

Every effort was made to ensure that the scenarios dependably captured the behavior of the 

features, although certain aspects may have been missed. In many cases, the scenarios were 

based on the descriptions given in a bug report. Finally, we only studied a small number 

of features from two systems, both written in Java, limiting the ability to generalize our 

results to other types of software systems. Eclipse is a real-world system, but jEdit is rather 

small in comparison. This threat can be reduced if we experiment on more systems written 

in other languages and taken from other domains. 

3.4 Related Work 

Since feature location is an important part of software maintenance, there are many existing 

techniques. Chapter 2 gives a comprehensive overview of the research area, while this 

section focuses on the related work that is most pertinent to the work presented in this 

chapter. This section reviews these existing approaches by categorizing them as either 

static, dynamic, or hybrid feature location. In addition, we offer brief discussions of how 

our work differs from these techniques. 

Most static feature location techniques are either structural or textual. Structural 

approaches [13, 39, 121, 179, 176] explore the relationships among classes, methods, and 

other program elements to locate features. We did not explore a purely structural feature 

location technique in this work due to the fact that the other approaches we studied ranked 

methods, and obtaining a ranking from only structural information is difficult. Textual 

approaches use comments and identifiers to locate code relevant to a feature by utilizing 

such techniques as information retrieval [142, 165], independent component analysis [90], 

and natural language processing [201]. We have focused on using IR for textual feature 

location. A number of tools use both structural and textual information to locate pertinent 

code [102, 244] by using textual information to prune irrelevant structural relationships, or 
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vice versa. In our work, we have not combined structural and textual techniques, but we 

have combined them in conjunction with dynamic analysis. 

Software reconnaissance [229) is a dynamic approach to feature location that compares 

a trace of a program when a feature is invoked to a trace when the feature is not executed. 

Software reconnaissance has been recently expanded and improved [5, 77]. We did not 

evaluate software reconnaissance because its results are not ranked. 

Hybrid feature location approaches seek to leverage the benefits provided by both static 

and dynamic analysis. Eisenbarth et al. [76, 118] developed a technique that is mostly dy

namic and applies formal concept analysis to traces to produce a mapping of features to the 

program's methods. However, its results are not ranked, so this technique was not included 

in our exploratory study. Several approaches combine LSI and dynamic information. In 

PROMESIR [160], LSI is combined with SPR [5] to give a ranking of methods likely rel

evant to a feature. In SITIR [130], a single execution trace can be filtered using LSI to 

extract code relevant to the feature of interest. In this work, we have evaluated techniques 

similar to the PROMESIR and SITIR approaches because they represent the state of the 

art. 

Cerberus [62] is the only approach we are aware of that combines three types of analyses 

for feature location. Our work is different from Cerberus as we are investigating several 

alternative combinations because Cerberus is not always able to locate methods relevant 

to some features. We also distinguish ourselves from Cerberus by examining the trade-offs 

of using textual, dynamic, and static analyzes for feature location and by evaluating our 

approaches on small and large systems. 

3.5 Conclusion 

This chapter presented an exploratory study evaluating the effectiveness of ten feature 

location approaches at finding near-complete implementations of features. Although we 

did not discover an approach that clearly works best in all situations, we did observe that 

combining analyses generally improves the results. One promising result is that method

queries perform comparably to a queries formed by a human. We also summarized cases 
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in which certain combinations of analyses were more effective than others. We used some 

of these observations to guide our work on developing new approaches to feature location 

in the next chapter. 
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Chapter 4 

Using Data Fusion and Web 

Mining to Support Feature 

Location 

Software systems are constantly changing and evolving in order to eliminate defects, im

prove performance or reliability, and add new functionalities. When the software engineers 

who maintain and evolve a system are unfamiliar with it, they must go through the program 

comprehension process. During this process, they obtain sufficient knowledge and under

standing of at least the part of the system to which a change is to be made. An important 

part of the program comprehension process is feature or concept location [5, 12], which is 

the practice of identifying the source code that implements functionality, also known as a 

feature. Before software engineers can make changes to a feature, they must first find and 

understand its implementation. 

For software developers who are unfamiliar with a system, feature location can be a 

laborious task if performed manually. In large software systems, there may be hundreds 

of classes and thousands of methods. Finding even one method that implements a feature 

can be extremely challenging and time consuming. Fortunately for software engineers in 

this situation, there are feature location techniques that automate, to a certain extent, the 

search for a feature's implementation. 

Existing feature location techniques use different tactics to find a feature's source code. 
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Approaches based on information retrieval (IR) leverage the fact that identifiers and com

ments embed domain knowledge to locate source code that is textually similar to a query 

describing a feature [142]. Dynamic feature location techniques collect and analyze execu

tion traces to identify a feature's source code based on set operations [229] or probabilistic 

ranking [5]. Static approaches to feature location rely on following or analyzing structural 

program dependencies [39, 176]. 

The state of the art in feature location involves integrating information from multiple 

sources. Researchers have recognized that combining more than one approach to feature 

location can produce better results than standalone techniques [62, 76, 102, 130, 160, 244]. 

Generally in these combined approaches, information from one source is used to filter 

results from another. For instance in the SITIR approach to feature location [130], a 

single execution trace is collected, and then IR is used to rank only the methods that 

appear in the trace instead of all of the system's methods. Thus, dynamic analysis is 

used as a filter to IR, and filtering is one way to combine information from several sources 

to perform feature location. Instead of using filtering, PROMESIR [160] combines the 

opinions of two "experts" (scenario-based probabilistic ranking [5] and IR [142]) using an 

affine transformation. 

The idea of integrating data from multiple sources is known as data fusion. The sources 

of data have their individual benefits and limitations, but when they are combined, those 

drawbacks can be minimized and better results can be achieved. Data fusion is used heavily 

in sensor networks and geospatial applications to attain better results in terms of accuracy, 

completeness, or dependability. For example, the position of an object can be calculated 

using an inertial navigation system (INS) or global positioning system (GPS). An INS 

continuously calculates the position of an object with relatively little noise and centimeter

level accuracy, though over time the position data will drift and become less accurate. GPS 

calculates position discretely, has relatively more noise, and meter-level accuracy. However, 

when data from an INS and GPS are used together in the proper proportions, the GPS data 

can correct for the drift in the INS data. Thus the fusion of INS and GPS data produces 

more accurate and dependable results than if they were used separately. 

Inspired by the benefits of using data fusion to integrate multiple sources of information, 
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this work applies data fusion to feature location. This chapter presents a data fusion 

model for feature location that is based on the idea that combining data from several 

sources in the right proportions will be effective at identifying a feature's source code. 

The previous chapter explored how well existing feature location techniques locate near

complete implementations of features. Since the results of the study in Chapter 3 indicated 

that feature location techniques are better at finding one relevant method than many, this 

chapter primarily focuses on finding a feature's first relevant method in a ranked list. 

The data fusion model defines different types of information that can be integrated to 

perform feature location including textual, execution, and dependence. Textual information 

is analyzed by IR, execution information is collected by dynamic analysis, and dependencies 

are analyzed using web mining. Applying web mining to feature location is a novel idea, but 

it has been previously used for other program comprehension tasks, such as identifying key 

classes for program comprehension [239] and ranking components in a software repository 

[106]. Software lends itself well to web mining approaches, because like the World Wide 

Web, software can be represented by a graph, and that graph can be mined for useful 

information such as the source code that implements a feature. 

This chapter makes the following contributions: 

• A data fusion model for feature location is defined that integrates different types of 

information to locate features using IR, dynamic analysis, and web mining algorithms. 

• An extensive evaluation of the feature location techniques defined in the model. 

• New feature location techniques that have better effectiveness than the state of the art 

in feature location. Statistical analysis indicates that this improvement is significant. 

In addition, all of the data used in the evaluation is made freely available online1 , and 

other researchers are welcome to replicate this work. Making the data available will help 

facilitate the creation of feature location benchmarks. 

The remainder of this chapter is structured as follows. Section 4.1 introduces the data 

fusion model for feature location. Section 4.2 outlines the evaluation methodology and 

Section 4.3 discusses the results. Related work is summarized in Section 4.4, and Section 

4.5 concludes. 
1http://www.cs.wm.edu/semeru/data/icpc10-data-fusion/ 
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4.1 A Data Fusion Model for Feature Location 

The feature location model presented here defines several sources of information, the anal

yses used to derive the data, and how the information can be combined using data fusion. 

4.1.1 Textual Information from Information Retrieval 

Textual information in source code, represented by identifier names and internal comments, 

embeds domain knowledge about a software system. This information can be leveraged 

to locate a feature's implementation through the use of IR. Information retrieval is the 

methodology of searching for textual artifacts or for relevant information within artifacts. 

IR works by comparing a set of artifacts to a query and ranking these artifacts by their 

relevance to the query. There are many IR techniques that have been applied in the 

context of program comprehension tasks such as the Vector Space Model (VSM) [195], 

Latent Semantic Indexing (LSI) [59], and Latent Dirichlet Allocation (LDA) [15]. This 

work focuses on evaluating LSI for feature location, and the notation I RLsi is used to 

denote that LSI is the method used to instantiate IR analysis in the model. I RLSI follows 

five main steps [142]: creating a corpus, preprocessing, indexing, querying, and generating 

results. 

Corpus creation. To begin the IR process, a document granularity needs to be chosen 

so a corpus can be formed. A document lists all the text found in a contiguous section of 

source code such as a method, class, or package. A corpus consists of a set of documents. For 

instance in this work, a corpus contains method-level granularity documents that include 

the text of each method in a software system. 

Preprocessing. Once the corpus is created, it is preprocessed. Preprocessing involves 

normalizing the text of the documents. For source code, operators and programming lan

guage keywords are removed. Additionally, source code identifiers and other compound 

words are split (e.g., "featureLocation" becomes "feature" and "location"). Finally, stem

ming is performed to reduce words to their root forms (e.g., "stemmed" becomes "stem"). 

Index the corpus. The corpus is used to create a term-by-document matrix. The 

matrix's rows correspond to the terms in the corpus, and the columns represent documents 
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(i.e., source code methods). A cell mi,j in the matrix holds a measure of the weight or 

relevance of the ith term in the lh document. The weight can be expressed as a simple count 

of the number of times the term appears in the document or as a more complex measure 

such as term frequency-inverse-document frequency. Singular Value Decomposition (SVD) 

[195] is then used to reduce the dimensionality of the matrix by exploiting the co-occurrence 

of related terms. 

Issue a query. A user formulates a natural language query consisting of words or 

phrases that describe the feature to be located (e.g., "print file to PDF format"). 

Generate the results. In the SVD model, each document corresponds to a vector. 

The query is also converted to a vector, and then the cosine of the angle between the two 

vectors is used as a measure of the similarity of the document to the query. The closer the 

cosine is to one, the more similar the document is to the query. A cosine similarity value 

is computed between the query and each document, and then the documents are sorted by 

their similarity values. The user inspects the ranked list, generally only reviewing the top 

results to decide if they are relevant to the feature. 

4.1.2 Execution Information from Dynamic Analysis 

Execution information is gathered via dynamic analysis, which is commonly used in pro

gram comprehension [52] and involves executing a software system under specific conditions. 

For feature location, these conditions involve running a test case or scenario that invokes 

a feature in order to collect an execution trace. For example, if the feature of interest in a 

text editor is printing, the test case or scenario would involve printing a file. Invoking the 

desired feature during runtime generates a feature-specific execution trace. 

Most existing feature location techniques that employ dynamic analysis use it to ex

plicitly locate a feature's implementation by analyzing patterns in traces post-mortem 

[5, 76, 229]. The model presented in this work takes a different approach to applying 

dynamic analysis for feature location. Information collected from execution traces is com

bined with other data sources instead of being analyzed itself. Execution information is 

integrated with other information by using it as a filter, as in the SITIR approach [130] 
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Figure 4.1: An example of an execution trace translated into a call graph with execution 
frequency weights on the edges. Xe is the entry to method X, and Xr is the return from 
method X. 

where methods not executed in a feature-specific scenario are pruned from the ranked list 

produced by I RLsi. 

The model in this work takes a similar approach to using execution information (denoted 

as "Dyn") as a filter. By extracting information from a single trace, the sequence of method 

calls can be used to create a graph where nodes represent methods and edges indicate 

method calls. This graph is a subgraph of a static call graph that only contains methods 

that were executed. The edges in the graph can be weighted or weightless. When weights 

are used, they can be derived from execution frequency information captured by a trace. 

For instance, Figure 4.1 shows a portion of an execution trace where method x calls method 

y two times and calls method z three times. This trace is represented by a graph where 

the weight of the edge from x to y is 2/5, and the weight of the edge from x to z is 3/5. 

Alternatively, instead of normalizing the edge weights, the values on the edge from x to 

y can be 2, and the weight of the edge from x to z can be 3. When dynamic execution 

information is used in either of these ways, it is denoted with the "freq" subscript, referring 

to the fact that execution frequency information is used. If no weights are placed on the 

edges of a graph, this is denoted with the "bin" subscript, referring to the fact that only 

binary information about a method's execution is used. 
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4.1.3 Dependence Information from Web Mining 

Web mining is a branch of data mining that concentrates on analyzing the structure of 

the World Wide Web (WWW) [49]. The structure of the WWW can be used to extract 

useful information. For instance, search engines use web mining to rank web pages by their 

relevance to a user's query. Web mining algorithms view the WWW as a graph. The graph 

is constructed of nodes, which represent web pages, and edges, which represent hyperlinks 

between pages. 

Software can also be represented in graph form as a call graph. Nodes represent meth-

ods, and edges correspond to relationships or calls among methods. Therefore, web mining 

algorithms can be naturally applied to software to discover useful information from its 

structure, such as key classes for program comprehension [239], component ranks in soft

ware repositories [106], and statements that can be refined from concept bindings [127]. 

This work explores whether web mining can also be applied to feature location, either as a 

standalone technique or used as a filter to an existing feature location technique. Two web 

mining algorithms are discussed below. 

4.1.3.1 HITS 

The Hyperlinked-Induced Topic Search (HITS) [113] algorithm identifies hubs and author-

ities from a graph representing the WWW. Hubs are pages that have links to many other 

pages that contain relevant information on a topic. These pages with pertinent information 

are known as authorities. Good hubs point to many good authorities, and good authorities 

are pointed to by many hubs. Thus, hub and authority values are defined in a mutually 

recursive way. Let hp stand for the hub value of page p and ap represent the authority 

value of p. The hub and authority values of pare defined in Equation 4.1, where i is a page 

connected to p, and n is the total number of pages connected to p. 

n n 

hp = Lai and ap = Lhi ( 4.1) 
i=l i=l 

To start, HITS initializes all hub and authority values to one. Then, the algorithm is 

run for a given number of iterations (or until the values converge), during which the hub 
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and authority values are updated according to Equation 4.1. The values are normalized 

after each iteration. 

A slight variation of the HITS algorithm allows weights to be added to the links between 

pages. Weighted links denote relative importance. Let Wi-+p represent the weight of the 

link between i and p. The formulas for hubs and authorities now become: 

n n 

hp = L Wi-+p · ai and ap = L Wi-+p · hi (4.2) 
i=l i=l 

When using software to construct a graph instead of the WWW, the nodes and edges can 

be determined from a static call graph or dynamic execution trace. This work concentrates 

on constructing a graph from execution traces. Nodes in the graph correspond to methods, 

and edges represent dependencies (calls) between methods. If weights are placed on the 

graph edges, dynamic execution frequency can be used2 . Otherwise, if no weights are used, 

binary dynamic information is used. Using either frequency or binary dynamic information 

to construct a method call graph, the HITS algorithm can potentially be used for feature 

location in two ways. First, the methods in a graph can be ranked by extending the concepts 

of hubs and authorities to source code. Hub methods are those that call upon many 

other methods, while authority methods are called by a large number of other methods. 

Intuitively, hubs do not perform much functionality themselves but delegate to others, 

and authorities actually perform specific functionalities. Ranking methods in a software 

system by either their hub or authority values is a novel feature location technique. The 

notation WA1HITS(h,Jreq)' W MHITS(h,bin)' W MHITS(a,freq)' W MHITS(a,bin) is used, where 

WM refers to web mining, HITS(h) and HITS(a) stand for hub and authority scores 

respectively, and the "freq" and "bin" subscripts denote how dynamic information is used 

to weight the graph's edges. 

The second way in which the HITS algorithm can be used for feature location is as 

a filter. Instead of directly using the hub and authority values to rank methods, those 

rankings can be combined with other information. The intuition is that the methods with 

high hub values will be methods that are more general purpose in nature and not specific 

2The HITS algorithm does not require edge weights to be normalized, so the execution frequency values 
are used without normalization. 
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to a feature, i.e., methods in "god" classes. Conversely, methods with high authority values 

may be highly relevant to a feature. Therefore, top-ranked hub methods and bottom-ranked 

authority methods can be filtered from the results of other techniques such as I RLsi Dynbin· 

The "top" superscript is used to represent when the top-ranked methods are filtered, and 

"bottom" superscript stands for the case when the bottom-ranked methods are filtered. 

The evaluation investigates the best method of filtering by hub and authority values. 

4.1.3.2 PageRank 

PageRank [31] is a web mining algorithm that estimates the relative importance of web 

pages. It is based on the random surfer model which states that a web surfer on any given 

page p will follow one of p's links with a probability of (3 and will jump to a random page 

with a probability of (1- (3). Generally, (3 = 0.85. Given a graph representing the WWW, 

let N be the total number of pages or nodes in the graph. Let I(p) be the set of pages that 

link top, and O(p) be the pages that plinks to. PageRank is defined by the equation 

1- (3 """"' PR(j) 
PR(p) = ];- + (3 . . 6 /(O(j)/ 

JEl(p) 

(4.3) 

PageRank's definition is recursive and must be iteratively evaluated until it converges. 

Like HITS, PageRank can be applied to software if a system is represented by a graph 

where nodes are methods executed in a trace and edges are method calls. In the PageRank 

algorithm, edges always have weights. When binary execution information is used, the 

weight of all the outgoing edges from a node is equally distributed among those edges 

(e.g., if x has three outgoing edges, their weight will each be 1/3). Otherwise, execution 

frequency information can be used for the edge weights. PageRank requires normalized 

values, so the execution frequency values are normalized, as in the example in Figure 4.1. 

Like HITS, PageRank can be used to directly rank and locate a feature's relevant 

methods or as a filter to other sources of information. When used directly as a feature 

location technique, it is denoted as W 111 p R(freq) or W M p R(bin), referring to the use of 

frequency or binary execution information to create a graph. PageRank, applied to software, 

is an estimate of the global importance of a method within the system. Therefore, methods 
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that have global significance within a system will be ranked highly. Methods relevant to a 

specific feature are unlikely to have high global importance, so they may be ranked lower 

in the list. The evaluation examines PageRank as a feature location technique. 

Since PageRank identifies methods of global importance, instead of using it as a stan

dalone feature location technique, it can be used as a filter to be combined with other 

sources of information. Pruning the top-ranked PageRank methods from consideration 

may produce better feature location results. The "top" and "bottom" superscripts denote 

that the top and bottom results returned by PageRank are filtered. The evaluation explores 

the best way to use PageRank as a filter. 

4.1.4 Fusions 

Data fusion combines information from multiple sources to achieve potentially more accu

rate results. For feature location, this model has defined three information sources derived 

from three types of analysis: information retrieval, execution tracing, and web mining. 

This subsection outlines the feature location techniques instantiated within the model that 

are evaluated. Table 4.1 lists all of the techniques. 

Information Retrieval via LSI. This feature location technique, introduced in [142], 

ranks all methods in a software system based on their relevance to a query. Only one 

source of information is used, so no data fusion is performed. This approach is referred to 

as IRLSI· 

Information Retrieval and Execution Information. The idea of fusing IR with 

dynamic analysis is used by the SITIR approach [130] and is the state of the art of feature 

location techniques that rank program elements (e.g., methods) by their relevance to a 

feature. A single feature-specific execution trace is collected. Then, LSI ranks all the 

methods in the trace instead of all the methods in the system. Thus dynamic information 

is used as a filter to eliminate methods that were not executed and therefore are less likely 

to be relevant to the feature. In this work, this technique is abbreviated I RLsi Dynbin 

and represents the baseline for comparison. Note that the I RLsi Dyn freq approach is not 

evaluated. It filters the same methods as I RLsi Dynbin because it only matters whether a 

method was executed or not. 
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Table 4.1: The feature location techniques evaluated. 
IR & Dynamic Analysis IRLsi 

Web Mining 

IR, Dyn, & HITS 

IR, Dyn, & PageRank 

I RLsi Dynbin 

W MHITS(h,bin) 

W MHITS(h,freq) 

W MHITS(a,bin) 

W MHITS(a,jreq) 

W Jv[PR(bin) 

WMPR(freq) 

I RLsi Dynbin W MHITS(h,bin) top 

IR D WM bottom 
LSI ynbin HITS(h,bin) 

I RLSI Dynbin W M H ITS(h,.freq) top 

IR D WM bottom 
LSI ynbin H ITS(h,.freq) 

I RLsi Dynbin W M H ITS(a,bin) top 

IR D WM bottom 
LSI ynbin HITS(a,bin) 

I RLsi Dynbin W MHITS(a,.freq) top 

IR D WM bottom 
LSI ynbin HITS(alreq) 

IRLsiDynbinWMPR(bin) op 

IR D WM bottom 
LSI ynbin PR(bin) 

I RLsi Dynbin W MPR(.freq) top 
IR D WM bottom LSI ynbin PR(freq) 

Web Mining. The HITS and PageRank algorithms can be used as feature location 

techniques that rank all methods in an execution trace using either binary or frequency 

information. Web mining has not been applied to feature location before; therefore all 

of the approaches involving web mining are novel. Table 4.1 lists all the feature location 

techniques based on web mining. 

Information Retrieval, Execution Information, and Web Mining. Applying 

data fusion, IR, execution tracing, and web mining can be combined to perform feature 

location. This work proposes the use of web mining as a filter for I RLsi Dynbin 's results in 

order to eliminate methods that are irrelevant. Figure 4.2 illustrates the process. Each web 

mining algorithm can be applied to binary or execution frequency information. To combine 

I RLsi Dynbin and web mining, the top or bottom web mining results can be pruned from 

I RLsi Dynbin 's ranked list. If the results returned by a standalone web mining technique 

rank methods that are relevant to a feature at the top of the list, then methods at the bottom 

of the list can be filtered from consideration. However, since the standalone web mining 

techniques are based on a dynamically-constructed call graph, the resulting rankings could 
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Figure 4.2: Combining textual analysis, dynamic analysis, and web mining for feature 
location. 

be similar across many different features, meaning the top-ranked results are not relevant 

to the feature. In this case, those top-ranked results are eliminated from consideration. 

For example, I RLsi Dynbin W M H ITS(h,bin) top is a feature location technique that uses IR 

to rank all of the executed methods by their relevance to a query. A graph is constructed 

using binary execution information from a trace, and the methods in the graph are ranked 

according to their HITS hub values. Finally, the top methods from the HITS hub rankings 

are pruned from the I RLsi Dynbin results. In this technique, methods with high HITS 

hub values are filtered. Table 4.1 lists all of the feature location techniques that filter 

I RLsi Dynbin 's results using HITS or PageRank. 

4.2 Experimental Evaluation 

This section describes the design of a case study to assess the feature location techniques 

defined by the data fusion model. The evaluation seeks to answer the following research 

questions: 

RQl: Does combining web mining algorithms with an existing approach to feature 
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location improve its effectiveness? 

RQ2: Which web-mining algorithm, HITS or PageRank, produces better results? 

The answers to these research questions will help reveal the best instantiation of the data 

fusion model. 

4.2.1 Systems and Benchmarks 

The evaluation was conducted on two open source Java software systems: Eclipse and 

Rhino. Eclipse3 is an integrated development environment. Version 3.0 has approximately 

10K classes, 120K methods, and 1.6 million lines of code. Forty-five features from Eclipse 

were studied. The features are represented by bug reports submitted to Eclipse's online 

issue tracking system4 . The bug reports are change requests that pertain to faulty features. 

The bug reports provide steps to reproduce the problem, and these steps were used as 

scenarios to collect execution traces. Table 4.2 lists information about the size of the 

collected traces. The short descriptions in the bug reports were used as the IR queries. 

The bug reports also have submitted patches that detail the code that was changed to 

fix the bug. The modified methods are considered to be the "gold set" of methods that 

implement the feature. Since their code had to be altered to correct a problem with the 

feature, they are likely to be relevant to the feature. These gold set methods are used as the 

benchmark to evaluate the feature location techniques. This way of determining a feature's 

relevant methods from patches has also been used by other researchers [130, 132, 160]. 

The other system evaluated is Rhino, a Java implementation of JavaScript. Rhino5 

version 1.5 consists of 138 classes, 1,870 methods, and 32,134 lines of code. Rhino im

plements the ECMAScript specification6 . The Rhino distribution comes with a test suite, 

and individual test cases in the suite are labeled with the section of the specification they 

test. Therefore, these test cases were used to collect execution traces for 241 features. The 

text from the corresponding section of the specification was used to formulate IR queries. 

For the gold set benchmarks for each feature, the mappings of source code to features 

3http://www.eclipse.org/ 
4https://bugs.eclipse.org/ 
5http://www.mozilla.org/rhino/ 
6http://www.ecmascript.org/ 
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Table 4.2: Descriptive statistics on the execution traces. The columns represent the 
minimum, maximum, lower quartile, median, upper quartile, mean, and standard deviation. 
Forty-five traces were collected for Eclipse, and 241 for Rhino. 

Min Max 25% Med 75% a J.L 
Eclipse Methods 88K 1.5MM 312K 525K 1MM 666K 406K 

Unique 1.9K 9.3K 3.9K 5K 6.3K 5.1K 2K 
Size-MB 9.5 290 55 98 202 124 83 
Nesting* 22 178 37 54 71 59 32 
Threads 1 26 7 10 12 10 5 

Rhino Methods 160K 12MM 612K 909K 1.8MM 1.8MM 2.3MM 
Unique 777 1.1K 870 917 943 912 54 
Size-MB 18 1,668 71 104 214 210 273 
Nesting* 25 37 28 27 28 28 1 
Threads 1 1 1 1 1 1 0 

* Nesting is based on the average nesting level per feature. 

made available by Eaddy et al. [63] were used. They considered the sections of the EC-

MAScript documentation to be features and associated code with each following the prune 

dependency rule which states: "A program element is relevant to a [feature] if it should 

be removed, or otherwise altered, when the [feature] is pruned" [62]. Their mappings are 

made publically available online7 and have been used in several other research evaluations 

[62, 63]. 

The position of the first relevant method from the gold set was used as the primary 

means to evaluate the feature location techniques and is referred to as the effectiveness 

measure [160]. Techniques that rank relevant methods near the top of the list are more 

effective because they reduce the number of false positives a developer has to consider. 

The effectiveness measure is an accepted metric to evaluate feature location techniques. 

It is used here instead of precision and recall to be consistent with previous approaches 

[130, 160] and because feature location techniques have been shown to be better at finding 

one relevant method for a feature as opposed to many [173]. However, the evaluation also 

investigates how well the techniques locate all of a feature's relevant methods. 

4.2.2 Hypotheses 

Several null hypotheses were formed to test whether the performance of the baseline feature 

location technique improves with the use of web mining. The testing of the hypotheses is 

7http://www.cs.columbia.edu/-eaddy/concerntagger/ 
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based on the effectiveness measure. Two null hypotheses are presented here; the other 

hypotheses can be derived analogously. 

Ho, WMPR(binJ: There is no significant difference between the effectiveness of W JllfpR(bin) 

and the baseline (I RLSI Dynbin)· 

H 0 IR Dyn . WM . top: There is no significant difference between the effectiveness of 
' LSI bzn PR(bzn) 

I RLsi Dynbin W M p R(bin) top and the baseline (I RLsi Dynbin). 

If a null hypothesis can be rejected with high confidence, an alternative hypothesis that 

states that a technique has a positive effect on the ranking of the first relevant method can 

be supported. The corresponding alternative hypotheses to the null hypotheses above are 

given. The remaining alternative hypotheses are formulated in a similar manner. 

HA, WMPR(binJ: The effectiveness of W MPR(bin) is significantly better than the baseline. 

HA IR D WM top: The effectiveness of I RLsi Dynbin W M p R(b;n) top is signifi-
' LSI ynbin PR(bin) • 

cantly better than the baseline. 

4.2.3 Data Collection and Analysis 

The primary data collected in the evaluation is the effectiveness measure. For each feature 

location technique, there are 45 data points for Eclipse and 241 for Rhino, one for each 

feature. Descriptive statistics of the effectiveness measure for each system are reported 

that summarize the data in terms of mean, median, minimum, maximum, lower quartile, 

and upper quartile. 

The feature location techniques can also be evaluated by how many features for which 

they can return at least one relevant result. Many of the techniques in the model filter 

methods from consideration, and some of those methods may belong to the gold set. It 

is possible for a technique to filter out all of a feature's gold set methods and return no 

relevant results. Therefore, the percentage of features for which a technique can locate at 

least one relevant method is reported. 

If a feature location technique ranks one of a feature's relevant methods higher than an

other technique, then the first approach is more effective. Every feature location technique 

can be compared to every other technique in this manner, and the percentage of times the 

first technique is more effective is reported. 
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Data on whether one technique is more effective than another is not enough. Statistical 

analysis must be performed to determine if the difference between the effectiveness of two 

techniques is significant. The Wilcoxon Rank Sum test [48] is used to test if the differ

ence between the effectiveness measures of two feature location techniques is statistically 

significant. Essentially, the test determines if the decrease in the number of false positives 

reported by one technique as compared to another is significant. The Wilcoxon test is a 

non-parametric test that accepts paired data. Since a technique may not rank any of a 

feature's gold set methods, it would have no data to be paired with the data from another 

feature location technique. Therefore, only cases where both techniques rank a method are 

input to the test. In this evaluation, the significance level of the Wilcoxon Rank Sum test 

is a= 0.05. 

4.3 Results and Discussion 

This section presents the results of using the feature location techniques listed in Table 4.1 to 

identify the first relevant method of 45 features of Eclipse and 241 features of Rhino. Figure 

4.3 and Figure 4.4 show box plots representing the descriptive statistics of the effectiveness 

measure for Eclipse and Rhino. They-axis represents the effectiveness measure. The graphs 

for Eclipse and Rhino have different scales because Eclipse has more methods. Figure 4.3 

plots the feature location techniques based on IR (T1), IR and dynamic analysis (T2), and 

web mining as a standalone approach (T3 through Ts). Figure 4.4 shows the techniques 

that combine IR, dynamic analysis, and web mining (T2 through T13). I RLsi Dynbin is 

also included in this figure for reference since it represents the baseline for comparison. In 

Figure 4.3 and Figure 4.4, the diamonds represent the average effectiveness measure. The 

dark grey and light grey boxes stand for the upper and lower quartiles, respectively, and 

the line between the boxes represents the median. The whiskers above and below the boxes 

denote the minimum and maximum effectiveness measure. In some cases, the maximum is 

beyond the scale of the graphs. The figures also report for each feature location technique, 

the percentage of features for which the technique was able to identify at least one relevant 

method. 
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Figure 4.3: The effectiveness measure for the standalone web mining feature location 
techniques applied to 45 features in Eclipse and 241 features in Rhino. The values above 
the boxes represent the percentage of features for which the technique was able to locate 
at least one relevant method. 

The box plots in Figure 4.3 show that using web mining as a standalone feature location 

technique produces results that are comparable to I RLsi even though no query is used. 

However, these techniques are less effective than the state of the art, no matter the web 

mining algorithm used. Feature location based on PageRank, HITS hub values, or HITS 

authority values has higher effectiveness than I RLsi Dynbin· PageRank's effectiveness was 

the lowest, followed by HITS authorities and HITS hubs. Overall, there is little difference 

between the use of binary and execution frequency information. It is surprising that rank-

ing methods by their hub values is more effective than ranking them by their authority 

values. Intuitively, hubs are methods that delegate functionality to authorities which actu

ally implement it. Therefore, authorities should be more valuable for feature location, but 

this was not observed. 

Even though feature location techniques based on standalone web mining are not more 

effective than the state of the art, when web mining is used as a filter to IR, the re-

suits significantly improve in some cases. Figure 4.4 presents box plots of the effectiveness 

measure of the techniques that used web mining to filter I RLsi Dynbin 's results. The fil

ters prune either the top or bottom methods ranked by a web mining algorithm. The 
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Figure 4.4: The effectiveness measure for the feature location techniques that use web 
mining as a filter. The top and bottom percentages in brackets have two values. The first 
value is the percentage used in Eclipse, and the second is the percentage used in Rhino. 
The values above the boxes represent the percentage of features for which the technique 
was able to locate at least one relevant method. 
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threshold for the percent of methods to filter was selected for each technique individu

ally such that at least one gold set method remained in the results for 66% of the fea

tures. In Eclipse, IRLsiDYnbinW111HITS(h,Jreq)bottom had the best effectiveness measure 

on average. In Rhino, IRLsiDynbinWMHITS(h,bin)bottom was the most effective technique. 

In fact, all of the techniques that use web mining to filter IR are more effective than 

I RLsi Dynbin in Eclipse by 13% to 62% on average. In Rhino, most of the IR plus web 

mining techniques have an average effectiveness 1% to 51% better than I RLsi Dynbin ex-

cept for IR D WM bottom 
LSI ynbin HITS(a,Jreq) , I RLsi Dynbin W !VI HITS(h,Jreq) top, 

IRLsiDynbinWMHITS(a,bin)bottom, and IRLsiDynbinWMHITS(h,bin)top. These results help 

answer RQl because they lend strong support to the fact that integrating the ranking of 

methods using web mining with information retrieval is a very effective way to perform 

feature location. In regards to RQ2, the techniques based on HITS were generally more 

effective than the PageRank approaches, so HITS, used either as a standalone technique or 

as a filter, seems better suited to the task of feature location. 

In addition to measuring the effectiveness of each of the feature location techniques, the 

new approaches based on web mining were directly compared to IRLsi and IRLsiDynbin· 

Table 4.3 shows for each new technique, the percent of times it ranks a method from a 

feature's gold set lower than the existing approaches. The table shows a different view 

of the data presented in Figures 4.3 and 4.4. It shows on a case-by-case basis, which 

feature location technique is more effective. The data in this table is derived from the 

subset of methods that are ranked by both techniques, while Figures 4.3 and 4.4 show 

data for all methods. In Table 4.3, if one approach ranks a method and another does not, 

the method is not included in the reported data. The table shows that feature location 

techniques based solely on web mining never have better effectiveness than I RLsi Dynbin-

On the other hand, the techniques that use web mining as a filter routinely rank methods 

higher than I RLsi Dynbin· This finding also helps answer RQl: combining web mining 

with existing approaches improves their effectiveness. RQ2 addresses which of the two web 

mining algorithms is more effective. Based on the results in Table 4.3, the techniques based 

on HITS are more effective than the PageRank techniques. 
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Table 4.3: For each feature location technique listed in a row, the percentage of times its 
effectiveness measure is better than the technique in the corresponding column is given. 

Eclipse Rhino 
lRLsi IRLsiDynbin IRLsi IRLsiDynbin 

I RLSI Dynbin 97% X 91% X 
WJ\;!PR(freq) 59% 13% 49% 20% 

WMPR(bin) 59% 10% 44% 19% 

WMHITS(a,jreq) 67% 18% 45% 15% 

W 1\IIHITS(a,bin) 56% 18% 25% 6% 

WMHITS(h,Jreq) 77% 26% 45% 20% 

W MHITS(h,bin) 77% 26% 41% 22% 
I RLsi Dynbin W Mp R(freq) top 97% 90% 85% 72% 
IR D WM bottom 100% 83% 83% 63% LSI ynbin PR(freq; 

IRLsiDynbinWA1pR(bin) op 97% 91% 85% 73% 
IR D WM bottom 97% 94% 82% 54% LSI YTLbin PR(bin) 

I RLsi Dynbin W l\I[HITS(a,freq) top 97% 90% 88% 74% 
IR D WM bottom 97% 94% 82% 53% LSI ynbin HITS(a,jreq) 

I RLSI Dynbin W MHITS(h,Jreq) top 97% 94% 72% 40% 
IR D WM bottom 97% 97% 93% 88% LSI YTLbin H ITS(h,Jreq) 

I RLsiDynbin W MHITS(a,bin) top 97% 94% 85% 68% 

IRLsiDYTLbin WA1HITS(a,bin) bottom 97% 91% 73% 60% 
IRLsiDynbin WA1HITS(h,bin) top 97% 94% 72% 40% 
IR D WM bottom 97% 97% 89% 81% LSI ynbin HITS(h,bin) 

4.3.1 Statistical Analysis 

The Wilcoxon Rank Sum test was used to test if the difference between the effectiveness 

measures of two feature location techniques is statistically significant. Table 4.4 shows the 

results of the test (p-values) for all of the techniques based on web mining as compared 

to I RLsi Dynbin and if the null hypotheses can be rejected based on the p-values. In the 

table, statistically significant results are presented in boldface. None of the approaches in 

which web mining is used as a standalone technique have statistically significant results. 

However in Eclipse, all of the feature location techniques that employ web mining as a 

filter to IR have significantly better effectiveness than I RLsi Dynbin· Likewise in Rhino, 

most of the approaches that use web mining as a filter have statistically significant results 

with a few exceptions. Therefore, the null hypotheses for these approaches that do not 

have significant results for both systems cannot be rejected. However, for the techniques 

with statistically significant results for both Eclipse and Rhino, their null hypotheses are 

rejected, and there is evidence to suggest that the corresponding alternative hypotheses can 

be supported. These feature location techniques have better effectiveness than the baseline 

97 



Table 4.4: The results of the Wilcoxon test. 
Eclipse Rhino Null Hypothesis 

WMPR(freq) 1 1 Not Rejected 

WMPR(bin) 1 1 Not Rejected 

W M H ITS(a,Jreq) 1 1 Not Rejected 

W M H ITS(a,bin) 1 1 Not Rejected 

W MHITS(h,Jreq) 1 1 Not Rejected 

W MHITS(h,bin) 1 1 Not Rejected 
I RLSI Dynbin W MPR(freq) tap < 0.0001 < 0.0001 Rejected 
IR D WM bottom 0.004 0 Rejected LSI ynbin PR(freq) 

I RLs I Dynbin W M p R(bin) top < 0.0001 < 0.0001 Rejected 
IR D WM bottom < 0.0001 0.74 Not Rejected LSI ynbin PR(bin) 

I RLsiDynbin W MHITS(a,Jreq) top 0 < 0.0001 Rejected 
IR D WM bottom < 0.0001 0.99 Not Rejected LSI ynbin H ITS(a,freq) 

I RLSI Dynbin W M H ITS(h,Jreq) tap 0 1 Not Rejected 
IR D WM bottom < 0.0001 < 0.0001 Rejected LSI ynbin H ITS(h,Jreq) 

I RLSI Dynbin W M H ITS(a,bin) top < 0.0001 < 0.0001 Rejected 
IR D WM bottom < 0.0001 1 Not Rejected LSI ynbin H ITS(a,bin) 

I RLSI Dynbin W M H ITS(h,bin) top 0 1 Not Rejected 
IR D WM bottom < 0.0001 < 0.0001 Rejected LSI ynbin HITS(h,bin) 

technique. 

4.3.2 Impact of the Selection of a Threshold 

The results in the previous section for the techniques that use web mining as a filter present 

only one possible threshold for what percentage of the top or bottom web mining results to 

eliminate from the baseline results. The threshold was chosen such that a given feature loca-

tion technique returned at least one relevant method for at least 66% of the features studied. 

This section examines how varying the filtering threshold impacts the results, focusing on 

the techniques with the lowest average effectiveness, I RLsi Dynbin W M H ITS(h,Jreq) bottom 

and I RLsi Dynbin W MHITS(h,bin) bottom. Figure 4.5 shows, for Eclipse, box plots of the av

erage effectiveness of the two techniques with different filtering thresholds. Figure 4.6 shows 

the results for Rhino. 

Not surprisingly, the higher the filtering threshold, the lower the average effectiveness 

since more methods are eliminated from consideration. However, there is a tradeoff; the 

improvement in effectiveness comes at the cost of completeness. The values above the 

boxes in Figures 4.5 and 4.6 represent the percentage of features for which the technique 
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Figure 4.6: Summary of the effectiveness measure of I RLsi Dynbin W M H ITS(h,Jreq) bottom 

and IRLsiDynbinWMHITS(h,bin)bottom at different filtering thresholds for the 241 features 
of Rhino. The values above the boxes represent the percentage of features for which the 
technique was able to locate at least one relevant method. 
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was able to locate at least one relevant method. When a higher percentage of the HITS 

hubs results are filtered, the techniques find at least one relevant method for fewer features. 

For instance in Eclipse with IRLsiDYnbinWMHITS(h,freq)bottom, when the bottom 90% of 

the HITS hubs results are pruned from the baseline, the average effectiveness is 67, but the 

technique can identify a relevant method for only 29% of features. Setting the threshold 

too high means methods that are relevant to a feature are considered false negatives and 

removed from the results. Therefore at least with the I RLSI Dynbin W MHITS(h,Jreq/ottom 

and I RLsi Dynbin W M HITS(h,bin) bottom techniques, a threshold of of 50%-60% yields ac

ceptable results. Selecting appropriate thresholds for individual features remains part of 

our future work. 

4.3.3 Locating All of a Feature's Methods 

Chapter 3 explored how effective existing feature location techniques are at finding near-

complete implementations of features and found that the existing techniques showed room 

for improvement. So far, this chapter has focused on the effectiveness of feature location 

only in terms of the position of the first relevant method (i.e., the effectiveness measure). 

However, since gold sets defining all the methods relevant to a feature were available, 

the feature location techniques can also be evaluated in terms of how well they locate 

all of a feature's methods. Figures 4. 7 and 4.8 show box plots summarizing the average 

position of all of a feature's relevant methods. Figure 4. 7 presents the results for I RLsi, 

I RLsi Dynbin' and the standalone web mining feature location techniques, while Figure 4.8 

shows the results for the baseline and the techniques that use web mining as a filter. 

Figure 4. 7 shows that the baseline approach, I RLsJ Dynbin is the more effective at locat

ing all of a feature's relevant methods than the standalone web mining techniques. However, 

using web mining as a filter improves the average effectiveness of locating all of the methods 

from a feature's gold set, as seen in Figure 4.8. As with the effectiveness measure results pre-

R D WM bottom d IR D WM bottom sented earlier, I LSI ynbin HITS(h,freq) · an LSI ynbin HITS(h,bin) 

were the two most effective techniques. 
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4.3.4 Using a Static Call Graph 

All of the feature location techniques investigated have leveraged a call graph that is con

structed from execution traces specific to each feature. Collecting execution traces is com

putationally expensive and time consuming. This section explores whether comparable 

results can be achieved using a static call graph. The tradeoff is that only one static call 

graph is needed instead of a different dynamic call graph for each feature, but a static call 

graph is generalized and not feature-specific. 

Figure 4.9 shows, for Eclipse, summaries of the effectiveness measure for each of the fea

ture location techniques based on using web mining as a filter. Figure 4.10 shows the results 

for Rhino. In each graph, the first plot represents using a dynamic call graph with binary 

weights and the second corresponds to using a dynamic call graph with execution frequency 

weights. The third, patterned plot represents using a static call graph. For example, Figure 

4.9(a) compares the results of IRLsiDynbinWMPR(bin)top, IRLsiDynbinWMPR(freq)top, 

and filtering PageRank's top-ranked methods from a static call graph from I RLsi Dynbin 's 

results. 

Figure 4.9 shows that in Eclipse, using a static call graph is not as effective as using a 

dynamically-constructed call graph. A static call graph includes all of a system's methods, 

not just those that were executed. Eclipse has over 84,000 methods, so using a static call 

graph significantly increases the number of methods that need to be ranked. This increase 

in the number of methods leads to a decrease in effectiveness because there are more false 

positives in the ranked list. 

Figure 4.10 shows the results of using a dynamic call graph and a static call graph 

for each feature location technique that uses web mining as a filter in Rhino. Unlike the 

Eclipse results, using a static call graph in Rhino has comparable effectiveness. In general, 

the static approaches are not quite as effective as the dynamic ones, but the difference is 

not large. In Rhino, using a static call graph gives results that are close to those when using 

a dynamic call graph without the cost of collecting traces. Rhino is a smaller system than 

Eclipse, so ranking all of its methods instead of only those that were executed introduces 

fewer false positives. There may be other factors in why the static results are comparable 
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Figure 4. 9: The effectiveness measure for the feature location techniques applied to 45 
features of Eclipse. The values above the boxes represent the percentage of features for 
which the technique was able to locate at least one relevant method. 

103 



67% 
200~--~----~--------~ 

180 
1130 
140 
120 
100 
80 
130 
40 
20 

73% 

0+--===----.,--===----....----==!..-...-1 
bin ii'"eq static 

(a) Filter top PageRank results. 

81% 200 ...---::8:-:6=-=-~.-.-0 ---=-:....::..:0--------, 
180 
1f30 
140 
120 
100 
80 
60 

40 
20 
0 +------.-------r~==~~ 

bin freq static 

(c) Filter top HITS authority results. 

200~~------~------~~ 

180 
160 
140 
120 
100 
80 
60 
40 
20 
0+-------.--------~------1 

bin 1req static 

(e) Filter top HITS hub results. 

71% 
200~~-----=~-----4--~ 

180 
160 
140 
120 
100 
80 

60 
40 
20 
0+---~---~----~ 

bin freq static 

(b) Filter bottom PageRank results. 

200~--~----~------+-~ 

180 

1130 
140 
120 
100 

80 
60 
40 
20 

0 +----~--==--~~==~ 
bin freq static 

(d) Filter bottom HITS authority results. 

90% 
200 ...---+---------+-~ 
180 

160 

140 
120 
100 
80 
130 
40 
20 
0+-==---.-==-~--~ 

bin freq static 

(f) Filter bottom HITS hub results. 

Figure 4.10: The effectiveness measure for the feature location techniques applied to 241 
features of Rhino. The values above the boxes represent the percentage of features for 
which the technique was able to locate at least one relevant method. 
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to the dynamic results in Rhino but not Eclipse. Future work will include investigating the 

circumstances under which a static call graph might yield comparable results. 

4.3.5 Discussion 

The findings of the evaluation show that combining web mining with an existing feature 

location technique results is a more effective approach (RQl). Additionally in the con

text of feature location, HITS is a more effective web mining algorithm than PageRank 

(RQ2). The most effective techniques evaluated were IRLsiDynbinWMHITS(h,Jreq)bottom 

and IRLsrDynbinWMHITS(h,bin)bottom. The results indicate that filtering bottom-ranked 

hub methods from I RLsi Dynbin 's results is the most effective approach from both the 

perspective of the position of the first relevant method and of all relevant methods. For 

instance, for one feature in Eclipse, I RLsi ranked the first relevant method at position 

1,696, and for IRLsiDynbin, the best rank of a relevant method was at position 61. 

I RLsi Dynbin W M H ITS(h,bin/ottom, on the other hand, ranked the first relevant method 

to the feature at position 24. Filtering the bottom HITS hub methods eliminated 37 false 

positives from the results obtained by the state of the art technique. Examining the re

sults in detail reveals why. Methods with high hub values call many other methods, while 

methods that do not make many calls have low hub values. These bottom-ranked hub meth

ods are generally getter and setter methods or other methods that do not make any calls 

and perform very specific tasks. The I RLSI Dynbin W M H ITS(h,bin) bottom technique prunes 

these methods from the results since they are not relevant to the feature, thus improving 

effectiveness. 

The two most effective techniques remove bottom-ranked hub methods, and these meth

ods tend to be getters and setters. We also compared IRLsrDynbinWMHITS(h,Jreq/ottom 

and I RLsi Dynbin W MHITS(h,bin) bottom to a technique that filters out all getter and set

ter methods from I RLsi Dynbin 's results to see if this simpler filtering heuristic is more 

effective that using web mining. Figure 4.11 shows the average effectiveness mea

sure of the baseline (T1), the baseline with getter and setter methods pruned from 

the results (T2), and IRLsiDYnbinWMHITS(h,bin)bottom (T3). In both Eclipse and 

Rhino, removing getters and setters from IRLsiDynbin's results is not as effective as 
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I RLsi Dynbin W M H ITS(h,bin) bottom. Similarly, when considering the ranks of all of a fea

ture's relevant methods, IRLsiDynbinWMHITS(h,bin)bottom is still the more effective tech

nique, as seen in Figure 4.12. Therefore, using the HITS web mining algorithm and filtering 

bottom-ranked hub methods eliminates more false positives than simply pruning getter and 

setter methods. 

In addition to investigating the filtering heuristic of eliminating getter and setter meth

ods, we also explored another simplified heuristic in which methods with certain fan-in 

values are pruned from IRLsiDYnbin's results. The fan-in of a module is defined as the 

number of locations from which control is passed in to the module [101] and is derived from 

a static call graph. Fan-in is similar to web mining. Both count the number of incoming 

links/calls to a page/method. The difference is that the web mining algorithms are more 

powerful because they incorporate indirect information. Not only are the number of in

coming links counted, the importance of those incoming links are considered. For instance, 

the PageRank of a page is based upon how many other pages link to the page and the 

PageRank of those pages. Similarly with HITS, page's authority score is based on how 

many hubs point to it, not just the total number of pages that link to it. The web mining 

algorithms are defined recursively (see Sections 4.1.3.2 and 4.1.3.1) to capture this indirect 

information. Another difference between our work and research on using fan-in is we apply 

web mining to a dynamic call graph, while fan-in is computed from a static call graph. 

Figure 4.13 compares the effectiveness of IRLsiDynbinWMHITS(h,bin/ottom to several 

techniques based on filtering methods with certain fan-in values from I RLsi Dynbin's re

sults. For instance, T3 prunes all methods with a fan-in value less than or equal to 2. In 

both Eclipse and Rhino, the approaches that filter more methods have lower average effec

tiveness. However, these techniques are only able to locate at least one gold set method for 

a smaller percentage of all the features. The results are similar when the rankings of all 

of a feature's methods are considered, as seen in Figure 4.14. Therefore, using fan-in as a 

filtering heuristic is too na'ive and simplistic because it eliminates too many of a feature's 

relevant methods, unlike using web mining. 

Concerning the use of execution frequency or binary weights, the results do not show 

a significant difference between the two, nor is one consistently more effective than the 
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other. However, one observation is that in Rhino, binary weights were more effective, 

likely because the Rhino traces had many loops which artificially inflated the execution 

frequencies of many of the methods. Using binary weights avoided this situation. 

Each of the analyses used in the data fusion model have their own costs and overheads 

that must be weighed against the benefits of using the techniques. The main cost associated 

with LSI is indexing the corpus, which for large corpora can take several minutes, depending 

on many factors such as the size of the corpus and CPU speed. However, this is a one-time 

cost and can be performed incrementally when the source code changes [108]. Gathering 

execution information by collecting traces is probably the most expensive analysis used in 

the model in terms of both time and space. Tracing a program's execution can impose 

considerable overhead and significantly slow down execution speed [52]. Collecting a trace 

of a large system such as Eclipse could take an hour. Additionally, the collected trace will 

be large in size, possible over a gigabyte (See Table 4.2). Collecting multiple traces requires 

sufficient storage space to save them all. The final type of analysis used in the framework 

is web mining. Running the web mining algorithms can take several minutes for a large 

system. Like indexing with LSI, this is a one-time cost. 

4.3.6 Threats to Validity 

There are several threats to validity of the evaluation presented in this chapter. Conclusion 

validity refers to the relationship between the treatment and the outcome and if it is 

statistically significant. Since no assumptions were made about the distribution of the 

effectiveness measures, a non-parametric statistical test was used. The results of the test 

showed that the improvement in effectiveness of most of the web mining based feature 

location techniques over the state of the art is significant. 

Internal validity refers to if the relationship between the treatment and the outcome 

is casual and not due to chance. The effectiveness measure is based on the position of 

a feature's first relevant method, and the relevant methods are defined by a gold set. In 

Eclipse, the gold set was defined by bug report patches. These patches may contain only 

a subset of the methods that implement a feature, and sometimes the methods were not 

implemented until a later version. In Rhino, the gold set methods were defined manually by 
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other researchers who were not system experts. Thus, relevant methods could be missing 

from the gold sets of each system. This threat is minimized by the fact that the patches 

were approved by the module owners and the Rhino data has been previously used by other 

researchers [62, 63]. 

Another threat to internal validity pertains to the collection of data from IR and dy

namic analysis. Information retrieval requires a query. The queries in this evaluation were 

taken directly from bug reports and documentation. It is possible that the queries used do 

not accurately reflect the features being located or that the use of different queries with 

vocabularies more inline with the source code would yield better results. However, using 

these default queries instead of formulating our own eliminated the introduction of bias. 

Similarly, execution traces were collected for each feature based on either the bug reports 

or test cases. The collection of these traces may not have invoked all of a feature's relevant 

methods or may have inadvertently invoked another feature. This is a threat to validity 

common to all approaches that use dynamic analysis. The use of test cases distributed 

with the software reduces this threat since the tests were created by the system's authors. 

External validity concerns whether or not the results of this evaluation can be gen

eralized beyond the scope of this work. Two open source systems written in Java were 

evaluated. Eclipse is large enough to be comparable to an industrial software system, but 

Rhino is only medium-sized. Additional evaluations on other systems written in other 

languages are needed to know if the results of this study hold in general. 

4.4 Related Work 

As discussed in Chapter 2, existing feature location techniques can be broadly classified by 

the types of analysis they employ, be it static, dynamic, textual, or a combination of two 

or more of these. This section reviews some of the related work that is most relevant to 

the work presented in this chapter. We also explain the key differences between our work 

and the related work. 

There are several static approaches to feature location. Chen and Rajlich [39] proposed 

the use of Abstract System Dependence Graphs (ASDG) as a means of static feature 
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location, whereby users follow system dependencies to find relevant code. Robillard [176] 

introduced a more automated static approach that analyzed the topology of a system's 

dependencies. Harman et al. [98] used hypothesis-based concept assignment (HB-CA) [89] 

and program slicing to create executable concept slices and found these slices can be used to 

decompose a system into smaller executable units corresponding to concepts (features) [13]. 

In our work, instead of using static information, we focus on using textual and dynamic 

information to get results that are more tailored to a specific feature. 

Software reconnaissance [229] is a well-known dynamic approach to feature location. 

Two execution traces are collected: one that invokes the feature of interest and another 

that does not. The traces are compared, and methods invoked only in the feature-specific 

trace are deemed relevant. SPR [5] is another dynamic feature location technique in which 

statistical hypothesis testing is used to rank executed methods. We also employ dynamic 

information for feature location, but we use it as a filter to textual information instead of 

directly identifying a feature's implementation from pure dynamic analysis. 

Textual feature location was introduced by Marcus et al. [142] when they applied LSI 

to source code. The approach has been extended to include relevance feedback [85], where 

users indicate which results are relevant and a new query is automatically formulated from 

the feedback. Textual analysis of source code is not limited to LSI. Grant et al. [90] 

employ Independent Component Analysis (ICA) for feature location. ICA is an analysis 

technique that separates a set of input signals into statistically independent components. 

For each method, the analysis determines its relevance to each of the signals, which represent 

features. Textual feature location is at the foundation of our work. We rely on LSI as 

opposed to other analyses because LSI is the de facto standard. 

In addition to these techniques based on a single type of analysis, there are many 

hybrid approaches. Both SITIR [130] and PROMESIR [160] combine textual and dynamic 

analysis. Eisenbarth et al. [76] applied formal concept analysis to execution traces and 

combined the results with an approach similar to ASDGs. This approach involves human 

input and does not produce ranked results, so we did not include it in our evaluation. Dora 

[102] and SNIAFL [244] incorporate information from textual and static analysis. Cerberus 

[62] is the only hybrid approach that combines static, dynamic, and textual analyses. Dora 
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and Cerberus do not produce ranked results, but SNIAFL does, so future work involves 

comparing our new techniques to it. 

No existing feature location techniques rely on web mining. However, web mining has 

been used for other program comprehension tasks. Zaidman and Demeyer [240, 239] used 

the HITS algorithm on a dependence graph of a system weighted with dynamic coupling 

measures to identify the classes that are most important for understanding the software. 

Saul et al. [197] also use HITS to recommend related API calls. SPARS-J [106] is a system 

that analyzes the usage relations of components in a software repository using a ranking 

algorithm that is similar to PageRank. Components that are generic and frequently reused 

are ranked highly. Li [127] also uses a variant of PageRank called Vertex Rank Model 

(VRM) to refine concept bindings found using HB-CA. The VRM works on a dependence 

graph of concept bindings to identify statements that can be removed from the concept 

bindings without losing domain knowledge. 

Aspect mining is closely related to feature location. The goal of aspect mining is 

to identify concerns8 that are scattered throughout a system's modules so that they can 

be refactored in to their own modules known as aspects. The concerns are not known 

a priori, whereas in feature location, the features of interest are known before searching 

begins. Marin et al. use fan-in to identify concerns that can be refactored in to aspects 

[144, 145]. Methods with high fan-in are called from many different locations within the 

system, and thus possibly represent a scattered concern. Other aspect mining approaches 

have employed the idea of data fusion by combining multiple techniques [202] including 

fan-in, clone detection [32, 33, 203], and natural language analysis [205]. 

4.5 Conclusion 

This work has introduced a data fusion model for feature location. The basis of the model 

is that combining information from multiple sources is more effective than using the in-

formation individually. Feature location techniques based on web mining and approaches 

using web mining as a filter to information retrieval were instantiated within the model. 

8 A concern is an area of interest or focus in a system. Features can be concerns, but not all concerns 
are features. 
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A large number of features from two open source Java systems were studied in order to 

discover if feature location based on combining IR and web mining is more effective than 

the current state of the art and which of two web mining algorithms is better suited to 

feature location. 

The results of an extensive evaluation reveal that new feature location techniques based 

on using web mining as a filter are more effective than the state of the art, and that their 

improvement in effectiveness is statistically significant. Future work includes instantiating 

the model with different IR techniques and investigating when static call graphs are ac

ceptable to use. All of the data used to generate the results presented in this chapter is 

made freely available to other researchers who wish to replicate the case studies. 
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Chapter 5 

Feature Coupling 

Chapters 3 and 4 focus on feature location, an important step in the software maintenance 

process. Programmers use feature location to find the source code that implements features 

related to a maintenance task. This chapter delves into another step of the maintenance 

process: revalidating a software system once changes to a feature have been made. Pro

grammers can use impact analysis to determine the effect of their change to a feature. 

Coupling is one way to perform impact analysis. 

Coupling is an important software relationship that has been used for numerous tasks 

related to software development and maintenance such as predicting software quality [9, 

30, 28, 97, 152, 211] and impact analysis [29, 164, 231]. Coupling is primarily measured at 

the class-level by determining the degree to which two classes in an object-oriented system 

depend on one another. 

Features, also known as concepts or concerns, are functionalities described in a require

ments or specification document that have been actualized in a software system [5]. Often, 

features have implementations that span multiple methods or classes and cannot be mod

ularized due to design decisions [111, 213]. Features are important software entities that 

transcend the boundaries of classes. Currently, there are no metrics that explicitly capture 

the coupling between features, and the usefulness of such measures is not known. 

In this chapter, we argue that feature-level coupling metrics are needed and show that 

they are useful. Feature coupling can be used as a predictor of fault-proneness. Just as class 

coupling has been used in testing [109], if it is known that two features are tightly coupled, 
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more testing effort can be applied to them to help eliminate bugs. Another example is 

software maintenance. Many software change tasks are framed in terms of a system's 

functionalities or features. Since a feature's implementation may be scattered throughout 

the source code of a software system, programmers may have difficulty determining which 

other features interact with it. Therefore, changes made to one feature may have unintended 

consequences for other, seemingly unrelated features, causing improper system behavior. To 

avoid such situations, feature-level impact analysis should be performed to discover other 

features that are tightly coupled to the feature undergoing modification. Thus feature 

coupling metrics are needed to measure the dependencies among features to support a 

variety of software development and maintenance tasks. 

We introduce new feature coupling metrics because current coupling metrics are de

signed for classes, and features exist at a higher level of abstraction than classes. Features 

are defined by a portion of a specification and implemented in source code, meaning fea

tures are represented by both structured (e.g., source code dependencies) and unstructured 

(e.g., identifiers and comments in source code) information. Therefore, it is logical to mea

sure feature coupling using both types of data: structured and unstructured. Structured 

information refers to source code and other related artifacts such as call graphs and pro

gram dependence graphs that are ordered in a particular way (i.e., following programming 

language grammar rules). Unstructured information, on the other hand, refers to internal 

source code comments, identifier names, and external documentation that encode domain 

knowledge and design decisions. While comments and documentation can be structured in 

the form of sentences and organized into sections, they are more free form, unstructured, 

and do not follow specific rules. 

We define feature coupling metrics based on these different sources of information. 

Structural Feature Coupling (SFC) captures the relationship between two features based 

on structured information, while Textual Feature Coupling (T FC) measures the coupling 

between features based on unstructured, textual information in source code using an in

formation retrieval technique called Latent Semantic Indexing (LSI) [59]. In addition, we 

conjecture that the structured and unstructured data are complimentary, as has been shown 

elsewhere [62, 102, 160, 164], so we propose to combine SFC and T FC into a hybrid fea-
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ture coupling metric called HFC. Hybrid feature coupling can be used when one source of 

information cannot be completely relied on but programmers still want to incorporate it. 

For instance, in systems that are poorly structured, more weight can be given to textual 

information to compensate. Likewise, in software with little or no comments or poorly 

named identifiers, more weight can be placed on structural information. 

This work makes the following research contributions: 

1. Define feature coupling metrics. 

We formally define coupling metrics for features using structural and textual infor

mation. Our metrics are novel and fill a void in the research area that currently lacks 

feature coupling metrics based on either type of information. We also theoretically 

validate our metrics and introduce a new dimension to the unified framework for 

coupling measurement [25]. 

2. Demonstrate the relationship between feature coupling and fault-

proneness. 

To demonstrate both the usefulness and applicability of our new feature coupling met

rics, we perform three separate case studies. In the first case study, we empirically 

investigate the relationship between our feature coupling metrics and fault-proneness. 

In this study, we establish that there is a statistically significant correlation between 

feature coupling and defects. Our results build on previously published findings [63] 

that cross-cutting concerns (features)) may cause defects. In essence, our first case 

study extends prior results by showing that there is also a relationship between cou

pled features and bugs. 

3. Evaluate the application of feature coupling to impact analysis. 

We also demonstrate some implications of feature coupling measurement for feature

level impact analysis. Feature coupling is a good starting point for understanding how 

a change to one feature is likely to affect others. For example, during impact analysis, 

all features can be ranked by their strength of coupling to the feature being modified. 

If programmers know that feature A is more tightly coupled to feature B than to 

feature C, they can expect that a change to A is likely to impact B more than C and 
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spend more time ensuring B was not adversely affected by the change to A. Also, 

analyzing related features using coupling metrics can help avoid introducing defects 

caused by intricate and potentially hidden dependencies [238] among features. We 

show that feature coupling can be effectively used for impact analysis under certain 

configurations. 

4. Explore how feature coupling metrics align with developers' opinions. 

The final way in which we evaluate our new feature coupling metrics is by investigating 

if they agree with developers' opinions of whether two features are coupled or not. 

We find that overall, there is agreement between the developers' ratings and our 

measures, meaning our feature coupling metrics do capture coupling among features 

as recognized by software developers. 

5. Create tool support for feature coupling. 

We have developed an Eclipse plug-in for managing features. The tool has function

ality to assign portions of code to features and the ability to compute and analyze 

feature coupling metrics on demand. 

The three case studies provide evidence that feature coupling metrics are useful tools pro

grammers can use while performing feature-level software maintenance tasks. Like class 

coupling measures, they can be used to predict fault-proneness and for impact analysis. 

These new metrics give programmers greater flexibility because they allow for analysis at 

a higher level of abstraction than classes. 

5.1 Related Work 

There are many existing coupling metrics that employ different types of information such 

as structural, dynamic, textual, or evolutionary. Most of these metrics determine coupling 

between classes. Our work is distinct from previous research in that it provides a formal 

way to capture and analyze the strength of coupling among features using various types 

of information, namely structural and textual. Furthermore, there are no existing metrics 

that combine information from two or more distinct sources (e.g., structural and textual) 
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Table 5.1: State of the art in coupling measurement across two dimensions: level of 
coupling and type of information used to capture the strength of coupling. The metrics 
proposed in this work are highlighted in boldface. 

Coupling Structural Dynamic Textual Hybrid Evolutionary 
Dimension 

Class 

Feature 

CEO, RFC, 
M PC, DAC, Ce, 
Ca, Information 
flow coupling, 
class-attribute 
interaction, 
class-method 
interaction 
SFC 
SFC' 

Dynamic 
import 
and export 
coupling 

DIST 

CoCC 

TFC 
TFCmax 

Future 
work 

HFC 

Interaction cou
pling, Evolution
ary coupling, 
Logical coupling 

Future work 

to capture coupling. Table 5.1 summarizes the state of the art in coupling measurement, 

and we offer a brief overview below. 

5.1.1 Structural Coupling Measures 

Most existing coupling metrics capture coupling between classes structurally. Coupling 

Between Objects (CEO) and Response for a Class (RFC) were introduced in Chidamber 

and Kemerer's suite of object-oriented metrics [42]. According to CEO, two classes are 

coupled if methods in one class use methods or fields in the other. RFC and RFCa. are 

counts of a class' methods plus methods that are directly or indirectly [43] invoked by 

those methods. Li and Henry [126] introduced several class coupling metrics that also 

utilize structural information. Message Passing Coupling (M PC) between classes A and 

B is based on the number of static invocations of methods from class E in class A. Data 

Abstraction Coupling (DAC) is a count of the number of fields in class A that are of type 

B, while D AC' is a binary version of this metric. There are a wealth of other structural 

metrics based on class dependencies such as Efferent Coupling (Ce) and Afferent Coupling 

(Ca) [146]. 

Briand et al. [26] developed several metrics for measuring the coupling between classes 

based on structural information from method invocations and the types of fields and pa-

rameters. These metrics, plus those by [104] and [64], were reviewed in [25] to build a 
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unified framework for coupling measurement in object-oriented systems. 

Information flow-based coupling (ICP) [124] is a structural measure that takes poly

morphism into account. ICP counts the number of methods from a class B invoked in 

a class A, weighted by the number of parameters. Two alternative versions, I H- ICP 

and NIH - I C P, count invocations of inherited methods and classes not related through 

inheritance, respectively. Like ICP, some of the coupling measures defined in [29] take 

polymorphism into account. All of these existing coupling metrics are defined for classes, 

and therefore are at a lower level of abstraction than our feature coupling metrics. 

5.1.2 Other Static Coupling Measures 

Other static coupling measures exist along textual and evolutionary dimensions. Poshy

vanyk and Marcus [161 J define a coupling metric for classes based on textual information 

extracted from source code identifiers and comments. Their conceptual coupling metric, 

CoCC (which stands for Conceptual Coupling of Classes), captures a new dimension of 

coupling not addressed by structural or dynamic measures. CoCC is defined for classes, 

while the metrics we propose are for features. Interaction [248], logical [82], and evolution

ary [247] coupling metrics utilize information from repositories to mine information from 

software artifacts that are frequently co-changed. Such evolutionary information has been 

used for impact analysis [206], much like coupling metrics. Additionally, coupling metrics 

have been defined for other applications such as knowledge-based [122] and aspect-oriented 

[242] systems. 

5.1.3 Dynamic Coupling Measures 

Arisholm et al. [7] introduced dynamic import and export metrics to capture the coupling 

between classes at runtime. Dynamic analysis is often used to locate the code associated 

with features [62, 76, 130, 160, 193, 229] since a feature's behavior can be observed dur

ing execution. Currently the only existing feature-level coupling-like metric that we are 

aware of is based on dynamic information. Wong and Gokhale [233] defined the distance 

(DIST) between two features using an execution slice-based technique. Similar feature 

metrics have been proposed to dynamically measure certain relationships or dependencies 
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between features [92, 128] other than coupling. Greevy et al. [93] also created metrics 

for dynamically measuring the evolution of a feature. Similarly, Giroux and Robillard [88] 

defined a measure for feature coupling across versions of a system using regression tests 

since tests typically align with features. The association graph matching similarity mea

sure (AG.l\1!) introduced by Kothari et al. [120] is a measure of pair-wise similarity between 

features based on dynamic call graphs. It has been used to find canonical feature sets [120], 

feature version similarity [119], and feature implementation overlap [121]. All of these fea

ture metrics solely utilize dynamic information. However, dynamic information may not be 

sufficient to precisely capture coupling among features. The best way to collect dynamic 

information is to execute scenarios that exercise only one feature at a time, but developing 

such scenarios can be difficult, if possible at all [233]. Our metrics are the first to capture 

feature coupling using structural and textual information, thus avoiding the overhead of 

collecting execution traces. 

5.1.4 Applications of Coupling Metrics 

There have been numerous studies showing that coupling is a good predictor of external 

quality attributes such as fault-proneness [9, 26, 37, 246], maintainability [126], reengineer

ing effort [151], and change-proneness [29]. Other studies have shown that coupling can 

be used for different tasks [54] such as impact analysis [164, 231], program comprehension 

[240], reengineering [1], quality assessment [8], reuse [41], change propagation [87], and 

clone detection [86]. These studies focus on coupling at the class level, while our work 

examines feature coupling and investigates if it is also useful for predicting fault-proneness 

and performing impact analysis. 

5.2 Analyzing Structured and Unstructured Information in 

Source Code 

The source code of a software system contains structured and unstructured data. The 

structured data is used primarily by parsers, while the unstructured information (i.e., com

ments and identifiers) is meant mostly for human readers. The SFC metric that we propose 
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measures the coupling between two features structurally, drawing on information used by 

existing class-level coupling metrics. The other feature coupling metric we introduce, T FC, 

measures the conceptual or textual similarity between two features. Our approach is based 

on the premise that the unstructured information embedded in source code reflects, to a 

reasonable degree, the software's domain concepts since existing feature location techniques 

[130, 142, 160]1everage such textual information to find code that implements features. In 

order to extract and analyze the unstructured information from source code, we use La

tent Semantic Indexing, an advanced information retrieval method. In the remainder of 

this section, we provide details on how we obtain structured and unstructured information 

from software. 

5.2.1 Structured Information 

Class relationships, method invocations, and field references have all been used to compute 

class coupling [25]. In our work, we focus on methods as the main unit of structural 

information for several reasons. Working with method-level granularity is common with 

feature location. Most feature location techniques attempt to find methods associated 

with features [62, 76, 130, 160, 229] because methods implement functionality in code. 

Also, several existing class coupling metrics, such as CEO and RFC, use methods only 

[7, 42, 161], ignoring fields. 

Most software engineers are familiar with structural source code information that can 

be represented in various forms such as a call graph. We use a call graph to add additional 

information to our structural feature coupling metric. We obtain a method-level call graph 

using JRipples [35, 156]. We provide more details on how we use this information to capture 

structural feature coupling in Section 5.3.2. 

5.2.2 Unstructured Information 

Latent Semantic Indexing identifies relationships between terms and concepts in unstruc

tured text and has been successfully applied to a number of software engineering tasks 

such as feature location [45, 160, 165, 173], traceability link recovery [3, 57, 100, 108, 137, 

148, 220], software measurement [139, 164], and detecting code clones [136, 212]. In LSI, 
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Table 5.2: Mapping LSI concepts to source code. 
LSI Model Source Code Entities 
word Identifiers and comments extracted from source code comprise 

a vocabulary set. This set is refined to exclude programming 
language keywords, stop words, and punctuation. Finally, all 
compound identifiers are split based on the observed naming 
conventions. V = { w1, w2, ... , W11 }. 

document A method is treated as a document, which can be expressed 
as n identifiers and comments from a vocabulary and appear 
in the implementation of a method mi = ( w1, w2, ... , wn). 

feature A feature corresponds to a collection of documents rep
resenting methods that belong to different classes Fi = 
(m1, m2, ... , mz). 

corpus The software system S consists of a set of classes and features 
comprised of methods*, S = (C1, ... , C2 , F1, ... , Fn) which 
forms a corpus D = (d1, d2, ... , dm). 

*Some of the system's features may be associated with methods and some not. 

Therefore, the corpus contains features and classes. 

a word is a basic unit of discrete data defined to be an item from a vocabulary V = 

{w1,w2, ... ,w11 }. A document is a sequence of n words denoted by d = (w1,w2, ... ,w71 ), 

where Wn is the nth word in the sequence. A corpus is a collection of m documents, 

D = (dl, d2, ... , dm)· Table 5.2 shows how these LSI concepts are mapped to source code. 

The process of applying LSI to source code has three steps. First, the source code must 

be preprocessed to build a corpus. Second, the corpus is indexed. Third and finally, textual 

similarities between all pairs of documents (methods) are computed. If two methods use 

similar terminology and have a high textual similarity, they may implement related concepts 

and therefore be coupled. Each of these steps is explained in more detail in the following 

subsections. 

5.2.2.1 Build the Corpus 

A corpus represents all the words found in each document of a body of text. A document 

can be a sentence, a paragraph, a chapter, or in the case of source code, a method, a class, 

or a package. To build a corpus for the source code of a software system, a document 

granularity must first be chosen. In our work, we use methods as documents. Next, the 

text of each document must be preprocessed before being included in the corpus. There are 
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several options for preprocessing, such as removing stop words and programming language 

keywords, splitting compound identifiers, including or excluding comments, and performing 

or not performing stemming. Stemming [158] reduces words to their root form, such that 

"stemming" and "stemmed" would become "stem." For every corpus created in this work, 

stop words (e.g., the, of) and programming language keywords (e.g., public, for, try) were 

removed and compound identifiers were split. 

5.2.2.2 Index the Corpus 

The central concept of LSI is that the information about the contexts in which a word 

appears or does not appear provides a set of mutual constraints that determines the sim

ilarity of meaning of sets of words (documents) to each other. LSI indexes a corpus and 

generates a real-valued vector description for each document based on the vector space 

model (VSM) [196]. LSI was originally developed in the context of information retrieval 

as a way of overcoming problems with polysemy and synonymy that occurred with VSM 

approaches. Some words appear in the same contexts, and an important part of word usage 

patterns is blurred by accidental and inessential information. The method used by LSI to 

capture essential semantic information is dimension reduction, selecting the most important 

dimensions from a co-occurrence matrix (words by documents) decomposed using singular 

value decomposition (SVD) [195]. The word x document matrix holds term frequency

inverse document frequency (tf-idf) values which assess how important a particular word 

is to a given document. SVD is a form of factor analysis and acts as a method for reducing 

the dimensionality of a matrix without serious loss of specificity. Typically, the word by 

document matrix is very large and quite sparse. SVD is applied to the word-by-document 

matrix to eliminate noise. 

5.2.2.3 Compute Textual Similarities 

Once the corpus is indexed, the similarities between documents can be computed by tak

ing the cosine between their corresponding vectors. The textual similarity between two 

documents (methods) mi and mj is defined as the cosine between vectors vmi and vmj, 

corresponding to mi and mj after dimensionality reduction is applied. Just as cosine values 
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range from -1 to 1, so do textual similarities. The closer a value is to one, the more similar 

the texts of the documents/methods are. Note that textual similarities are symmetric; the 

similarity between mi and mj is the same as the similarity between mj and mi. In Section 

5.3.8, an example of how to compute textual feature coupling using the textual similarities 

between two features is given. 

5.3 Using Structural and Textual Information for Feature 

Coupling 

Our approach to measuring feature coupling is based on two main ideas: 1) features are 

entities that are coupled at a higher level of abstraction than methods and classes and 2) 

coupling can be measured in multiple ways by using structured and unstructured (textual) 

information. Features are domain concepts implemented in a system, and their implementa

tions are often scattered across a system's classes [63]. Therefore, features exist at a level of 

abstraction outside of or above classes in object-oriented languages. As described in Section 

5.1, there exists an abundance of class coupling metrics that rely on structural dependen

cies and some that utilize textual information to measure class coupling. These metrics 

are useful and important because they capture essential forms of coupling. However, since 

features transcend class boundaries, we propose and define metrics that comprehensively 

capture and measure feature coupling using both structural and textual information. 

5.3.1 System Representation 

To define structural and textual feature coupling metrics, we first define a representation 

of a software system. 

Definition 1: (System, Classes, Methods) 

A systemS is an object-oriented software system. S has a set of classes C = {c1, c2, ... , en}· 

The number of classes inS is n = ICI. A class has a set of methods. For each class c E C, 

let Me= {m1, m2 , ... , mz} be the set of methods implemented inc, where z =!Mel is the 

number of methods in c. The set of all methods in the system S is defined as Ms. 
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Definition 2: (Feature} 

A feature f is a requirement, functionality, or behavior described in the specification of 

a system S. We base this definition on Eaddy et al. 's [63] well-established model for 

representing cross-cutting concerns (features) 1 . A system S has a set of features F = 

{h, h, ... , fp} where p = IFI· A feature f is implemented by a set of methods MJ ~Ms. 

The methods of M.t may belong to multiple classes. A method may belong to several 

features, and a feature may have methods that belong to other features as well. 

5.3.2 Structural Feature Coupling 

We define structural feature coupling metrics using our representation of a system, features, 

and methods. 

Definition 3: (Structural Feature Coupling - SFC) 

The structural feature coupling (SFC) between features fa and fb, implemented by the 

methods in sets Ma and Mb, respectively, is defined as the ratio of the number of methods 

shared by the features to the total number of methods associated with the two features. 

(5.1) 

We only consider features with non-empty methods sets to avoid a potential division 

by zero. SFC uses structured information to capture feature coupling by measuring the 

degree to which two features share code. 

Definition 4: (Structural Features Coupling Prime- SFC') 

Instead of solely basing coupling on the methods that implement two features, an alternative 

is to consider the first order structural dependencies of those methods to also be associated 

with the features. Dependencies are taken into account in some existing coupling metrics 

(e.g., RFC), plus they are often traversed for maintenance, feature location, and program 

comprehension tasks. Therefore, we include the static callers and callees of a feature's 

methods in a variant S FC, which we coin S FC'. 

Let fa and fb be features implemented by the methods in sets Ma and Mb respectively. 

Let M~ 2 Ma and M~ 2 Mb be the set of methods that implement features fa and fb, 

1Eaddy et al.'s [63] definition is more general than ours, encompassing fields and concern hierarchies. 
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respectively, plus the methods that are first order structural dependencies of the methods 

in Ma and Mb. That is, M~ and M~ include the methods that call or are called by the 

methods in Ma and Mb. The structural feature coupling prime (SFC') is defined as the 

number of methods shared by two features over the total number of methods associated 

with both features. 

SFC'( ~' ~') = M~ n M~ 
Ja,Jb M' UM' 

a b 
(5.2) 

Thus, SFC' incorporates additional structured information in the form of dependencies 

to measure feature coupling. Both SFC and SFC' are normalized, i.e., they have values in 

the range [0, 1]. The closer the value is to one, the stronger the structural coupling between 

the features. 

5.3.3 Textual Feature Coupling 

We define textual feature coupling metrics based on unstructured, textual information 

found in source code. In order to define a metric for the textual coupling between features, 

we first define the conceptual similarity between two methods as well as between a method 

and a feature. These measures are building blocks needed to define our textual feature 

coupling metric. 

Definition 5: (Conceptual Similarity between Methods- CSM) 

As defined in [138], the conceptual similarity, also known as the textual similarity, between 

methods mi EMs and mj EMs is CSM(mi,mj) where 

(5.3) 

CSM(mi, mj) is the cosine between vectors vmi and vmj, corresponding to mi and mj 

after indexing. As defined, the value of C S M ( mi, mj) E [ -1, 1]. In order to comply with the 

non-negativity property of coupling [27], if CSM(mi, mj)::::; 0, we redefine CSM(mi, mj) = 

0. CSM measures the textual similarity of two methods, but most features are composed of 

more than one method. Next, we define the conceptual similarity between a single method 

and a feature. 

Definition 6: (Conceptual Similarity between a Method and a Feature - C S M F) 

Let fa and fb be two distinct features in S. Each feature has a set of methods Ma 
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{mal, ma2, ... , max}, where x = JMaJ and Mb = {mbb mb2, ... , mby}, where y = JMbl· 

Between every pair of methods, there is a similarity measure CSM(ma, mb)· The textual 

similarity between a method ma from fa and a feature fb is: 

(5.4) 

which is the average of the textual similarities between a method ma and all methods in 

feature fb· Now that we have a measure of the textual similarity of one method to a feature, 

we can define the textual similarity among all the methods of two features, i.e. their textual 

coupling. 

Definition 1: (Textual Feature Coupling - T FC) 

Let fa and fb be two distinct features in S. The textual coupling between fa and fb is: 

(5.5) 

which is the average of the textual similarity measures between all unordered pairs of 

methods from feature fa and fb· T FC(fa, !b) is a measure of the textual coupling between 

the two features. This definition guarantees that the coupling between two features is 

symmetric. 

Definition 8: {Maximum Textual Feature Coupling - TFCmax) 

In [138], a variant of the conceptual class coupling metric was used in which only the 

highest textual similarities between methods of a class are considered. Similarly, we define 

such an alternative measure for textual feature coupling. We refine T FC to only cap-

ture the strongest textual similarity between features. Under this definition, the textual 

similarity between a method ma and a feature fb is computed using the maximum value 

With this variation, the maximum textual coupling (T FCmax) between two features fa and 

!b is: 

(5.6) 
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5.3.4 Hybrid Feature Coupling 

Definition 9: (Hybrid Feature Coupling - H FC) 

Structural information aligns with a program's structured information (e.g., source code) 

while unstructured, textual information aligns with domain concepts (e.g., requirements). 

We combine structural and textual information into a single feature coupling metric to 

take advantage of this complementary relationship. To combine structural and textual 

coupling measured by SFC and TFC, we rely on an affine transformation. Thus, the 

hybrid coupling between features fa and fb is defined as: 

(5.7) 

The structural and textual weights, WSFC and WTFC, are values between zero and one 

and are chosen such that the sum of the weights is equal to one. The higher the weight, the 

more preference is given to that metric. Affine transformations have been used to combine 

different types of information for class cohesion [58], feature location [160], and identifying 

duplicate bug reports [223]. We chose this straightforward means of combining the two 

metrics because we were interested in investigating, in a controllable fashion, whether 

combining structural and textual information captures new facets of feature coupling. 

5.3.5 Theoretical Evaluation 

Our feature coupling metrics comply with the five mathematical measurement properties 

proposed by Briand et al. [27]: non-negativity, null value, monotonicity, merging of mod

ules, and merging of unconnected modules. Both our structural and textual feature coupling 

measures assume non-negative values. SFC and SFC' are based on the cardinality of sets 

and therefore their minimum value is zero. By redefining CSM to always produce a value 

greater than or equal to zero, T FC and T FCmax comply with the non-negativity property. 

Since H FC is based on an affine transformation of S FC and T FC, it also obeys the prop

erty. Additionally, when there is no relationship between two features, our metrics return a 

measurement of zero, meeting the null value property. To fulfill the monotonicity property, 

when a new method is added to a feature that is shared by another feature or had a strong 
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textual similarity to methods in another feature, our coupling metrics increase instead of 

decreasing. Finally, the coupling obtained after merging two features is not greater than 

the sum of the coupling of the two original features; thus the final two properties are met. 

5.3.6 Classification within the Unified Framework for Coupling Measure

ment 

Briand et al. [25] classified coupling metrics along a number of criteria such as the type 

of coupling, the direction of coupling, direct vs. indirect coupling, inheritance-based vs. 

non-inheritance-based coupling, and domain of measurement. Our metrics are new and rely 

on several mechanisms not currently supported by the unified framework. The framework 

needs to be expanded to include a new level of granularity for features. Additionally, at 

the time the framework was created, class coupling was measured using structural infor

mation only. Since its definition, conceptual/textual coupling [161] has been established, 

which necessitates the introduction of a new dimension to the framework that takes into 

account textual information. We extend the unified framework for coupling measurement 

to account for feature-level granularity and textual coupling and classify our metrics within 

the expanded version. 

All of the existing coupling measures surveyed for the framework take into account 

structural information to define the type of connectivity between elements of a class. The 

existing coupling metrics were classified according to seven different types of connectivity, 

listed in Table 5.3. We extend the types of connection to include structural and textual 

relationships between methods of features. We also classify our metrics using the other 

criteria proposed by Briand et al. [25]. Import coupling refers to a class that uses (imports) 

another class, while export coupling denotes a class that is used by another. Our feature 

coupling metrics measure both import and export coupling. Direct and indirect coupling 

measure direct connections and indirect connections, respectively. SFC, TFC, TFCmax, 

and H FC are all direct measures, but SFC' is indirect because it also includes callers and 

callees of a feature's methods. Currently, inheritance is not explicitly considered in our 

feature coupling measures and only methods of a class that are implemented or overloaded 

in a class are associated with features. Therefore, all of our feature coupling metrics can 
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Table 5.3: Types of connection, a dimension of the unified framework for coupling mea-
surement. 

# Element 1 Element 2 

1 Attribute a of Class d, d =f. c 
class c 

Description 

Class d is of type a 

Measures 

DAC, DAC', 
attribute 

class-

2 Method m of Class d, d =f. c 
classc 

Class d is the type class-method interac
of a parameter of m tion 
or m 's return type 

3 Method m of Class d, d =f. c Class d is the type 
of a local variable of 
m 

class c 

4 Method m of Class d, d =f. c Class d is the type 
of a parameter of a 
method invoked by 
m 

5 

6 

class c 

Method m of 
class c 
Method m of 
class c 

7 Class c 

8 

9 

Method m of 
feature f 
Method m of 
feature f 

Attribute a of m references a 

class d, d =f. c 
Method m' of a m invokes m' 
class d, d =f. c 

Class d, d =f. c 

Method m' of 
feature g, g =f. f 
Method m' of 
feature f 

High level rela
tionships between 
classes 
m is the same as 
m' 
m and m! are tex
tually similar 

CBO, CEO', COF 

CBO, CBO', RFC, 
RFCa, MPC, COF, 
ICP, NIH - ICP, 
IH - ICP, method
method interaction 

SFC, SFC' 

TFC, TFCmax 

Table 5.4: Mapping coupling measure to domain. 
Domain 

Attribute 
Method 
Class 

Set of Classes 
Feature 
System 

Measures 

ICP, NIH- ICP, IH- ICP 
CBO, CBO', RFC, RFCa, M PC, COF, class-attribute in
teraction, class-method interaction, method-method interac
tion, CoCC 
ICP, NIH- ICP, IH- ICP 
SFC, SFC ', TFC, TFCmax,HFC 
COF 
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Figure 5.1: Architecture of the feature coupling component of FLAT3 . 

be classified as non-inheritance based. Finally, the dimension that most distinguishes our 

coupling metrics from existing ones is the domain of measurement. Table 5.4 lists the five 

domains identified by Briand et al. [25] and their associated measures. We extend the 

unified framework for coupling measurement with a new dimension, the feature domain, 

and our metrics belong in this classification. 

5.3.7 Measurement Tool 

We have developed tool support for feature coupling measurement. FLAT3 (Feature 

Location and Textual Tracing Tool), which is overviewed in Figure 5.1 and described 

in detail in Chapter 6, is an Eclipse plug-in based on ConcernMapper2 and ConcernTag

ger:3 that supports mapping features to source code and the computation of feature coupling 

metrics. Users can manually associate features with source code or use an embedded feature 

location technique based on prior research [130]. Alternatively, feature-method mappings 

can be imported from existing models [143, 182] or tools such as ConcernMapper or Con-

cernTagger. If the source code or mappings are changed in successive versions of a system, 

the data given to FLAT3 must also be updated. 

Admittedly, the cost of mapping features to code can be expensive, but research areas 

such as feature location are focused on automatically recovering such mappings. For in-

stance, Ratiu and Deissenboeck [169, 170] have developed a formal framework for mapping 

2http://www.cs.mcgill.ca/-martin/cm/ 
3 http://www.cs.columbia.edu/-eaddy/concerntagger/ 
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domain concepts to program elements. Also, some integrated development environments 

like IBM's Jazz4 have embedded automatic traceability functionalities for requirements 

and bug fixes that could be leveraged. These techniques and tools can ease the burden of 

creating feature-method mappings. 

Based on the mappings of features to code, our feature coupling metrics can be com

puted. First, the source code of a system is parsed into methods. Then, the text of the 

methods is pre-processed to form the documents of the corpus. Pre-processing always re

moves stop words and programming language keywords and splits compound identifiers. 

Options include removing comments from the corpus and performing stemming. Then, LSI 

is used to create a word-by-document matrix that describes the distribution of terms in 

the methods of the corpus. Through the use of SVD, a semantic subspace is constructed 

in which each method from the corpus is represented as a vector. The cosine between two 

vectors (i.e., CSM) is a measure of the textual similarity between two methods. Given 

the similarities between methods and the mappings of features to methods, FLAT3 can 

compute TFC. To compute SFC, the tool simply requires feature-method maps as well 

as dependency information. 

5.3.8 An Example of Measuring Feature Coupling 

We provide an illustrative example of how SFC and TFC are calculated. The example is 

taken from our evaluation of Rhino, a Java implementation of JavaScript, and two of its 

features are type conversions ToString Ustring) and ToObject Uobject)· Feature !string is 

implemented by four methods (Mstring = { m 8 1, ... , ms4} ), and !object is implemented by 

eight methods (Mobject = {m0 1, ... ,m0 s}). Note that m 8 2 is the same as m 0 g. 

The structural coupling between these two features is straightforward to compute. 

SFCUstring, !object) = 1/11 = 0.09 because the two features have one method in com

mon out of 11 total. Our metric captures the weak structural coupling between !string and 

!object· The two features are concerned with converting an argument, and the only method 

they share deals with determining the type of the argument before the conversion. 

4http://jazz.net/ 
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Table 5.5: Textual similarities (CSM values) between methods of Rhino's ToString and 
ToObject features. 
m 8 1: ScriptRuntime.toString(Object); 
m 8 2- m 0 s: FunctionObject.convertArg( ... ); 
m 8 3: Context.toString(Object); 
m 84: NativeRegExpCtor.setinstanceidValue( ... ); 
mol -mas: ScriptRuntime.toObject(*); 
mo6 - m 0 7: Context.toObject(*) 

------~--~~-------------------------------
mol ffio2 ffio3 mo4 mos mo6 ffio7 mos 

ffisl 0.6 0.24 0.54 0.68 0.36 0.23 0.19 0.24 
ffis2 0.28 0.25 0.27 0.33 0.25 0.48 0.37 1.0 
ffis3 0.17 0.16 0.18 0.22 0.18 0.57 0.28 0.42 
ffis4 0.06 0.08 0.06 0.07 0.05 0.13 0.11 0.19 

To compute textual coupling, the following formula is used: T FCUstring, !object) = 

(CSM F(msl, fobject)+CSMF(ms2, fobject)+CSM F(ms3, fobject)+CSMF(ms4, fobject))/4. 

CSMF(m8 1, !object) is the average of the textual similarities between method m 8 1 

and all methods in !object such that CSM F(msb !object) 

CSM(m 8 1, m 0 2) + ... + CSM(msl, m 0 s))/8. The textual similarities between meth

ods are shown in Table 5.5. The values in Table 5.5 are the CS~M values. Thus 

CSM F(m 8 1, !object) = (0.60 + 0.24 + 0.54 + 0.68 + 0.36 + 0.23 + 0.19 + 0.24)/8 = 0.39, 

CSM F(ms2, !abject) = 0.40, CSM F(ms3, !abject) = 0.27, and CSM F(ms4, !abject) = 0.09. 

Finally, TFC(Jstring, !object)= (0.39 + 0.40 + 0.27 + 0.09)/4 = 0.29. The textual coupling 

between !string and !object is stronger than the structural coupling. The two features do 

use some common identifiers such as "Number," "Object," "ScriptRuntime," and "val," 

but otherwise, they have their own vocabularies. 

To calculate the hybrid coupling between these two features, the weight given to each 

type of coupling needs to be established. If WSFC = 0.5 and WTFC = 0.5, then the hybrid 

feature coupling is computed as H FC(Jstring, !object) = 0.5 * 0.09 + 0.5 * 0.29 = 0.19. 

5.4 Case Studies 

The purpose of our evaluation is to assess the usefulness of our new feature coupling metrics 

as well as to show that they have a practical application. We perform three assessments of 

the metrics, each targeting a different aspect of their utility or applicability. In the first case 
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Figure 5.2: Data triangulation evaluation approach. 

study, we explore the relationship between feature coupling and fault-proneness. To that 

end, we calculate the correlation between the metric values and bugs for all unique pairs of 

features in two software systems. If there is a high correlation between a feature coupling 

metric and defects, then that metric may serve as a useful predictor of fault-proneness 

among features. For our second case study, we examine the application of feature coupling 

metrics for impact analysis. If feature coupling metrics help determine other features likely 

to be affected by a change to a feature undergoing modification, then these new measures 

are helpful in the context of impact analysis. Finally, our third case study involves testing 

if the feature coupling metrics align with developers' opinions about which features are 

coupled or not. We carry out a survey in which 31 programmers rated the strength of 

coupling between 16 pairs of features from three different software systems. 

By considering the results of three evaluations, we can come to a stronger conclusion 

about the usefulness of feature coupling metrics than if we had used only one assessment. 

This idea of synthesizing data from multiple analyses is known as data triangulation [237]. 

The advantage of such an approach is that by corroborating multiple sources of evidence, 

any findings or conclusions are likely to be more valid. Figure 5.2 summarizes our data 

triangulation approach, and in the following sections we provide the details and results of 

each part of our evaluation. 

134 



5.4.1 Subject Systems and Data Sets 

To be able to compute our feature coupling metrics, we required mappings of features to 

the methods that implement them in a given software system. Obtaining this information 

from a single developer is difficult, time-consuming, and biased [183]. These factors led us 

to select several existing data sets made available by Eaddy et al. [63] in which multiple 

researchers compiled mappings of features to code. We used the information in these data 

sets to compute our feature coupling metrics, and we consider these data sets to be reliable 

since they have been previously used in other studies [62, 63]. Since we utilized previously 

published data, our study is reproducible; we invite other researchers to replicate our work. 

All of our data and results are provided in an online appendix5 . 

The first data set we use is db Viz6 version 0.5, an open-source database visualization 

tool written in Java. The system is comprised of 12,700 LOC (lines of code), 93 classes, 

and 554 methods. We also utilize the Rhino data set. Rhino7 is a Java implementation of 

JavaScript consisting of approximately 32,000 LOC, 138 classes, and over 1,800 methods. 

The final data set we use is iBatis8 version 2.3, an object-relational mapping tool written 

in Java that has 13,300 LOC, 212 classes, and over 1,800 methods. 

The data sets include mappings of program elements to features. Eaddy et al. [63] 

identified 13 features from dbViz's use cases, 411 features in Rhino from the ECMAScript 

specification9 of JavaScript, and 132 features for iBatis. For each feature in the data sets, 

the code associated with it was manually identified using the prune dependency rule: "A 

program element is relevant to a [feature] if it should be removed, or otherwise altered, when 

the [feature] is pruned" [63]. In other words, to assign code (methods and fields) to the 

features they implement, Eaddy et al. [63] considered a scenario where a feature was to be 

removed from a system and attempted to remove as much relevant code as possible without 

affecting other features. While the data sets map some fields to features, we excluded field 

mappings from our evaluation because our model does not currently support them. 

5http://www.cs.wm.edu/semeru/data/ese-feature-coupling/ 
6http://jdbv.sourceforge.net/dbViz 
7http://www.mozilla.org/rhino 
8http://ibatis.apache.org/ 
9http://www.ecma-international.org/publications/standards/Ecma-262.htm 
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If the features identified in the data sets are well encapsulated by classes, then measuring 

feature-level coupling is without merit. To check if the features in the three data sets are 

implemented in multiple classes, we calculated the average and median number of classes 

per feature (this data is also available in [61]). In db Viz, features are located in nine classes, 

on average, with two being the minimum, 21 the maximum, and 9 the median. The average 

number of classes per feature in Rhino is four, with a minimum of one, a maximum of 67, 

and a median of 2. Finally, iBatis' features are implemented in six classes on average, 

with a minimum of one, a maximum of 128, and a median of 3. Since most of the features 

from the three data sets are implemented in multiple classes, traditional class-level coupling 

metrics are not able to capture the dependencies between features. Therefore, metrics at a 

higher level of abstraction, such as feature coupling metrics, are needed. 

The data sets also include defect information. We use this data on bugs and where they 

occur in our first two case studies. In db Viz, 47 bugs are mapped directly to features. Each 

feature has at least two bugs associated with it, and on average, a feature has 4. 7 bugs. In 

Rhino, 149 bugs are mapped to program elements. Of the 411 features, 344 have bugs, and 

each feature has 6.4 bugs on average. The publically available data sets did not include 

defect data for iBatis. If a method was modified to fix a bug, that method is associated 

with that bug. Transitively, if a feature is associated with a method, and that method was 

changed to fix a bug, then that bug is mapped to that feature. See [63] for the complete 

details on how the mappings were obtained. 

5.4.2 Case Study Settings 

In Section 5.2.2.1, we explained the process of building a corpus in order to obtain textual 

similarities between methods. There are several options for building a corpus; comments 

can be included or excluded and text can be stemmed or not. Comments embed additional 

domain knowledge within the source code of a system. Their inclusion, or exclusion, from 

a corpus can have an impact on the textual similarities between methods [138]. Stem

ming reduces words to their root, thus potentially increasing the textual similarity of two 

documents. Both of these options have implications for textual feature coupling. One of 

the secondary goals of our evaluation is to discover the optimal configuration for measuring 
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textual feature coupling. We generated different versions of the corpus of a software system 

in order to explore the effect of corpus creation on feature coupling. The four corpus ver

sions we created were 1) comments included but without stemming (c- ns), 2) comments 

included and stemming performed (c-s), 3) without comments but with stemming (nc-s), 

and 4) comments excluded and no stemming (nc-ns). These corpora represent all possible 

combinations of the preprocessing options for comments and stemming. We consider the 

c - ns corpus to be the default. For one system in which external documentation was 

available (Rhino), we made a fifth corpus (c- ns +d). This corpus included source code 

text including comments, the external documentation's text, and words were not stemmed. 

The documentation is simply added to the corpus as more text; it is not mapped to source 

code. This augmented corpus was then used by LSI to compute similarities. The idea be

hind including documentation is that it encodes additional domain knowledge which may 

bolster the textual information in source code. 

5.4.3 The Relationship Between Feature Coupling and Faults 

To investigate the relationship between feature coupling and fault-proneness, we performed 

an empirical study. We conjecture that since features can be implemented in classes and 

methods dispersed throughout a system, the impact of changes to features can be difficult 

to determine, possibly leading to faults or system failures. Therefore, we hypothesize that 

the more coupled two features are, the more likely they are to share a bug. More formally, 

we seek to evaluate the following hypotheses. 

Ho The null hypothesis is that there is no significant correlation between the strength 

of coupling of two features and the number of bugs they have in common. 

H 1 The alternative hypothesis is that there is a statistically significant correlation 

between the strength of coupling of two features and the number of bugs they share. 

If H 1 is true, it means that if programmers are aware of other features that are highly 

coupled to the one of interest, they can potentially prevent the introduction of tedious, 

feature-related faults. To test our hypotheses, we computed feature coupling metrics be

tween all pairs of features in db Viz and Rhino. Additionally, we counted the number of 
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Table 5.6: Descriptive statistics of the feature coupling metrics. 
System Metric Max 75% Med. 25% Min f-L CJ 

db Viz SFC 0.85 0.08 0.04 0.01 0 0.08 0.15 
SFC' 0.92 0.4 0.32 0.25 0 0.33 0.19 
TFC 0.22 0.09 0.08 0.06 0.02 0.08 0.04 
TFCmax 0.97 0.46 0.35 0.29 0.08 0.41 0.2 
HFC 0.53 0.09 0.06 0.04 0.01 0.08 0.09 

Rhino SFC 1.0 0.0 0.0 0.0 0.0 0.02 0.11 
SFC' 1.0 0.05 0.01 0.0 0.0 0.06 0.16 
TFC 1.0 0.22 0.13 0.09 0.0 0.19 0.17 
TFCmax 1.0 0.44 0.23 0.14 0.0 0.32 0.24 
HFC 1.0 0.12 0.07 0.04 0.0 0.11 0.12 

iBatis SFC 1.0 0.0 0.0 0.0 0.0 0.01 0.05 
SFC' 1.0 0.02 0.0 0.0 0.0 0.03 0.09 
TFC 0.99 0.13 0.09 0.06 0 .0 0.11 0.1 
TFCmax 1.0 0.33 0.22 0.13 0.0 0.26 0.18 
HFC 0.91 0.07 0.04 0.03 0.0 0.06 0.07 

bugs shared by two features for all feature pairs in each system. Then, we computed the 

Spearman rank order correlation between the metrics and defects. 

For each system, we computed five feature coupling metrics for each pair of features: 

SFC, SFC', TFC, TFCmax, and HFC. T FC and T FCmax are based on the default 

corpus, and for H FC, we placed equal weight on structural and textual information. We 

also refer to this instance of H FC as So.5To.5, indicating a structural weight of 0.5 and 

a textual weight of 0.5. For each of these feature coupling metrics, we investigated their 

relationship with faults. Table 5.6 summarizes the descriptive statistics for the feature 

coupling measures. We list the maximum (max), minimum (min), inter-quartiles (75%, 

median, 25%), mean (f-t), and standard deviation (cr). The values are based on the 78 

unique pairs of features in db Viz, 84,255 pairs in Rhino, and 13,041 pairs in iBatis. 

In addition to computing coupling metrics for each pair of features, we also determined 

the number of defects shared by any two features. We considered a bug to be associated 

with a pair of features if any methods mapped to the features are also associated with the 

bug. Consider the example in Figure 5.3. Bug1 is mapped to methods m1, m2, and m3, 

while Bug2 is associated with m4 and m5. Feature fa is implemented by methods m1 and 

m3, while fb is mapped to m3, m4, and m5. fa is associated with Bug1 because its two 

methods are associated with the defect. Likewise, fb is associated with Bug1 and Bug2. 
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Figure 5.3: An example showing how shared bugs between features fa and fb were deter
mined. 

Table 5.7: Spearman correlation coefficients for dbViz and Rhino. All values are statisti
cally significant at the one percent level (two-tailed). The sample size (number of feature 
pairs) is 78 for dbViz and 84,255 for Rhino. 
c- ns: comments, no stemming 
c- s: comments stemming 
nc- s: no comments, stemming 
nc - ns: no comments, no stemming 
c - ns + d: comments, no stemming, external documentation 

dbViz Rhino 
Metric e-ns e-s ne-s ne-ns e-ns e-s ne-s ne-ns e-ns+d 

SFC 0.38 0.38 0.38 0.38 0.62 0.62 0.62 0.62 0.62 
SFC' 0.35 0.35 0.35 0.35 0.58 0.58 0.58 0.58 0.58 
TFC 0.52 0.13 0.15 0.15 0.38 0.35 0.35 0.37 0.38 
TFCmax 0.50 0.23 0.21 0.21 0.52 0.51 0.50 0.50 0.50 
HFC 0.49 0.47 0.47 0.47 0.44 0.42 0.41 0.43 0.44 

Therefore, fa and fb are both associated with Bug1, so these features share that bug. 

Using our feature coupling metrics and the defect data, we calculated the Spearman 

rank order correlation coefficient [210] to determine the relationship between the feature 

coupling measures and fault-proneness. Table 5.7lists the Spearman correlation coefficients 

for db Viz and Rhino for all the versions of the corpora. Correlation coefficients can take 

values in the range of -1.0 to 1.0. A perfect negative correlation is denoted by -1.0, a 

perfect positive correlation is designated by a value of 1.0, and zero means no correlation. 

All of the Spearman correlations in Table 5.7 are statistically significant at the one percent 

confidence level, meaning there is only a 1% probability that the relationship is by chance. 
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The results for db Viz and Rhino indicate that there is a moderate to strong10 corre-

lation between the feature coupling metrics and defects. Under the default configuration 

(comments, no stemming) in db Viz, textual coupling had the strongest correlation (0.52) 

with bugs, while in Rhino structural coupling was the strongest (0.62). H FC is also moder

ately correlated with bugs in both systems. The correlations between bugs and the variants 

of our structural and textual coupling metrics, SFC' and T FCmax, are not very different 

from the metrics on which they are based. From these results, we can not support H 0 , the 

null hypothesis, and can support H1, the alternative hypothesis. In other words, feature 

coupling is correlated with defects. 

Under the different versions of the corpus, SFC is unchanged since corpus building does 

not impact structural information. However, textual coupling does change, and with it, its 

correlation with bugs. In db Viz, T FC's correlation with defects is significantly impacted by 

the exclusion of comments and the use of stemming since db Viz is a relatively small system. 

T FC's correlation with bugs in Rhino does not suffer from the lack of comments or use 

of stemming as greatly as in db Viz, but there is still a slight weakening of the correlation. 

From this, we conclude that the best configuration under which to build a corpus to meas·ure 

textual featur·e coupling is to include comments but not to use stemming. Stemming may be 

useful in other contexts [57], but we did not observe it to have an impact on these results. 

Using this top-performing configuration, we created one additional corpus for Rhino 

that included the ECMAScript specification, an external document. By including this 

documentation in the corpus, we are adding domain information. The last column of Table 

5.7 (c- ns +d) lists the correlation values between the metrics and bugs for this version 

of the corpus. The numbers in the table are rounded so it is not obvious, but for all the 

metrics except T FCmax, the version of the corpus with the strongest correlation with bugs 

is c- ns +d. Consequently, if programmers are seeking to use feature coupling to evaluate 

the fault-proneness of features and have documentation available, it should be included in 

the corpus for improved results. This finding supports other results in the literature that 

state that the inclusion of documents besides source code aide IR results [236]. 

10We use "strong" and "moderate" based on convention in [46], which have also been used in other 
software engineering contexts [63]. 
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Table 5.8: Spearman correlation coefficients for H FC in db Viz and Rhino. All values are 
statistically significant at the one percent level (two-tailed). The sample size (number of 
feature pairs) is 78 for dbViz and 84,255 for Rhino. 

So.osTo.95 
So.1 To.9 
So.1s To.ss 
So.2To.s 
So.2sTo.1s 
So.3To.7 
So.3sTo.6s 
So.4 To.6 
So.45 To. 55 
So.s To.5 

dbViz Rhino 

0.52 0.38 
0.53 0.39 
0.53 0.39 
0.52 0.4 
0.52 0.41 
0.51 
0.51 
0.51 
0.5 

0.49 

0.41 
0.42 
0.42 
0.43 
0.44 

5.4.3.1 Hybrid Feature Coupling 

So.ss To.45 
So.6 To.4 
So.65 To.35 
So.7 To.3 
So.75 To.25 
So.s To.2 
So.ss To.1.s 
So.gTo.l 
So.gsTo.os 

db Viz 

0.47 
0.46 
0.45 
0.44 
0.43 
0.42 
0.41 
0.4 
0.39 

Rhino 

0.44 
0.45 
0.46 
0.47 
0.48 
0.48 
0.5 

0.51 
0.53 

In addition to investigating the five feature coupling metrics above, we also explored the 

effect of varying the weights assigned to our hybrid feature coupling metric, H FC. By 

varying the weights, preference is given to one type of information over the other, which 

may be useful in cases when one source of information is more reliable than the other. 

For instance, if a system is poorly structured but has good identifier names, more weight 

can be placed on textual coupling. Table 5.8 lists the Spearman correlation coefficients 

for all possible H FC combinations with a step size of 0.05 for the default corpus. All 

the correlations are statistically significant at the one percent confidence level. In db Viz, 

textual coupling is more strongly correlated with bugs than structural coupling (0.52 vs. 

0.38), so increasing the textual weight improves H FC's correlation. The opposite is true in 

Rhino where structural coupling has a stronger correlation with bugs than textual coupling 

(0.62 vs. 0.38). Therefore, increasing the structural weight strengthens H FC's correlation 

with defects. Rhino may have a stronger structural coupling than db Viz since it is an order 

of magnitude larger in size. Overall, the H FC variants have moderate correlations with 

defects, and programmers using H FC should select weights based on their assessment of 

the system and type of coupling they want to emphasize. However, when the quality of the 

structured or unstructured information is unknown, using the default weight of 0.5 provides 

good results. 
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5.4.3.2 Comparison with an Existing Metric 

The distance between features metric (DIST) introduced by Wong and Gokhale [233] is a 

feature metric that is very similar to coupling because it measures the distance (or similar-

ity) between features. DIST is computed based on information collected by dynamically 

executing a system. Since DIST is the state of the art in feature measurement, we com-

pared our metrics to it. DIST was originally defined on basic blocks, but we redefine it 

here at the method level to be able to directly compare it with our metrics. Let lvfa and 

Mb be the sets of methods executed by inputs that invoke features fa and fb respectively. 

Therefore, the distance between features fa and fb is 

(5.8) 

where EB is the exclusive OR operator. 

We collected one execution trace for each of db Viz's 13 features and 51 of Rhino's. The 

dbViz traces were based on the developers' use cases, while the Rhino traces were based 

on available test cases, and not all features had a test case. We computed DIST between 

all pairs of features and calculated the Spearman correlation to determine the relationship 

between DIST and fault-proneness. Bugs were associated with features as described in 

Section 5.4.1. For dbViz, the Spearman correlation coefficient for DIST and bugs is 0.02, 

and for Rhino, it is 0.05. Both values are not statistically significant. D I ST's correlation 

with defects is very close to zero, meaning that there is almost no correlation between the 

metric values and bugs. In comparison, all of our metrics have positive moderate to strong 

statistically significant correlations with bugs. DIST is expensive to compute because of 

the overhead of collecting traces. It is not a good predictor of faults, likely due to the 

imprecise nature of dynamic analysis. In contrast, our metrics are less expensive, and all 

of them are good predictors of fault-proneness. 

Besides being the only feature coupling metric with no statistically significant correla-

tion to bugs, an example of DIST highlights the problems associated with using dynamic 

information. Consider dbViz's features to start and to exit the system. The dynamic cou

pling between these two features is 1 because despite what other features are invoked, the 
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system must always be started and exited. This example shows the difficulty inherent in 

using dynamic information for feature coupling because some features cannot be invoked 

separately. On the other hand, SFC between these features is 0 and TFC is 0.08, reflecting 

the true lack of coupling between them, as is also supported by the fact that they do not 

share a bug. 

5.4.3.3 The Confounding Effect of Size 

Class coupling metrics have been shown to be good predictors of fault-proneness [9]. The 

higher coupling a class has, the more likely it is to have defects. However, larger classes are 

also more likely to contain defects, and class size has been shown to have a confounding effect 

on the association between coupling and fault-proneness [78] and change-proneness [245]. 

Without accounting for class size, the relationship between coupling and fault-proneness 

may be overestimated. Therefore, we must also investigate if size has a confounding effect 

on our feature coupling metrics. 

Traditional class coupling metrics are defined for a single class. For instance, CBO is 

the number of other classes that a class uses. By contract, our feature coupling metrics are 

defined for pairs of features and measures the degree of coupling among those two features. 

This presents a challenge when testing for the confounding effect of size. Instead of a 

single metric capturing how coupled a feature is, each feature has many different coupling 

measures, one for each other feature in the system. Also, instead of the size of a single 

feature, we have two features. The best we can do is determine if there is a correlation 

between the size of a feature (in terms of number of methods) and fault-proneness. The 

Spearman correlation coefficient between the number of methods associated with a feature 

and the number of bugs a feature has is 0.53 (a= 0.05) in db Viz and 0.83 (alpha< 0.001) 

in Rhino. These results mean that there is a strong, statistically significant relationship 

between the size of a feature and the number of defects it has. This relationship could 

be confounding the correlation between the feature coupling metrics and bugs. However, 

SFC', the variant of SFC increases the size of a feature by considering the first order 

structural dependencies of a feature's relevant methods to also be relevant, and SFC' 

correlation with bugs is weaker than SFC's (See Table 5.7). Therefore, the confounding 
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effect of size on coupling metrics may not be as pronounced as it is for class coupling. 

5.4.4 Using Structural and Textual Coupling to Support Feature-Level 

Impact Analysis 

Our second case study investigates the application of feature coupling metrics for impact 

analysis. Given a starting point, such as a change to some module, impact analysis involves 

detecting other modules within a system that may be affected by a change [154, 171]. Both 

class-level coupling and information retrieval have been used for impact analysis [29, 164]. 

Generally, to select candidate modules to investigate for impact analysis, a threshold is 

set on the coupling or textual similarity values. Previous research on using coupling or 

information retrieval for impact analysis has focused on identifying methods and classes 

[164], not features. Therefore, we explore if feature coupling metrics can be used to find 

other features that are likely to be affected by a change to a feature undergoing modification 

by using defects identified in these features as an oracle. 

To evaluate feature coupling in the context of impact analysis, we use available bug data 

from two systems to compute the precision, recall, and £-measure of the relevant coupled 

features recommended by our metrics. The process can be described as follows. For a bug 

b, we create a set Fb = {!I, h, ... , fn} of features that all share the bug. That is, every 

feature in the set is associated with bug b. For each feature fi in Fb, we determine which 

other features from all of the system's features are coupled to fi by setting a threshold. For 

example, if the threshold is 0.5, then every feature that is coupled to fi with a metric value 

equal to or above 0.5 is included in a new set T. Then, precision and recall are computed 

with T being the retrieved set and Fb (excluding fi) as the relevant set. Precision is the 

ratio of the number of relevant features retrieved over the total number of features retrieved, 

while recall is computed as the number of relevant features retrieved divided by the total 

number of relevant features. The £-measure is the harmonic mean of precision and recall. 

For each bug b, we get precision, recall, and £-measure values. To get an overall measure 

of all bugs in the system, we summarize these precision, recall, and £-measure values using 

a macroevaluation averaging technique as in [247]. Macroevaluation means an average is 

taken of the values for all fi in Fb and then for all bugs in the system. These values were 
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Figure 5.4: Average f-measure of coupled features for various thresholds. 

computed for all threshold values with a step size of 0.05. 

Figure 5.4 shows the average f-measure for dbViz and Rhino, and Table 5.9 shows the 

average precision and recall values of SFC, TFC, and one version of HFC (So.5To.5) at 

various coupling thresholds with a step size of 0.05 in Rhino. These results are for the 

default corpus. Focusing on the Rhino results, the best precision for structural coupling 

is 78.4% with a recall of 24.8% at a threshold of 0.1, while the best recall is 30.2% with a 

precision of 77.9% at the 0.05 threshold, meaning at best slightly over three quarters of the 

candidate features are relevant, but only 25% to 30% of the relevant features are found. 

Textual coupling's best performance in terms of precision is 54.4% with a recall of 38.1% 

at the 0.3 threshold, while its best recall of 86% with 28.1% precision is at a threshold of 

0.05. The precision of SFC seems to increase and then level out as the threshold decreases. 

The precisions of both T FC and H FC increase until a certain point, then both decline, 
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Table 5.9: Precision and recall values for impact analysis of different metric thresholds in 
Rhino. The first value in a cell is precision, and the second is recall. 

Threshold SFC TFC HFC 

1 40%, 3% 5%, 1% 5%, 1% 
0.95 41%, 3% 5%, 1% 8%, 1% 

0.9 43%, 3% 8%, 1% 18%, 2% 
0.85 43%, 3% 17%, 2% 22%, 2% 

0.8 45%, 3% 18%, 3% 25%, 2% 
0.75 48%, 4% 24%, 5% 31%, 3% 

0. 7 50%, 4% 27%, 8% 35%, 4% 
0.65 53%, 5% 30%, 11% 42%, 5% 

0.6 58%, 7% 36%, 15% 48%, 6% 
0.55 60%, 8% 37%, 19% 52%, 7% 

0.5 66%, 9% 39%, 22% 57%, 8% 
0.45 67%, 9% 42%, 25% 61%, 9% 

0.4 71%, 10% 48%, 28% 66%, 10% 
0.35 72%, 10% 52%, 33% 69%, 15% 

0.3 75%, 13% 54%, 38% 68%, 22% 
0.25 75%, 14% 53%, 45% 70%, 30% 

0.2 77%, 17% 52%, 54% 68%, 39% 
0.15 77%, 20% 46%, 65% 63%, 46% 

0.1 78%, 25% 34%, 79% 55%, 60% 
0.05 78,% 30% 28%, 86% 34%, 80% 

likely due to the fact that the threshold is low enough that too many features are deemed 

textually coupled when they are not. SFC had the best precision overall but the worst 

recall. The precision for H FC generally fell below that of S FC but above T FC, and its 

recall is above T FC and below SFC. Therefore, using hybrid feature coupling is a good 

compromise between the two other metrics. For example, at a threshold of 0.1, HFC's 

precision is 55% and its recall is 60%. While feature coupling may not provide the best 

solution to the impact analysis problem, these results suggest that the metrics can still 

be useful. More research is needed to provide more practical techniques. However, these 

initial results are promising and comparable to some existing techniques on impact analysis 

based on structural and textual information [29, 164]. 

The precision and recall results also add weight to our claim that structural and textual 

feature coupling are complementary since their curves are different. We also executed the 

Kruskal-Wallis statistical test, a non-parametric alternative to the analysis of variance test, 

to assess if SFC and T FC are significantly different. At a significance level of 0.01, the 

test for both dbViz and Rhino show that SFC's and TFC's precision and recall values are 
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indeed significantly different. 

The results are better if individual metric thresholds in Table 5.9 are considered. For 

instance, TFC at a threshold of 0.2 has 52% precision and 54% recall (£-measure: 50%), 

meaning one in every two features deemed coupled to a feature of interest would be impacted 

by a change. If these values are not high enough, a mix of metrics and thresholds could be 

used to achieve better results. For example, SFC has 78% precision at threshold 0.1, and 

it could be combined with T FC's recall of 75% at the same threshold. 

The impact analysis results presented thus far have been for the default version of the 

corpus used to obtain textual information. We also investigate the use of feature coupling 

metrics for impact analysis using different corpora configurations (see Section 5.4.2) for the 

Rhino system. Figure 5.5 shows the average £-measure ofT FC for the various versions of 

the corpus. Recall that only textual information is affected by the corpus' configuration, 

so SFC remains the same across corpora. The graph indicates that the way in which a 

corpus is built does little to influence precision and recall for impact analysis, no matter 

the threshold. However, the corpus with comments and stemming typically has the highest 

precision and recall. Just as was observed with the Spearman correlation coefficients, the 

inclusion of comments yields better results. However, textual feature coupling still works 

well in cases where comments are missing. 

Finally, we study the effects of H FC's weights on precision, recall, and £-measure during 

feature level impact analysis. We provide only the results for the default corpora since the 

results for the other versions were similar. We select two metric thresholds that performed 

well for SFC and TFC (0.2 and 0.15) and calculate precision and recall of HFC for 

all weights with a step size of 0.05. Figure 5.6 shows the £-measure curves for H FC at 

a threshold of 0.2 (black lines) and 0.15 (gray lines). The x-axis denotes the structural 

weight. The corresponding textual weight is simply one minus the structural weight. 

The graph illustrates the effect of relying on one type of information another. Depending 

more heavily on structural information yields good precision at the cost of poor recall. 

Overall, using H FC produces better results than the standalone S FC and T FC metrics. 

Consider H FC with a structural weight of 0.2 and a textual weight of 0.8 at a threshold 

of 0.2. The precision is 51% and the recall is 55%. At the same threshold, SFC's precision 
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is 77%, but its recall is only 17%, so H FC is a better overall performer in this situation 

because its recall is much higher without sacrificing too much precision. Therefore, H FC 

helps alleviate those cases where the quality of either structural or textual information is 

low. 

5.4.4.1 Feature-Class Coupling 

There is a cost associated with computing feature coupling metrics: programmers must first 

identify the methods that implement a feature. They can use a feature location technique 

to do so. However, they may locate the implementations of only a subset of features in 

which they are interested instead of all of the features in the system. In this situation, 

programmers making changes to features may want to know which classes in the system 

may be affected by their changes. Therefore, we also investigated feature-class coupling. 

Instead of measuring the coupling between two features, these alternative metrics determine 

the degree of coupling between a feature and a class. Their definitions are similar to those 

of the feature coupling metrics given in Section 5.3, except instead of two features, one 

feature is replaced with a class and its methods. 

In the same way that we explored if feature coupling could be used for impact analysis, 

we also explored if feature-class coupling could be used to determine classes that would 

be affected by a change to a feature. Figure 5.7 shows the average £-measure of using 

feature-class coupling in Rhino. The results are based on randomly selecting 40 of Rhino's 

features (about 10% of the total number of features) and considering only those features' 

implementations to have been located. The coupling between these features and Rhino's 

classes was computed. The same criteria as explained in Section 5.4.4 was used to determine 

bugs shared by features and classes. The results in Figure 5.7 are an average of 10 randomly 

selected set of features. In the best case, feature-class coupling has an £-measure of 22%. 

Comparatively, the best £-measure of the feature coupling metrics was above 50%. Feature

class coupling is not as effective at determining what would be affected by a change as the 

feature coupling metrics. The difference is likely due to the fact that not every method in 

a class would be impacted by a change, so looking at class coupling is more noisy. Features 

have scattered implementations, so metrics that are designed specifically to account for this 
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Figure 5. 7: Average f-measure of feature-class coupling in Rhino. 

dispersion are more effective. 

5.4.5 Developer Study 

In the final part of our evaluation, we investigate if our feature coupling metrics align 

with developers' opinions of feature coupling. If the metrics indicate that two features are 

coupled and so do the majority of developers surveyed, then we can be confident in the 

utility of the measures. More formally, we formulate two hypotheses. 

H2 The null hypothesis is that there will be no consensus among the developers and 

the metrics about whether or not two features are coupled. 

H3 The alternative hypothesis is that the majority of developers will indicate that two 

features are coupled when the features' SFC or TFC values are high and that the features 

are not coupled when either metric is low. 

To test our hypotheses, we conduct a survey in which developers were asked to rate 

the strength of coupling among pairs of features. Below, we offer general details about the 

participants and the task they performed, as well as exploring the results of the survey. 

5.4.5.1 Programmers 

The respondents to our survey were 31 volunteer programmers from several different insti-

tutions. Twenty-three of the programmers were graduate students, one was an undergradu-
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ate, and seven were industry professionals. On average, they had 7.2 years of programming 

experience, 3.8 with Java, and 2.6 with Eclipse. Each volunteer was given a link to the 

survey's instructions and could complete it on their own time. The survey took 97 minutes 

to complete, on average. 

5.4.5.2 Task Description 

The programmers downloaded an Eclipse installation that was preloaded with our FLAT3 

plug-in and all the necessary source code. FLAT3 included mappings of features to code 

for selected features from Eaddy et al. 's [63] data sets. The programmers could click on 

a feature's name to see the methods associated with it and double click on a method to 

show its source code in the editor. The programmers were asked to consider the code of 

two features and rate whether the features were coupled. The responses varied according 

to a four-level Likert scale: "Strong No," "Weak No," "Weak Yes," or "Strong Yes." If 

a developer could not decide on a rating, they could respond "Unknown." The pairs 

of features included five from db Viz, six from Rhino, and five from iBatis. The exact 

instructions and pairs of features given to the participants can be found in Appendix C. 

5.4.5.3 Agreement Among the Participants and with the Metrics 

The survey is a rating of n subjects (the 16 feature pairs) by k raters (the 31 programmers). 

We tested if there was a sufficient amount of agreement among the developers' responses to 

be able to draw conclusions about the feature coupling metrics. To determine the amount of 

agreement among the raters, we designed our analysis in a fashion similar to [150] by using 

the intra-class correlation coefficient (ICC) [147]. We used ICC(A, 1), which calculates 

the agreement of all the raters, where each person rates each subject (feature pair). The A 

in ICC(A, 1) means it is an absolute agreement, and the one indicates the ratings are not 

an average. With the ratings stored in a matrix with feature pairs as the rows and raters 

as the columns, ICC(A, 1) is calculated as follows: 

MSr- MSc 
ICC(A, 1) = MS

7
• + (k- 1)MSe + kjn(MSc- A1Se) (5.9) 
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where k is the number of raters, M Sr is the mean square for rows, M Sc is the mean square 

for columns, and MSe is the mean square error. ICC(A, 1) relates the variance of the 

ratings of each feature pair to the overall variance. 

The ratings given by the developers were ordinal, but numeric data is required to 

compute ICC. Therefore, we transformed the ratings of "Strong No," "Weak No," "Weak 

Yes," and "Strong Yes" to the values 1, 2, 3, and 4 respectively. Five programmers gave 

a rating of "Unknown" for at least one feature pair. These "Unknown" responses were 

omitted in the calculation of ICC. The ICC(A, 1) of the programmers in our survey is 

0.45 (values can range from -1 to 1), meaning there is a moderate amount of agreement 

in their ratings of the pairs of features. We believe that there is enough concordance 

to be able to draw conclusions. The law of large numbers states that if the population 

sample is suitably large (between 30 to 50), then the central limit theorem applies even 

if the population is not normally distributed [208]. In our case, we have 31 participants, 

so the central limit theorem applies. While we had to remove some responses from the 

computation of ICC (replies of "Unknown"), the rest of our analyses are based on the 

responses of all 31 developers, so they can be considered significant. 

Knowing that the programmers have a sufficient amount of agreement about which 

feature pairs are coupled or not, we can examine if the developers' opinions support the 

feature coupling metrics. Figure 5.8(a), Figure 5.8(b), and Figure 5.8(c) summarize the 

number of developers that gave each rating for db Viz's, Rhino's, and iBatis' feature pairs, 

respectively. The height of each bar corresponds to the number of developers that gave 

the feature pair that rating. Note that each feature pair may not have the same number 

of total ratings because responses of "Unknown" are excluded. Each cluster of bars can be 

compared to the metric values in Table 5.10. For instance, the first group of bars in Figure 

5.8(a) corresponds to the pair dbViz #1, "Connect to database" and "Exit dbViz." 

When both SFC and TFC are low, the majority of responses are "Strong No," as can 

be seen by the first pair of features in db Viz. These features are to connect to a database 

and exit the program and have little in common, so low structural and textual coupling 

values are valid, as supported by the developers' ratings. Additionally, these features do 

not share any common bugs, which is further evidence that they are not coupled. 
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Table 5.10: Feature coupling values for the dbViz, Rhino, and iBatis feature pairs in the 
developer survey. Bug data was not available for iBatis. 

Features Pair SFC TFC Bugs 

Connect to database & Exit db Viz dbViz #1 0 0.03 0 
Autoarrange Diagram & Undo/Redo dbViz #2 0.07 0.06 0 
Import from database & Import from SQL dbViz #3 0.61 0.15 1 
Add table & Remove table dbViz #4 0.85 0.22 0 
Save/Load diagram & Load saved diagram dbViz #5 0.45 0.13 2 
Unary + operator & Addition operator Rhino #1 0.33 0.27 15 
Addition operator & Subtraction operator Rhino #2 0.71 0.28 17 
Date.prototype.toString & Rhino #3 0.75 0.74 2 
Date.prototype.valueOf 
Unicode format chars & ToPrimitive Rhino #4 0 0.08 0 
parselnt & parseFloat Rhino #5 0.4 0.46 2 
SQRT2 & Date.prototype.getTimezoneOffset Rhino #6 0 0.85 1 
Data Sources & JTA iBatis #1 0.08 0.42 NjA 
JBDC & JTA iBatis #2 0 0.44 NjA 
Query & Max Results iBatis #3 0.15 0.47 NjA 
Update & Autogenerated Keys iBatis #4 0 0 NjA 
SELECT & SQL Scripts iBatis #5 0 0.06 NjA 
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Another overall trend is that when SFC is high, most raters responded "Strong Yes." 

As an example of high structural coupling, consider the feature pair dbViz #3, "Import 

from database" and "Import from SQL file." These features are very similar in function and 

share a number of methods, so a high SFC value (0.61) makes sense, and the programmers' 

responses also support SFC being high. Furthermore, the two import features have a 

common bug, which also supports higher coupling between them. However, T FC between 

these two features is rather low (0.15) because the methods that are distinct to each feature 

have their own vocabulary. Since the metrics are low when most participants responded 

"Strong No" and high when the responses were "Strong Yes," we can reject H2, the null 

hypothesis, and support H3, the alternative hypothesis. 

One interesting case is the Rhino #6 feature pair. The two features are "SQRT2," the 

number value of the square root of two, and "Date.prototype.getTimezoneOffset" that gets 

the local time and UTC in minutes. There is no structural coupling between the features, 

but rather high textual coupling. The majority of responses for this feature pair were 

"Strong No" despite these two features having a high T FC value. Two options are possible: 

the features are not actually coupled and the high textual coupling is a coincidence, or the 

programmers did not pick up on the similarity in the two features' vocabularies because 

textual coupling is not as well known a concept as structural coupling. The two features do 

have a shared bug, but after reviewing the features' source code, the textual coupling seems 

to be artificial. "SQRT2" has two methods, and both of those methods' names happen to 

be the same as two of "Date. prototype.getTimezoneOffset" three methods. These methods 

perform similar parsing functionalities and use many of the same variable names, so high 

textual coupling in this case seems to be accidental. 

Another interesting case is the Rhino #5 feature pair: "parseint" and "parseFloat." 

SFC and TFC have approximately equal values which are both substantially greater than 

the average for each metric in Rhino. The developers are almost evenly split in their 

opinions of whether these two features are coupled, with a slight majority thinking they 

are coupled. The feature's coupling is also supported by the fact that they have two bugs in 

common. The developers' mixed ratings suggest that perhaps there is a coupling threshold, 

but that threshold varies from person to person. 
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Overall, the ratings given by the programmers seem to support our feature coupling 

metrics. This implies that the measures do capture the coupling between features. Gener

ally, the respondents' opinions support SFC more than TFC, but that may be due to the 

fact that textual coupling is a newer concept. 

5.4.6 Threats to Validity 

In this section, we discuss the main threats to the validity of our case studies and provide 

details on how we minimized these threats. 

5.4.6.1 Internal Threats to Validity 

Internal validity refers to the degree to which statements about cause and effect are valid. 

Since we use previously published data sets, we inherit all of the threats to validity asso

ciated with them. One internal threat of the data sets is the subjective manner in which 

methods were assigned to features. These facts limit the consistency of our results because 

different mappings would produce different results. However, since the data sets have been 

used and verified by other researchers [62, 63], these threats are minimized. Additionally, 

Spearman rank-order correlation can mitigate unreliable measurements as long as their 

relative order is correct [110]. Also, the Rhino data set has a large sample size (84,252 

feature pairs). The moderate and strong correlations observed are unlikely if the data is 

unreliable. Another threat we inherit from the data sets pertains to the assignment of 

bugs. As with any approach to mining software repositories, defects can potentially be 

mapped to wrong or missing methods if methods undergo a change in signature. Similarly, 

automated repository mining does not always provide a complete picture of a bug's history. 

It may lack social, technological, and organizational knowledge [6] or may be biased and 

only record a fraction of bug fixes [14]. 

Another threat related to the data sets is their granularity. Full methods are associated 

with features. However, only a small portion of the code in a method may actually pertain 

to a feature [118, 172]. Therefore, a finer level of granularity such as statements or basic 

blocks would be more accurate. Since we are not experts in any of the systems we studied, 

we made no attempts to refine the granularity of the data sets. 

155 



In our case studies, we observed a high correlation between feature coupling and defects, 

which may imply that feature coupling can serve as a predictor for faults. However, corre

lation values only measure goodness of fit, not predictive power. To better assess predictive 

power, we would need to perform some form of data splitting, such as ten-fold cross-fold 

validation, which is part of our future work. 

In the context of our survey, there are a number of threats to validity. First, the 

programmers' proficiency with Java and Eclipse is a threat because we did not select par

ticipants based on their familiarity with either technology. Some of the programmers had 

no experience with Java or Eclipse. By including programmers with little or no Java experi

ence in our survey, there is a danger that they made poor choices due to their unfamiliarity 

with the programming language. Another threat related to the programmers is their moti

vation. All the developers who participated were volunteers and received no compensation, 

so there was no motivation for them to perform well. On the other hand, there was no time 

pressure to complete the survey quickly because there was no time constraint. 

Two final threats to the validity of our survey pertain to the task the programmers 

were asked to complete. The participants were instructed to consider if two features were 

coupled in the context of performing a change task to either, leaving the task rather open

ended and general. However, it may be difficult to gauge the relationship between two 

features without a specific context. There could be changes made to a feature that affect 

the other one, but other changes made to the same feature may not affect the other feature. 

To avoid making a judgment about a specific change task, we kept the task general. 

5.4.6.2 External Threats to Validity 

External threats to validity limit the degree to which generalizations can be drawn from 

our results. We studied only three systems, one small and the other two medium in size. 

In future work, our feature coupling metrics will be validated on larger systems. However, 

the number of features studied in Rhino was large (411), and the feature coupling metrics 

of both systems had statistically significant correlations with bugs. While the systems 

are open-source, their development shares many characteristics in common with industrial 

systems such as the use of specifications, use cases, and change management systems. 
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Therefore, it is reasonable to expect that our results would hold for industrial software of 

similar sizes. All the systems we studied are written in Java. To see if our results are not 

language-specific, additional studies on systems written in other languages are needed. 

Concerning the survey we conducted, there are also threats to external validity. The 

majority of the programmers were graduate students, so the participants are not neces

sarily representative of all developers. However, some of our participants were industrial 

programmers, and in general, their responses aligned with those of the graduate students. 

5.5 Conclusion 

We have introduced novel metrics that capture feature-level coupling by using structural 

and textual information, filling a critical gap in the area of software measurement. We 

have theoretically validated our metrics and extended the unified framework for coupling 

measurement [25] with important new dimensions. Through our three-pronged evalua

tion, we have shown that these metrics are useful because they are good predictors of 

fault-proneness. Additionally, they have an application in feature-level impact analysis to 

determine if a change made to one feature may have undesirable effects on other features. 

Finally, based on the results of a survey of 31 developers asked to rate the strength of 

coupling between pairs of features, our metrics align with those ratings. Altogether, these 

results point to a solid conclusion that structural and textual feature coupling metrics are 

valid and useful tools for developers performing feature-level software maintenance. 

A secondary goal of this work was to discover the optimal way in which to obtain our 

metrics so developers can use them most efficiently. Both T FC and H FC can be com

puted under different configurations. Textual information can be mined based on several 

options (i.e., include comments, perform stemming). When available, external documenta

tion should be included in the corpus to boost textual similarities by adding more domain 

terminology and concepts. In the absence of external documentation, comments should 

be preserved. When combining structural and textual information for H FC, more weight 

should be placed on the stronger of the two sources to be able to better predict faults or 

perform impact analysis tasks. If the quality of the structural and textual information is 
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unknown, placing equal weight on each still performs well. 

We make all of the source code, data, and results of the case studies available and invite 

other researchers to replicate our work. 
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Chapter 6 

FLAT3: Feature Location and 

Textual Tracing Tool 

During software maintenance, it is very common for developers to search for source code 

that is relevant to their task. When their task pertains to modifying, extending, or adding 

functionality, their search is known as feature (or concept) location [5, 12]. For example, 

assume a developer working on an open source text editor needs to modify the file saving 

feature. The developer first needs to find the existing source code that implements file 

saving before she can make any changes. If the developer has never worked with this 

particular feature before, she will not know where to begin and may spend significant time 

and effort manually searching for the feature's source code before being able to make any 

changes. 

To aid developers in this situation, automated feature location techniques have been 

proposed to reduce the amount of time and effort spent searching for a feature's imple

mentation. Some of these approaches employ information retrieval (IR) to search a body 

of text, such as source code, for sections that are relevant [142]. Other techniques analyze 

dynamically-collected execution traces to identify a feature's implementation [76, 229]. IR 

and dynamic analysis have also been combined to form hybrid feature location techniques 

[5, 130]. 

To make these feature location approaches more accessible to developers, we have ere-
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ated FLAT3 , the Feature Location and Textual Tracing Tool1 . It is an Eclipse plug-in that 

supports three well-established feature location techniques2 : 1) information retrieval (IR), 

2) dynamic collection of execution traces, and 3) a combination of IR and dynamic trac

ing known as SITIR [130]. Feature location via IR involves textually searching a project's 

source for code that is similar to a query that describes a feature. Dynamic feature location 

entails running the software and invoking the feature of interest to capture a trace of the 

source code that was executed. FLAT3 also implements SITIR, which integrates textual 

and dynamic feature location techniques so that they can be used together effectively. 

In addition to providing support for multiple feature location techniques, FLAT3 also 

supports annotating and saving relevant search results. The tool permits developers to 

create and name features to which the source code implementing them can be linked. This 

feature mapping functionality allows developers to save their feature location results and 

avoids the need to repeatedly search for a given feature's implementation. It also allows 

developers to automatically compute feature coupling metrics. 

FLAT3 makes two significant contributions that current feature location tools do not 

provide. First, existing tools generally support one way of searching (i.e., IR only or 

dynamic tracing only). FLAT3 makes both theIR and dynamic techniques available, and it 

also integrates them. FLAT3 's second contribution is its feature annotation function which 

documents a feature's source code and can be used to compute metrics about features. 

While there are some tools that provide this tagging functionality [181, 184], they are not 

coupled with feature location techniques, and existing feature location tools do not provide 

mechanisms for saving the mappings of features to source code. FLAT3 is a complete suite 

of feature location, annotation, and visualization tools. 

6.1 FLAT3 

FLAT3 is implemented as an Eclipse plug-in. Figure 6.1 gives an overview of FLAT:l's 

architecture. The tool combines the functionality of several existing libraries and appli-

1 FLAT3 is available online at http: I /www. cs. wm. edu/ semeru/flat3/. 
2Part of the future work planned for FLAT3 is to have it implement the feature location techniques based 

on web mining introduced in Chapter 4. 
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Figure 6.1: Overview of the architecture of FLAT3 . 

cations. It uses information retrieval from the Lucene3 library to locate and rank code 

by similarity to a user's query. FLAT3 also uses MUTT4 to capture execution traces of 

feature-specific scenarios and test cases. FLAT3 's feature annotation capability is based 

on ConcernMapper5 and ConcernTagger6 , Eclipse plug-ins that allow for the creation of 

concern (feature) models and for source code to be linked to features. By integrating these 

existing tools, FLAT3 provides developers with a way to easily search for features' imple

mentations and annotate their findings for future reuse. Based on the annotations, FLAT3 

can also visualize the location of a feature's source code across a system's classes using a 

map metaphor similar to the one used in AspectBrowser7 . FLAT3 's features are described 

in detail below. 

6.1.1 Textual Feature Location 

The first way in which FLAT3 allows developers to perform feature location is textually. 

FLAT3 textually searches for a feature's source code by leveraging the Lucene information 

retrieval library. To use this functionality, developers open the FLAT3 Features view in 

Eclipse and click on the search toolbar button. This action opens a dialog box (See Figure 

3http://lucene.apache.org/java/docs/ 
4http://sourceforge.net/projects/muttracer/ 
5http://www.cs.mcgill.ca/-martin/cm/ 
6http://www1.cs.columbia.edu/-eaddy/concerntagger/ 
7http://cseweb.ucsd.edu/-wgg/Software/AB/ 
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Figure 6.3: FLAT3 's Search/Trace Results view with a list of classes, methods, and fields 
returned by Lucene sorted by similarity to a query. 

6.2) into which developers can enter a query that describes the feature they are trying to 

find, such as "file saving." After the query is issued, Lucene indexes Eclipse's workspace if it 

has not already been indexed. Indexing involves creating a document for each method and 

field consisting of all the words used in the method or field. Keywords and common stop 

words (e.g., "the" and "a") are removed. Also, words are split (e.g., "compoundldentifier" 

becomes "compound" and "identifier") and stemmed (e.g., "searching" becomes "search"). 

Each document is converted to a vector, as is the query. Then, all the document vectors 

are compared to the query vector to determine their similarity, and a score is assigned to 

each method or field based on that similarity. 

Figure 6.3 shows FLAT3 's Search/Trace Results view, listing the results returned by 

Lucene for the "file saving" query from the source code of jEdit, an open source text 

editor. The results include the method or field's name, class, a score of how similar it is 

to the query, it's fully qualified name, and any features with which it has been previously 
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annotated (not visible in the figure). The results are ordered by their relevance to the query. 

Developers can double click on a result to view that method or field's source code. If a 

result is deemed to be relevant to the feature of interest, it can be annotated in this view, 

as will be explained in Section 6.1.4. Developers can also refine their results by searching 

within the original results with a new query. 

6.1.2 Dynamic Feature Location 

In addition to textual feature location, developers can also use FLAT3 to locate features 

dynamically. This approach to feature location uses MUTT, a tracing tool based on the 

Java Platform Debugger Architecture8 (JPDA). MUTT runs a subject program on its own 

Java virtual machine and collects a trace of runtime method calls. What is unique about 

MUTT is the user can control when to turn tracing on and off with a button. 

To perform dynamic feature location in FLAT3 , developers first determine a scenario or 

test case that invokes the desired feature. For instance for the file saving feature, a scenario 

would be to start jEdit, open a file, make changes, save the file, and exit. To collect an 

execution trace, developers right click on the class that contains the project's main method 

and select "Trace with MUTT," as in the first part of Figure 6.4. This will launch the 

program along with a separate window with a start/stop button to control tracing, as in 

the second part of Figure 6.4. The start button should be clicked just before the feature 

is invoked, and tracing should be stopped just after the feature's behavior completes. All 

methods that were executed between the start and stop interval are collected in a trace. 

Once developers are done tracing, they can close the application and return to FLAT3 to 

find a listing of the methods executed by the scenario. The listing is very similar to Lucene's 

results (see Figure 6.3) with the exception that no similarity scores are given. Developers 

can browse these results to find relevant methods instead of searching the full source code 

of the system. Just as with Lucene's results, double clicking a method from the trace opens 

its source code for viewing. Traces can be saved and loaded again instead of having to be 

recollected, as shown in Figure 6.5. 

8http://java.sun.com/javase/technologies/core/toolsapis/jpda/ 
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Figure 6.4: Invoking MUTT on jEdit in Eclipse (1) and jEdit running with MUTT's 
tracing control button (2). 

Figure 6.5: The Feature view's toolbar buttons to refine a search, return to the original 
search, export a trace, import a trace, and visualize a feature or search results. 
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6.1.3 Integrated Feature Location 

FLAT3 allows for the integration of its two separate feature location techniques. Since 

dynamic feature location in FLAT3 is likely to return many methods, to narrow the results, 

it can be integrated with textual feature location following the SITIR approach [130]. After 

collecting an execution trace for a feature, IR is used to rank only the invoked methods 

instead of all of the methods in the system. In FLAT3 , after collecting a trace with MUTT, 

Lucene can be used to textually search only within the executed methods by clicking the 

"Refine Search" button. This opens a dialog in which developers can enter a query, causing 

Lucene to compute similarity scores for the methods in the trace as described in Section 

6.1.1. The methods are indexed beforehand, and only similarities are computed at this 

point. After the scores are calculated, developers are presented with a list of the trace's 

methods ranked by their similarity to the query. Combining two types of feature location 

techniques employs more sources of information to find a feature's implementation than 

a standalone approach. Dynamic tracing acts as a filter to IR by limiting the methods 

that are ranked to only those that are executed. This idea was first introduced in the 

PROMESIR approach [160] and further refined in SITIR [130]. 

6.1.4 Annotating Features 

Once a feature's source code has been found, it can be annotated and saved with FLAT3 . 

In the Features view, features can be created and given a name. Then classes, methods, 

and fields can be associated with a feature from any of the results views by right clicking 

on the method and selecting "Link" and the name of the feature to which the code belongs, 

as in Figure 6.6. Code can also be mapped to features through Eclipse's package explorer, 

outline view, and editor. Code can be mapped to multiple features. Once code has been 

linked to a feature, the feature's name appears in the search results, as in Figure 6. 7 where 

the method "Saver.Saver" has been tagged with the File Saving feature. 

Figure 6.8 shows the Features view, listing the code associated with the File Saving 

feature. A feature's methods are grouped hierarchically by class. FLAT3 also supports 

a hierarchy of features so that a feature can have child features, as shown in Figure 6.8, 
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where Save As is a child of the File Saving feature. Code can be removed from features by 

right clicking on them and selecting "Unlink" and the name of the feature. Features and 

their mappings are saved and can be revisited when FLAT3 is reopened. FLAT3 supports 

multiple feature domains so that features from different software systems can be kept 

separate. Saving the mappings of source code to features acts as a form of documentation, 

making it easier to keep track of and modify features and their implementations [182]. An 

additional benefit of annotating a feature's source code is that FLAT3 can automatically 

compute the feature coupling metrics defined in Chapter 5. 

6.1.5 Visualization 

FLAT3 also provides a visualization functionality that shows the distribution of a feature 

or search results across files. The visualization is accessible by right clicking on a feature 

and selecting "Visualize feature ... " or by clicking the "Visualize" button after obtaining 

results from Lucene or MUTT. FLAT3 uses the same map metaphor as AspectBrowser 

[96] to visualize the location of aspects in files. Figure 6.9 shows an example of the FLAT3 

visualization. Each box represents a class, and each row of pixels in a class' box corresponds 

to a section of code. If the row is highlighted in red, it means that code is associated with 

the feature or present in the search results. If Lucene's results are visualized, the shade 

of the row of pixels indicates the degree of similarity of that section of code to the user's 
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query. This visualization gives developers a global idea of where a feature of interest is 

implemented. 

6.2 Related Work 

FLAT3 is based on several existing tools. The Lucene library provides full-text searches, 

MUTT collects execution traces, and ConcernTagger and ConcernMapper [184]lend the 

ability to annotate and save feature mappings. These functionalities are integrated in 

FLAT3 . There are other existing tools that implement either feature location or annota

tions, but not both. IRiSS [163], JIRiSS [162], and Google Eclipse Search [166] are tools 

that support feature location via Latent Semantic Indexing (LSI) [59], an advanced IR 

method. FLAT3 relies on Lucene, so it is faster than LSI-based tools. While none of these 

tools allow for the saving of located feature code, FEAT [181] and ConcernTagger do. How

ever, these tools rely on manual feature location. There are several other feature location 

tools such as STRADA [69] which uses dynamic information; JRipples [35] and Suade [224] 

which use static analysis; Find-Concept [201] which uses natural language processing; and 

Dora [102] which uses textual and static analysis. However, FLAT3 is unique in that it 

combines textual and dynamic feature location with annotations and visualization. 

6.3 Conclusion 

FLAT3 is a novel tool suite for feature location and feature coupling. It is implemented 

as an Eclipse plug-in and combines the functionality of a number of existing tools in one 

easy-to-use application. FLAT3 allows developers to perform feature location textually and 

dynamically, to save their results for future reference, to visualize the dispersion of features 

or search results throughout a project, and automatically compute feature coupling metrics. 

Future work on FLAT3 includes incorporating feature location techniques based on web 

mining introduced in Chapter 4, making it more robust to be able to index large source 

code bases, trace larger programs, and save and update annotations for evolving programs. 
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Chapter 7 

Conclusion 

The motivation of this dissertation is to support feature-level software maintenance. Most 

maintenance tasks (e.g., bug reports) are expressed in terms offeatures, so supporting main

tenance at the feature-level is more user-oriented than traditional class-level approaches. 

Features also tend to have non-modularized implementations, meaning that locating them 

and determining the relationships between them is difficult. This dissertation has intro

duced novel methods for supporting two software maintenance tasks: feature location and 

impact analysis via feature coupling. 

Regarding feature location, this dissertation makes a number of contributions: 

• We have conducted a survey of published research articles related to feature location. 

The articles have been classified within a taxonomy that has nine dimensions. Each 

dimension captures an essential characteristic of feature location research. The survey 

can be used by both researchers and practitioners to discover useful approaches and 

potential avenues for future research. 

• We have completed an exploratory study of existing feature location techniques with 

the goal of determining how well the approaches locate multiple methods that are 

relevant to a feature. This study examined techniques that employ textual, dynamic, 

and static analyses. We explored different combinations of these analyses and differ

ent configurations of each. We found that existing feature location techniques can 

successfully locate one relevant method for a feature but rarely many more. These 

results led us to focus on developing new, more effective feature location techniques. 
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• We have introduced new feature location techniques that employ web mining algo

rithms to rank the methods executed in a trace and then use that ranking to filter 

false positives from the results of an IR-based approach. Our evaluation shows that 

pruning the bottom-ranked methods according to the HITS hubs algorithm is the 

most effective approach. Statistical analysis also shows that the improvement in 

effectiveness of our web mining approaches over the baseline is significant. 

• We have developed tool support for feature location. The tool, called FLAT3 , allows 

users to search for features textually and dynamically, annotate the results, and 

visualize their annotations. 

This dissertation also makes a number of contributions related to feature coupling: 

• We have developed feature coupling metrics based on structural information, textual 

information, and their combination. All existing coupling metrics are defined at the 

class-level, so our metrics are novel and fill a gap in the research area. 

• We have shown that there is a moderate to strong statistically significant correlation 

between our feature coupling metrics and defects. Just like with classes, the more 

coupled two features are, the more likely they are to have defects. 

• The feature coupling metrics can be used for impact analysis. If a modification is 

made to one feature, the metrics can be used to determine what other features may 

be affected. In our evaluation, we found that as many as half of the features deemed 

as coupled would be affected by a change to the given feature, and over half of the 

affected features are retrieved. 

• We conducted a survey with 31 programmers to determine if the feature coupling 

metrics indeed capture a recognizable relationship between features. The program

mers were asked to rate the strength of coupling between 16 pairs of features, and the 

results show that when the programmers rated the features as tightly coupled, the 

metrics' values were high, indicating stronger coupling. Likewise, when the program

mers rated the features as loosely coupled, the metrics' values were low, indicating 

an absence of coupling. 

• We have developed tool support for our metrics. The FLAT3 also supports the 

automatic computation of our feature coupling metrics from the annotations provided 
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by the user. 

In addition, all of the data generated in this dissertation is made publically available online 

so that other researchers can replicate this work. 

While the work presented in this dissertation shows promising results for the new feature 

location techniques and feature coupling metrics, there is still room for improvement in 

future work. In terms of feature location, there are several possible avenues. We have 

seen in two separate studies that feature location techniques do very well at locating one 

method that is relevant to a feature. However, features are often implemented by multiple 

methods, so approaches that more effectively locate more of a feature's source code are 

needed. Additionally, since the feature location techniques we have introduced make use 

of thresholds, an exploration of how to automatically select a threshold for a given feature 

is an area of future work. 

There are also a number of avenues for future work related to feature coupling. We can 

expand the metrics' definitions to include fields or to be more fine-grained than methods. 

We have shown that there is a statistically significant correlation between feature coupling 

and defects. However, correlation measures goodness of fit and not predictive power. Future 

work includes performing data splitting to assess the predictive power of the metrics. The 

metrics also need to be computed for more features in other types of software systems to 

determine their generalizability. 

In conclusion, this dissertation has introduced novel feature location techniques and 

feature coupling metrics to aid programmers performing software maintenance on features. 

We have shown these techniques and metrics to be effective and useful and envision that 

one day they may be widely adopted by software developers and maintainers. 
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Appendix A 

Classification of Feature Location 

Articles 

This appendix contains tables listing 1) the dimensions of the feature location taxonomy 

and their related attributes and 2) the surveyed papers classified within the taxonomy. 

A.l Dimensions of the Feature Location Taxonomy 

The feature location taxonomy has nine dimension. Section 2.1 of Chapter 2 discusses these 

dimensions, and Table A.1 lists each dimension and its associated attributes. 
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Dimension 

Type of 

Article 

Type of 

Analysis 

Source of 

Information 

Granularity 

Table A.l: Dimensions of the feature location taxonomy. 

Attribute 

Research (R) 

Tool (T) 

Case Study (CS) 

Dynamic (D) 

Static (S) 

Textual (T) 

Historical (H) 

Other (0) 

Source Code (SC) 

Documentation (Doc) 

Execution Trace (ET) 

Dependence Graph (DG) 

Repository (Rep) 

Other 

Class (C) 

Method (M) 

Statement (St) 

Variable (V) 

Artifact (A) 

Description 

The article introduces a new feature location technique. 

The article describes a tool that supports feature location. 

The article presents a case, industrial, or user study. 

Dynamic analysis is used to locate features. 

Static analysis is used to locate features. 

Textual analysis is used to locate features. 

Repository mining is used to locate features. 

Another type of analysis is used to locate features. 

Source code is used to locate features. 

Documentation is leveraged to find features. 

Execution information is used to locate features. 

Features are found using a dependency graph. 

Features are located by mining a repository. 

Another source of information is used for feature location. 

The classes related to a feature are found. 

The methods that implement a feature are identified. 

Statements, lines, or basic blocks associated with a feature are located. 

Variables relevant to a feature are located. 

Non-code artifacts are associated with features. 
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Dimension 

Programming 

Language 

Support 

Presentation 

of Results 

Evaluation 

Comparison 

Attribute 

Java 

CjC++ 

Other 

Ranked List (Ranked) 

Suggestion Set (Set) 

Visualization (Visual) 

Manual 

Preliminary (P) 

Benchmark (B) 

Expert (E) 

Non-expert (NE) 

ASDG 

DFT 

FCA 

grep 

LSI 

PROMESIR 

SPR 

Table A.l: (continued). 

Description 

The approach supports feature location in Java. 

The technique can find features for CjC++ systems. 

Feature location in some other language is supported. 

The located program elements are presented as a ranked list. 

The found program elements are presented as an unordered set. 

The located program elements are presented using a visualization. 

The feature location technique is a manual process. 

The evaluation is on small systems or preliminary evidence is given. 

The evaluation is based on a predetermined benchmark. 

System experts are used to evaluate the results. 

Non-experts are used to evaluate the results. 

Abstract System Dependence Graph [39] 

Dynamic Feature Traces [77] 

Formal Concept Analysis-based feature location [76] 

UNIX grep 

Latent Semantic Indexing-based feature location [142] 

Probabilistic Ranking of Methods based on Execution Scenarios and Information 

Retrieval [160] 

Scenario-based Probabilistic Ranking [5] 



...... 
---1 
CJ1 

Dimension 

Comparison 

(continued) 

Systems evaluated 

Attribute 

SR 

Suade 

Other 

None 

Table A.l: (continued). 

Description 

Software Reconnaissance [229] 

Suade Topology-based Search Tool [224] 

Comparison to another feature location technique. 

No comparison to any feature location approach. 

The software systems upon which the technique has been applied are listed. 



A.2 Classification of Surveyed Feature Location Articles 

Table A.2 classifies all of the feature location articles included in the survey in Chapter 2 

within the taxonomy defined in Table A.l. 
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Table A.2: Articles classified within the taxonomy. 

Article Analysis Info. Gran. Results Langs. Eval. Compared Systems Evaluated 

Antoniol 2006 [5] R D ET M Ranked Java, p grep, SR, Mozilla, Firefox, Chimera, 

C/C++ FCA XFig, ICEBrowser, JHot-

Draw 

Antoniol 2005 [4] R D ET M Ranked C/C++ p grep, FCA Mozilla 

Bohnet 2008 [24] T D, S ET,DG M Visual C/C++ p None (N/A) 

Bohnet 2008 [23] T D, S ET,DG M Visual C/C++ p None (N/A) 

Bohnet 2007 [22] T D, S ET,DG M Visual C/C++ p None (N/A) 

>-' 
Bohnet 2007 [21] T D, S ET,DG M Visual C/C++ p None gee 

.....:( 

.....:( 
Bohnet 2006 [20] T D, S ET,DG M Visual C/C++ p None Firefox 

Bohnet 2006 [19] T D, S ET,DG M Visual C/C++ p None LandXplorer Studio 

Buckner 2005 [35] T s DG M Visual Java NE None Art of Illusion 

Chen 2001 [38] R H Rep St Ranked C/C++ p None KDE 

Chen 2001 [40] T s DG M Visual C/C++ NE None Mosaic 

Chen 2000 [39] R s DG M Manual C/C++ p None Mosaic 
--

Cleary 2009 [45] R T SC, Doc M Set Java B Other Eclipse 

Cleary 2007 [44] R T SC, Doc M Set Java B Other Eclipse 

Cubranic 2005 [218] R H Rep A Ranked Java B, None Eclipse 

NE 



Table A.2: (continued). 

Article Analysis Info. Gran. Results Langs. Eval. Compared Systems Evaluated 

Cubranic 2004 [219] R H Rep A Ranked Java B None Eclipse 

Cubranic 2003 [217] R H Rep A Ranked Java B None Eclipse 
--

de Alwis 2008 [55] T S, D, H DG, ET, C,M Set .Java p None ArgoUML 

Rep 

de Alwis 2007 [56] cs S, D, H DG, ET, C,M Set Java NE JQuery, Fer- jEdit 

Rep ret, Suade 

Eaddy 2008 [62] R D, S, T SC, ET, C,M Set Java B LSI, SPR, Rhino 

...... DG DFT, SR 
---1 
00 

Edwards 2009 [66] R D ET St Set C/C++ p Other Apache httpd 

Edwards 2006 [65] R D ET M Ranked C/C++ p None Gunner, Joint STARS 
--

Egyed 2007 [69] T D ET M Visual Java p None ArgoUML, GanttProject, 

Video-on-Demand player 

Eisenbarth 2003 [76] R D, S ET,DG M Set Java, E None XFig, Mosaic, Chimera, Agi-

C/C++ lent 

Eisenbarth 2001 [75] R D, S ET,DG M Set C/C++ p None XFig 

Eisenbarth 2001 [74] R D, S ET,DG M Set C/C++ p None XFig 

Eisenbarth 2001 [73] R D, S ET,DG M Set C/C++ p None Mosaic, Chimera 



Table A.2: (continued). 

Article Analysis Info. Gran. Results Langs. Eval. Compared Systems Evaluated 

Eisenberg 2005 [77] R D ET M Ranked Java B SR HTMLUnit, HTTPUnit, Ax-

ion 

Gay 2009 [85] R T sc M Ranked Java B None jEdit, Eclipse, Adempiere 

Grant 2008 [90] R T sc M Ranked C/C++ p None cook 

Griswold 2000 [96] T T sc St Visual Icon p None wine2html 

Hill 2009 [103] R T sc M Ranked Java B Other Rhino, jajuk, jBidWatcher, 

javaHMO 

...... Hill 2007 [102] R S, T SC, DG M Set Java NE Suade GanttProject, jBidWatcher, 
-.:r co 

Freemind 

Ibrahim 2003 [105] cs D ET M Set C/C++ p None Generate Index 

Janzen 2003 [107] T s DG C,M Set Java p None Jin 

Ko 2006 [117] cs - Java NE None Paint 

Koschke 2005 [118] R D, S ET,DG St Set C/C++ p FCA sdcc, eel 

LaToza 2007 [123] cs - Java NE None jEdit 

Liu 2008 [129] R D,T SC,ET IVI Set Java B SITIR jEdit, Eclipse 
--

Liu 2007 [130] R D,T SC,ET M Ranked Java B LSI, SPR, jEdit, Eclipse 

PRO ME SIR 

Lukoit 2000 [133] T D ET M Visual C/C++ p None Joint STARS, Mosaic 



Table A.2: (continued). 

Article Analysis Info. Gran. Results Langs. Eval. Compared Systems Evaluated 

Marcus 2005 [141] cs S, T SC, DG M Ranked Java, NE grep, LSI, Art of Illusion, Doxygen 

C/C++ ASDG 

Marcus 2004 [142] R T sc M Ranked C/C++ NE ASDG, grep Mosaic 

Petrenko 2008 [157] R T sc M Set Java, NE None Eclipse, Mozilla 

C/C++ 

Poshyvanyk 2007 R D,T SC,ET M Ranked Java, B LSI, SPR Eclipse, Mozilla 

[160] C/C++ 

...... Poshyvanyk 2007 R T sc M Set Java B LSI Eclipse 
00 
0 [165] 

Poshyvanyk 2006 R D,T SC,ET M Ranked Java, B LSI, SPR Eclipse, Mozilla 

[159] C/C++ 

Poshyvanyk 2006 T T sc c Ranked Java p Other Violet, Art of Illusion 

[166] 

Poshyvanyk 2006 T T sc St Ranked Java p None (N/A) 

[162] 

Poshyvanyk 2005 T T sc St Ranked C/C++ p None vVinMerge, Doxygen 

[163] 

Ratiu 2007 [170] R S, T SC, DG C, M, Set Java p None Java standard library 

St 



Table A.2: (continued). 

Article Analysis Info. Gran. Results Langs. Eval. Compared Systems Evaluated 

Ratiu 2006 [169] R S, T SC, DG C, M, Set Java p None Java standard library 

St 

Revelle 2009 [173] cs D, S, T SC, ET, M Ranked Java NE LSI, SITIR, jEdit, Eclipse 

DG Other 

Revelle 2005 [172] cs 0 sc M Set Java, p None sort, Minesweeper 

C/C++ 

Robillard 2008 [176] R s DG M Ranked Java B,E, None jEdit, JHotDraw, Azureus, 

f-ooo' 
NE Violet, LOCC 

00 
f-ooo' 

Robillard 2008 [178] R H Rep M Set Java NE None Ant, Azure us, Hibernate, 

JDT-Core, JDT-UI, Spring, 

Xerces 

Robillard 2007 [182] R 0 sc M Manual Java NE None AVID, Jex, Redback, jEdit 
--

Robillard 2007 [183] cs 0 sc M Set Java NE None GanttProject, jajuk, jBid-

Watcher, Freemind 

Robillard 2005 [175] R s DG M Ranked Java p None JHotDraw, Azureus 
--

Robillard 2005 [184] T 0 sc M Set Java p None JHotDraw 
--

Robillard 2004 [177] cs - .Java NE None jEdit 

Robillard 2003 [180] R 0 Other M Set Java NE None jEdit, .JHotDraw 



Table A.2: (continued). 

Article Analysis Info. Gran. Results Langs. Eval. Compared Systems Evaluated 

Robillard 2003 [181] T s sc M Manual Java NE None (N/A) 

Robillard 2002 [179] R s sc M Manual Java NE None AVID, Jex, NSC 
--

Rohatgi 2009 [187] R D, S ET,DG c Ranked Java B None Checkstyle, Weka 
--

Rohatgi 2008 [186] R D, S ET,DG c Ranked Java B None Checkstyle 
--

Rohatgi 2007 [185] R D, S ET,DG c Ranked Java B None Weka 

Safyallah 2006 [190] R D ET M Set CJC++ p None XFig 

Shao 2009 [200] R S, T SC, DG M Ranked C/C++ p LSI iVistaDesktop 

f-' Saul 2007 [197] R s DG M Ranked CJC++ B, Suade Apache httpd 
00 
1:-.:> 

NE 

Shepherd 2007 [201] R T sc M Visual Java B Other jBidWatcher, javaHMO, ja-

juk, iReport 

Shepherd 2006 [204] R T sc M Visual Java B Other JHotDraw 

Simmons 2006 [207] cs D ET M Set CJC++ NE Other Apache httpd 

Trifu 2009 [215] R s DG v Set Java B None JHotDraw 
--

Trifu 2008 [214] R s DG v Set Java B None JHotDraw 

Van Geet 2009 [221] cs D ET M Set COBOL E None Belgian banking software 

Walkinshaw 2007 R s DG M Visual Java NE None JHotDraw, NanoXML, Free-

[222] mind 



Table A.2: (continued). 

Article Analysis Info. Gran. Results Langs. Eval. Compared Systems Evaluated 

Weigand-Warr 2008 T s DG M Ranked Java p None jEdit 

[224] 

Wilde 2003 [226] cs D, S ET,DG M Set FORTRAN NE ASDG, SR CONVERT3 

Wilde 2002 [230] R D ET M Set C/C++ p None FoodFight 

Wilde 2001 [225] cs D, S ET,DG M Set FORTRAN NE ASDG, SR CONVERT3 

Wilde 1996 [227] cs D ET M Set C/C++ E, None Visitor control program, 

NE graph display system, test 

...... coverage monitor 
00 
c.-;J 

Wilde 1995 [229] R D ET M Set C/C++ E None (N/A) 

Wilde 1992 [228] R D ET M Set C/C++ E None (N/A) 

Wong 1999 [234] R D ET St, V Set CJC++ E None SHARPE 

Xie 2006 [235] T T sc M Visual C/C++ p None (N/A) 

Zhao [244] 2006 R S, T SC, DG M Ranked C/C++ E None DC,UnRTF 

Zhao [243] 2004 R S, T SC,DG M Ranked C/C++ E None DC 



Appendix B 

Exploratory Study Instructions 

This appendix contains the instructions given to the participants of the exploratory study 

presented in Chapter 3. These instructions, along with the source code used in the study, 

can be found online at http:/ jwww.cs.wm.edu/semeru/data/icpc09-feature-locationjcase

study-instructions.html. 

B .1 Overview 

In this "experiment," you will investigate the relevance of methods to a particular feature 

from jEdit. You will be presented with several lists, each containing 10 methods, and asked 

to determine how relevant they are to the implementation of a feature. 

B.l.l System 

jEdit, version 4.3 pre16, is a programmer's text editor written in Java. 

B.1.2 Feature 

jEdit has a global option for configuring the cursor/caret to be "thick," i.e. two pixels wide 

instead of one pixel so it is easier to see. This global option can be set by going to Utilities 

---> Global Options---> Text Area and checking the box for "thick" next to the caret options. 

Then click "OK" or "Apply." 
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B.1.3 Running jEdit 

To run jEdit from the command line, type "java -jar jedit.jar" while in the build directory. 

On Windows, double clicking on the jedit.jar icon also works. 

B.2 Detailed Instructions 

1. Download and unzip the source code for jEdit 4.3prel6. 

2. Optionally, but highly recommended, create a new Java project in Eclipse using the 

jEdit source code. File --+ New --+ Java Project. Give the project a name, select 

"Create project from existing source," and browse to the unzipped jEdit code you 

downloaded. 

3. Download the lists of methods to inspect. 

4. For each method in the lists, classify its relevance to the thick caret global option 

feature as either Relevant, Somewhat Relevant, or Not Relevant. Use the following 

guidelines: 

(a) Method names that are similar to the words in the feature's description are 

good indicators of possibly relevant code, but the method's source code should 

be inspected to ensure the method is actually relevant to the feature. 

(b) Determine if the method is relevant to the feature by asking "Would it be useful 

to know that this method is associated with the feature if I had to modify the 

implementation of the feature in the future?" 

(c) If most of the code in the method seems relevant to the feature, classify the 

method as Relevant. If some code within the method seems relevant but other 

code in the method is irrelevant to the feature, classify the method as Somewhat 

Relevant. If no code within the method seems relevant to the feature, classify it 

as Not Relevant. 

(d) If unable to classify the method by reviewing its code, explore the method's 

structural dependencies, i.e. what methods call it and are called by it. If the 

185 



method's dependencies seem relevant, than the method probably is as well. In 

Eclipse, to find references to or the declaration of a method, right click on the 

method's name and select References ----. Project or Declaration ----. Project. 

(e) For any method you classify and are still hesitant about the classification you 

chose, please provide a brief one sentence explanation of your decision. 

5. Once you have decided your classification for a method, place an "X" in the row for 

the method under the appropriate column, as in the example below. 

Table B.l: An example of classifying methods. 

Relevant Somewhat Relevant Not Relevant 

package1.class1.method1 X 

package1.class1.method2 X 

package 1. class2. method 1 X 

package2.class3.method4 X 

package2 .class3.method5 X 

package2.class4.method6 X 

package3.class5.method 7 X 

package3.class5.method8 X 

package3.class5.method9 X 

package4.class6.method1 0 X 

6. Review your classifications one more time. Since the same method may appear in multiple 

lists, ensure it is classified consistently in every list. 

7. Return your results as an e-mail attachment when you are done. 
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Appendix C 

Feature Coupling Study 

Instructions 

This appendix contains the instructions given to the participants of the developer study on 

feature coupling presented in Chapter 5. These instructions, as well as the files necessary 

to follow them, are also available online at http:/ jwww.cs.wm.edu/semeru/data/feature-

coupling-study. 

C.l Instructions 

Thank you for volunteering your time to participate in this study. The time required 

to complete this task is approximately 1-2 hours. Feel free to take breaks if you need 

to, but try to keep track of the actual amount of time spent working on this study. A 

computer running Windows or Linux is required; unfortunately a piece of software used in 

the study does not work on Macs. All information that you provide will be kept strictly 

confidential. In this study, you will be asked to examine the source code of several pairs of 

features (behaviors or functionalities of a software system) and determine if the features are 

coupled to one another. In other words, you are being asked if there is some relationship 

or dependency between the two features. 

The Eclipse IDE (integrated development environment) will be used in this study. If 

you are unfamiliar with Eclipse, you may still participate in this study as it will primarily 
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be used to view source code files. 

Follow the instructions below to begin. 

1. Download the questionnaire and answer the first three questions about your program

ming experience. The questionnaire is available in PDF for participants who are at 

W&M and want to write their responses on a print-out. Otherwise, the questionnaire 

is available as an Excel spreadsheet or text file, and responses can be saved directly 

to the file. 

2. Download the appropriate file for your operating system (windows-study-files.zip, 

linux32-study-files.zip, or linux64-study-files.zip) which contains a copy of Eclipse 

that has been pre-loaded with all the necessary source code, plug-ins, and data you 

will need. 

3. Unzip study-files.zip to a convenient location which will be referred to as 

STUDY _HOME. 

4. Change directories to STUDY_HOME/eclipse and start Eclipse. 

5. As Eclipse is loading, you will be asked to select a workspace. Select 

STUDY _HOME/workspace and click "OK." 

6. If once Eclipse starts, a window pops up with the title "Usage Data Upload," you 

may select "Turn UDC feature off" and click Finish. 

7. Once Eclipse loads, you will see three projects listed on the left: db Viz, iBatis, and 

Rhino. You can ignore the fact that they have compilation errors. Right click on 

each individually and select "Refresh." Alternatively, you can select each project and 

press F5. By refreshing the projects, you ensure the files are in sync with the file 

system. 

8. Go to Window ---> Show View ---> Other ---> FLAT3 . Select "Features" and click ok. 

FLAT3 is a tool that among other things, manages the links between features and 

the source code that implements them. 
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9. In the view that was just opened, click the "View Menu" button in the FLAT3 view 

and select Open Concern Domain ---+ db Viz. 

10. db Viz is a tool for visualizing database tables in a format similar to UML diagrams. 

Listed in the FLAT3 view are some of dbViz's features and the methods associated 

with each. Clicking on a method's name takes you to that method's source code. 

11. For the following pairs of features, examine the code associated with each feature and 

answer the question "Are the two features coupled?" Answer either Strong No, Weak 

No, Weak Yes, Strong Yes, or Unknown. 

For example, two features could be coupled if a change to the code of one feature 

could impact the behavior or performance of the other feature. Base your answer 

on what you observe in the code of the two features, and please give some rationale 

for your answer. You may answer the questions in any order, and if in the course of 

the study you wish to change one of your previous answers because you gained more 

knowledge of the system, you may. 

Record your answers in the appropriate place on the questionnaire. 

Table C.l: The dbViz feature pairs. 

Feature 1 Feature 2 

Connect to Database Exit db Viz 

The user enters the location of the The user exits db Viz. 

database and authentication informa-

tion to connect to the database. 

Auto Arrange ER Diagram 

The tables in the diagram are automat

ically arranged. 

Import from Schema from Database 

The user provides the location of the 

database and authentication informa

tion to connect to the database and db

Viz loads the database's tables. 

Undo/Redo 

Undo the last command or redo a com

mand that has been undone. 

Import Schema from SQL 

The user provides the location of an sql 

file and db Viz loads the database's ta

bles. 
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Table C.1: (continued). 

Feature 1 Feature 2 

Add Table to ER Diagram Remove Table from ER Diagram 

The user adds a database table to the The user removes a database table from 

diagram. the diagram, and db Viz also removes 

any relationships to the table. 

Save/Load ER Diagram Load Saved ER Diagr·am 

The user saves the currently open dia- The user loads an existing diagram. 

gram and then loads another. 

12. Click the "View Menu" button in the FLAT3 view and select Open Concern Domain ---+ 

Rhino. 

13. Rhino is an open-source implementation of JavaScript written entirely in Java. It is typically 

embedded into Java applications to provide scripting to end users. Listed in the FLAT3 view 

are some of Rhino's features and the methods associated with each. Clicking on a method's 

name takes you to that method's source code. 

14. For the following pairs of features, examine the code associated with each feature and answer 

the question "Are the two features coupled?" Answer either Strong No, Weak No, Weak 

Yes, Strong Yes, or Unknown. Base your answer on what you observe in the code of the two 

features, and please give some rationale for your answer. You may answer the questions in 

any order, and if in the course of the study you wish to change one of your previous answers 

because you gained more knowledge of the system, you may. Record your answers on the 

same questionnaire as above. 

Table C.2: The Rhino feature pairs. 

Feature 1 Feature 2 

Unary + operator The Addition operator ( +) 

The unary operator converts its operand The addition operator performs string 

to the Number type. concatenation or numeric addition. 
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Table C.2: (continued). 

Feature 1 Feature 2 

The Addition operator ( +) The Subtraction Operator (-) 

The addition operator performs string The subtraction operator performs nu-

concatenation or numeric addition. meric subtraction. 

Date. prototype. to String Date. prototype. value Of 

Return a string value representing the Return a number which is the time 

date in the current time zone in human- value. 

readable form. 

Unicode Format- Control Characters To Primitive 

The characters in category "Cf" in the Convert a value to a non-object type. 

Unicode Character Database. 

parselnt par-seFloat Produce a number value die

Produce an integer value dictated by in- tated by interpretation of the contents 

terpretation of the contents of a string. of a string. 

S QRT2 Date. prototype. get TimezoneOffset 

The number values for the square root The difference between local time and 

of 2. UTC time in minutes. 

15. Click the "View Menu" button in the Features view and select Open Concern Domain --> 

iBatis. 

16. The iBatis Data Mapper framework makes it easier to use a database with Java and .NET 

applications. The iBatis project is heavily focused on the persistence layer frameworks known 

as SQL Maps and Data Access Objects (DAO). Listed in the FLAT3 view are some of Rhino's 

features and the methods associated with each. Clicking on a method's name takes you to 

that method's source code. 

17. For the following pairs of features, examine the code associated with each feature and answer 

the question "Are the two features coupled?" Answer either Strong No, Weak No, Weak 

Yes, Strong Yes, or Unknown. Base your answer on what you observe in the code of the two 

features, and please give some rationale for your answer. You may answer the questions in 

any order, and if in the course of the study you wish to change one of your previous answers 
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because you gained more knowledge of the system, you may. Record your answers on the 

same questionnaire as above. 

Table C.3: The iBatis feature pairs. 

Feature 1 Feature 2 

D~aSoore~ J~ 

Data sources manage connections to Java Transaction API (JTA) sped

databases. fies standard Java interfaces between a 

transaction manager and the parties in

volved in a distributed transaction sys

tem. 

mBC J~ 

The .Java Database Connectivity .Java Transaction API (JTA) speci

(JDBC) API is the industry standard fies standard Java interfaces between a 

for database-independent connectiv- transaction manager and the parties in

ity between the Java programming volved in a distributed transaction sys

language and a wide range of databases. tern. 

Query Max Results 

Execute a query on the database. The maximum number of records to re

turn. 

Update 

Execute an update on the database. 

SELECT 

Execute a select on the database. 

A utogenerated keys 

Automatically generate primary key 

fields. 

SQL Script 

Run an SQL script. 

18. You have completed the study. Please return your completed questionnaire. Thank you for 

participating. You may remove the files you downloaded for this study from your computer. 
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Appendix D 

List of Features 

This appendix contains lists of the names of the features from the various systems that 

were located in this dissertation's evaluations. 

D.l jEdit Features 

The features of jEdit used in the exploratory study presented in Chapter 3. 

Patch #1608486, Support for "Thick" Caret 

Patch #1818140, Edit History Text 

Patch #1923613, Reverse Regex Search 

Patch #1849215, Bracket Matching Enhancements 

D.2 Eclipse Features 

The features of Eclipse used in the exploratory study presented in Chapter 3. 

Bug #5138, Double-click-drag to select multiple words is broken 

Bug #31779, UnifiedTree should ensure file/folder exists 

Bug #19819, Add support for Emacs-style incremental search 

Bug #32712, Repeated error message when deleting and file is in use 
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The features of Eclipse used in the study presented in Chapter 4. To see the actual bug 

reports, go to https:/ /bugs.eclipse.org/bugs/show_bug.cgi?id=xxxxx, where xxxxx is one 

of the id numbers listed. 

54771 66182 66914 67821 

64498 66216 66923 67873 

64882 66234 66947 67913 

64887 66297 67168 67930 

64893 66357 67297 67944 

65074 66651 67314 68013 

65183 66819 67413 68117 

65217 66835 67427 68146 

65637 66858 67437 68157 

65704 66880 67468 

65948 66888 67716 

66157 66898 67789 

D.3 dbViz Features 

The features of db Viz used in the study in Chapter 5. The code associated with each of 

these features was determined manually by Eaddy et al. [61, 63]. The mappings can be 

found online at http:/ jwww.cs.columbia.eduj-eaddyjconcerntaggerj. 

Add Table to ER Diagram 

AutoArrange ER Diagram 

Connect To Database 

Exit dbViz 

Import Schema From Database 

Import Schema From SQL File 

Import Schema 
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Load Saved ER Diagram 

Print ER Diagram 

Remove Table From ER 

Save/LoadER Diagram 

Start dbViz 

Undo/Redo 

https://bugs.eclipse.org/bugs/show_bug.cgi?id=xxxxx
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D.4 Rhino Features 

All of the features listed below were used in the studies presented in Chapter 5. The features 

in boldface were used in the study in Chapter 4. The number before the feature's name in

dicates the section of the ECMAScript specification (third edition) that defines the feature. 

The specification can be found online at http:/ jwww.ecmascript.org/docs.php. The code 

associated with each of these features was determined manually by Eaddy et al. [61, 63]. 

The mappings can be found online at http:/ jwww.cs.columbia.edu/ -eaddy / concerntagger j. 

7.1 - Unicode Format-Control Char

acters 

7. 7 - Punctuators 

7.2- White Space 

7.3 - Line Terminators 

7.4 - Comments 

7.5.1- Reserved Words 

7.5.2- Keywords 

8.6 - Object Type 

7.5.3- Future Reserved Words 

7.6 - Identifiers 

7.8.1 - Null Literals 

7.8.2- Boolean Literals 

7.8.3- Numeric Literals 

7.8.4- String Literals 

7.8.5- Regular Expression Literals 

7.9.1- Rules of Automatic Semicolon 

Insertion 

8.1 - Undefined Type 

8.2 - Null Type 

8.3- Boolean Type 

8.4 - String Type 

8.5- Number Type 

8.6.1 - Property Attributes 
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8.6.2 - Internal Properties and Meth

ods 

8.7.1- GetValue 

8.7.2- PutValue 

9.1 - ToPrimitive 

9.2- ToBoolean 

9.3 - ToNumber 

9.3.1 - ToNumber Applied to String 

Type 

9.4- Tolnteger 

9.5 - Tolnt32 

9.6- ToUint32 

9.7- ToUint16 

9.8- ToString 

9.8.1 - ToString Applied to Number 

Type 

9.9 - ToObject 

10- Execution Contexts 

10.1.3 - Variable Instantiation 

10.1.4 - Scope Chain and Identifier 

Resolution 

10.1.5 - Global Object 

10.1.6 - Activation Object 

10.1.7- This 

http://www.ecmascript.org/docs.php
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10.1.8 - Arguments Object 

10.2- Entering An Execution Context 

10.2.1 - Global Code 

10.2.2 - Eval Code 

10.2.3 - Function Code 

11 - Expressions 

11.1 - Primary Expressions 

11.1.1 - this Keyword 

11.1. 2 - Identifier Reference 

11.1.3- Literal Reference 

11.1.4 - Array Initialiser 

11.1.5 - Object Initialiser 

11.1.6- Grouping Operator 

11.2- Left-Hand-Side Expressions 

11.2.1 - Property Accessors 

11.2.2 - new Operator 

11.2.3 - Function Calls 

11.2.4- Argument Lists 

11.2.5- Function Expressions 

12- Statements 

11.3.1 - Postfix Increment Operator 

11.3.2- Postfix Decrement Operator 

11.4- Unary Operators 

11.4.1 - delete Operator 

11.4.2- void Operator 

11.4.3- typeof Operator 

11.4.4 - Prefix Increment Operator 

11.4.5- Prefix Decrement Operator 

11.4.6- Unary PLUS Operator 

11.4. 7 - Unary MINUS Operator 

11.4.8- Bitwise NOT Operator 

11.4.9- Logical NOT Operator 

11.5- Multiplicative Operators 
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11.5.1 - Applying the MULTIPLY 

Operator 

11.5.2- Applying the DIVIDE Oper

ator 

11.5.3 - Applying the PERCENT 

Operator 

11.6- Additive Operators 

11.6.1 - Addition Operator 

11.6.2- Subtraction Operator 

11.6.3- Applying Additive Operators 

to Numbers 

11.7- Bitwise Shift Operators 

11.7 .1 - Left Shift Operator 

11.7 .2 - Signed Right Shift Operator 

11.7.3- Unsigned Right Shift Operator 

11.8 - Relational Operators 

11.8.1 - Less-than Operator 

11.8.2 - Greater-than Operator 

11.8.3 - Less-than-or-equal Operator 

11.8.4- Greater-than-or-equal Oper

ator 

11.8.6- instanceof Operator 

11.8. 7 - in Operator 

11.9- Equality Operators 

11.9.1 - Equals Operator 

11.9.2 - Does-not-equals Operator 

11.9.4- Strict Equals Operator 

11.9.5- Strict Does-not-equal Operator 

11.10 - Binary Bitwise Operators 

11.11 - Binary Logical Operators 

11.12- Conditional Operator 

11.13- Assignment Operators 

11.13.1- Simple Assignment 



11.13.2- Compound Assignment 

11.14 - Comma Operator 

12.1 -Block 

12.2 - Variable Statement 

12.3- Empty Statement 

12.4- Expression Statement 

12.5 - if Statement 

12.6- Iteration Statements 

12.6.1 - do-while Statement 

12.6.2 - while Statement 

12.6.3 - for Statement 

12.6.4 - for-in Statement 

12.7- continue Statement 

12.8- break Statement 

12.9 - return Statement 

12.10- with Statement 

12.11- switch Statement 

12.12 - Labelled Statements 

12.13 - throw Statement 

12.14 - try Statement 

13 - Function Definition 

13.2.1 - [[Call]] 

13.2.2 - [[Construct]] 

14- Program 

15- Native ECMAScript Objects 

15.1 - Global Object 

15.2 - Object Objects 

15.2.3 - Properties of Object Con

structor 

15.2.4 - Properties of Object Proto

type Object 

15.3 - Function Objects 

15.3.3- Properties of Function Con-
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structor 

15.3.4 - Properties of Function Pro

totype Object 

15.3.5 - Properties of Function Instances 

15.4 - Array Objects 

15.4.3 - Properties of Array Con

structor 

15.4.4 - Properties of Array Proto

type Object 

15.4.5 - Properties of Array Instances 

15.5 - String Objects 

15.5.3 - Properties of String Con

structor 

15.5.4 - Properties of String Proto

type Object 

15.5.5 - Properties of String Instances 

15.6 - Boolean Objects 

15.6.3 - Properties of Boolean Con

structor 

15.6.4- Properties of Boolean Proto

type Object 

15.7- Number Objects 

15. 7.3- Properties of Number Constructor 

15.7.4 - Properties of Number Pro

totype Object 

15.8 - Math Object 

15.9 - Date Objects 

15.9.4 - Properties of Date Constructor 

15.9.5- Properties of Date Prototype 

Object 

15.10- RegExp Objects 

15.10.1- Patterns 

15.10.2 - Pattern Semantics 



15.10.4- RegExp Constructor 

15.10.5 - Properties of RegExp Construc

tor 

15.10.6- Properties of RegExp Prototype 

Object 

15.10.7 - Properties of RegExp In

stances 

15.11 - Error Objects 

15.11.3- Properties of Error Constructor 

15.11.6- Native Error Types Used in This 

Standard 

16- Errors 

8.6.2.1- [[Get]] 

8.6.2.2- [[Put]] 

8.6.2.4 - [[HasProperty]] 

8.6.2.5 - [[Delete]] 

8.6.2.6- [[DefaultValue]] 

15.1.1.1- NaN 

15.1.1.2- Infinity 

15.1.1.3- undefined 

15.1.2.1 - eval 

15.1.2.2 - parseint 

15.1.2.3- parseFloat 

15.1.2.4 - isNaN 

15.1.2.5 - isFinite 

15.1.3.1 - decodeURI 

15.1.3.2- decodeURIComponent 

15.1.3.3- encodeURI 

15.1.3.4- encodeURIComponent 

15.1.4.1- Object 

15.1.4.2- Function 

15.1.4.3- Array 

15.1.4.4- String 
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15.1.4.5 - Boolean 

15.1.4.6- Number 

15.1.4.7- Date 

15.1.4.8- RegExp 

15.1.4.9- Error 

15.1.4.10- EvalError 

15.1.4.11 - RangeError 

15.1.4.12- ReferenceError 

15.1.4.13- SyntaxError 

15.1.4.14- TypeError 

15.1.4.15- URIError 

15.1.5.1- Math 

15.2.1.1 - Object() 

15.2.2.1 - new Object() 

15.2.3.1 - prototype 

15.2.4.1 - constructor 

15.2.4.2 - toString 

15.2.4.3 - toLocaleString 

15.2.4.4 - valueOf 

15.2.4.5 - hasOwnProperty 

15.2.4.6- isPrototypeOf 

15.2.4. 7 - propertylsEnumerable 

15.3.1.1 - Function() 

15.3.2.1- new Function() 

15.3.3.1 - prototype 

15.3.4.1 - constructor 

15.3.4.2 - toString 

15.3.4.3 - apply 

15.3.4.4 - call 

15.3.5.1 - length 

15.3.5.2 - prototype 

15.3.5.3 - [[Haslnstance]J 

15.4.1.1- Array() 



15.4.2.1- new Array( ... ) 

15.4.2.2 - new Array(len) 

15.4.4.1 - constructor 

15.4.4.2 - toString 

15.4.4.3 - toLocaleString 

15.4.4.4 - concat 

15.4.4.5 - join 

15.4.4.6 - pop 

15.4.4. 7 - push 

15.4.4.8 - reverse 

15.4.4.9 - shift 

15.4.4.10- slice 

15.4.4.11 - sort 

15.4.4.12 - splice 

15.4.4.13 - unshift 

15.4.5.1 - [[Put]] 

15.4.5.2 - length 

15.5.1.1 - String() 

15.5.2.1 -new String() 

15.5.3.2 - fromCharCode 

15.5.4.1 - constructor 

15.5.4.2 - toString 

15.5.4.3 - valueOf 

15.5.4.4- charAt 

15.5.4.5 - charCodeAt 

15.5.4.6 - concat 

15.5.4. 7 - indexOf 

15.5.4.8 - lastlndexOf 

15.5.4.10 - match 

15.5.4.11 - replace 

15.5.4.12- search 

15.5.4.13- slice 

15.5.4.14 - split 
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15.5.4.15 - substring 

15.5.4.16 - toLowerCase 

15.5.4.18- toUpperCase 

15.5.5.1 - length 

15.6.1.1- Boolean() 

15.6.2.1 - new Boolean() 

15.6.4.1 - constructor 

15.6.4.2 - toString 

15.6.4.3 - valueOf 

15.7.1.1- Number() 

15.7.2.1- new Number() 

15.7.3.2- MAX_VALUE 

15.7.3.3- MIN_VALUE 

15.7.3.4- NaN 

15.7.3.5- NEGATIVE_INFINITY 

15.7.3.6- POSITIVE_INFINITY 

15.7.4.1- constructor 

15. 7.4.2 - toString 

15.7.4.3- toLocaleString 

15.7.4.4- valueOf 

15. 7.4.5- toFixed 

15. 7.4.6 - toExponential 

15. 7.4. 7- toPrecision 

15.8.1.1- E 

15.8.1.2 - LN10 

15.8.1.3- LN2 

15.8.1.4- LOG2E 

15.8.1.5- LOGlOE 

15.8.1.6 - PI 

15.8.1.7- SQRTL2 

15.8.1.8 - SQRT2 

15.8.2.1 - abs 

15.8.2.2 - acos 



15.8.2.3 - asin 

15.8.2.4 - atan 

15.8.2.5 - atan2 

15.8.2.6 - ceil 

15.8.2. 7 - cos 

15.8.2.8 - exp 

15.8.2.9 - floor 

15.8.2.10 - log 

15.8.2.11 - max 

15.8.2.12 - min 

15.8.2.13 - pow 

15.8.2.14 - random 

15.8.2.15 - round 

15.8.2.16- sin 

15.8.2.17- sqrt 

15.8.2.18- tan 

15.9.1.2 - Day Number and Time within 

Day 

15.9.1.3- Year Number 

15.9.1.4- Month Number 

15.9.1.5 - Date Number 

15.9.1.6- Week Day 

15.9.1.7 - Daylight Saving Time Adjust

ment 

15.9.1.9- Local Time 

15.9.1.11 - MakeTime 

15.9.1.12- MakeDay 

15.9.1.13- MakeDate 

15.9.1.14- TimeClip 

15.9.2.1 - Date() 

15.9.3.1- new Date( ... ) 

15.9.3.2- new Date(value) 

15.9.3.3 - new Date() 
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15.9.4.2 - parse 

15.9.4.3 - UTC 

15.9.5.1 - constructor 

15.9.5.2 - toString 

15.9.5.3 - toDateString 

15.9.5.4 - toTimeString 

15.9.5.5 - toLocaleString 

15.9.5.6 - toLocaleDateString 

15.9.5. 7- toLocaleTimeString 

15.9.5.8 - valueOf 

15.9.5.9 - getTime 

15.9.5.10 - getFullYear 

15.9.5.11- getUTCFullYear 

15.9.5.12- getMonth 

15.9.5.13- getUTCMonth 

15.9.5.14- getDate 

15.9.5.15- getUTCDate 

15.9.5.16- getDay 

15.9.5.17- getUTCDay 

15.9.5.18- getHours 

15.9.5.19- getUTCHours 

15.9.5.20 - getMinutes 

15.9.5.21- getUTCMinutes 

15.9.5.22 - getSeconds 

15.9.5.23- getUTCSeconds 

15.9.5.24 - getMilliseconds 

15.9.5.25- getUTCMilliseconds 

15.9.5.26 - getTimezoneOffset 

15.9.5.27- setTime 

15.9.5.28 - setMilliseconds 

15.9.5.29- setUTCMilliseconds 

15.9.5.30 - setSeconds 

15.9.5.31- setUTCSeconds 



15.9.5.32 - setMinutes 

15.9.5.33 - setUTCMinutes 

15.9.5.34 - setHours 

15.9.5.35 - setUTCHours 

15.9.5.36 - setDate 

15.9.5.37- setUTCDate 

15.9.5.38 - setMonth 

15.9.5.39- setUTCMonth 

15.9.5.40 - setFullYear 

15.9.5.41 - setUTCFullYear 

15.9.5.42 - toUTCString 

15.10.2.1- Notation 

15.10.2.2- Pattern 

15.10.2.3- Disjunction 

15.10.2.4- Alternative 

15.10.2.5- Term 

15.10.2.6 - Assertion 

15.10.2.7- Quantifier 

15.10.2.8- Atom 

15.10.2.9- AtornEscape 

15.10.2.10- CharacterEscape 

15.10.2.11- DecimalEscape 

15.10.2.12 - CharacterClassEscape 

15.10.2.13- CharacterClass 

15.10.2.14- ClassRanges 

15.10.2.15- NonemptyClassRanges 

15.10.2.16- NonemptyClassRangesNoDash 

15.10.2.17- ClassAtom 

15.10.2.18- ClassAtomNoDash 

15.10.2.19- ClassEscape 

15.10.3.1- RegExp() 

15.10.4.1- new RegExp() 

15.10.6.1 - constructor 
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15.10.6.2 - exec 

15.10.6.3 - test 

15.10.6.4- toString 

15.10.7.1- source 

15.10.7.2- global 

15.10.7.3- ignoreCase 

15.10.7.4- multiline 

15.10.7.5- lastindex 

15.11.1.1 - Error() 

15.11.2.1- new Error() 

15.11.4.1- constructor 

15.11.4.2- name 

15.11.4.3- message 

15.11.4.4 - toString 

15.11.6.1- EvalError 

15.11.6.2- RangeError 

15.11.6.3- ReferenceError 

15.11.6.4- SyntaxError 

15.11.6.5- TypeError 

15.11.6.6- URIError 

15.11.7.1 - NativeError Constructors 

Called as Functions 

15.11.7.2- NativeError() 

15.11. 7.4 - New NativeError() 

15.11.7.5 - Properties of the NativeError 

Constructors 

15.11.7.6- NativeError.prototype 

15.11.7.7 - Properties of the NativeError 

Prototype Objects 

15.11. 7.8- NativeError.prototype.constructor 

15.11.7.9- NativeError.prototype.name 

15 .11. 7.10 - N ativeError. prototype.message 



D.5 iBatis Features 

The features of iBatis used in the study in Chapter 5. The code associated with each of 

these features was determined manually by Eaddy et al. [61, 63]. The mappings can be 

found online at http:/ jwww.cs.columbia.edu/ -eaddy / concerntagger /. 

Statements 

DataSources 

JDBC 

DBCP 

JNDI 

SimpleDataSource 

Statement Types 

Query 

SELECT 

Update 

INSERT 

UPDATE 

DELETE 

Auto-GeneratedKeys 

StoredProcedures 

Arbitrary 

ComposingSQL 

GlobalVariableSubstitution 

DynamicFragments 

Blocks 

Propertyid 

Conditionals 

isProperty Available 

isNotProperty Available 

isNull 

isNotNull 

isEmpty 

isNotEmpty 
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isParameter Present 

isN otParameter Present 

ComparePropertyid 

Compare Value 

isEqual 

isNotEqual 

isG reaterThan 

is Greater Equal 

IsLessThan 

isLessEqual 

Iteration 

Prepend 

RemoveFirstPrepend 

Open 

Close 

Conjunction 

SQLFragments 

ParameterTypes 

PrimitiveTypes 

boolean 

byte 

short 

int 

long 

Collections 

JavaBeans 

Caching 

CacheModel 

http://www.cs.columbia.edu/~eaddy/concerntagger/


CacheFl ushing 

Flushlnterval 

FlushTl.'iggers 

Mutability 

Serializability 

'n·ansactions 

Automatic'n·ansactions 

Batches 

Configuration 

Config 

SQLMap 

G lo balPro perties 

Namespaces 

Aliases 

Resources 

Classes 

Files 

Streams 

Readers 

Properties 

URLs 

.JTA 

Logginglmplementations 

Tl.'ansactionManagers 

Timeout 

U serTl.' ansactions 

EXTERNAL 

MaxReq uests 

MaxSessions 

MaxTl.'ansactions 

float 

In-Memory 

WEAK 
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SOFT 

STRONG 

LRU 

FIFO 

OSCACHE 

java.sql.Connection 

java.sql.PreparedStatement 

Log4J 

java.sql.ResultSet 

java.sql.Statement 

J akartaCommonsLogging 

JDKLogging 

JDBC.Driver Property 

JDBC. Connection URLProperty 

JDBC.UsernameProperty 

JDBC.PasswordProperty 

JDBC .DefaultA utoCommitProperty 

Pool.MaximumActiveConnectionsProperty 

Pool.MaximumldleConnectionsProperty 

Pool.MaximumCheckoutTimeProperty 

Pool. Time To WaitProperty 

Pool.PingQueryProperty 

Pool.PingEnabledProperty 

Pool.PingConnectionsO lderThanProperty 

PooLPingConnectionsN ot U sedFor Property 

Driver. *Property 

Scripts 

XML 

Arrays 

Lists 

Maps 

MappinglnputParameterstoSQL 

InlineParameters 



InlineParameterSyntax 

Parameter Mapping 

CustomTypeHandlers 

NumericScale 

MappingOutputParametersfromSQL 

ResultMapping 

ResultMaplnheritence 

ResultMapAggregation 

N estedSelects 

Group By 

Col umnldentifiers 

NullValueSubstitution 

CustomRowHandlers 

ByteCodeGeneration 

Class Caching 

RequestCaching 

StatementCaching 

XMLSyntax 

Lazy Loading 

SQLMapActivity 
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NullLogger 

SQLScripts 

Profiling 

Testing 

Error Handling 

SimpleFl'agments 

ParameterClasses 

ResultSetType 

Input 

Output 

Result Sets 

FetchSize 

StatementExecution 

Queryl:l 

Queryl:N 

MaxResults 

IsolationLevel 

Sessions 

Connections 
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