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1 Introduction

Cloud computing has become a prominent feature of the modern computing landscape. In-
dustry analysts predict that almost 30% of total IT expenditure will shi to the cloud by 2022,
while the global cloud market will reach $330 billion in annual revenues in 2022, attaining
a compound annual growth rate of 12.6% between 2018 and 2022 [55, 56]. Cloud computing
is a model in which providers own and manage con�gurable computing resources (e.g., net-
works, servers, storage, applications, services), and customers access them on demand, typi-
cally on a pay-per-use basis. ¿emodel brings bene�ts to both providers and customers [125].
Providers pool and share computing resources amongmultiple customers, which leads to in-
creased resource utilisation and reduced costs of resource provision. Customers obtain and
release resources on demand while paying only for actual resource use, which leads to re-
duced costs of using resources. To optimise the value that providers and customers draw
from the cloud, these actors must continuously manage cloud resources and applications in
response to changes in their operating environments.
¿is document presents my research activities conducted between 2009 and 2019 within

the MYRIADS project-team (IRISA and Inria Rennes – Bretagne Atlantique) focused on
cloud management. ¿e overall goal of these activities was to develop methods and tools to
assist cloud actors in managing cloud resources and applications in line with their objectives.
¿is chapter is structured as follows. First, Section 1.1 presents an overview of cloud com-

puting concepts and related technology and business aspects. Section 1.2 then discusses the
main research challenges that guided my research. Finally, Section 1.3 summarizes my re-
search activities and outlines the remainder of this document.

1.1 Cloud Computing

We present next some fundamental aspects of cloud computing in order to establish a com-
mon, basic vocabulary.
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1 Introduction

1.1.1 Concepts

¿is document adopts the de�nition of cloud computing provided by NIST [99]:

Cloud computing is a model for enabling ubiquitous, convenient, on-demand net-
work access to a shared pool of con�gurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management e�ort or service provider interaction.

According to NIST, the essential characteristics of the cloud computing model are as fol-
lows:

• On-demand self-service—cloud customers can provision computing capabilities, such
as server time and network storage, automatically, without requiring human interac-
tion.

• Broad network access—capabilities are available over the network and accessed through
heterogeneous client platforms, such as mobile devices and workstations.

• Resource pooling—provider resources are pooled to serve multiple customers.
• Rapid elasticity—capabilities can be rapidly provisioned and released in response to
demand.

• Measured service—resource usage is continuouslymonitored, controlled and reported.

¿e services provided by cloud providers are classi�ed as follows:

• So ware-as-a-Service (SaaS)—customers access applications running on the provider’s
infrastructure; customers have no control over these applications or the infrastructure.

• Platform-as-a-Service (PaaS)—customers deploy on the provider’s infrastructure ap-
plications created or acquired by customers; customers have control over the deployed
applications, but not over the underlying infrastructure.

• Infrastructure-as-a-Service (IaaS)—customers provision fundamental computing re-
sources (e.g., processing, storage, and network resources) in order to deploy and run
arbitrary so ware, including applications and operating systems.

We use the general term cloud system (or cloud) to describe a system that o�ers cloud
services. Note that cloud systems may o�er services to one another. For example, a SaaS
systemmay use services provided by a PaaS system that in turn uses services provided by an
IaaS system.
A cloud provider (or provider) is a person or organisation that owns and operates a cloud

to provide cloud services. A cloud customer (or customer) is a person or organisation that
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1.1 Cloud Computing

uses a cloud. For example, a cloud customer may deploy cloud applications on a PaaS or IaaS
system (but not a SaaS).
We distinguish the following models of deploying and using clouds:

• Private cloud—a cloud available for exclusive use by a single organisation.
• Community cloud—a cloud available for use by a speci�c community of consumers.
• Public cloud—a cloud open to use to the public.
• Hybrid-cloud—a combination of multiple, independent clouds enabling data and ap-
plication portability. Hybrid clouds may be used to support cloud bursting; that is,
allowing applications that run in a private cloud to burst out into public clouds, when
needed. ¿e related concept ofmulti-cloud (or, cross-cloud) refers to a customer using
multiple clouds at the same time.

1.1.2 Technology and Business Aspects

¿e main enabling technology of cloud computing is virtualisation, which enables the cre-
ation of virtual resources by multiplexing physical resources. A common form of virtualisa-
tion creates virtual machines (VMs) that emulate physical machines and execute operating
systems. VMs are composed of virtual resources (e.g., memory, CPU, storage). VMs and
virtual resources are typically the computing resources delivered by IaaS clouds.
Virtualisation brings several technical bene�ts. First, it facilitates sharing physical infras-

tructures among multiple users while isolating users from each other. Second, it introduces
�exibility in resource management. For example, it enables modifying the resource alloca-
tions of VMs in a �ne-grained manner (e.g., modifying the memory of a VM) as well as
migrating VMs between physical machines. ¿ird, it enables encapsulating applications in
isolated packages with customised so ware stacks.
A core feature of cloud computing is the delivery of computing resources as a service.

Customers select cloud services based on the provided qualities of service (QoS) and prices.
QoS typically covers non-functional service characteristics, such as performance, availabil-
ity, and reliability. We use the term Service Level Objective (SLO) to express requirements
on QoS (e.g., the monthly uptime percentage for a service should be greater than 99.99%).
Naturally, customers prefer that cloud systems provide strong guarantees on provided QoS.
Such guarantees may be included in Service-level Agreements (SLAs), which are contracts
that formalize the terms of the provider-customer interaction. SLAs include the SLOs that
the provider promises to meet and the price that the customer agrees to pay. ¿e SLAs may
also specify penalties paid by the provider when SLOs are violated.

3



1 Introduction

¿ere are variousways inwhich cloud services are priced. ¿emost popular pricingmodel
is the pay-per-use (or pay-as-you-go) model, in which the charge paid by the customer de-
pends on service usage (e.g., paying per second of use of a VM instance). Another model is
subscription pricing, in which the charge is �xed in advance for a given subscription period.
Static pricing refers to models in which prices are �xed or change at a slow rate. Dynamic
pricing refers to models in which prices �uctuate, for example, based on supply and demand.
An example is Amazon EC2 Spot Instances pricing, in which customers bid a maximum
price and run VM instances as long as the �uctuating spot price is lower than their bid and
capacity is available [5].

1.2 Research Challenges

Next I outline the main challenges that have guided my research activities. ¿e challenges
are divided into two parts, focusing on automated management on behalf of providers and
of customers.

1.2.1 Providers

Cloud providers require automated resource management systems that continuously control
the allocation of virtual or physical resources to customer requests. ¿e main challenges in
designing such systems are as follows:

Satisfying provider objectives Resourcemanagementmust deal with the changing en-
vironment in which the cloud system operates while e�ectively pursuing provider objectives.
¿is environment includes �uctuating workloads imposed by customers, varying levels of
performance provided by underlying infrastructures (e.g. shared resources, networks), and
varying QoS and prices provided by external cloud services. Providers have multiple objec-
tives that must be considered simultaneously (e.g., maintaining SLAs and minimising costs)
and are subject to various constraints (e.g., resource capacities). ¿e main challenge is thus
ensuring that the objectives are satis�ed despite the environment �uidity.
Depending on the type of cloud, provider objectives may take various forms. For public

cloud providers, the main objective is optimising pro�t, which requires some combination
of increasing revenues and reducing the costs of using underlying resources. Another im-
portant objective is maintaining the SLAs with customers. SLA violations typically reduce
short-term pro�t because of incurred penalties, but they also reduce the long-term attrac-
tiveness of the cloud service. For private cloud providers, a typical objective is achieving a
resource allocationwith desired properties, such as economic e�ciency. Economic e�ciency
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1.2 Research Challenges

here means that the resources are allocated to the customers that value them the most (more
precisely, the total value delivered to customers is maximised).

Supporting an extensible set of applications and SLOs To increase the value of their
service, providers should respond to the diversity and evolution of customer needs. ¿is is
a particular concern for PaaS providers. Indeed, these providers aim to deliver a complete
development and hosting environment for applications while the application types popu-
lar with their customers are constantly evolving (e.g., web, data analytics, machine learning
applications). An important challenge in designing PaaS management systems is thus sup-
porting extensibility with respect to application types.
Di�erent application types are associated with di�erent QoS properties and methods of

ensuring that these properties are satis�ed. Along with application types, the management
system should thus also be able to support associated QoS properties and methods. For
example, the system should be able to support HPC applications along with SLOs related to
completion time, web applications along with SLOs related to response time, or streaming
applications along with SLOs related to latency and throughput.

Supporting scalability with regard to resources and customers Providers are
operating a shared infrastructure that serves multiple customers. Depending on the cloud
system, the size of this infrastructure may vary from a few machines to the multiple, glob-
ally distributed data centres of enterprise cloud providers. ¿erefore, an important concern
for the management system is its scalability; that is, its ability to handle growing numbers
of resources and customers. Scalability can be increased, for example, by applying e�cient
decision-making algorithms or by applying decentralised management structures that in-
volve multiple decision-making units, each having only partial information on the system.

1.2.2 Customers

Cloud customers require automated applicationmanagement systems that continuously con-
trol the deployment of their applications on cloud services. We focus, speci�cally, on PaaS
and IaaS customers since SaaS customers have no direct control over applications. ¿e main
challenges in designing such management systems are as follows:

Satisfying customer objectives Modern distributed applications have complex struc-
tures imposing multiple constraints on the required underlying infrastructure (e.g., resource
requirements of individual components, requirements for sharing resources between com-
ponents). ¿ese constraints are subject to change as the workloads and requirements of end
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1 Introduction

users change. At the same time, an immense range of options is available for hosting an ap-
plication, comprising di�erent services (e.g., computation, storage) with di�erent character-
istics (e.g., VM types) from di�erent cloud providers. ¿e availability, cost, and performance
of any selected cloud infrastructure are also subject to change (e.g., network failures, price
changes, performance variations due to resource sharing). Ensuring that customer objectives
are satis�ed despite this complexity and dynamism is thus the central challenge in designing
application management systems.

Several concerns arise in overcoming this challenge. First, themanagement system should
be �exible to support di�erent customer objectives. Customer objectives typically include
achieving the SLOs of application users as well as reducing the charges paid to IaaS or PaaS
providers for application execution. Second, the management system should take into ac-
count the potential costs of recon�guration actions. Indeed, adapting a deployment requires
executing recon�guration actions (e.g., migrating components to di�erent clouds), poten-
tially expensive in terms of time and monetary costs. ¿ese costs should be carefully bal-
anced against predicted bene�ts before adapting the deployment. ¿ird, the management
solution should allow customers to deploy an application across multiple clouds. Potential
bene�ts of multi-cloud deployment include avoiding dependence on a single cloud provider,
taking advantage of lower resource prices or resource proximity, and enhancing application
availability.

Enabling legacy applications to fully exploit clouds ¿e simplest way to migrate
a legacy application to the cloud is encapsulating the application in one or more VMs that
run in an IaaS cloud. However, this type of migration does not allow realising the full bene-
�ts of the cloud in terms of elasticity, performance, and cost savings. Realising those bene�ts
invariably requires restructuring the legacy application to fully exploit cloud services. Appli-
cationmanagement could then extend to supporting customers in restructuring legacy appli-
cations and running them in the cloud. To facilitate this restructuring, customers should be
provided with tools, guidelines, and reusable code. ¿e application deployment should then
be continually managed to optimise application performance and cost, as described previ-
ously. Since failures are common in cloud environments, automated support for dealing with
failures should also be included.

1.3 Research Activities

My activities can be structured into three research strands:
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1.3 Research Activities

1. Resource management for providers. ¿e �rst strand focused on provider-side man-
agement. We proposed two automated solutions, one for SaaS providers and one for
PaaS providers. In both cases, the provider objective is to increase pro�t. ¿e SaaS
solution uses a single IaaS cloud as the infrastructure. ¿e PaaS solution is extensible
with respect to application types and uses as an infrastructure a private IaaS cloud that
automatically bursts into public IaaS clouds.

2. Application management for customers. ¿e second strand focused on customer-side
management. First, we proposed multi-cloud application management solutions for
IaaS customers. ¿e considered customer objectives are increasing performance and
reducing cost. ¿e applications were assumed to be designed to run in the cloud. Fol-
lowing that, we focused on a particular type of legacy applications, that is, epidemic
simulation applications, and proposed a solution for enabling them to fully exploit
cloud platforms.

3. Application and resource management in private clouds. ¿e previous two research
strands studied systems that independently serve the interests of either providers or
customers. ¿is strand focused on designing a collaboration structure that allows the
customers and the provider to jointly serve their interests. ¿e assumed setting was
that of a private PaaS system in which the objective of the provider is to e�ciently
distribute resources between customers, taking into account sel�sh customers. Cus-
tomers have various, customer-speci�c objectives and run an open-ended set of appli-
cation types.

Document Outline

¿e following three chapters discuss each research strand in turn. ¿ey present the context
of each piece of research work, the main contributions, and how the contributions were eval-
uated. ¿e �nal chapter summarizes the key �ndings and discusses areas for future study.
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2 Resource Management for Providers

¿e runtime operation of cloud systems should be automatically driven not only by QoS and
technical goals but also by economic goals. ¿is observation underlies the research described
in this chapter. Speci�cally, the chapter discusses automated resource management solutions
for public cloud providers. Unlike most commercial cloud providers, the providers assumed
in this work o�er strong QoS support. In particular, they support establishing andmaintain-
ing SLAs that includeQoS expectations (e.g., response time constraints), prices, and penalties
to be paid when these expectations are violated. At the same time, being commercial entities,
the providers have the objective to increase pro�tability. To assist such providers with deliv-
ering their services, we proposed management solutions that take into account SLAs and
infrastructure costs and take actions to increase provider pro�t while coping with changing
workloads.
Speci�cally, the chapter presents two solutions.

• ¿e�rst targets SaaS providers and uses resources provided by a single IaaS cloud. ¿is
work was performed in the context of André Lage’s PhD thesis [81] that I co-supervised
with Jean-Louis Pazat (IRISA).

• ¿e second targets PaaS providers, uses resources provided by a private IaaS cloud
and bursts into public clouds, if necessary. ¿is work was performed in the context of
Djawida Dib’s PhD thesis [39] that I co-supervised with Christine Morin (Inria).

We discuss each solution in turn in the following.

2.1 Resource and Execution Management for SaaS Providers

¿e initial motivation for this work was developing a QoS assurance solution for services
deployed on grid infrastructures [83, 85, 86]. ¿e increasing popularity of clouds prompted
us to add IaaS systems as a target infrastructure for deploying services, which then led us
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2 Resource Management for Providers

to consider the economic goals of the service provider. We thus extended the solution to
support SLAs specifying both QoS and prices and to actively seek to maximize the provider’s
pro�t [81, 82, 84].¿emain novelty of this work was the provision of a complete SLAmanage-
ment solution oriented towards increasing the provider pro�t. Indeed, although a signi�cant
amount of research had investigated QoS management for large-scale distributed applica-
tions [14, 65, 73], there was little research in explicitly addressing the provider’s business ob-
jectives. Moreover, although a few systems employed similar QoS and resource management
mechanisms [93, 94] or had �exible architectures, potentially enabling them to integrate such
mechanisms [24, 45, 54], our work was the �rst to describe the design of these mechanisms,
to integrate them into a real platform, and to perform a detailed evaluation of their impact
on the provider pro�t.

¿is work has led to two main contributions [81, 82, 83, 84, 85, 86]. First, we proposed an
approach for automaticallymanaging cloud resources to increase the pro�t of SaaS providers.
¿e approach enables processing service workloads reliably and cost-e�ectively, taking into
account operational costs and multiple, simultaneous SLAs with di�erent customers, with
each SLA de�ning expected QoS, prices, and penalties. Second, the work proposed a pro-
totype, called Qu4DS, that applies this approach to support developing and managing SaaS
applications.

In the following, I discuss the system model underpinning the approach and the mecha-
nisms provided by the approach. I then provide an overview of the prototype and the evalu-
ation before concluding with a brief discussion.

2.1.1 SaaS System Model

¿e approach considers a SaaS system that integrates an application and makes it accessi-
ble to customers. ¿e application is based on the master/worker pattern with an adjustable
number of workers. Each customer has its own SLA (contract) with the provider, specifying
a price, the expected levels of QoS for executing customer requests, and the penalties paid
by the provider when these levels are violated. To execute a customer request, the SaaS sys-
tem uses resources provided by a private or public IaaS cloud. Resources are assumed to be
homogeneous (i.e., VMs with the same number of cores and memory sizes) and charged per
time used. Resources can be shared among workers from di�erent contracts. ¿e provider
objective is pro�t optimisation. ¿e pro�t takes into account the cost of underlying resources
over time as well as the penalties.

10



2.1 Resource and Execution Management for SaaS Providers

2.1.2 Service Delivery Mechanisms

¿e approach provides mechanisms for creating SLAs, managing resources, and managing
the execution of services.

SLA Creation

¿e proposed approach de�nes di�erent SLA types (i.e., fast, safe, classic, standard) by com-
bining di�erent levels (i.e., high, medium, low) of response time and reliability QoS.¿eQoS
levels are translated to mechanism-level con�gurations that enable the system to deliver the
targeted QoS level. Speci�cally, response time levels are translated to the number of work-
ers used for service execution. ¿is translation is done by pro�ling the service with di�erent
numbers of workers and classifying response time values as high, medium, and low. Reliabil-
ity levels are translated to the number of times that faulty workers are replaced. For example,
if reliability is high, the system replaces both delayed and crashed workers; if reliability is
medium, it only replaces crashed workers.
Each SLA de�nes a price that depends on the SLA type and the required duration of the

contract. ¿e prices are de�ned in a cost-based manner; that is, the more resources are re-
quired, the higher the prices are. ¿e SLA also de�nes penalties that are paid by the provider
to customers when SLOs are violated. ¿ere are two kinds of penalties: contract rescission
penalties for rescinding ongoing contracts, and request cancellation penalties for failing to
process individual requests.

Resource Management

Resource management seeks to control the number of ongoing contracts and requests in
order to increase the provider pro�t. ¿e proposed approach separates the assignment of
resources to each customer (termed resource booking) and the assignment of resources to
each customer request (termed resource allocation). To assist in these tasks, the approach
employs two mechanisms, namely, under-provisioning (that is, booking less resources than
required) and contract rescission (that is, canceling ongoing contracts).
Resource booking is triggered by new contract proposals. It determines the amount of

resources to be booked using an under-provisioning policy (e.g., booking 70% of required
resources). In case of resource shortage (e.g., in private cloud settings), resource booking
decides whether to rescind an ongoing contract and accept the proposal or reject the pro-
posal. ¿e decision takes into account the estimated pro�t of accepting the proposal and the
penalty for contract rescission, aiming to increase the provider pro�t. Resource allocation
is triggered by request arrivals. When there are no available resources, resource allocation
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decides whether to cancel ongoing requests to free resources for the new request. Similarly,
this decision takes into account resource requirements and request cancellation penalties and
aims to increase the provider pro�t.

Execution Management

Execution management seeks to enforce the agreed reliability QoS, thus reducing the pay-
ment of penalties. Speci�cally, the approach relies on detecting worker failures, which can
be either worker crashes or delays. Crashes represent unsuccessful worker executions (e.g.,
I/O errors), and delays represent executions whose duration exceeds the expected duration
according to pro�ling data. Execution management reacts to such failures through the re-
placement of crashed and delayed workers. Replacement decisions rely on the number of
times that workers were replaced, constrained by thresholds, and on whether replacement is
expected to satisfy response time constraints.

2.1.3 Qu4DS Prototype

To show that it is feasible to build a management system for SaaS providers following the
approach and to enable the evaluation of the approach, we built a research prototype, the
Quality Assurance for Distributed Services (Qu4DS) framework [53].¿eQu4DS architecture
is depicted in Figure 2.1.

Qu4DS includes three main components: SLA management, resource management, and
execution management. SLA management includes functions to assist in SLA creation, QoS
translation, and negotiation. Qu4DS maintains templates for each SLA type based on di�er-
ent levels of QoS. QoS translation relies on automatically pro�ling service executions. Ne-
gotiation relies on a simple negotiation protocol in which customers choose an SLA type
(template), set the contract duration and propose it to the service whichmay accept it or not.
Resource management controls the amount of resources used for service execution. Finally,
execution management detects and handles failures and delays during execution.

Qu4DS-enabled applications must follow the master/worker pattern. Developers imple-
ment twomethods: onemethod that receives a service request and triggers the deployment of
workers, and one method that receives the results from all workers. Qu4DS is implemented
in Java and the service interface is implemented as a SOAP Web service. To interact with
IaaS clouds, Qu4DS uses a SAGA-based API [58].
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Figure 2.1: Qu4DS architecture

2.1.4 Evaluation

¿e goal of the evaluation was to analyze the impact of the under-provisioning, contract
rescission, and worker replacement mechanisms on the service provider pro�t. ¿e eval-
uation relied on experiments with an audio encoding service developed with Qu4DS. ¿e
experiments considered various request loads, fault rates, infrastructure capacities, and cus-
tomer pro�les, de�ned as sets of contracts with associated SLA types. ¿e SLA types are
based on di�erent combinations of levels of guarantees. For example, the safe SLA type de-
�nes strong guarantees on reliability and weaker guarantees on response time. ¿e customer
pro�les were designed to re�ect probable real-word workloads.
¿e results showed that applying the previously mentioned mechanisms increases the

provider pro�t. Speci�cally, the results showed that under-provisioning increases pro�t by
20-50%, contract rescission increases pro�t up to 4 times, and worker replacement increases
pro�t by up to 60%. ¿e experiments were performed in the Grid’5000 [18] infrastructure
using a total of 51 nodes. Full details on these experiments can be found in [82]. As an illus-
tration, Figures 2.2 and 2.3 depict the results of fault-tolerance (FT) scenarios. ¿e �gures
show the generated pro�t for two customer pro�les (heterogeneous and safe) and for three
penalty policies (half, full, and double reimbursement). ¿e heterogeneous pro�le contains
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an equal number of contracts of each SLA type, while the safe pro�le contains only contracts
with strong reliability requirements (i.e., of safe SLA type). ¿e half reimbursement policy
means that the penalty that providers pay is half the contract price.
We observe that the higher the fault rate, the lower the pro�t is since high fault rates

increase the chances of incurring SLA violations and penalties. Similarly, as expected, the
higher the penalty, the lower the pro�t is. Moreover, the pro�t is lower for the heterogeneous
customer pro�le since this contains contracts that are more sensitive to faults. In all cases,
using work replacement (FT is on) increases the provider pro�t.
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Figure 2.2: Heterogeneous customer pro�le with three penalty policies
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Figure 2.3: Safe customer pro�le with three penalty policies

2.1.5 Discussion

¿e main outcome of this work was the development of a complete, SLA-driven solution
for managing service execution. Moreover, the work showed the bene�t of using simple
tactics based on a cost-bene�t calculation to increase provider pro�t. A limitation of the
workwas the assumption that resources are obtained from a single IaaS cloud, either a private
or a public IaaS cloud. Simultaneously managing private and public cloud resources was
considered in subsequent work (see Section 2.2). Moreover, the work focused exclusively on
master/worker applications. In particular, it focused on master/worker applications whose
resource allocation is �xed statically, when the contract is established. My following research
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looked at supporting extensibility with regard to application types, including support for
applications whose resource allocation can change dynamically (Section 2.2 and Chapter 4).

2.2 SLA-based Resource Management for PaaS Providers

A er examining SaaS systems, I focusedmy attention on PaaS systems, which introduce new
di�culties in designing e�ective management tools. Unlike SaaS systems that tightly inte-
grate applications, PaaS systems accept and control customer-supplied applications. PaaS
systems have thus less knowledge of application internals, making it more di�cult tomanage
application QoS properties. Although extending the range of accepted applications exacer-
bates this di�culty, at the same time, it increases the applicability and thus the value of the
PaaS system. For this reason, we chose as a requirement of this work PaaS openness, that is,
the ability to support many application types. Another requirement was supporting cloud
bursting, which enables providers to make the most of their private infrastructure, while re-
moving the need for rejecting customer requests in peak periods. Similarly to our previous
work (Section 2.1), main features of this work remain the support of QoS guarantees through
SLAs and the management objective of increasing provider pro�t.

Several research e�orts had focused on SLA-aware resource management for PaaS sys-
tems, attempting to satisfy economic goals such as optimising pro�t or reducing operational
costs [25, 59, 68, 89, 111, 137]. However, unlike our work, such solutions were restricted to a sin-
gle type of application, such asmulti-tier web applications [59],MapReduce applications [111],
or work�ow applications [25], providing no extensibility with respect to application types.
Moreover, most solutions used a single cloud, either a public IaaS cloud [68, 89, 137] or a pri-
vate cloud [59]. No related system provided both the required extensibility and the capability
of simultaneously deploying an application on multiple clouds.

¿is work led to two main contributions [40, 41, 42]. First, it proposed an SLA-based re-
source management approach for PaaS systems, integrating a policy for optimising the PaaS
provider pro�t. Second, it proposed an open, cloud-bursting PaaS system, called Meryn,
which applies the approach and provides support for batch and MapReduce applications.

In the following, I present the systemmodel underpinning the approach and then describe
themain policies suggested by the approach. Next, I outline the application of the approach to
a speci�c type of applications—namely, computational applications—the Meryn prototype,
and the evaluation, concluding with a brief discussion.
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2.2.1 PaaS System Model

¿eapproach considers an open PaaS system able to host applications of di�erent application
types. Applications are hosted on one or more resources, which are assumed to be homoge-
neousVMs. ¿e resourcesmay be private, owned by the provider, or public, rented frompub-
lic IaaS clouds, and they are charged per time used. ¿e resources are separated into groups,
where each group is dedicated to a speci�c application type. Each application type-speci�c
group is then composed of a set of private resources and, potentially, public resources, where
all resources have similar con�guration in terms of so ware stack and management tools. A
key design decision made by the approach is that groups independently decide how to allo-
cate their resources to applications, exchanging, if necessary, resources with other groups and
bursting into public clouds. ¿e reason for this decentralisation is threefold. First, it makes it
easy to customise resource allocation policies for speci�c application types, taking advantage
of application type-speci�c knowledge (e.g., whether applications can be scaled horizontally
or vertically). Second, it reduces the complexity of developing such policies by decomposing
the global problem of allocating resources to all applications of all types into simpler sub-
problems, solved by individual groups. ¿ird, it removes the need for continuously sending
information about the entire system to a central location, allowing fast decisions and sup-
porting scalability to large clouds.

¿e objective of the PaaS provider is pro�t optimisation, taking into account the payment
of penalties if the levels of QoS promised in SLAs are not met. Independently of the payment
of penalties, QoS violations damage the provider’s reputation and negatively a�ect long-term
pro�ts. For this reason, the approach imposes a constraint on the provider: the provider has
to limit both the number of applications whose QoS guarantees are violated and the level of
each QoS violation below prede�ned QoS violation thresholds.

¿e approach is generic and independent from the types of supported applications and it
relies on one background assumption. Namely, for each supported application type, there is
a correspondingQoS translator plug-in able to translate the resource con�gurations and, po-
tentially, workload conditions, to provided QoS levels and vice versa. ¿is enables predicting
the QoS impact of modifying resources and estimating the required resources for achiev-
ing given QoS levels. Such translation capabilities can be based on application-type speci�c
knowledge, performance measurements on the provider platform, workload models, and
performance models. Although improving prediction accuracy can improve the provider
pro�t, the approach remains independent of the achieved accuracy level.
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2.2.2 Resource Sharing Policies

We developed three policies for sharing the private resources between the di�erent groups
and allocating resources to each newly arrived application.

Basic Policy

¿e basic policy is naive. It statically partitions the private resources between the groups.
When a new application arrives for a group and the group has insu�cient private resources,
the application will be hosted on public resources.

Advanced Policy

¿e advanced policy enables the transfer of resources from one group to another one. When
a new job arrives in a peak period, its corresponding group �rst checks if it can get available
private resources from other groups before renting additional resources from a public cloud.

Optimisation Policy

¿e optimisation policy aims to �nd the most cost-e�ective solution for executing a newly
arrived application. Speci�cally, when the available private resources in all groups are not
su�cient for hosting the new application, the policy compares the cost of three options for
getting the missing resources: (1) renting them from a public cloud, (2) obtaining them from
running applications, or (3)waiting for private resources to become available. ¿e�rst option
is similar to the one used in the advanced policy. ¿e second option, called donating option,
may have a QoS impact on the a�ected applications. Note that this option is applicable only
to applications that can use variable amounts of resources during their lifetime. ¿e third
option, called waiting option, may have a QoS impact on the new application.
¿e policy is implemented in a decentralised, auction-basedmanner. In essence, the group

corresponding to the new application receives bids from the other groups, representing the
estimated penalties associatedwith obtaining resources from these groups using both the do-
nating and waiting options. ¿e corresponding group then selects the option with the lowest
bid and compares this with the option of renting public cloud resources. ¿e pseudocode of
the optimisation policy is shown in Algorithm 1.

2.2.3 Computational Applications

We applied the approach to computational applications, de�ned as applications running for
a �nite duration without any human intervention (e.g., batch applications). Computational
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Algorithm 1Optimisation Policy
Require: Request req to host a new application
Ensure: Resources for req are allocated

Rreq ← resources required by req
R ← available resources in current group
if (Rreq ≤ R) then
Get Rreq from current group
Exit

Get R from current group
Rmiss ing ← Rreq − R
Ravai l abl e ← available resources in other groups
if (Rmiss ing ≤ Ravai l abl e) then
Get Rmiss ing from corresponding groups
Exit

Get Ravai l abl e from corresponding groups
Rmiss ing ← Rmiss ing − Ravai l abl e
Collect donating bids from all groups and select group G i with lowest bid, called donating_bid,
that satis�es QoS violation thresholds
Collect waiting bids from all groups and select group G j with lowest bid, called waiting_bid, and
wait time wait that satis�es QoS violation thresholds
if (donating_bid < waiting_bid) then

reqpr ivate_cost ← cost(hosting req on Rreq private resources) + donating_bid
private_option ← donating

else
reqpr ivate_cost ← cost(hosting req on Rreq private resources) +waiting_bid
private_option ← waiting

reqpubl i c_cost ← cost(hosting req on (R + Ravai l abl e)private and Rmiss ing public resources)
if (reqpr ivate_cost > reqpubl i c_cost) then
Rent Rmiss ing from corresponding public cloud
Exit

if (private_option = waiting) then
if (req supports running with partial amount of resources) then
Start running the new application with available resources

Wait for wait time
Get Rmiss ing from G j

else
Get Rmiss ing from G i
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applications may be rigid, that is, applications that require a �xed amount of resources, or
elastic, that is, applications that can use variable amounts of resources at runtime. ¿e work
assumed that the QoS translator plug-in for computational applications relies on a simple,
linear speedup performance model, where the application runtime is inversely proportional
to the used number of resources.
¿e following subsections describe how SLAs are de�ned and how the waiting and donat-

ing bids are calculated for computational applications.

Creating SLAs

¿eSLA for computational applications speci�es a deadline and a price. ¿edeadline is a limit
for the completion time of the application. ¿e PaaS system calculates the deadline and price
using the QoS translator plug-in. Speci�cally, the deadline is calculated as the application’s
predicted runtime and the price as the cost of the resources for this time period.
¿e system proposes several SLA classes (i.e., high, medium, low) to customers by combin-

ing di�erent values for deadline and price. For example, the high SLA class has the shortest
deadline, corresponding to theminimal possible application’s runtime, and the highest price;
inversely, the low SLA class has the longest deadline and lowest price. Having multiple SLA
classes increases the number of choices given to customers (e.g., best price or best QoS). If
the customer does not agree with any proposed SLA class, the customer may propose either
the deadline or the price, and the system �lls in the missing value, if feasible.
If the system fails to complete the application before its agreed deadline, the provider pays

a penalty. ¿e penalty depends on the delay, that is, the di�erence between the application’s
actual completion time and the deadline. We de�ned three revenue functions that determine
how the penalty increases with delay, that is, a linear, a bounded linear and a step revenue
function.

Calculating Bids

In this section, we discuss how donating and waiting bids are calculated for computational
applications. In essence, the waiting bid corresponds to the estimated penalty of the new ap-
plication due to waiting private resources to become available. ¿e donating bid corresponds
to the sum of the estimated penalties of the applications involved in donating the required
resources.

Waiting Bid Using the QoS translator plugin, the group calculates the remaining time for
each application to �nish its execution and release its resources. ¿e group’s waiting time is
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the earliest such time when the released resources are greater than or equal to the required
resources. ¿e group’s waiting bid is then the estimated penalty for delaying the new appli-
cation by this waiting time.

Donating Bid A group can impose on an application three alternative forms of donating
resources: total lending, partial lending, and giving. With total lending, the application is
suspended, it lends all its resources to the new request, and resumes execution once the re-
quest terminates. With partial lending, the application lends a subset of its resources to the
request, continues running with the remaining resources, and gets back the resources once
the request terminates. With giving, the application gives a subset of its resources to the re-
quest and continues running with the remaining resources. Rigid applications support only
total lending, while elastic applications support all three forms of donation. Each form of
donation impacts the remaining time of the application, possibly incurring a delay and an
associated penalty. ¿e remaining time is estimated using the QoS translator plugin and the
penalty using the revenue function.
¿e group’s donating bid is calculated as follows. For each group application and each

applicable form of donation, we calculate the estimated delay and associated penalty. We
then use a heuristic to calculate a subset of applications and associated donation forms that
reduces the sum of penalties while providing the required resources and satisfying the QoS
violation thresholds. ¿e group’s donating bid is then this sum of penalties.

2.2.4 Meryn Prototype

To validate the proposed pro�t optimisation approach, we developed a prototype, called
Meryn, a cloud-bursting PaaS system that supports batch and MapReduce applications [40,
42]. ¿e VMs managed by Meryn are partitioned into Virtual Clusters (VCs), containing
private VMs and possibly VMs rented from public IaaS clouds. A VC hosts applications of
the same type and runs a speci�c programming framework. For example, Meryn includes a
VC that hosts batch applications and runs the Oracle Grid Engine (OGE) framework [109],
and a VC that hosts MapReduce applications and runs the Hadoop framework [8].
VCs may exchange private resources among them or burst into public cloud resources

according to the policies described in Section 2.2.2. ¿e customers submit their applications
through a common and uniform interface, independently of the type of their applications.
¿e architecture of Meryn is shown in Figure 2.4. ¿e main components are the client

manager, a cluster manager for each VC, an application controller for each hosted applica-
tion, and the resourcemanager. ¿e client manager receives application submission requests,
acts as the intermediary between the customer and the corresponding cluster manager, and
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Figure 2.4: Meryn architecture
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returns application results. ¿e cluster manager consists of a generic part and a framework-
speci�c part. ¿e generic part decides when to exchange resources with other VCs and when
to rent additional resources from public clouds. ¿e framework-speci�c part converts sub-
mission requests to requests compatible with the framework; this part is also responsible for
proposing SLAs and negotiating them with the customers using the QoS translator plug-in.
¿e application controller monitors the execution of its associated application and the sat-
isfaction of its agreed SLA. Finally, the resource manager provides support for transferring
VMs from one VC to another one. ¿e resource manager interacts with an IaaS-level VM
manager, such as OpenStack [108], OpenNebula [107], or Snooze [48].

2.2.5 Evaluation

¿e objective of our evaluation was to compare the generated provider pro�t with each of
the three policies: basic, advanced, and optimisation. For this evaluation, we used both sim-
ulations and experiments with the Meryn prototype. ¿e used metrics include the pro�t of a
workload, the completion time of a workload, the number of deadline violations, the average
delay, and the VM usage proportions (i.e., the proportion of VMs obtained through the local
VC, a di�erent VC, donating applications, waiting for the termination of applications, or the
public cloud).
Simulations and experiments used the same setup. ¿eMeryn prototype has the two pre-

viously mentioned VCs, one for MapReduce applications and one for batch applications.
¿e private cloud has 100 VMs and the public cloud has unlimited VMs. Simulations used a
stripped-down prototype that creates no real VMs and applications and runs in a single ma-
chine with limited resources. Experiments used the Grid’5000 [18] testbed; the private cloud
had 20 physical nodes and the public cloud had 70 physical nodes and was geographically
distant from the private cloud.
We used three workloads, each comprising a batch and aMapReduce workload submitted

simultaneously. ¿ebatchworkloads follow the Lublinworkloadmodel [91].¿eMapReduce
workloads follow the Facebook workload reported in [143]. We de�ned three SLA classes
(high, medium, and low) and randomly assigned classes to the applications in the workload.
We evaluated two variants of the optimisation policy (opt1 and opt2) with di�erent QoS

violation thresholds combined with three revenue functions (e.g., Lopt2 is opt2 with Linear
revenue function, Bopt2 is with Bounded linear, and Sopt2 is with Step revenue function).
¿e opt2 variant has higher QoS violation thresholds than opt1 and is thus more aggressive
in impacting applications (speci�cally, it can impact up to 50% of the applications with a
delay of up to 100% of the deadline). For illustration, we present a subset of the evaluation
results. Full details can be found in [41].
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(b) Experiments

Figure 2.5: Pro�t for di�erent workloads and policies

Figure 2.5a shows the generated pro�t in simulations for the three workloads and the basic,
advanced and Sopt2 policies. We see that the Sopt2 optimisation policy generates the most
pro�t, that is, from 2.64% to 4.98% more pro�t than the advanced policy. Figure 2.5b shows
the generated pro�t in experiments for the three workloads and the basic, advanced, Lopt2,
Bopt2, and Sopt2 policies. ¿e results are similar to the ones obtained with simulations. ¿e
main di�erence is thatwith experiments all policies generate less pro�t thanwith simulations.
¿is is because of the highly variable overhead of managing VMs in experiments, resulting
in more cases of application delays and penalties.

Figure 2.6 shows the VM usage proportions associated with each method of obtaining
VMs (i.e., local, VC, donating, waiting, public cloud) for di�erent workloads and policies in
experiments. We see that the optimisation policy uses public clouds to a smaller extent than
the basic and advanced policies, opting, if possible, for alternative sources of VMs. Figure 2.7
shows the completion times for the three workloads. We see that the optimisation policy pro-
duces slightly longer completion times than the basic and advanced policies (an increase of
up to 6.63% for workload 2 and the Sopt2 policy). ¿is increase is due to the incurred delays
of the impacted applications and the required time for calculating the bids and transferring
VMs between VCs.

Table 2.1 focuses on the QoS impact of the optimisation policy on applications and shows
that the percentage of impacted applications is between 4% and 8.75% and the average delay
of delayed applications is between 39% and 65.52% of the deadline. ¿ese values remain
below the QoS violation thresholds.

In summary, the results showed that the optimisation policy generates more provider
pro�t than the basic and advanced policies. As expected, the policy causes some applica-
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Figure 2.7: Workload completion time from the submission of the �rst job to the completion of the
last job (experiments)

tions to miss their deadlines and slightly increases workload completion times. However,
the number of impacted applications does not exceed the prede�ned thresholds. Moreover,
the results of simulations and experiments agree with each other, validating the evaluation.

2.2.6 Discussion

¿emain novelties of this work were the support for cloud bursting, enabling applications to
use simultaneously private and public cloud resources, and the support for multiple applica-
tion types, such as batch and MapReduce applications. For simplicity, the work only consid-
ered the allocation of homogeneous, coarse-grained resources (i.e., VMs with �xed capaci-
ties). A more �ne-grained, �exible resource allocation model will be described in Chapter 4.
Moreover, the work did not consider dynamically adding resources to running applications
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Table 2.1: Percentage of delayed applications (A) and average delay of delayed applications (B) with
the optimisation policy (experiments)

workload 1 workload 2 workload 3
A B A B A B

Lopt2 4 % 46.5 % 4 % 59.07 % 4.5 % 40.65 %
Bopt2 6.5 % 39 % 6.75 % 49.23 % 8 % 46.93 %
Sopt2 7 % 55.63 % 7.5 % 49 % 8.75 % 65.51 %

to improve their QoS. Further research in dynamic application adaptation will be discussed
in Chapter 3 and Chapter 4. Natural extensions of this work include taking into account
data transfer costs, and adding support for further application types—such as work�ow or
data streaming applications—allowing a more complete assessment of the usefulness of the
approach.

Summary

¿e chapter presented two automated resource management solutions for cloud providers.
¿e �rst solution was designed for SaaS providers that manage resources from an IaaS cloud
anddelivermaster/worker-based services. ¿e second solutionwas designed for PaaS providers
that manage resources from a hybrid IaaS cloud and host extensible application types. ¿e
next chapter turns to solutions for application management on behalf of cloud customers.
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3 Application Management for
Customers

In seeking to address every customer need, commercial IaaS providers are delivering an ever-
widening range of features, making it increasingly complex to use IaaS clouds. Shielding
customers from this complexity is the central theme of this chapter. Speci�cally, this chapter
describes automated application management solutions for customers who want to deploy
their applications across one or more IaaS clouds.
¿e chapter is divided into two parts.

• ¿e �rst part discusses managing modular applications, composed of independently
deployable units communicating over the network. ¿ese may be applications de-
signed to run in the cloud or applications that can be easily migrated to the cloud
with minimal or no changes. ¿is work was performed in the context of the PaaSage
European project (2012–2016) [110] in collaboration with Linh Manh Pham (postdoc-
toral engineer), Arnab Sinha (postdoctoral engineer), andChristineMorin from Inria,
and the PhD thesis of Carlos Ruiz Diaz [122] that I co-supervised with Hector-Duran
Limon (University of Guadalajara).

• ¿e second part discusses managing a speci�c type of applications, namely epidemic
simulation applications, with amonolithic structure. Such applications require signi�-
cant restructuring in order to run in the cloud and thus gain access to large amounts of
resources rapidly and cost-e�ectively. ¿is work was performed in the context of the
MIHMES project (2012–2017) [101], funded by ANR under the Investments for the Fu-
ture Program, and theDiFFuSEADTproject (2017–2018) funded by Inria. I performed
this work in collaboration with Linh Manh Pham (postdoctoral engineer), Yvon Jé-
gou, and Christine Morin from Inria, and Sandie Arnoux, Gaël Beauneée, Luyuan Qi,
Philippe Gontier, and Pauline Ezanno from INRAE Oniris.

We discuss each part in turn in the following.
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3.1 Deploying and Managing Multi-cloud Applications

MODELLING DECIDING EXECUTING

MONITORING

Cloud deployment

Application

Figure 3.1: Application management architecture

¿emotivation for this research was reducing the complexity of deploying and managing
applications over IaaS clouds. ¿e research assumes that the application is structured as a set
of interconnected, deployable components (e.g., web servers, databases) that need to be de-
ployed over one or multiple IaaS clouds. ¿is deployment involves selecting appropriate VM
types to host each component together with associated cloud services (e.g., load balancers,
storage). Making this selection involves considering an extremely wide range of cloud o�er-
ings with di�erent characteristics (e.g., di�erent CPU and memory capacities for VMs) and
prices, provided by di�erent cloud providers, accessible through di�erent interfaces. ¿ese
VM types, cloud services, and components must then be instantiated and con�gured appro-
priately to produce the initial application deployment.
At runtime, the application deployment will likely need to be adapted to accommodate

environmental changes, such as changes in the workload, in application requirements, or
in the availability, performance, and cost of underlying cloud services. ¿is adaptation may
involve, for example, increasing the number of web server instances or migrating instances
across clouds, and must ensure that the application satis�es customer requirements as well
as feasible.
¿ere is a plethora of so ware platforms aiming to reduce this deployment and manage-

ment complexity by applying self-adaptation techniques [7, 20, 29, 103, 105]. ¿ese platforms
typically support the following four tasks (see Figure 3.1): (1) modelling, (2) deciding, (3)
executing, and (4) monitoring.
Modelling involves specifying the deployment requirements of the application in a declar-

ative, cloud provider-independent language. For example, this may include specifying the
required operating system and geographic location of the VMs hosting individual applica-
tion components. Deciding involves deriving the initial application deployment as well as
deciding when and how to adapt the deployment at runtime. Executing involves applying
the deployment decisions, dealing with the heterogeneity of clouds. Finally, monitoring in-
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volves collecting information about the running application (e.g., performance data), which
is used by the deciding task, forming the typical closed-loop structure of adaptive systems.
My work on automated application management can be separated into three parts:

• development and evaluation of the adapter component for adapting multi-cloud ap-
plications, part of the PaaSage open-source application management platform;

• development and evaluation of a cost-e�ective approach for adaptive application de-
ployment that builds on and specialises the PaaSage platform;

• development and evaluation of an application management platform based on SPLs
(So ware Product Lines) including a proactive policy for vertical scaling.

Each part is discussed in the following sections.

3.1.1 PaaSage Adapter

¿is work focused on developing a practical solution for adapting multi-cloud applications
and was performed within the PaaSage project (2012–2016), funded by the European Union.
Most adaptation solutions that emerged during the lifetime of PaaSage supported only hor-
izontal scaling with a single cloud [7, 28, 29]. Moreover, these solutions relied entirely on
developers and operations engineers to design appropriate scaling rules to meet customer
objectives. Adaptation in PaaSage, on the other hand, included support for cross-cloud ap-
plication restructuring based on high-level objectives.
¿is section �rst outlines the overall PaaSage architecture and then provides further details

on the adapter, the adaptation solution whose development I coordinated within PaaSage.

PaaSage Architecture

¿e PaaSage project developed a model-based, multi-cloud development and deployment
platform that enables developers to access cloud services in a technology-neutral manner
while guiding them to con�gure their applications for best performance [110, 118].¿eproject
was motivated by the heterogeneity of the available clouds and the associated complexity of
porting existing applications to a cloud or switching between clouds. ¿e project slogan was
"De�ne your application once. Deploy to the full spectrum of Clouds".
To address cloud heterogeneity and facilitate applicationmanagement, the project adopted

a model-driven engineering approach. ¿e project de�ned a modelling language, called
CAMEL (Cloud Application Modelling and Execution Language) [2], which allows devel-
opers to model a wide range of application aspects, such as application deployment require-
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Figure 3.2: PaaSage architecture

ments, service-level objectives, and security considerations. Based on these models, the plat-
form generates an initial application deployment that best satis�es application requirements.
When runtime events make the current deployment unsatisfactory (e.g., QoS constraints are
violated, or requirements are changed), the platform dynamically adapts this deployment
following the models@run.time paradigm [17]. Speci�cally, the platform maintains runtime
models of the deployment, requirements, and environment properties. ¿ese models are
continually updated through monitoring and form the basis of generating alternative ap-
plication deployments, detecting deviations between the current deployment and a target
deployment, and transforming the current deployment into the target deployment.
¿e PaaSage platform consists of four main components (see Fig. 3.2):

• Pro�ler: receives a cloud provider-independent application description (e.g., applica-
tion components and requirements on virtual hardware) and a set of cloud provider
descriptions (e.g., VM types and prices for Amazon EC2), all written in the CAMEL
language, and formalizes the problem of deploying the application on available cloud
resources as a constrained optimisation problem. ¿e optimisation problem includes
variables (e.g., the number of component instances), constraints (e.g., two components
must be hosted in the sameVM) and an optimisation objective (e.g., minimising cost).

• Reasoner: solves the optimisation problem using an extensible set of solvers. ¿e plat-
form includes solvers based on mixed integer linear programming, constraint logic
programming, and learning automata [37]. ¿e optimisation objective is expressed
using a utility function representing the preferences of the application owner among

30



3.1 Deploying and Managing Multi-cloud Applications

Plan
Generator

Adaptation
Manager

Application
Controller

Monitoring
rules

Reconfiguration
plan

Current
deployment	model

Executionware

Reasoner

Reconfiguration
commands

Target	
deployment
model

Adapter

Monitoring	
Information

Figure 3.3: Adapter architecture

possible deployments. ¿e reasoner generates a cloud provider-speci�c deployment
model (e.g., application deployment on EC2).

• Adapter: receives a proposed deployment model, validates that it is acceptable, and
adapts the currently running application deployment to reconcile it with the proposed
model. ¿e adapter is also responsible for monitoring and dynamically adapting the
application deployment, e.g., when performance deteriorates, or cloud provider prices
change.

• Executionware: enacts the deployment of application components on selected cloud
providers and sets up monitoring of required metrics.

Adapter

¿e purpose of the adapter is to transform the currently running application con�guration
into the target con�guration in an e�cient and safe way [37]. As shown in Figure 3.3, the
adapter is composed of three components: the plan generator, the adaptation manager, and
the application controller.
¿e plan generator receives as input the current and the target application con�gurations

and generates a plan representing the required recon�guration actions and their order. ¿e
adaptation manager performs three tasks: it validates that the recon�guration plan is accept-
able, it applies the plan to the running system in an e�cient and safe way, and it maintains
an up-to-date representation of the current system state. ¿e application controller compo-
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nent monitors the running application and its execution context in order to detect changes
that make the current deployment unacceptable. Based on the monitored information, the
component triggers the execution of the full recon�guration process. To handle delays and
transient failures, the application controller applies simple fault-tolerance tactics, such as
retrying recon�guration actions or issuing redundant recon�guration requests.
¿e adapter brings key features to the PaaSage platform. First, it enables automatic syn-

chronisation of models with the running system, removing the need to manually write low-
level recon�guration scripts. Second, it supports a rich set of recon�guration actions beyond
horizontal scaling, such as large-scale application restructuring and migrating components
across clouds. ¿ird, it performs recon�gurations in an e�cient and reliablemanner through
parallel plan execution and handling failures. Finally, in conjunction with the reasoner and
the executionware, it enables setting up control loops to monitor and adapt the application
deployment.
¿e bene�ts of the PaaSage platform, including the adapter, were demonstrated using sev-

eral use-case applications developed by PaaSage partners, including a �ight-scheduling ap-
plication developed by Lu hansa Systems, and a scienti�c work�ow engine developed by the
AGHUniversity of Science and Technology [110].¿e PaaSage project was successfully com-
pleted in November 2016 with an excellent rating from the reviewers. ¿e PaaSage platform
is currently being reused and extended within the Melodic European project (2016–2020)
[100] that speci�cally targets data-intensive applications and supports data-aware applica-
tion deployment. We used the PaaSage technology to implement the DiFFuSE framework
described in Section 3.2. In [77], we describe early work on applying PaaSage to IoT applica-
tions in order to support on-demand provision of cloud resources when edge resources are
insu�cient.

3.1.2 Cost-effective Adaptive Deployment for Multi-cloud Applications

¿is work was directed at continuously optimising both the performance and the monetary
cost of a multi-cloud application through a speci�c con�guration of PaaSage mechanisms.
One of the challenges in performing this optimisation is considering not only the predicted
bene�ts of adapting the deployment (e.g., improved performance) but also the predicted
costs (e.g., delays for provisioning new virtual machines). For example, when the work-
load is rapidly changing, the management system should refrain from performing complex,
multi-cloud recon�guration actions. ¿e reason is that the costs are unlikely to be recovered
if the application deployment does not remain stable.
Most existing applicationmanagement solutions do not consider adaptation costs inmak-

ing adaptation decisions [4, 20, 69, 105, 148]. A limited number of research solutions do con-

32



3.1 Deploying and Managing Multi-cloud Applications

sider adaptation costs [74, 75, 90, 128], but these are solutions operated by cloud providers
rather than customers, and they do not support multi-cloud application management.
To respond to this challenge, we proposed an approach for adaptive deployment that ex-

plicitly considers the adaptation cost in decidingwhen andhow to adapt the deployment [114].
¿e approach builds on the PaaSage architecture described in Section 3.1.1. ¿e rest of this
section describes the approach and then outlines how it was practically implemented and
validated.

Continuous Deployment Optimisation

¿eapproach assumes that a running application generates revenue for the application owner
depending on the performance obtained by application users (e.g., depending on meeting
response time guarantees). In turn, the owner pays cloud providers for the resources used
by the application. ¿e goal is then to optimise the pro�t, which is the di�erence between
revenue and resource cost. ¿e approach assumes that the instantaneous pro�t can be de-
rived from a pro�t function that takes as input the current performance characteristics (e.g.,
response time) and the cost rate of used resources.
¿e approach proposes a continuous deployment optimisation process composed of two

tasks: (1) generating a proposed deployment that optimizes pro�t under the current runtime
conditions, ignoring any recon�guration costs, and (2) deciding when and how to recon�g-
ure the running system based on the proposed deployment, taking into account recon�gu-
ration costs and bene�ts. In PaaSage, these tasks are the responsibility of the reasoner and
adapter respectively.
Regarding the �rst task, the reasoner receives as input the pro�t function and the cur-

rent application workload and provides to the adapter a proposed deployment model and
its predicted, instantaneous pro�t. Internally, the reasoner maintains a performance model
and a cost model, enabling it to estimate the performance and cost for a given application
deployment and workload. ¿e reasoner then searches for the deployment that maximizes
the pro�t for the current workload.
Regarding the second task, the adapter produces a recon�guration plan consisting of the

tasks (e.g., creation, update, and deletion of VMs) necessary for transforming the current
deployment to the proposed one. Given the proposed recon�guration plan, the adapter vali-
dates that executing this plan is actually bene�cial. ¿is validation decision relies onweighing
the potential recon�guration bene�ts against recon�guration costs. Bene�ts depend on the
proposed deployment and on the time that the system remains in this deployment. Costs
depend on the transient system state during recon�guration and the time that this recon�g-
uration lasts.
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Concretely, validation is based on the following information: (1) the estimated recon�gu-
ration duration (Trc), (2) the estimated time until a new recon�guration is initiated (called
stability interval orW), (3) the current pro�t (P1), (4) the predicted pro�t during recon�gura-
tion (P2) and the predicted pro�t for the proposed con�guration (P3). ¿e adapter performs
the recon�guration if the associated pro�t is higher than the pro�t of doing nothing over the
stability intervalW , i.e.,

Trc ∗ P2 + (W − Trc) ∗ P3 >W ∗ P1 (3.1)

¿e recon�guration duration (Trc) can be estimated using historical information from
previous executions of recon�guration tasks. ¿e stability interval (W) can be approximated
as the time duringwhich the applicationworkload remains relatively stable (i.e., varies within
a speci�c workload band), which can be predicted using historical information on workload
evolution.

Approach Implementation

¿e approach was implemented by modifying and extending the reasoner and adapter com-
ponents (see Fig. 3.4). ¿e pro�t function that we used is:

Pro f it =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

reward − cost if response time < target
−cost if response time ≥ target

(3.2)

Cost is the cost rate of used resources; reward is the revenue when the SLO is satis�ed (i.e.,
the response time is less than the given target).
We have extended the PaaSage reasoner with a solver that relies on manual, o�-line pro-

�ling of the application to �nd the best deployment. Speci�cally, we gather performance
samples from multiple executions of the application with representative deployments and
workloads and use those samples to predict the performance for similar deployments and
workloads. ¿e cost of a deployment is estimated in a straightforward way using the pricing
information of cloud providers.
¿e adapter includes a recon�guration validator implementing the approach presented

earlier, and predictors for the recon�guration duration and stability interval. ¿e recon-
�guration duration is predicted using historical information on past recon�guration tasks.
¿e stability interval is predicted by applying an autoregressive moving average �lter on past
measured values of this interval.
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Figure 3.4: Architecture for continuous deployment optimisation

A er the initial deployment, the adapter continuously monitors the application workload.
If a signi�cant workload change is detected, namely, if the workload varies beyond a speci�c
workload band, the adapter asks the reasoner to provide a new proposed deployment and
generates, validates, and applies a new recon�guration plan. ¿e adapter also triggers the
reasoner when SLO requirements are violated or cloud prices are changed.

Evaluation

¿eapproachwas evaluated with a set of experiments on two cloud environments. ¿e target
cloud application was the three-tier RUBiS web application [119] and the workload was based
on the EPA-http trace [46].¿eexperiments showed the practicality of the approach, its e�ec-
tiveness compared to baseline approaches, its ability to performmulti-cloud recon�guration
actions taking into account changes in cloud pricing, and its e�ectiveness in optimising pro�t
under various circumstances. More details can be found in [114]. Next, we consider only one
of the experiments focusing on the recon�guration validator.
¿e EPA workload, comprising an increasing and a decreasing phase, is played twice and

an idle period of 3.5 minutes is inserted between the two plays. Scenario 1 is a case when the
recon�guration validator is switched o�, whereas the validator is switched on in Scenario 2.
Response time, throughput, and pro�t results for the two scenarios are shown in Fig. 3.5.
With the �rst workload increase, both scenarios scale out the application tier, resulting in

the same behaviour for the �rst 10 minutes. ¿e di�erence occurs at the 11th minute when
the workload decreases. Scenario 1 performs a scale-in while Scenario 2 performs no action.
Indeed, the turned-on validator in Scenario 2 denies the proposed recon�guration as the
predicted stability interval is small with respect to the recon�guration interval. As a result,
with the second workload increase, Scenario 1 shows worse performance than Scenario 2.
¿e reasoner in Scenario 1 eventually recognizes the increase and suggests a scale-out that
brings the response time back to normal at around the 20th minute. When the workload
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Figure 3.5: Response time, throughput, and pro�t with the validator switched o� (Scenario 1) and on
(Scenario 2)
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drops for the second time, both scenarios performa scale-in action at around the 23rdminute.
¿is time the adapter in Scenario 2 validates the scale-in as the predicted stability interval is
long enough. From the 12th to 22nd minute, Fig. 3.5c shows a signi�cant gain in the pro�t
of Scenario 2 compared to Scenario 1. ¿is experiment demonstrates the e�ectiveness of
recon�guration validation in optimising the pro�t.

3.1.3 SPL-based Application Management with a Proactive Policy for
Vertical Scaling

¿iswork focused on producing a complete applicationmanagement solution using amodel-
driven approach, similar to that followed by PaaSage. It was performed in the context of
Carlos Ruiz Diaz’s PhD thesis [122], a student at the University of Guadalajara, whom I co-
supervised. ¿emain novelty of the workwas the integration of a proactive adaptation policy
to perform vertical VM scaling. ¿is section �rst outlines the management approach pro-
posed by this work, and then describes the proactive adaptation policy.

SPL-based Management Approach

¿e application management approach [121] is similar to that of PaaSage, but relies on a less
expressive modelling language. As a result, the approachmakes it easier for application own-
ers to specify their deployment requirements, but it supports a more limited range of adapta-
tion scenarios (e.g., it lacks support for distributing application components across di�erent
clouds). Speci�cally, modelling relies on SPL (So ware Product Lines) techniques. Although
related research had already applied SPL techniques to facilitate application deployment [88,
117], support for dynamic adaptation was lacking.
Following SPL principles, the con�guration choices supported by IaaS clouds are repre-

sented as feature models; speci�c application deployments are represented as feature con-
�gurations. Models of the deployment are maintained at runtime and are used to facilitate
adaptation. ¿e architecture derived from this approach, called XIPE, supports all appli-
cation management tasks (modelling, deciding, executing, monitoring) and is depicted in
Figure 3.6.
¿e main components are the user interface, the SPL manager, the model manager, the

adaptationmanager, and the communication component. ¿e user interface handles interac-
tions with two types of users, platform administrators and application administrators. Plat-
form administrators de�ne and specialise SPL-based templates that describe features sup-
ported by particular IaaS clouds (e.g., based on OpenStack). ¿ese features include VM
hardware types, operating systems, and supported so ware stacks. Application adminis-

37



3 Application Management for Customers

Adaptation 
actions

Cloud configuration

- Performance
- Resource utilisation

MODELLING DECIDING
EXECUTING AND
MONITORING

User 
Interface

SPL 
Manager

Model 
Manager

Adaptation 
Manager

Communication 
Component

Specialised
SPL-based
cloud 
templates

Generic
SPL-based
cloud 
templates

- Specialised cloud 
configuration
- Runtime model
information

Cloud 
platform-
specific calls

Figure 3.6: XIPE architecture

trators then choose from those features in order to specify a deployment con�guration. ¿e
SPL manager supports creating and maintaining the SPL-based templates. ¿e model man-
ager supports creating andmaintaining deployment con�gurations, mapping con�gurations
to components provided by the underlying IaaS cloud, deploying con�gurations, and syn-
chronising con�gurations with running applications. ¿e adaptation manager adapts the
deployment con�guration based on monitoring information about the performance and re-
source usage of the running application. It integrates the adaptation policy described in the
following section. Finally, the communication component handles the communication with
the underlying IaaS cloud. A prototype of the architecturewas implemented using the Eclipse
modeling tools [44] and the CloudMF framework [50], which was also used in PaaSage.

Proactive Policy for Vertical VM Scaling

A notable aspect of XIPE is its support for proactive, vertical scaling [120]. Indeed, the ma-
jority of research and commercial cloud platforms were restricted to horizontal scaling [103],
typically triggered in a reactive manner. XIPE enables proactively modifying the allocated
memory of a VM before a change in performance occurs with the aim of avoiding SLO vio-
lations.
Figure 3.7 illustrates the design of the XIPE proactive adaptation solution. ¿e solution

consists of threemainmodules: monitoring, prediction and execution. ¿emonitoring mod-
ule collects information about the memory utilisation of the VM and the response time (RT)
of the application component deployed in the VM. ¿e prediction module consists of pre-
dictors for RT and memory utilisation that receive as input information from the monitor-
ing module. ¿e predictors rely on Recursive-Least-Square (RLS) �lters [66]. ¿e execution
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Figure 3.7: XIPE proactive adaptation

module adapts the amount of allocatedmemory of the VM.¿e adaptation policy operates as
follows. Initially, the system considers only memory predictions. When a memory increase
is predicted, the system takes into account RT predictions. When the RT is predicted to vi-
olate the SLO speci�ed by the application administrator, adaptation is triggered. A er the
adaptation, the system returns to the initial state.
¿e adaptation policy was evaluated using experiments with a web application under a

real workload trace in a private cloud environment. ¿e policy was compared to di�erent
con�gurations of the default OpenStack horizontal scaling solution. ¿e results showed that
the adaptation policy provides similar or better performance than the OpenStack solutions
with signi�cantly reduced resource usage [122].

3.1.4 Discussion

¿is section presented work aiming at facilitating taking decisions about application deploy-
ment. We �rst presented the adapter tool, part of the PaaSage platform, that enables adap-
tation of multi-cloud applications. We then discussed an approach for adaptive application
deployment that exploits the PaaSage technology. ¿e approach explicitly weighs predicted
adaptation costs against adaptation bene�ts based on predictions about recon�guration du-
ration and workload evolution. Finally, we presented an application management platform
that includes a proactive adaptation policy that modi�es the VMmemory size.
¿e work validated the e�ectiveness of the model-driven approach followed by PaaSage

and XIPE in facilitating application deployment and recon�guration. Moreover, the work
validated the e�ectiveness of the adaptive deployment approach in optimising the application
owner pro�t under various circumstances. A limitation of the work is that it assumes the
capability to predict application performance for di�erent deployments and workloads. A
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large amount of research has recently focused on such predictions using various methods
including analytic models and machine learning [6]. Exploiting such research is a natural
direction for future work.

3.2 A Service-based Framework for Epidemic Simulation
Applications

¿emotivation for this work was enabling legacy epidemic simulation applications to be de-
ployed in the cloud. Indeed, the cloud is an attractive platform for resource-intensive appli-
cations because it enables rapidly obtaining practically unlimited amounts of resources with
pay-per-use pricing [43]. Yet, legacy simulators, such as those developed by the BIOEPAR [16]
research unit at INRAE (National Institute of Agricultural Research), are typically structured
as monolithic applications executed on dedicated, high-end multicore systems and require
signi�cant restructuring in order to exploit the cloud.

Restructuring simulation applications to become cloud-based applications presents sev-
eral challenges. First, the applicationsmust be decomposed into services that can be deployed
on separate machines, potentially in di�erent clouds, and independently scaled. Second, au-
tomated support for application deployment and management must be provided in order
to reduce the complexity exposed to scientists. ¿is should include automated support for
elasticity to optimise the application performance and cost. Indeed, simulation applications
typically require di�erent amounts of resources at di�erent times. For example, the initial-
isation phase may require fewer compute resources than the main processing phase, thus
making it more e�cient to scale up the resource allocation at runtime. Finally, handling fail-
ures must be supported, which is essential for avoiding data loss and ensuring the correct
and e�cient completion of the simulation.

¿ere is a large amount of researchwork focusing on exploiting clouds to execute epidemic
simulations. Such work typically lacks support for elasticity [47, 64, 116, 131], or multi-cloud
deployment [3], or fault tolerance [78], or simulation-speci�c facilities beyond bag-of-tasks
execution [13, 133]. In contrast, our work proposed a complete, practical solution that ad-
dresses the previously mentioned challenges.

Speci�cally, we proposed a service-based framework called DiFFuSE that enables simu-
lation applications to fully exploit cloud platforms [113, 115]. DiFFuSE supports structuring
simulators as distributed, interacting services and provides mechanisms for managing sim-
ulation computations and data and automatically handling failures. To support multi-cloud
deployment and elasticity, DiFFuSE relies on the PaaSage framework (see Section 3.1.1). DiF-
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Figure 3.8: DiFFuSE architecture

FuSE has been applied to date to restructure two legacy applications, simulating the spread
of two diseases in cattle, namely, bovine viral diarrhea and bovine paratuberculosis.
¿e rest of this section describes the DiFFuSE framework and outlines its evaluation based

on the two case studies.

3.2.1 DiFFuSE Framework

¿eDiFFuSE framework is structured in three layers (see Figure 3.8). Seen from the bottom
up, the layers are increasingly speci�c to the domain of epidemic simulations. At the bot-
tom is a cloud deployment and execution platform, capable of running any modular appli-
cation across clouds. Next is the resource coordination layer that supports building services
that exchange data using a speci�c set of provided mechanisms. At the top is the epidemic
simulation services layer that supports building epidemic simulation applications as sets of
cooperating services. ¿e three layers are outlined in the following.

Epidemic Simulation Services

¿is layer provides reusable design and code for commonly required functionality in epi-
demic simulation applications, such as controlling experiments, executing simulation runs,
and managing the �ow of simulation data. ¿is functionality is provided as a collection of
services that can be easily customised and used by developers. ¿e services fall into three
main categories.

• Data Services: retrieve data fromdatabases and provide these data as well as related
meta-data to other services.

• Computing Services: perform the main computations of the simulation, either se-
quentially or in parallel, using single-computer parallelisation (e.g., using OpenMP).
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Computing services include services that execute simulation runs (called worker ser-
vices) as well as services that generate and process the �nal results.

• Experiment Services: control the life-cycle of experiments. ¿ey track the progress
of the computations, they handle service failures, and they provide con�guration data
about the experiments to other services.

Resource Coordination

¿is layer enables services to exchange data in a reliable and scalable way. In DiFFuSE, ser-
vices run as separate processes communicating over the network. Services use, provide, and
track the state of resources, de�ned as any named data (e.g., experiment con�gurations, ex-
periment data). A resource can have multiple providers, each o�ering the same data. Such
replicated resources can be used to support fault-tolerance and improve performance. A
service can obtain the data from an available provider and become itself a provider. ¿e
layer includes mechanisms to handle di�erent types of failures, including deployment-order
failures, service failures and, in particular, worker failures. It handles deployment-order fail-
ures through using the nanomsg message library [102], which transparently applies retry and
timeout mechanisms, allowing services to be launched in any order. It handles service fail-
ures through maintaining links between services and having services check that they peri-
odically receive messages from linked services and take appropriate actions when failures
are detected. It handles worker failures through reallocating lost simulation runs to other
workers.

Cloud Deployment and Execution

¿is layer enables hosting the services composing the epidemic simulator on a multi-cloud
infrastructure, relying on the PaaSage platform (see Section 3.1.1). PaaSage receives as input
CAMEL descriptions of the simulation services and of available cloud providers and gener-
ates a deployment on available cloud resources. Moreover, PaaSage dynamically adapts the
deployment to react to environment changes, e.g., violations of performance objectives, or
changes in cloud prices. It notably triggers elasticity actions (e.g., scaling out a component)
based on ECA (Event Condition Action) rules de�ned in CAMEL.

3.2.2 Evaluation

DiFFuSE was used to restructure two legacy simulators: a simulator of the spread of bovine
viral diarrhea virus (BVDV), and a simulator of the spread of Mycobacterium avium sub-
species paratuberculosis (MAP). ¿e legacy simulators were developed by INRAE and were
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transformed to cloud-based applications based on DiFFuSE. In total, 6.3% of the original
BVDV code and 1.78% of the original MAP code were modi�ed in order to convert them to
cloud-based applications. In the �nal DiFFuSE-based BVDV application, the proportion of
the code that is speci�c to the BVDV spread simulation (rather than reusable code) is around
17.7%. In the �nal MAP application, this proportion is around 5.93%. ¿ese measures pro-
vided evidence of the limited e�ort required for applying DiFFuSE and of the added value of
the DiFFuSE reusable code.

Using the BVDV and MAP simulators as reference applications, we conducted a set of
experiments to evaluate DiFFuSE in terms of performance, cost e�ectiveness, failure han-
dling, and elasticity in single and multi-cloud settings. ¿e experiments validated that using
DiFFuSE reduces execution time and cost compared to the legacy simulators, thus enabling
scientists to perform simulations previously considered as impractical or prohibitively ex-
pensive. Moreover, the experiments demonstrated the supported �exibility in deploying
DiFFuSE-based applications, which allows customers to make di�erent cost-performance
trade-o�s by controlling the number and types of used cloud resources. Finally, the experi-
ments validated the elasticity support provided by DiFFuSE as well as its ability to simulta-
neously exploit diverse VMs from multiple clouds.

Full evaluation results can be found in [115]. Here we cover a single experiment that val-
idated that DiFFuSE helps reduce data transfer times in multi-cloud deployments. In such
deployments, components of the simulation application are located at di�erent, geograph-
ically distributed data centres. As a result, network characteristics have a strong e�ect on
application performance. In the experiment, data services were deployed in an OpenStack-
Grid’5000 private cloud and worker services in the Amazon EC2 public cloud. ¿e workers
were con�gured to be in the same EC2 availability zone in order to reduce network latency.
When a worker is initialised, the worker obtains data from data services, which causes tra�c
of about 2GBs from the private cloud to the public cloud over the wide-area network con-
nection. ¿is would normally be repeated for every worker that joins the simulator with a
negative e�ect on the simulator performance. To reduce this negative e�ect, we applied the
DiFFuSE replication feature, enabling the worker that �rst obtains the data to provide repli-
cas of the data to other workers. In this way, data transfer tra�c was restricted within the
boundary of the public cloud.

To evaluate the replication feature, we compared data transfer times for the BVDV simula-
tor when data replication was enabled (E) and disabled (D) for di�erent numbers of workers
(4, 8, 12, 16 workers) processing a total of 40 simulation runs. Fig. 3.9 shows that the time is
lower when the replication feature is used, regardless of the number of workers. ¿e amount
of data transferred inside (I) and outside (O) the public cloud is shown in Fig. 3.10. Regard-
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less of the number of workers, the portion of the tra�c inside the public cloud is greatly
increased when replication is enabled. ¿is experiment thus validated the usefulness of the
replication feature in multi-cloud deployments.
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3.2.3 Discussion

¿e DiFFuSE framework brings signi�cant advantages in supporting the execution of epi-
demic simulation applications. ¿ese advantages are outlined next: DiFFuSE can exploit
variable numbers and types of cloud resources, allowingmaking di�erent trade-o�s between
performance and cost. It can automatically handle a wide range of failure and recovery sce-
narios, reducing the time to complete the simulation. It allows combining resources from
multiple clouds, such as private and public clouds. It provides replication support that helps
reduce data transfer times in multi-cloud deployments. Finally, it allows elastically modify-
ing resource allocations to adapt to dynamic variations in resource demand.
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¿eDiFFuSE so ware has been released as open-source so ware under the CeCILL-B li-
cence and used by epidemiology scientists at INRAE.¿e scientists appreciated the speedup
gains of the DiFFuSE-based applications, while they found code restructuring to be the most
di�cult part of using DiFFuSE.While working with epidemiologists can sometimes be time-
consuming owning to vocabulary di�erences, the bene�ts of the collaboration in terms of
solving practical problems with tangible economic and societal impacts far outweigh any
costs. ¿is work will be continued in two directions. First, we plan to apply DiFFuSE to fur-
ther applications in collaboration with INRAE scientists and use the feedback to improve the
usability and usefulness of the framework. Second, we plan to extend DiFFuSE with support
for continuous deployment optimisation. Indeed, the current version supports only static
rules that scale in/out services. Continuous deployment optimisation would build on the
work discussed in Section 3.1.2, generating good deployments based on historical execution
information or performance models.

Summary

¿is chapter examined work on automated application management on behalf of customers.
First, it discussed methods and tools for supporting application recon�guration across mul-
tiple clouds, drawing on a model-driven approach. ¿en, it concentrated on the special case
of epidemic simulation applications and presented a solution for restructuring, deploying,
and executing such applications in cloud environments. ¿e next chapter describes a man-
agement solution that coordinates the customers and the provider of a private cloud.
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To jointly satisfy the objectives of customers and the provider, we need to coordinate their
interactions through appropriate rules and incentives. ¿is is a main theme of this chapter.
Indeed, in the previous two chapters, we examined cloud management from the perspec-
tive of the provider or the customer. In each case, we did not consider how the other party
behaves in pursuing its objectives. For example, in Chapter 2, we did not consider how cus-
tomers negotiate SLAs, or how they react to contract rescissions, request cancellations, or
SLO violations. In this chapter, we take a holistic approach that examines how all actors
interact and pursue their own objectives within a private PaaS system.
¿e practical problem thatmotivated this work arose in the context of a collaboration with

EDF (Électricité de France) R&D. ¿is organisation needed to share its private infrastruc-
ture among scientists and engineers, who wanted to execute diverse applications (e.g., batch,
bag-of-tasks, MapReduce applications) with various performance objectives (e.g., meeting
deadlines). Using public cloud resources was excluded owning to security constraints. We
identi�ed two key requirements that a resource management system for this organisation
should satisfy. First, given that the capacity of the infrastructure is limited, the system should
distribute resources to the customers that value them the most. Indeed, traditional resource
management systems for clusters (e.g., batch schedulers [130, 142]) rely on priority queues or
fair sharing policies, providing no incentive to customers to relax their demand during con-
tention periods, eventually leading to resources not being put to their best use. Second, the
system should provide the �exibility to support a variety of applications, customer-de�ned
SLOs, and policies for achieving these SLOs.
To meet these requirements, we proposed a novel application and resource management

solution for private PaaS clouds. In our solution, the provider seeks to increase economic
e�ciency by virtualising the infrastructure and distributing �ne-grained virtual resources
to customers through a market-based mechanism, namely an auction. Customers seek to
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satisfy the SLOs of their applications through employing controllers that dynamically adapt
the applications’ resource demand.
Many resource management systems focused on providing SLO support to applications,

typically using dynamic controllers based on performancemodels [38, 63, 136, 138, 147]. Unlike
our solution, these systems target speci�c application types and lack the �exibility to support
a wide range of applications and SLOs. Other related research focused on sharing a cluster
between applications requiring di�erent programming frameworks [67, 127, 135]. Although
these systems have �exible architectures, which can support various application types, they
provide no support for individual, customer-speci�c SLOs. Moreover, when handling re-
source contention, these systems rely on priorities or quotas assigned by administrators. As
a result, these systems produce e�cient allocations only if administrators know the value
of resources for all customers at all times or if customers truthfully declare such values. Fi-
nally, much research has proposed using markets for sharing the resources of clusters, grids,
and clouds [1, 27, 87, 124, 129, 141]. However, these systems did not target a private cloud and
provided no adaptation support for meeting customer SLOs.
¿is work was performed in the context of Stefania Costache’s PhD thesis [31] that I co-

supervised with ChristineMorin (Inria) and Samuel Kortas (EDFR&D).¿eworkmade two
main contributions [30, 33, 34, 35, 36].

• First, we proposed a market-based approach that allocates virtualised resources to ap-
plications while enabling each application to individually and dynamically adapt its
resource demand based on customer needs. ¿e approach also provides adaptation
policies for vertical and horizontal application scaling.

• Second, we proposed a prototype platform, called Merkat, that applies the approach
to support generic and extensible application and resource management for private
clouds. ¿e prototype platform was deployed and evaluated within EDF R&D.

¿e remainder of this chapter is structured as follows. Section 4.1 presents the system
model underpinning the approach. Section 4.2 describes the implementation of the auction
mechanism, and Section 4.3 describes the proposed adaptation policies. A brief overview of
the Merkat prototype is provided in Section 4.4, followed by a discussion of the evaluation
in Section 4.5. Finally, Section 4.6 makes concluding remarks.

4.1 PaaS System Model

In our approach, we assume a private PaaS system hosting applications of di�erent types
supplied by customers (see Figure 4.1). Each application runs in its own virtual platform,
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Figure 4.1: Overview of the market-based approach

composed of a set of VMs and an application controller. ¿e application controller interacts
with the PaaS system to control the application’s resource allocation. ¿e interaction between
the controller (representing the customer) and the PaaS system (representing the provider)
relies on a market-based mechanism, namely an auction. We selected the proportional-share
auction [87] in which a bidder submits a bid for a resource, receives an amount of resource
proportional to this bid, and is charged exactly this bid. ¿emain advantage of such auctions
is their simplicity and scalability (the computational complexity of calculating the allocation
grows linearly with the number of bids). Moreover, under some theoretical assumptions,
proportional-share auctions have been shown to be optimal in terms of economic e�ciency
among all simple and scalable market mechanisms [104].

Speci�cally, in our approach, the application controller submits bids on CPU andmemory
resources for the application VMs. Based on these bids, the PaaS system allocates an amount
of CPU andmemory to each running VM and charges the customer according to the auction
rules. Resource allocations are �ne-grained (i.e., 30% of one core and 800 MB of RAM)
and vary dynamically according to the total resource demand. Payments rely on a virtual
currency. When a customer registers with the system, the administrator assigns a number of
credits to the customer’s account. When the customer submits an application, the customer
allocates an application budget to the application. ¿e customer can set the application budget
to be renewed automatically to avoid cases in which the application budget is depleted in the
middle of the application’s execution. Customer payments are redistributed to customers’
accounts over a typically long time period.
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¿e bene�ts of using this market-based mechanism are threefold. First, the mechanism
provides incentives to customers to use resources judiciously given that customers are sel�sh,
thus, increasing the economic e�ciency of allocations. Second, it provides a generic way to
control resource demands, making it easier to support diverse kinds of applications, SLOs,
and policies for meeting those SLOs. Finally, supporting �ne-grained, dynamic allocation
helps to improve the utilisation of the infrastructure.

4.2 Auction Implementation

We describe next how the provider implements the proportional-share auction. ¿is imple-
mentation follows four steps: (i) VM bid submission; (ii) VM resource allocation; (iii) VM
placement; (iv) price computation.

VM Bid Submission

To provision a VM, the application controller submits a bid (bcpu,bmemory) with values for
each VM resource. ¿e initial bid can be computed based on the current price or past price
history, and the bid can be modi�ed to cope with price �uctuations or changes in resource
demand.

VM Resource Allocation

¿e VM Scheduler periodically computes resource allocations for the VMs by considering
their bids and resource utilisation limits (amax_cpu, amax_memory) that specify the maximum
resource usage for a VM. ¿e resource allocation computation is performed in two steps:
(i) the VM Scheduler computes the VM allocation considering the entire infrastructure as a
single physical node; (ii) the VM Scheduler corrects the allocations to cope with the fact that
the infrastructure capacity is partitioned among nodes.
When considering the entire infrastructure as a single physical node, the VM Scheduler

computes the resource allocations as follows. Given a set of bids b j for VMs j ∈ {1..n}, and
a resource with a capacity of C units, the resource allocation for j will be:

al loc j =
b j

∑n
1 bk

⋅ C , (4.1)

Since the infrastructure capacity is partitioned between nodes, there are situations when
resulting allocations cannot be enforced. For example, consider 3 physical nodes each with
a capacity of 100 CPU units (1 CPU unit represents 1% of CPU time). We need to allocate 3
VMs that have a bid of 12 credits, and 2 VMs that have a bid of 30 credits. Using Equation 4.1,

50



4.2 Auction Implementation

the VM Scheduler computes ideal allocations (al loc idealj ) for the VMs as follows: 37.5 CPU
units for the �rst 3 VMs and 93.75 CPU units for the last twoVMs. It is practically impossible
to enforce these allocations on three physicalmachines. To solve this issue, theVMScheduler
can place the �rst 3 VMs on the same physical node, and the last 2 VMs on separate nodes.
¿eVMScheduler can then recompute the allocations using the capacity of individual nodes
in Equation 4.1. In the example, the resulting, real allocations (al locrealj ) are: 33.3 CPU units
for the �rst 3 VMs and 100 CPU units for the last 2 VMs. ¿e allocation di�erence is called
allocation error and is de�ned as follows:

e j =
∣al loc idealj − al locrealj ∣

al loc idealj
, (4.2)

VM Placement

When VM requests are received the VM Scheduler places them initially on the nodes with
the lowest resource utilisation. To minimize the VM allocation error, the VM Scheduler
might migrate VMs between nodes. ¿e process of migrating VMs among nodes is called
load balancing. As having a high number of migrations leads to a performance degradation
for the applications running in the VMs, the load balancing process tries to make a trade-o�
between the number of performed migrations and the VM allocation error. For example, it
may not make sense to migrate a VM when its allocation error is 1%. To select the VMs to
be migrated at each scheduling period, the VM scheduler relies on an algorithm based on a
tabu search metaheuristic method [57].
Algorithm 2 explains the load balancing process. ¿e algorithm receives the list of cur-

rent nodes, nodes, the list of running VMs, vms, the list of VMs to be started at the cur-
rent scheduling period, newvms, and three thresholds: (i) maximum number of iterations
performed by the algorithm to obtain a better placement than the current one, Niter ; (ii)
maximum allocation error supported for the VMs in their current placement, Emax ; (iii)
maximum number of migrations required to reach a better placement,Mmax . Based on this
information the algorithm computes the new placement of VMs on nodes and outputs a mi-
gration plan, composed of the VMs to be migrated, and a deployment plan, composed of the
VMs to be started.

Price Computation

¿e resource price is computed as the sum of all bids divided by the total infrastructure
capacity. If this price is smaller than a prede�ned reserve price, then the reserve price is used.

51



4 Application and Resource Management in Private Clouds

Algorithm 2 VM load balancing algorithm
ComputePlacement (nodes, vms, newvms,N i ter , Emax ,Mmax )
for vm ∈ newvms do

node ← least loaded node from nodes
node .vms ← node .vms ∪ {vm}

solutionol d ← nodes
solutionbest ← nodes
nIterations ← 0
tabu_l ist ← ∅ // list of forbidden moves
eworse ← inf
e = ComputeErrors(nodes) // based on Equation 4.2 for each VM and each resource (i.e., cpu and
memory)
while nIterations < N i ter and eworse > Emax do
(vm, emax)← �nd vm with emax = max

1≤i≤n
max{e i ,c pu , e i ,mem}

source ← vm.node
destination ← node which minimizes emax , (vm, node) /∈ tabu_l ist
vm.node ← destination
source .vms ← source .vms − {vm}
destination.vms ← destination.vms ∪ {vm}
tabu_l ist ← tabu_l ist ∪ {(vm, source)}
e = ComputeErrors(nodes)
e′max ← max

1≤i≤n
max{e i ,c pu , e i ,mem}

nMigrations = calculate number of migrations required to reach the current solution from
solutionol d
if e′max < eworse and nMigrations < Mmax then

solutionbest ← nodes
eworse ← e′max
nIterations ← 0

else
nIterations ← nIterations + 1

for node ∈ solutionol d do
for vm ∈ node .vms do

if vm.node ≠ node and vm ∉ newvms then
migrationPlan ← migrationPlan ∪ {(vm, vm.node)}

for vm ∈ newvms do
deploymentPlan ← deploymentPlan ∪ {(vm, vm.node)}

return (migrationPlan, deploymentPlan)
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Customers are charged for each runningVMat each scheduling interval with a credit amount
equal to the product of the resource price and the resource allocations.

4.3 Adaptation Policies

¿e application controller applies policies to adapt the application on behalf of the customer.
To illustrate this adaptation, we discuss two policies—one for vertical scaling and one for
horizontal scaling—that modify the application resource demand to meet customer SLOs
under budget constraints. ¿e policies run periodically and use two performance thresh-
olds, upper and lower, as a trigger: when the performance metric traverses a threshold, the
policy takes actions that change the application resource demand. ¿e vertical scaling policy
adapts the bids of each VM and uses suspend/resume mechanisms to avoid high price peri-
ods. ¿is policy can be applied for applications with a static number of VMs, such as MPI
applications, with customer-provided time constraints. ¿e horizontal scaling policy adapts
both the number of VMs and their bids. ¿is policy can be applied for elastic applications,
such as task-processing frameworks (e.g., Condor, Hadoop).
In general, the policies behave as follows:

• When the SLO is met, the policy reduces the resource demand of the application, thus
saving the budget to run other applications.

• When the SLO is not met and the budget allows it, the policy increases the resource
demand of the application.

• When the SLO is not met and the budget is insu�cient, the policy may suspend the
application, or stop the application, or reduce its resource demand.

¿e policies are outlined next. Full details can be found in [33].

4.3.1 Vertical Scaling Policy

¿is policy generates the resource bids for the next period based on the application perfor-
mance metrics, the current allocations, and the budget. ¿e policy decreases the resource
bids if the performance metric drops below the lower threshold (e.g., the application is ex-
pected to �nish sooner than its deadline), or if the allocation perVM for one resource reaches
the maximum. If the performance metric is above the higher threshold (e.g., the application
is expected tomiss the deadline), the policy increases the resource bids. If the current budget
is not enough to meet the SLO, the policy takes a decision based on the application and SLO
types. Speci�cally, if it is advantageous to suspend the application execution (e.g., in the case
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Figure 4.2: Merkat prototype

of best-e�ort or deadline-driven batch applications), the policy suspends the application, re-
suming it when the price drops. If it is not advantageous to suspend the application execution
(e.g., for interactive applications, or applications for which the customer might be satis�ed
with partial results delivered at a deadline), the policy recomputes the bids in a way that fa-
vors the resource (CPU, memory) with a small allocation (i.e., the resource that represents a
bottleneck in the application’s progress).

4.3.2 Horizontal Scaling Policy

¿is policy generates the number of VMs and the bids for the next time period based on
the performance metrics, the current resource prices, and the budget. ¿e policy decreases
or increases the number of VMs depending on whether the SLO is met is not. ¿e policy
ensures that the resulting number of VMs is less than or equal to an upper bound on the
number of VMs. ¿is upper bound is calculated as the maximum number of VMs permitted
by the application budget so that all VMs receive their maximum resource allocation (i.e.,
amax_cpu,amax_memory) at the current resource prices.

4.4 Merkat Prototype

To validate our proposed resource and application management approach, we built a proto-
type, called Merkat, whose architecture is shown in Figure 4.2. Merkat is composed of three
main services: ¿e VM Scheduler is in charge of allocating resources to running VMs and
computing their node placement using Algorithm 2. ¿e Virtual Currency Manager applies
virtual currency distribution policies and manages customer and application budgets. ¿e
Virtual Platform Manager acts as the entry point for customers to use the system.
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To submit an application, the customer uses a virtual platform template that speci�es the
con�guration of theVMs (e.g., VMdisk images), the type of application controller, budgeting
information, and adaptation policy parameters, such as desired SLO (e.g., execution time
limits). Based on this information, the Virtual PlatformManager creates the virtual platform
and deploys the application controller, responsible for further applicationmanagement based
on the adaptation policies. ¿e Virtual PlatformManager registers the virtual platform with
the Virtual Currency Manager to allow charging the application for its resource usage.
VMs are allocated using an IaaSCloudManager that provides interfaces to start, delete and

migrate VMs, manage their storage and network, and keep information about infrastructure
users. Merkat is implemented in Python and relies on the Twisted [134] and ZeroMq [145] li-
braries. It uses OpenNebula as the IaaS CloudManager [107]; the default scheduler of Open-
Nebula is replaced by Merkat’s VM Scheduler.

4.5 Evaluation

We conducted a set of experiments to evaluate the extent to which the approach supports
customers inmeeting their SLOs. We also wanted to validate the �exibility of the approach in
supporting di�erent application types and SLOs. To that end, we performed both simulations
and testbed experiments described in turn next.

4.5.1 Simulations with Large Traces

To test Merkat with large workloads, we used simulation since this would have been im-
practical to do in a real testbed. Speci�cally, we implemented the algorithms of Merkat in
CloudSim [23], an event-driven simulator implemented in Java. ¿e applications are batch
applications composed of a �xed number of tasks running in parallel. To express the diversity
of customer requirements, we de�ned three types of customers:

• Full deadline customers: ¿e customer wants the results by a speci�c deadline; if the
application fails to terminate before the deadline, the customer is unsatis�ed.

• Partial deadline customers: ¿e customer wants the results by a speci�c deadline; the
customer values partial results at the deadline.

• Full performance customers: ¿e customer wants the results as soon as possible, but
can also accept a bounded delay.

Each customer type is associated with a utility function that measures the value obtained by
the customer (called customer satisfaction) as a function of the application execution time.
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Each type is also associated with an adaptation policy, which specialises the vertical scal-
ing policy described in Section 4.3.1 to re�ect customer requirements. ¿e workload was
based on the HPC2N trace [112], containing a log of applications submitted to a Linux clus-
ter with 120 nodes. ¿is trace was chosen because of the information regarding memory
requirements of applications. Since the trace had no information on deadlines, we assigned
synthetic deadlines to applications, between 1.5 and 10 times the application execution time.
We assigned budgets inversely proportional to this deadline factor.
¿e experiments showed thatMerkat can accommodate di�erent types of customers while

providing good customer value and with limited VMmanagement overhead (migration and
suspend/resume operations). Full results can be found in [33]. Here we focus on the com-
parison of the total satisfaction provided by Merkat compared to two traditional scheduling
policies, namely, FCFS (First Come, First Served) and EDF (Earliest Deadline First). FCFS
is the policy typically applied by IaaS cloud managers. EDF is a policy typically applied to
minimise the number of missed deadlines. It is important to note that cloud systems cannot
practically apply EDF or similar algorithms without limiting their support to a prede�ned
set of customer goals (e.g., in the case of EDF, meeting deadlines). We chose EDF in order
to compare our �exible approach with a specialised, deadline-driven system. Figure 4.3(a)
describes the results of this comparison. It considers full-deadline customers and the asso-
ciated Merkat policy. Figure 4.3(b) describes the number of applications that successfully
�nished their execution before their deadline.
We observe that (i) the system outperforms FCFS in all cases, as FCFS does not consider

application valuation or SLO in its decisions; (ii) when the contention is not high, the sys-
tem outperforms EDF in terms of customer satisfaction; and (iii) when the system is highly
loaded, EDF performs better. ¿e performance gap between themechanism and EDF in case
of high contention can be explained as follows. With EDF, the central scheduler takes con-
sistently good scheduling decisions; it sorts applications by their deadline and executes the
application with the smallest deadline �rst. ¿us, more applications with smaller deadlines
get to run on time, providing higher satisfaction. With Merkat, applications do not consis-
tently take the best allocation decisions since they adapt independently with only limited
information. ¿is leads to a performance degradation, the result of allowing applications to
behave sel�shly (i.e., the price of anarchy [104]).

4.5.2 Testbed Experiments

For the experiments on a real testbed, we used three applications with di�erent SLOs and as-
sociated policies. Speci�cally, we used an MPI application with a vertical scaling policy that
attempts to meet customer deadlines, the Condor framework with a horizontal scaling pol-
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Figure 4.3: Performance in terms of (a) total customer satisfaction, and (b) percentage of successfully
�nished applications for Merkat, FCFS, and EDF—contention increases from le to right.

Platform %Met Deadlines Satisfaction Migrations/hour
Merkat 82.5% 764330 310
Maui 58.1% -178581 -

Merkat/CloudSim 94% 950554 62

Table 4.1: Comparison of Merkat, Maui, and Merkat’s simulation in CloudSim.

icy that attempts to regulate the number of queued tasks, and the Torque framework with a
horizontal scaling policy that attempts to regulate the wait time in the queue per task. ¿e ex-
periments validated the �exibility of Merkat in supporting di�erent applications, SLOs, and
policies. ¿ey also showed that the applications can adapt to changes in operating conditions
(e.g., price increases in contention periods) as well as to changes in customer requirements
(e.g., changes in deadlines) [33].
In a particular experiment, we compared Merkat with Maui, a popular batch scheduler in

HPC environments [98]. Speci�cally, we deployedMerkat andMaui on a cloud of 10 compute
nodes of Grid’5000 and ran 160 MPI applications over a time interval of 7 hours. ¿e appli-
cations had 1 to 8 processes, each process in oneVM.We considered full-deadline customers,
and generated the workload based on a Lublin [91] model. In Merkat, each application ran
with the vertical scaling policy. Maui used FCFS and back�lling to schedule applications.
Table 4.1 summarizes the results of this experiment. ¿e results showed that, when us-

ing Merkat, the number of applications that �nish before their deadline increases by 24.1
percentage points compared to using Maui. Using Merkat also increased the customer sat-
isfaction compared to Maui (for Merkat, the total satisfaction was 764330 credits, compared
to a negative satisfaction of -178581 credits for Maui). ¿ese results provided evidence of the
e�ectiveness of Merkat in managing real clouds. To further validate the results, we com-
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pared Merkat with its CloudSim-based simulation on the same workload trace. We found
a di�erence of 11 percentage points in the number of applications that meet their deadlines,
with more applications meeting their deadlines in the simulation. We also see a di�erence
in the total satisfaction and the number of migrations. ¿e reason for the di�erence is that
Merkat/CloudSim relies on a simple application model in which performance interference
is not accurately modelled. When running real applications on Merkat, Merkat’s algorithms
have to cope with higher variability in performancemetrics, which leads to higher variability
in bids and resource allocations, and thus a higher number of migrations.

4.6 Discussion

¿is chapter described a solution for application and resource management in private PaaS
clouds. In this solution, the provider operates an auction that allocates �ne-grained virtual
resources to customers. Customers operate applications that autonomously adapt their re-
source demand in a decentralisedmanner, seeking to satisfy their QoS objectives. A straight-
forward way to continue this work is to support additional resource types (e.g., network and
storage resources), application types, SLOs, and policies for meeting these SLOs, including
policies that consider the costs of recon�guration. A limitation of the work is that devel-
oping adaptation policies remains a complex and ad hoc process, mainly due to the price
dynamicity and uncertainty. It would thus be interesting to provide improved support for
developing such policies (e.g., based on the bidding strategies for EC2 spot pricing [146]) or
even to investigate alternative auction mechanisms that simplify the policy design space [26,
80].

¿e Merkat prototype was deployed in an EDF R&D testbed, but we unfortunately ob-
tained few data on its usability and acceptance by users. ¿e most widely deployed PaaS
systems for private clouds, developed in the same period as Merkat or later, use traditional
methods to handle contention, such as priorities or quotas [21, 67, 135]. Experience with ear-
lier market-based resource management systems showed that users, when given the choice,
may prefer traditional methods to markets for simplicity reasons, even if this choice results
in lower utility [10]. It thus remains unclear whether markets are appropriate in private cloud
settings, where customers belong to the same organisation and simpler methods to solve
contention are feasible. Market-based approaches are certainly useful in completely decen-
tralised systems with no single locus of control, a point revisited in the next chapter.
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¿is �nal chapter revisits some key �ndings of my research and identi�es directions for
future work.

5.1 Synopsis

¿e document has separated my research activities into three strands. ¿e �rst strand fo-
cused on designing provider-side management systems, producing solutions for SaaS and
PaaS providers. ¿e main insight of this work was that SLAs simplify decision-making be-
cause they link QoS levels (e.g., response time values) to economic consequences (prices,
penalties). As a result, decision-making can be decomposed into predicting the QoS im-
pact of di�erent management actions, translating this impact into monetary terms, and per-
forming an economic cost-bene�t analysis. Another insight was that building an automated
SLA-driven management system requires a �exible architecture that supports a wide range
of management actions (e.g., adding/removing resources, cancelling contracts) and enables
timely response to environmental changes (e.g., �uctuating workloads, failures).
¿e second strand focused on designing customer-side management systems, producing

methods and tools for adaptingmulti-cloud applications. ¿ese tools were notably integrated
within the PaaSage open-source platform and exploited by several academic and industrial
partners. ¿emain insight of this work was that bene�cial application management requires
considering recon�guration costs as well as bene�ts. To reason about recon�gurations, it is
useful to maintain abstract representations of the running system and generate explicit re-
con�guration plans. ¿e e�ectiveness of applying economic analysis to such recon�guration
plans was also con�rmed by the work. Another focus in this strand was facilitating the de-
ployment of epidemic simulation applications, producing the DiFFuSE framework built on
PaaSage. ¿e DiFFuSE framework was successfully used by epidemiology scientists at IN-
RAE to migrate legacy simulators to the cloud. An insight gained from this work was that
legacy simulators can be decomposed into separate services with limited code changes; this
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decomposition then makes it easy to exploit cloud platform features, such as independent
service scaling.
¿e �nal strand focused on designing a framework for resource and application manage-

ment in private clouds. ¿is research took the idea of applying economic reasoning a step
further: it transformed the private cloud into an economy where applications sel�shly at-
tempt to achieve their own goals through participating in an auction. ¿e main insight of
this work was that the market-based approach is a natural and e�ective way to coordinate
interactions among applications and the platform, promoting extensibility with respect to
application types and increasing total value.
An important part of my research activities was developing working so ware systems.

So ware development was useful not only for experimentally validating the results (typically
using Grid’5000 deployments), but also for generating, testing, and improving solution ideas
in early development phases. Building so ware can be tedious and time-consuming, particu-
larly when multiple development teams are collaborating, as was the case, for instance, with
the PaaSage platform. Nevertheless, producing usable prototypes is invaluable. It enables
broadening the impact of the work as well as obtaining helpful feedback from real users, as
was the case, for instance, with the DiFFuSE framework.

5.2 Outlook

Cloud computing is continually evolving to accommodate a widening range of application
types, programmingmodels, underlying infrastructures, economic actors, and pricingmod-
els, posing new challenges and opening up exciting research opportunities [22]. I plan to con-
tinue investigating automated management solutions for domains beyond traditional clouds
through applying new or improved management approaches. In the following, I present
the research directions that I intend to pursue together with some ongoing work. ¿ese di-
rections fall into three categories: management for domains beyond traditional clouds, im-
proved decision-making, and support for decentralised management.

5.2.1 Beyond Traditional Clouds

High-performance, real-time, embedded systems Modern real-time embedded sys-
tems such as those monitoring and reacting to evolving physical environments (e.g., ground
radar systems, surveillance drones) are increasingly expected to cope with dynamic work-
loads, di�cult to predict in advance. ¿ese systems must execute dynamic combinations of
applications, each having varying resource needs, while satisfying stringent timing require-
ments. ¿e resource management problem posed by these systems becomes thus similar to
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that posed by cloud systems; namely, allocating resources to dynamic workloads in line with
application QoS requirements and provider objectives.

We are working on resource management for high-performance embedded systems in the
context of Baptiste Goupille-Lescar’s PhD thesis that I co-supervise with Eric Lenormand
(¿ales Research & Technology) and Christine Morin (Inria). ¿e thesis is funded by a
CIFRE contract with ¿ales Research & Technology. In this work, applications require real-
time guarantees, and the provider objective is to increase the utilisation of the computing
platform. Research challenges include the heterogeneity of the resources, and the dynamism
and variability of the workload combined with the real-time application requirements. To
address those challenges, we are developing a QoS-aware resource management approach
that maintains a continually updated runtime model of the platform architecture and appli-
cations, allowing accurate predictions of future resource availabilities. Preliminary results
show that the approach leads to reduced application latencies compared to basic solutions
while allowing gradual performance degradation in overload scenarios [60, 61].

Function-as-a-Service (FaaS) ¿eFaaSmodel, the core element of serverless computing,
is a recent addition to cloud technologies that enables customers to deploy functions on the
provider’s infrastructure without being concerned with provisioning or operating servers.
¿e functions are executed on demand and customers are charged only for the amount of
time that their functions are running. ¿e bene�ts of FaaS include fully automatic scaling, a
general programmingmodel, and reduced operational costs, leading to a rising popularity in
industry. ¿emodel is supported by all major cloud providers as well as several open-source
so ware platforms [51, 79, 106]. ¿e serverless computing model and FaaS are sparking new
research into extending FaaS platforms to support additional application types (e.g., data
analytics) and underlying infrastructures (e.g., edge devices) [11, 72].

One limitation of current FaaS platforms is that they lack support for managing the QoS
experienced by FaaS customers. To overcome this limitation, we have initiated work to de-
velop an automated resource management solution for FaaS [19]. ¿is work is performed
in the context of Yasmina Bouizem’s PhD thesis that I am co-supervising with Djawida Dib
(University of Tlemcen) and ChristineMorin (Inria). ¿e provider objectives chosen for this
solution are satisfying the performance and availability requirements of customers while re-
ducing energy consumption. Challenges in developing this solution include implementing
fault-tolerance mechanisms, such as active replication, and taking into account the perfor-
mance, availability, and energy consumption objectives in a coordinated manner.
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Fog Computing ¿e rapid growth in the number of Internet-connected devices has trig-
gered the emergence of diverse IoT (Internet of ¿ings) applications and use cases, such
as autonomous cars, smart cities, and video surveillance. ¿ese applications impose strin-
gent requirements on the underlying infrastructure in terms of available bandwidth and low-
latency computation. Traditional cloud infrastructures cannot meet these requirements as
they rely on distant data centres accessible over large-scale networks, placing economic and
physical limits on bandwidth and latency [126]. ¿is has led to growing industrial and re-
search interest in fog computing, sometimes referred to as edge computing. Fog computing
is an extension of the traditional cloud computing model in which compute, storage, and
network capabilities are distributed closer to users along a cloud-to-thing continuum [95].

Increasing the proximity to users promises multiple bene�ts, including highly responsive
services, reduced bandwidth consumption, support for user mobility, and enhanced privacy.
However, realising these bene�ts poses several research challenges. First, compared to tra-
ditional cloud computing, fog computing exploits a wider heterogeneity of resources (e.g.,
sensors, mobile devices, gateways, micro data centres, cloud data centres) and network links
(e.g., wireless access technologies, backbone links). ¿is diversity makes it more di�cult to
de�ne common interfaces and abstractions for accessing these resources andmodels for rea-
soning about their capabilities. Importantly, this diversity also expands the range of possible
application deployments, making it more di�cult to make application placement decisions.
In the context of the FogCity project [52], we have initiated work on a fog resource man-
agement scheme that takes into account fog node heterogeneity. ¿e scheme is based on a
bargaining game and seeks to satisfy theQoS preferences of customers (e.g., application delay
and location preferences) while maximising node utilisation.

Second, compared to traditional cloud execution environments, fog environments are
more dynamic and subject to unpredictable changes. ¿is results from user and device mo-
bility (e.g., personal devices, cars, drones), resource volatility (e.g., battery shortage), and
topology changes (e.g., fog nodes joining, leaving, failing). ¿e higher rate of environment
change requires fastermanagement decisions, motivating further research towards improved
decision-making approaches and decentralised decision-making structures.

Finally, fog computing will involve a complex interplay of economic actors. Although the
fog ecosystem has not yet stabilised, one possible scheme comprises infrastructure providers,
service providers, end users, and edge resource owners [76]. In this scheme, infrastruc-
ture providers own and manage large-scale infrastructures of devices, networks, and clouds.
Service providers rent resources from infrastructure providers and create applications (e.g.,
video surveillance) used by end users. Edge resource owners (e.g., individuals, companies)
own small-scale infrastructures of edge resources and rent these to infrastructure providers.
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Coordinating the complex interactions between such actors and automatically managing the
multiple associated contracts in line with actors’ objectives is a challenging area that requires
further research.

5.2.2 Improved Decision-Making

E�ective decision-making is an essential ingredient of all management systems. In the work
described in this document, decision-making typically relied on simple heuristics (e.g., Sec-
tion 2.1.2, Section 4.3) ormetaheuristics (e.g., Section 4.2) combined with performance, cost,
and workload models (e.g., Section 2.2.1, Section 3.1.2). ¿e drawback of such techniques is
the complexity of designing appropriate heuristics and of manually tuning them to handle
changes in operating conditions (e.g., new application types, new workload types).
Machine learning techniques, such as deep reinforcement learning, have the potential to

alleviate this drawback. Indeed, these techniques enable taking decisions based on dynam-
ically collected data without requiring a priori modelling or expert knowledge, while auto-
matically learning and adapting to changing environments. Machine learning techniques
are increasingly being applied to cloud management problems with promising results [9, 96,
123, 139]. Nevertheless, to enable widespread deployment of these techniques in real-world
settings, many challenges remain to be addressed, including exploring the performance, sta-
bility, and generalisability of di�erent learning algorithms [62], improving their interpretabil-
ity [97], integrating them into practical cloud management systems, and evaluating their ef-
fectiveness.

5.2.3 Decentralised Management

Current and emerging cloud and fog ecosystems encompass independent interacting sys-
tems operated by actors with distinct, potentially con�icting interests (e.g., application own-
ers, service providers). A challenge that arises in such decentralised systems is global man-
ageability [71], that is, coordinating the interactions of the independent systems in order to
ensure global properties, such as maximising total value or fairness.
A well-known approach to addressing the global manageability challenge is applying eco-

nomic and pricing mechanisms [49].¿esemechanisms specify the rules and incentives that
govern interactions among self-interested agents, which trade services with each other. We
have already applied auction mechanisms to coordinate the interactions among customers
and the provider in private clouds (Chapter 4) and among application type-speci�c resource
groups in a PaaS implementation (Section 2.2). Although there is an extensive literature on
applying economic and market-based mechanisms in cloud resource management [32, 92],
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the mechanisms have seen limited adoption in real, commercial clouds. ¿e main reason
is arguably the complexity of such mechanisms for human users [70]. ¿is may be of less
concern when automated agents are involved, potentially employing sophisticated decision-
making techniques (Section 5.2.2).
Further research is clearly needed in using economic mechanisms for decentralised man-

agement in cloud and fog deployments. An important requirement is selecting appropri-
ate mechanisms for a given setting. Such settings may include, for instance, selling �ne-
grained IaaS resources for short time intervals [12], leasing edge resources to fog infrastruc-
ture providers [76], allocating micro data centre resources to low-latency applications [132],
or placing functions on fog-based FaaS platforms [15]. Selecting mechanisms will require
considering not only their economic properties (e.g., economic e�ciency, truthfulness), but
also their technical properties (e.g., scalability). For instance, typical auction mechanisms
employ a central, trusted auctioneer that collects and processes all bids, creating scalability,
reliability, and trust challenges. Addressing such challengesmay require turning towards dis-
tributed auction mechanisms [140, 144]. Finally, much work remains to be done in building
practical implementations of such mechanisms and participating agents, and demonstrating
their reliable and robust operation in real cloud/fog deployments.
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