55 research outputs found

    GeneaLog: Fine-Grained Data Streaming Provenance at the Edge

    Get PDF
    Fine-grained data provenance in data streaming allows linking each result tuple back to the source data that contributed to it, something beneficial for many applications (e.g., to find the conditions triggering a security- or safety-related alert). Further, when data transmission or storage has to be minimized, as in edge computing and cyber-physical systems, it can help in identifying the source data to be prioritized.The memory and processing costs of fine-grained data provenance, possibly afforded by high-end servers, can be prohibitive for the resource-constrained devices deployed in edge computing and cyber-physical systems. Motivated by this challenge, we present GeneaLog, a novel fine-grained data provenance technique for data streaming applications. Leveraging the logical dependencies of the data, GeneaLog takes advantage of cross-layer properties of the software stack and incurs a minimal, constant size per-tuple overhead. Furthermore, it allows for a modular and efficient algorithmic implementation using only standard data streaming operators. This is particularly useful for distributed streaming applications since the provenance processing can be executed at separate nodes, orthogonal to the data processing. We evaluate an implementation of GeneaLog using vehicular and smart grid applications, confirming it efficiently captures fine-grained provenance data with minimal overhead

    FireDeX: a Prioritized IoT Data Exchange Middleware for Emergency Response

    Get PDF
    International audienceReal-time event detection and targeted decision making for emerging mission-critical applications, e.g. smart fire fighting, requires systems that extract and process relevant data from connected IoT devices in the environment. In this paper, we propose FireDeX, a cross-layer middleware that facilitates timely and effective exchange of data for coordinating emergency response activities. FireDeX adopts a publish-subscribe data exchange paradigm with brokers at the network edge to manage prioritized delivery of mission-critical data from IoT sources to relevant subscribers. It incorporates parameters at the application, network, and middleware layers into a data exchange service that accurately estimates end-to-end performance metrics (e.g. delays, success rates). We design an extensible queueing theoretic model that abstracts these cross-layer interactions as a network of queues, thereby making it amenable for rapid analysis. We propose novel algorithms that utilize results of this analysis to tune data exchange configurations (event priorities and dropping policies) while meeting situational awareness requirements and resource constraints. FireDeX leverages Software-Defined Networking (SDN) methodologies to enforce these configurations in the IoT network infrastructure. We evaluate its performance through simulated experiments in a smart building fire response scenario. Our results demonstrate significant improvement to mission-critical data delivery under a variety of conditions. Our application-aware prioritization algorithm improves the value of exchanged information by 36% when compared with no prioritization; the addition of our network-aware drop rate policies improves this performance by 42% over priorities only and by 94% over no prioritization

    Efficient Renaming in Sequence CRDTs

    Get PDF
    International audienceTo achieve high availability, large-scale distributed systems have to replicate data and to minimise coordination between nodes. Literature and industry increasingly adopt Conflict-free Replicated Data Types (CRDTs) to design such systems. CRDTs are data types which behave as traditional ones, e.g. the Set or the Sequence. However, unlike traditional data types, they are designed to natively support concurrent modifications. To this end, they embed in their specification a conflict-resolution mechanism. To resolve conflicts in a deterministic manner, CRDTs usually attach identifiers to elements stored in the data structure. Identifiers have to comply with several constraints, such as uniqueness or belonging to a dense order. These constraints may hinder the identifiers' size from being bounded. As the system progresses, identifiers tend to grow. This inflation deepens the overhead of the CRDT over time, leading to performance issues. To address this issue, we propose a new CRDT for Sequence which embeds a renaming mechanism. It enables nodes to reassign shorter identifiers to elements in an un-coordinated manner. Experimental results demonstrate that this mechanism decreases the overhead of the replicated data structure and eventually limits it

    Approaches to Conflict-free Replicated Data Types

    Full text link
    Conflict-free Replicated Data Types (CRDTs) allow optimistic replication in a principled way. Different replicas can proceed independently, being available even under network partitions, and always converging deterministically: replicas that have received the same updates will have equivalent state, even if received in different orders. After a historical tour of the evolution from sequential data types to CRDTs, we present in detail the two main approaches to CRDTs, operation-based and state-based, including two important variations, the pure operation-based and the delta-state based. Intended as a tutorial for prospective CRDT researchers and designers, it provides solid coverage of the essential concepts, clarifying some misconceptions which frequently occur, but also presents some novel insights gained from considerable experience in designing both specific CRDTs and approaches to CRDTs.Comment: 36 page

    Interim research assessment 2003-2005 - Computer Science

    Get PDF
    This report primarily serves as a source of information for the 2007 Interim Research Assessment Committee for Computer Science at the three technical universities in the Netherlands. The report also provides information for others interested in our research activities

    Byzantine state machine replication for the masses

    Get PDF
    Tese de doutoramento, Informática (Ciência da Computação), Universidade de Lisboa, Faculdade de Ciências, 2018The state machine replication technique is a popular approach for building Byzantine fault-tolerant services. However, despite the widespread adoption of this paradigm for crash fault-tolerant systems, there are still few examples of this paradigm for real Byzantine fault-tolerant systems. Our view of this situation is that there is a lack of robust implementations of Byzantine fault-tolerant state machine replication middleware, and that the performance penalty is too high, specially for geo-replication. These hindrances are tightly coupled to the distributed protocols used for enforcing such resilience. This thesis has the objective of finding methodologies for enhancing robustness and performance of state machine replication systems. The first contribution is Mod-SMaRt, a modular protocol that preserves optimal latency in terms of the communications steps exchanged among processes. By being a modular protocol, it becomes simpler to validate and implement, thus resulting in greater robustness; by also preserving optimal message-exchanges among processes, the protocol is capable of delivering desirable performance. The second contribution is concerned with implementing Mod-SMaRt into BFTSMART, a reliable and high-performance codebase that was maintained and improved over the entire course of the PhD that offers multicore-awareness, reconfiguration support, and a flexible API. The third contribution presents WHEAT, a protocol derived from Mod-SMaRt that uses optimizations shown to be effective in reducing latency via a practical evaluation conducted in a geo distributed environment. We additionally conducted an evaluation of both BFT-SMART and WHEAT applied to a relational database middleware and an ordering service for a permissioned blockchain platform. These evaluations revealed encouraging results for both systems and validated our work conducted in the geo-distributed context.A técnica de replicação máquina de estados é um paradigma popular usado em vários sistemas distribuídos modernos. No entanto, apesar da adoção deste paradigma em sistemas reais tolerantes a faltas por paragem, ainda existem poucos exemplos de sistemas reais tolerantes a faltas bizantinas. Segundo a nossa experiência nesta área de investigação, isto deve-se ao fato de existirem poucas concretizações robustas para replicação máquina de estados tolerante a faltas bizantinas, assim como uma perda de desempenho demasiado elevada, especialmente em ambientes geo-replicados. A razão fundamental para a existência destes obstáculos vem dos protocolos distribuídos necessários para assegurar este tipo de resiliência. Esta tese tem como objetivo explorar metodologias para a robustez e eficiência da replicação máquina de estados. A primeira contribuição da tese é o algoritmo Mod-SMaRt, um protocolo modular que preserva latência ótima em termos de passos de comunicação executados pelos processos. Sendo um protocolo modular, torna-se mais simples de validar e concretizar, o que resulta em maior robustez; ao preservar troca de mensagens ótima entre processos, também é capaz de entregar um desempenho desejável. A segunda contribuição consiste em concretizar o protocolo Mod SMaRt na ferramenta BFT-SMART, uma biblioteca fiável de alto desempenho, mantida e melhorada ao longo de todo o período correspondente ao doutoramento, capaz de suportar arquiteturas multi-núcleo, reconfiguração do grupo de réplicas, e uma API de programação flexível. A terceira contribuição consiste em um protocolo derivado do Mod-SMaRt designado WHEAT, que usa otimizações que demostraram serem eficientes na redução da latência segundo uma avaliação prática em ambiente geo-replicado. Adicionalmente, foram também realizadas avaliações de ambos os protocolos quando aplicados num middleware para base de dados relacionais, e num serviço de ordenação para uma plataforma blockchain. Ambas as avaliações revelam resultados encorajadores para ambos os sistemas e validam o trabalho realizado em contexto geo-distribuído.Projeto IRCoC (PTDC/EEI-SCR/6970/2014); Comissão Europeia, FP7 (Seventh Framework Programme for Research and Technological Development), projetos FP7/2007-2013, ICT-25724

    A Framework for Model-Driven Development of Mobile Applications with Context Support

    Get PDF
    Model-driven development (MDD) of software systems has been a serious trend in different application domains over the last 15 years. While technologies, platforms, and architectural paradigms have changed several times since model-driven development processes were first introduced, their applicability and usefulness are discussed every time a new technological trend appears. Looking at the rapid market penetration of smartphones, software engineers are curious about how model-driven development technologies can deal with this novel and emergent domain of software engineering (SE). Indeed, software engineering of mobile applications provides many challenges that model-driven development can address. Model-driven development uses a platform independent model as a crucial artifact. Such a model usually follows a domain-specific modeling language and separates the business concerns from the technical concerns. These platform-independent models can be reused for generating native program code for several mobile software platforms. However, a major drawback of model-driven development is that infrastructure developers must provide a fairly sophisticated model-driven development infrastructure before mobile application developers can create mobile applications in a model-driven way. Hence, the first part of this thesis deals with designing a model-driven development infrastructure for mobile applications. We will follow a rigorous design process comprising a domain analysis, the design of a domain-specific modeling language, and the development of the corresponding model editors. To ensure that the code generators produce high-quality application code and the resulting mobile applications follow a proper architectural design, we will analyze several representative reference applications beforehand. Thus, the reader will get an insight into both the features of mobile applications and the steps that are required to design and implement a model-driven development infrastructure. As a result of the domain analysis and the analysis of the reference applications, we identified context-awareness as a further important feature of mobile applications. Current software engineering tools do not sufficiently support designing and implementing of context-aware mobile applications. Although these tools (e.g., middleware approaches) support the definition and the collection of contextual information, the adaptation of the mobile application must often be implemented by hand at a low abstraction level by the mobile application developers. Thus, the second part of this thesis demonstrates how context-aware mobile applications can be designed more easily by using a model-driven development approach. Techniques such as model transformation and model interpretation are used to adapt mobile applications to different contexts at design time or runtime. Moreover, model analysis and model-based simulation help mobile application developers to evaluate a designed mobile application (i.e., app model) prior to its generation and deployment with respected to certain contexts. We demonstrate the usefulness and applicability of the model-driven development infrastructure we developed by seven case examples. These showcases demonstrate the designing of mobile applications in different domains. We demonstrate the scalability of our model-driven development infrastructure with several performance tests, focusing on the generation time of mobile applications, as well as their runtime performance. Moreover, the usability was successfully evaluated during several hands-on training sessions by real mobile application developers with different skill levels
    corecore