
2017

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

Byzantine State Machine Replication for the Masses

Doutoramento em Informática

 Especialidade Ciência da Computação

João Catarino de Sousa

Tese orientada por:

Prof. Doutor Alysson Neves Bessani

Documento especialmente elaborado para a obtenção do grau de doutor

2017

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

Byzantine State Machine Replication for the Masses

Doutoramento em Informática

 Especialidade Ciência da Computação

João Catarino de Sousa

Tese orientada por:

Professor Doutor Alysson Neves Bessani

Júri:

Presidente:

● Doutor Nuno Fuentecilla Maia Ferreira Neves, Professor Catedrático da Faculdade de Ciências da

Universidade de Lisboa

Vogais:

● Doutor Christian Cachin, Researcher

 IBM Research-Zurich, na qualidade de individualidade de reconhecida competência (Suíça)

● Doutor Rolando da Silva Martins, Professor Auxiliar Convidado

 Faculdade de Ciências da Universidade do Porto

● Doutor Nuno Manuel Ribeiro Preguiça, Professor Associado

 Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa

● Doutor Luís Manuel Pinto da Rocha Afonso Carriço, Professor Catedrático

 Faculdade de Ciências da Universidade de Lisboa

● Doutor Alysson Neves Bessani, Professor Associado

 Faculdade de Ciências da Universidade de Lisboa (orientador)

Documento especialmente elaborado para a obtenção do grau de doutor

Doutoramento financiado pela Fundação para a Ciência e a Tecnologia

SFRH / BD / 70736 / 2010

Resumo

A técnica de replicação máquina de estados é um paradigma popular usado em
vários sistemas distribuídos modernos. No entanto, apesar da adoção deste
paradigma em sistemas reais tolerantes a faltas por paragem, ainda existem
poucos exemplos de sistemas reais tolerantes a faltas bizantinas. Segundo a
nossa experiência nesta área de investigação, isto deve-se ao fato de existirem
poucas concretizações robustas para replicação máquina de estados tolerante a
faltas bizantinas, assim como uma perda de desempenho demasiado elevada, es-
pecialmente em ambientes geo-replicados. A razão fundamental para a existên-
cia destes obstáculos vem dos protocolos distribuídos necessários para assegurar
este tipo de resiliência. Esta tese tem como objetivo explorar metodologias para
a robustez e eficiência da replicação máquina de estados.

A primeira contribuição da tese é o algoritmo Mod-SMaRt, um protocolo modu-
lar que preserva latência ótima em termos de passos de comunicação executados
pelos processos. Sendo um protocolo modular, torna-se mais simples de validar
e concretizar, o que resulta em maior robustez; ao preservar troca de mensagens
ótima entre processos, também é capaz de entregar um desempenho desejável.

A segunda contribuição consiste em concretizar o protocolo Mod-SMaRt na fer-
ramenta BFT-SMART, uma biblioteca fiável de alto desempenho, mantida e
melhorada ao longo de todo o período correspondente ao doutoramento, capaz
de suportar arquiteturas multi-núcleo, reconfiguração do grupo de réplicas, e
uma API de programação flexível.

A terceira contribuição consiste em um protocolo derivado do Mod-SMaRt de-
signado WHEAT, que usa otimizações que demostraram serem eficientes na
redução da latência segundo uma avaliação prática em ambiente geo-replicado.

Adicionalmente, foram também realizadas avaliações de ambos os protocolos
quando aplicados num middleware para base de dados relacionais, e num serviço
de ordenação para uma plataforma blockchain. Ambas as avaliações revelam

resultados encorajadores para ambos os sistemas e validam o trabalho realizado
em contexto geo-distribuído.

Palavras Chave: sistemas distribuídos, tolerância a faltas bizantinas, replicação
máquina de estados, geo-replicação, difusão atómica, consenso

Abstract

The state machine replication technique is a popular approach for building Byzan-
tine fault-tolerant services. However, despite the widespread adoption of this
paradigm for crash fault-tolerant systems, there are still few examples of this
paradigm for real Byzantine fault-tolerant systems. Our view of this situation
is that there is a lack of robust implementations of Byzantine fault-tolerant state
machine replication middleware, and that the performance penalty is too high,
specially for geo-replication. These hindrances are tightly coupled to the dis-
tributed protocols used for enforcing such resilience. This thesis has the objec-
tive of finding methodologies for enhancing robustness and performance of state
machine replication systems.

The first contribution is Mod-SMaRt, a modular protocol that preserves optimal
latency in terms of the communications steps exchanged among processes. By
being a modular protocol, it becomes simpler to validate and implement, thus
resulting in greater robustness; by also preserving optimal message-exchanges
among processes, the protocol is capable of delivering desirable performance.

The second contribution is concerned with implementing Mod-SMaRt into BFT-
SMART, a reliable and high-performance codebase that was maintained and
improved over the entire course of the PhD that offers multicore-awareness, re-
configuration support, and a flexible API.

The third contribution presents WHEAT, a protocol derived from Mod-SMaRt
that uses optimizations shown to be effective in reducing latency via a practical
evaluation conducted in a geo-distributed environment.

We additionally conducted an evaluation of both BFT-SMART and WHEAT
applied to a relational database middleware and an ordering service for a per-
missioned blockchain platform. These evaluations revealed encouraging results
for both systems and validated our work conducted in the geo-distributed con-
text.

Keywords: distributed systems, Byzantine fault tolerance, state machine repli-
cation, geo-replication, total order broadcast, consensus

Resumo Estendido

A técnica de replicação máquina de estados é um paradigma popular usado em
vários sistemas distribuídos modernos. A ideia geral consiste em suportar um
número arbitrário de clientes que enviam operações para um grupo de réplicas
(máquinas de estado) que executam a mesma sequência de operações para um
serviço distribuído, apesar da ocorrência de faltas numa fração das ditas réplicas.
Este paradigma é também a principal abordagem para concretizar tolerância a
faltas bizantinas – uma extensão da tolerância a faltas por paragem, onde se
assume que processos falham ao demonstrar qualquer tipo de comportamento
diferente do esperado, em vez de simplesmente pararem a sua execução.

No entanto, apesar da adoção deste paradigma em sistemas reais tolerantes a fal-
tas por paragem, ainda existem poucos exemplos de sistemas reais tolerantes a
faltas bizantinas. Segundo a nossa experiência nesta área de investigação, exis-
tem dois obstáculos que impedem a adoção deste paradigma para o modelo de
faltas bizantino: (1) poucas concretizações robustas de middleware para repli-
cação máquina de estados tolerante a faltas bizantinas (isto é, maioritariamente
protótipos criados para validar inovações em artigos científicos), e (2) perda de
desempenho demasiado elevada, especialmente em ambientes geo-replicados. A
razão fundamental para a existência destes obstáculos vem dos protocolos dis-
tribuídos necessários para assegurar que todas as réplicas obtêm a sequência de
operações mencionada anteriormente. Protocolos congeminados para tolerar fal-
tas bizantinas – que normalmente requerem vários passos de comunicação entre
réplicas com elevada quantidade de troca de mensagens – são significativamente
mais complicados e exibem maior latência que as suas variantes para faltas por
paragem, especialmente para geo-replicação.

Esta tese encontra-se inserida dentro da área de investigação sobre tolerância
a faltas bizantinas com foco na técnica de replicação máquina de estados, isto
é, propõe metodologias e ferramentas para a construção de sistemas que usam
este paradigma. O objetivo é investigar técnicas que facilitem a concretização

de sistema tolerantes a faltas bizantinas robustos e eficientes. Como tal, foram

investigadas estratégias para permitir que a técnica de replicação máquina de

estados seja concretizada da forma mais eficiente e sucinta possível. Para além

disso, foram também investigadas técnicas para otimizar este tipo de replicação

em ambientes geo-replicados.

A primeira contribuição da tese é realizada ao nível teórico. Um requisito fun-

damental de qualquer protocolo de replicação máquina de estado consiste em

garantir que todas as operações dos clientes chegam às réplicas pela mesma or-

dem. Este comportamento requer o uso de um algoritmo de ordenação total,

que se sabe ser equivalente a resolver um consenso distribuído. Esta classe de

algoritmos é reconhecida como sendo bastante complicada, e por isso torna-se

difícil de obter uma concretização robusta e correta. A maneira como abordá-

mos este problema consistiu em procurar uma forma de obter um protocolo de

replicação que fosse simultaneamente modular e ótimo em termos de passos de

comunicação. Se o protocolo for modular, também é mais simples de validar

e concretizar, possibilitando por isso melhor robustez; se para além disso tam-

bém for um protocolo ótimo em termos de passos de comunicação, temos maior

eficiência.

O resultado desta investigação é o protocolo Mod-SMaRt, uma transformação de

um algoritmo de consenso bizantino para um protocolo de replicação máquina

de estados construído diretamente por cima de uma primitiva de consenso au-

mentada. Tal primitiva permite que o protocolo se mantenha ótimo em termos

de passos de comunicação sem quebrar a desejada modularidade. Isto é pos-

sível através do uso do VP-Consensus, uma primitiva de consenso aumentada

que pode ser obtida de algoritmos de consensos pré-existentes através de sim-

ples modificações. Esta primitiva é composta por propriedades adicionais que

impõem as seguintes restrições: o input submetido à primitiva tem que satisfazer

um predicado e o seu output tem de incluir uma prova criptográfica que vincula

esse output à instância de consenso onde foi obtido.

A segunda e principal contribuição da tese é realizada ao nível prático. Como

mencionado anteriormente, existem poucas soluções para replicação máquina de

estados bizantina apesar de várias publicações científicas. A razão fundamental

para essa discrepância deve-se ao facto de a esmagadora maioria dos trabalhos

realizados na área oferecerem concretizações que funcionam como provas de

conceito usadas para uma avaliação prática, mas que raramente são mantidas

a longo prazo. Esta observação motivou a concretização de uma ferramenta

que foi mantida durante todo o período do doutoramento. O resultado deste

esforço é a biblioteca BFT-SMART, uma biblioteca Java de código aberto que

concretiza de forma eficiente e robusta o algoritmo Mod-SMaRt e a primitiva

VP-Consensus mencionada anteriormente. Para além disso, a biblioteca suporta

também mecanismos para transferência de estado entre réplicas que recuperam

de faltas, adição/remoção de réplicas durante a execução do sistema, suporte

para arquiteturas multi-núcleo, e uma API de programação flexível.

A terceira contribuição consiste em investigar técnicas de otimização de latência

em protocolos de replicação para ambientes geo-distribuídos e aplicá-las ao tra-

balho desenvolvido previamente. Como tal, foi realizada uma avaliação prática

de algumas otimizações para protocolos de replicação máquina de estados pro-

postas na literatura, concretizando-as na biblioteca BFT-SMART. Os resultados

mostraram que enquanto algumas dessas otimizações são muito eficientes, ou-

tras não trazem benefícios significativos. As conclusões tiradas dessa avaliação

influenciaram a criação do WHEAT, um protocolo de replicação máquina de

estado para ambientes geo-replicados que usa as otimizações que demonstraram

ser mais eficientes a reduzir latência neste tipo de ambientes. A principal ino-

vação do WHEAT em relação a outros protocolos da literatura consiste em dois

esquemas de distribuição de votos que permitem melhor desempenho dentro de

ambiente heterogéneos através do uso de réplicas adicionais, mas sem violar a

correção do protocolo.

A última contribuição consiste em introduzir os protocolos desenvolvidos em

protótipos representativos de sistemas geo-replicados reais, assim como uma

avaliação prática para cada sistema. Os sistemas escolhidos foram um middle-

ware para bases de dados relacionais baseado no protocolo Byzantium e um

serviço de ordenação para a plataforma de blockchain Hyperledger Fabric. Os

resultados das avaliações demonstram que ambos os sistemas exibem desem-

penho aceitável e validam o trabalho da tese realizado num contexto de geo-
replicação.

Acknowledgements

I genuinely struggle to find what to say as I type this. Lets see if I can work it
out and not forget anyone, because this thesis would simply not exist without the
people mentioned below.

First and foremost, I want – and need – to thank my advisor, Professor Alysson
Bessani. Professor Bessani insightful ideas, important conversations, crucial
debates, diligent guidance, and heartfelt motivational rants were extremely pre-
cious during the whole journey. His tireless support was key to bring this thesis
to a conclusion, and his uncompromising nature to push only towards the abso-
lute best I could do was fundamental for this thesis to be what it is.

I also want to thank all my past and present LaSIGE colleagues with whom I
went to the cafetaria with. Those occasions also helped me a great deal, be it by
being there to give me advice when I most needed, laugh at my silly outbursts,
or allowing me to talk about Rammstein. I prefer not to say any names because
I would run the risk of forgetting someone; this way anyone that reads these
acknowledges knows that I am indeed including them. If you are my friend but
never worked in LaSIGE, this acknowledgement applies to you too.

Very importantly, I want to thank my mother for her unlimited patience and
support throughout all these years. This will be the shortest acknowledgement,
not because I feel ungrateful, but because there are no combination of words that
can properly express how important she is to me.

Finally, I gratefully acknowledge the financial support from European Comis-
sion (EC) through projects TCLOUDS (FP7/2007-2013, ICT-257243), SUPER-
CLOUD (643964) and from national funds through Fundação para a Ciência
e a Tecnologia (FCT) with the projects LaSIGE (UID/ CEC/00408/2013), RC-
Clouds (PTDC/EIA-EIA/115211/2009), IRCoC (PTDC/EEI-SCR/6970/2014),
and the PhD scholarship granted to (SFRH / BD / 70736 / 2010).

Dedico esta tese à minha avó, que infelizmente não viveu anos suficientes para

testemunhar esta aventura.

Contents

Contents xii

List of Figures xix

List of Tables xxi

List of Publications xxv

1 Introduction 1
1.1 Objectives & Contributions . 3

1.2 Thesis Structure . 7

2 Background 9
2.1 Overview . 9

2.1.1 Terminology and Assumptions . 10

2.1.2 Quorum Systems . 11

2.2 Consensus and State Machine Replication 12

2.3 BFT State Machine Replication . 15

2.3.1 BFT Emergence . 15

2.3.2 PBFT-Derivated Protocols . 16

2.3.3 Protocols Resistant to Performance Degradation 17

2.3.4 Hybrid Protocols . 18

2.3.5 Randomized Protocols . 19

2.3.6 Other Approaches . 20

2.4 Wide-Area Replication . 21

2.4.1 Protocols Derived From Paxos . 21

2.4.2 Protocols for the Byzantine Fault Model 22

2.5 Concluding Remarks . 24

xiii

CONTENTS

3 Mod-SMaRt 25
3.1 Modular vs Monolithic algorithms . 25

3.2 Preserving Robustness, Modularity and Latency 27

3.3 System Model . 28

3.4 Validated and Provable Consensus . 29

3.4.1 Implementation requirements . 30

3.5 The Mod-SMaRt Algorithm . 31

3.5.1 Overview . 31

3.5.2 Client Operation . 33

3.5.3 Normal Phase . 34

3.5.4 Synchronization Phase . 38

3.5.5 Reasoning about the Consensus Modifications 41

3.5.6 Mod-SMaRt for Crash Faults Only 42

3.6 Optimizations . 42

3.6.1 Symmetric Cryptography . 42

3.6.2 Checkpoints and State Transfer 43

3.6.3 Optimized Synchronization Phase 43

3.6.4 Obtaining PBFT from Mod-SMaRt 44

3.7 Additional Related Work . 44

3.8 Concluding Remarks . 46

4 BFT-SMaRt 47
4.1 SMR Research vs SMR Usage . 47

4.2 BFT-SMaRt Design . 48

4.2.1 Design Principles . 49

4.2.2 System Model . 51

4.2.3 Core Protocols . 51

4.2.4 Intrusion Tolerance . 56

4.3 Implementation . 57

4.3.1 Building blocks . 57

4.3.2 Staged Message Processing . 59

4.4 API and Programming Model . 62

4.5 Evaluation . 64

xiv

CONTENTS

4.5.1 Experimental Setup . 65
4.5.2 Micro-benchmarks . 65
4.5.3 Faults, Reconfigurations, etc. 71

4.6 Lessons Learned . 72
4.6.1 Java as a BFT programming language 73
4.6.2 How to test BFT systems? . 73
4.6.3 Dealing with heavy loads . 74
4.6.4 Signatures vs. MAC vectors . 75
4.6.5 Maintenance & Robustness . 76

4.7 Concluding Remarks . 76

5 WHEAT 77
5.1 From BFT-SMaRt to WHEAT . 77
5.2 Experiments . 79

5.2.1 Methodology . 80
5.2.2 Number of Communication Steps 81
5.2.3 Number of Replies . 84
5.2.4 Quorum Size . 85
5.2.5 Leader Location . 88
5.2.6 Discussion . 92

5.3 The WHEAT Protocol . 93
5.3.1 Deriving the protocol . 93
5.3.2 Vote assignment scheme . 95
5.3.3 Implementation and Evaluation 101

5.4 Additional Related work . 103
5.5 Concluding Remarks . 105

6 Applications 107
6.1 Transactional Databases . 107

6.1.1 The Byzantium Protocol . 108
6.1.2 Implementation . 110
6.1.3 Evaluation . 112
6.1.4 Discussion . 114

6.2 Permissioned Blockchains . 116

xv

CONTENTS

6.2.1 Blockchain Technology . 116
6.2.2 Hyperledger Fabric . 117
6.2.3 BFT-SMaRt Ordering Service . 120
6.2.4 Evaluation . 122
6.2.5 Parameters affecting the Ordering Performance 123
6.2.6 Signature Generation . 123
6.2.7 Ordering Cluster in a LAN . 124
6.2.8 Geo-distributed Ordering Cluster 127
6.2.9 Discussion . 128

6.3 Additional Related Work . 130
6.4 Concluding Remarks . 131

7 Conclusions 133
7.1 Impact . 134
7.2 Future Work . 135

References 136

Appendix A Mod-SMaRt correctness proof 155

Appendix B VP-Consensus algorithm 163
B.1 Algorithm . 163
B.2 Correctness . 167

Appendix C WHEAT vote assignment scheme correctness proof 169
C.1 Preliminary Definitions . 169
C.2 CFT vote assignment . 169
C.3 BFT vote assignment . 173

xvi

List of Figures

2.1 A quorum system comprised of 3 hosts. Quorum A contains hosts 1 and 2,

quorum B contains hosts 1 and 3, and quorum C contains hosts 2 and 3. . . 12

2.2 Comparison of PBFT and MinBFT message patterns, with client c sending

an operation to the replicas. 19

2.3 Comparison of Zyzzyva and MinZyzzyva message patterns, with client c

sending an operation to the replicas. 19

3.1 Modular BFT SMR message pattern for a protocol that uses reliable broad-

cast and a consensus primitive. This protocol is adapted from (Milosevic

et al., 2011). 26

3.2 Mod-SMaRt replica architecture. The authenticated perfect point-to-point

links guarantee the delivery of replica-to-replica messages, while the VP-

Consensus module is used to establish agreement on the message(s) to be

delivered by consensus instances. 31

3.3 Communication pattern of Mod-SMaRt’ normal phase for f = 1. Each

client sends its operations to the replicas, a consensus instance is immedi-

ately started, and the decided value is sent to the client. 35

3.4 Communication pattern of synchronization phase for f = 1. This phase is

started when the timeout for a message is triggered for a second time. . . . 38

4.1 The modularity of BFT-SMART. 50

4.2 BFT-SMART normal phase message patterns. 52

4.3 BFT-SMART reconfiguration message patterns. 55

4.4 BFT-SMART replica staged message processing. 60

4.5 Latency vs. throughput configured for f = 1. 66

4.6 Peak sustained throughput of BFT-SMART for CFT (2f + 1 replicas) and

BFT (3f + 1 replicas) considering different workloads and group sizes. . . 67

xvii

LIST OF FIGURES

4.7 Throughput of a saturated system as the ratio of reads to writes increases. Experi-

ment considers n = 4 (BFT) and n = 3 (CFT). 68

4.8 Throughput of BFT-SMART using 1024-bit RSA signatures for 0/0 payload and

n = 4 considering different number of hardware threads. 69

4.9 Throughput evolution across time and events, for n = 4 and f = 1. 72

5.1 Evaluated message patterns. 82

5.2 Cumulative frequency distribution of latencies for each type of execution. . 83

5.3 Cumulative frequency distribution of latencies for different numbers of replies. 85

5.4 Cumulative frequency distribution of latencies with different quorum sizes. 87

5.5 Cumulative frequency distribution of latencies observed by each client when
the leader is placed across PlanetLab hosts (BFT mode). 89

5.6 Cumulative frequency distribution of latencies observed by each client when
the leader is placed across PlanetLab hosts (CFT mode). 89

5.7 Cumulative frequency distribution of latencies observed by each client when
the leader is placed across Amazon EC2 regions (BFT mode). 90

5.8 Cumulative frequency distribution of latencies observed by each client when
the leader is placed across Amazon EC2 regions (CFT mode). 90

5.9 WHEAT’s message pattern for f = 1 and one additional replica. 94

5.10 Quorum formation when f = 1 and n = 4 (CFT mode). 96

5.11 Cumulative frequency distribution of latencies for WHEAT and BFT-SMART

in Amazon EC2 with the leader in Oregon. 102

6.1 Byzantium’s architecture. 108

6.2 The Byzantium protocol. 109

6.3 SteelDB protocol. 111

6.4 SteelDB throughput (local area). 114

6.5 NEW-ORDER latency (local area). 114

6.6 SteelDB throughput (Geo-distributed). 115

6.7 NEW-ORDER latency (Geo-distributed). 115

6.8 Blockchain structure. 117

6.9 Hyperledger Fabric transaction processing protocol (Androulaki et al., 2018). 119

6.10 BFT-SMaRt ordering service architecture. 121

6.11 Ordering service performance model. 124

xviii

LIST OF FIGURES

6.12 Signature Generation for Fabric blocks. 125
6.13 BFT-SMART Ordering Service throughput for different envelope, block and

cluster sizes. 126
6.14 Amazon EC2 latency results (4 receivers, blocks with 10 envelopes). 128
6.15 Amazon EC2 latency results (4 receivers, blocks with 100 envelopes). . . . 129

B.1 Byzantine leader-driven consensus. 164
B.2 Epoch message pattern. 164

xix

List of Tables

3.1 Variables and functions used in Algorithms 2, 3, and 4. 37

4.1 Throughput in kops/sec for different requests and replies sizes for f = 1. Results

are given in operations per second. 66
4.2 Peak sustained throughput in kops/sec (and associated number of clients used for

reaching this value) of different replication libraries for the 0/0 benchmark and f =

1. Throughput 200 reports the throughput obtained by these system with 200 clients. 70

5.1 Hosts used in PlanetLab experiments . 81
5.2 Client latencies’ 50th/90th percentile (milliseconds) for each type of execution. 83
5.3 Client latencies’ 50th/90th percentile (milliseconds) for different numbers of

replies. 85
5.4 Client latencies’ 50th/90th percentile (milliseconds) with different quorum

sizes. 87
5.5 Client latencies’ 50th/90th percentile (milliseconds) when the leader is placed

across PlanetLab hosts. 91
5.6 Client latencies’ 50th/90th percentile (milliseconds) when the leader is placed

across Amazon EC2 regions. 91
5.7 Average roundtrip latency and standard deviation (milliseconds) between

Amazon EC2 regions as measured during a 24 hour-period. 101
5.8 50th/90th percentile latencies (milliseconds) observed by BFT-SMART and

WHEAT clients in different regions of Amazon EC2 with the leader in Oregon.102

xxi

List of Algorithms

1 Algorithm at client c . 34
2 Normal phase at replica r. 36
3 Synchronization phase at replica r (part 1). 39
4 Synchronization phase at replica r (part 2). 40

5 VP-Consensus implementation derived from Cachin (2009) (part 1). 165
6 VP-Consensus implementation derived from Cachin (2009) (part 2). 166

xxiii

List of Publications

International Conferences

• João Sousa, Bruno Branco e Brito, Alysson Bessani, Marcelo Pasin, De-

sempenho e Escalabilidade de uma Biblioteca de Replicação de Máquina

de Estados Tolerante a Faltas Bizantinas, in Proceedings of the 3rd Sim-

pósio de Informática, Coimbra, Portugal, Sept. 2011.

• João Sousa, Alysson Bessani, From Byzantine Consensus to BFT State

Machine Replication: A Latency-Optimal Transformation, in Proceedings

of the 9th European Dependable Computing Conference, Sibiu, Romenia,

May 2012.

• Vinicius Vielmo Cogo, André Nogueira, João Sousa, Marcelo Pasin, Hans

P. Reiser, Alysson Bessani, FITCH: Supporting Adaptive Replicated Ser-

vices in the Cloud, in Proceedings of the 13th IFIP International Confer-

ence on Distributed Applications and Interoperable Systems, Jim Dowling,

Francois Taïani, Eds., Florence, Italy, Jun. 2013.

• Alysson Bessani, João Sousa, Eduardo Alchieri, State Machine Replica-

tion for the Masses with BFT-SMART, in Proceedings of the 44th An-

nual IEEE/IFIP International Conference on Dependable Systems and Net-

works, Atlanta, USA, Jun. 2014.

• João Sousa, Alysson Bessani, Separating the WHEAT from the Chaff: An

Empirical Design for Geo-Replicated State Machines, in Proceedings of

the 34th Symposium on Reliable Distributed Systems, Montreal, Canada,

Sept. 2015.

xxv

LIST OF ALGORITHMS

• Eduardo Alchieri, João Sousa, Alysson Bessani, Especificação de Repli-

cação Máquina de Estados Dinâmica, in Proceedings of the SXXXIV
Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos,
Salvador, Bahia, Brazil, May 2016 .

• João Sousa, Alysson Bessani, Marko Vukolić, A Byzantine Fault-Tolerant

Ordering Service for the Hyperledger Fabric Blockchain Platform, in Pro-
ceedings of the 48th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks, Luxembourg City, Luxembourg, Jun.
2018.

Workshop Papers and Fast Abstracts

• Alysson Bessani, João Sousa, Eduardo Alchieri, ... And State Machine

Replication for All with BFT-SMART, Poster in the 7th ACM SIGOP-
S/EuroSys European Systems Conference, Apr. 2012.

• João Sousa, Alysson Bessani, Evaluating State Machine Replication Over

a WAN, fast abstract in Workshop on Planetary-Scale Distributed Systems,
Braga, Portugal, Sept. 2013.

• João Sousa, Alysson Bessani and Marko Vukolic, A Byzantine Fault-Tolerant

Ordering Service for the Hyperledger Fabric Blockchain Platform, Short
research statement in 1st Workshop on Scalable and Resilient Infrastruc-
tures for Distributed Ledgers, Las Vegas, Nevada, USA, Dec. 2017.

xxvi

1
Introduction

In computer science, replication is the process of creating and managing duplicate versions

of information. This is done by propagating data or computations among a set of processes

known as replicas, which can either be co-located within the same data-center or scattered

across the globe. This strategy is used to provide systems with enhanced performance,

greater availability and support for fault tolerance. The two main approaches to replication

are either primary-backup (Alseberg & Day, 1976; Budhiraja et al., 1993) or state machine

replication (Lamport, 1978; Schneider, 1990). When the priority is to create a system that

offers high availability, primary-backup replication is typically the chosen approach. On the

other hand, when the primary goal is to provide a greater degree of fault tolerance to critical

services, state machine replication (SMR) is the more appropriate option. The basic idea

is to have an arbitrary number of clients issuing operations to a set of replicas (state ma-

chines) that execute the same sequence of operations for a service despite the occurrence of

faults on a fraction of these replicas. This technique is adopted by many modern distributed

systems, ranging from cluster-based coordination services (e.g., Chubby (Burrows, 2006)

and Zookeeper (Hunt et al., 2010)), decentralized storage systems (e.g., Cassandra (Laksh-

man & Malik, 2010)1 and Megastore (Baker et al., 2011)), Platform-as-a-Service providers

(e.g., Microsoft Autopilot (Isard, 2007), RethinkDB (Walsh et al., 2009)2 and Amazon Web-

Services (Elisha & Hamilton, 2014)), replicated key-value stores (e.g., JSimpleDB (Cobbs,

1Cassandra implements SMR for its lightweight transactions since 2013
2RethinkDB implements SMR for automatic failover since 2015

1

1. INTRODUCTION

2016) and ETCD1), SDN controllers (e.g., OpenDayLight2) and transactional database sys-

tems (e.g., Spanner (Corbett et. al, 2013) and TiDB3).

SMR is also the main technique for implementing Byzantine Fault Tolerance (BFT). This

is a super-set of standard Crash Fault Tolerance (CFT) where processes are expected to fail

by displaying any type of deviation from their specified behavior, rather than simply failing

by stopping to execute (Lamport et al., 1982). In fact, the last two decades have seen a sig-

nificant amount of papers on BFT SMR protocols (e.g., Abd-El-Malek et al. (2005); Aublin

et al. (2015); Behl et al. (2017); Castro & Liskov (2002); Cowling et al. (2006); Kapitza et al.

(2012); Kotla et al. (2009); Liu et al. (2016); Veronese et al. (2013)). However, despite the

widespread adoption of SMR for standard crash faults in production systems, there are still

very few examples of practical deployment of this technique for Byzantine faults. Only fairly

recently are organizations seeking to adopt this paradigm – primarily due to the advent of

blockchain technology (Furlonger & Valdes, 2016), where coping with malicious behavior is

of high importance to preserve the integrity of transactions associated with crypto-currency

and smart-contracts (Cachin, 2016; Cachin & Vukolic, 2017b; Kwon, 2016; Martino, 2016).

Our view of this situation is that there are two key obstacles to the widespread adoption of

this paradigm: (1) a lack of robust implementations of BFT SMR middleware (i.e., mostly

prototypes used for validating novel ideas in papers), and (2) the performance penalty asso-

ciated with this approach is too high, specially if the system is intended to be geo-replicated,

such as the case of blockchain platforms. The fundamental reason why these hindrances

exists stems from the core of a BFT replicated state machine deployment: the protocol that

is used for establishing the aforementioned sequence of operations across replicas. These

BFT protocols – which usually requires multiple communication steps with high number of

message exchange – are not only notoriously more complicated than their CFT counterparts,

but display higher latency overhead, specially over geo-distributed environments. Hence, the

general perception is that implementing BFT SMR is a complex and inefficient approach to

fault tolerance.

1https://coreos.com/etcd
2https://www.opendaylight.org/
3https://pingcap.com/docs

2

https://coreos.com/etcd
https://www.opendaylight.org/
https://pingcap.com/docs

1.1 Objectives & Contributions

1.1 Objectives & Contributions

The thesis was developed within the Navigators group of the Large-Scale Informatics Sys-

tems Laboratory (LASIGE) at the Informatics Department of the Faculty of Science of the

University of Lisbon. It is inserted within the context of Byzantine fault tolerance with a

focus on SMR, i.e., it proposes methodologies and tools that contribute to build systems

that use such paradigm. The objective is related with the investigation of techniques that

facilitate the implementation of BFT services. The thesis has therefore two main objectives:

robustness and performance of SMR.

The first objective is about identifying a strategy that allows the state machine approach to

be implemented and extended in the most straight-forward way possible, by providing a mo-

dular replication framework and a reliable codebase from which services can be developed

from. The second objective is about ensuring these services can still exhibit an acceptable

performance in spite of using a replication approach that has a reputation of being inefficient

and unpractical in the industry. In particular, this thesis work includes an effort to render this

type of replication practical in geo-distributed environments. Taking this into consideration,

the main topics of research this thesis contributes to are as follows:

State Machine Replication Protocols

Our first step towards a robust and efficient BFT state machine solution starts at the the-

oretical level. A fundamental requirement of any SMR protocol is to enforce all requests to

be delivered across replicas by the same order. Such ordering requires a total order broad-

cast algorithm, which is known to be equivalent to solving the consensus problem (Correia

et al., 2006; Hadzilacos & Toueg, 1993; Milosevic et al., 2011). This class of algorithms

are well known to be significantly complex, which in turn makes it hard to achieve a robust

and correct implementation (Chandra et al., 2007). Our general approach to this problem

consisted in investigating a way to obtain a SMR protocol that is both modular and optimal

in terms of communication steps. If the protocol is modular, it becomes simpler to validate

and implement, thus resulting in greater robustness; if it enables optimal message-exchanges

across processes, it is also capable of delivering desirable performance. Moreover, it is also

important that the formalization of such protocol is made as clear as possible to facilitate

implementation.

3

1. INTRODUCTION

Our main contribution to this topic is Mod-SMaRt, a new transformation from Byzantine

consensus to BFT SMR built directly around an augmented consensus abstraction. The

usage of such abstraction enables the algorithm to remain modular while still preserving

optimal latency in terms of communications steps. It is the first optimal transformation

from consensus to SMR. This is achieved by using VP-Consensus, an augmented consensus

abstraction which can be obtained from pre-existing consensus algorithms by making simple

modifications. This abstraction is defined by additional properties that impose constraints

on the proposals and guarantees on the obtained decisions. More precisely, proposed input

must satisfy a given predicate and the output must include a cryptographic proof that binds

that output to its respective consensus instance.

State Machine Replication Implementations

Our second step towards a robust and efficient BFT state machine solution is at the prac-

tical level. As mentioned previously, there are still scarce options for reliable BFT SMR

deployments in spite of the several papers on the subject. The fundamental reason for this

discrepancy between research and engineering is due to the overwhelming majority of those

works providing a proof-of-concept codebase that is adequate to conduct their experimental

evaluation, but which is rarely maintained over the long term. Moreover, the lack of ro-

bust implementations also becomes an hindrance to its own research field, given that authors

needed to either create their own codebase from scratch to evaluate their prototypes, or work

on unstable codebases. This lack of options for BFT SMR implementations is tightly cou-

pled to the fact that these types of systems are notoriously hard to implement, even within

the scope of CFT (Beyer et al., 2016; Chandra et al., 2007). This has already motivated

the design of more understandable algorithms such as Raft (Ongaro & Ousterhout, 2014)

– which has been quickly adopted in production systems (e.g., Walsh et al. (2009), Cobbs

(2016)) – but so far the same effort has not been devoted to BFT systems. This observation

lead us to the core effort of the thesis, which is concerned with taking the aforementioned

modular algorithm and implementing it into a codebase that was maintained and improved

over the entire course of this PhD. By devoting time and effort to such codebase, we aimed

at creating a reliable implementation of the SMR technique that can not only demonstrate

4

1.1 Objectives & Contributions

that it is possible to achieve acceptable performance with this type of replication, but also
serve as a building block to future research done in the field.

Our main contribution for this topic – as well as the flagship contribution developed
within the PhD – is BFT-SMART, an open-source Java library implementing the aforemen-
tioned Mod-SMaRt transformation and VP-Consensus abstraction. Some of the key features
of BFT-SMART that distinguishes it from similar works are improved reliability, modular-
ity as a first-class property, multicore-awareness, reconfiguration support, and a flexible API.
The effort expended at developing and maintaining the library over the course of the PhD
resulted in a stable codebase that is used by many authors to develop their research in the
field of Byzantine fault tolerance (e.g., Behl et al. (2015); Kapitza et al. (2012); Martins et al.

(2013); Porto et al. (2015)), be it by using the library as a building block or extending it to
produce new prototypes of innovative systems. Furthermore, the system is also being used
in some blockchain platforms such as Corda1 and Symbiont Assembly2 as a BFT consensus
implementation.

Geo-Replication

The third topic of the thesis consists in exploring ways to optimize our work for a geo-
replicated setting. The primary motivation behind the academic research on geo-replication
is to render critical services able to survive disasters. However, aside from systems such as
Megastore (Baker et al., 2011) or Spanner (Corbett et. al, 2013), there are still few examples
of practical deployments of the SMR technique within a wide-area context. The vast majority
of productions systems that can be used to create resilient critical services through geo-
replication – such as Amazon’s DynamoDB (DeCandia et al., 2007), CouchDB (Anderson
et al., 2010), and Memcached (Fitzpatrick, 2004; Nishtala et al., 2013) – provide weaker
consistency semantics than that of SMR in order to satisfy end-users with highly-available
services (Bailis et al., 2013; Saito & Shapiro, 2005). Because of the necessity of providing
high-availability even in a wide-area scenario, it is important to explore ways to optimize the
work developed in this thesis into this type of environment.

The work developed for this topic began with a practical evaluation of some represen-
tative optimizations proposed in the literature for state machine protocols, by implementing

1https://www.corda.net/2017/03/corda-m9-1-released/
2https://symbiont.io/technology/assembly/

5

https://www.corda.net/2017/03/corda-m9-1-released/
https://symbiont.io/technology/assembly/

1. INTRODUCTION

them on BFT-SMART and running the experiments in geo-distributed environments. Inter-

estingly, the results show that some optimizations for improving the latency of geo-replicated

state machines do not bring significant benefits, while others were shown to be very effective.

The results obtained from this evaluation guided the design of WHEAT, a new configurable

crash and Byzantine fault-tolerant SMR protocol derived from Mod-SMaRt that uses the

optimizations that were shown as most effective in reducing latency in a geo-distributed sce-

nario. One of the key features that distinguishes WHEAT from most protocols proposed in

the literature are two novel vote assignment schemes designed to preserve protocol correct-

ness while also allowing for performance improvement within heterogeneous environments

such as wide-area networks.

Services

The final topic of this thesis revolves around applying our SMR protocols and systems

into prototypes that represent practical replicated databases. This is motivated not only for

the necessity to render critical infrastructures able to survive disasters, but also to explore

alternative approaches for devising geo-replicaded systems. Such approaches are meant to

facilitate the engineering of new systems that provide more functionality while embracing

weaker assumptions about its environment. As an example of this, consider the Spanner

transactional database (Corbett et. al, 2013). This geo-replicated system is able to exhibit

acceptable performance for end users, but it does not support full-fledged relational tables

and requires an API that uses GPS and atomic clocks to infer timeliness uncertainty – not to

mention that it also only withstands crash faults. We would like to find new strategies that

mitigate this kind of limitations.

Another strong motivation for this final topic is linked to the very recent emergence

of blockchain platforms (Furlonger & Valdes, 2016). These platforms are comprised by

a peer-to-peer network with hundreds of geographically-dispersed nodes that maintained a

distributed ledger of transactions (Buterin, 2015; Nakamoto, 2009). Because of the critical

nature of crypto-currencies and smart-contracts, these platforms need to account for mali-

cious behavior of a subset of those nodes - which is something that BFT SMR is capable

of withstanding (Vukolić, 2015, 2017). This reinvigorated interest in Byzantine fault toler-

ance also led us to apply the work developed in the context of geo-replication into one such

6

1.2 Thesis Structure

blockchain platforms.

Our final contribution is a practical evaluation of BFT-SMART and WHEAT applied to
two types of geo-replicated systems: a relational database middleware based on the Byzan-
tium (Garcia et al., 2011), and an ordering service for the Hyperledger Fabric blockchain
platform (Cachin, 2016). In the case of Byzantium, our work also serves to (1) propose a
geo-replicated system that does not carry limitations akin to Spanner’s; and (2) complements
the original work with an wide-area evaluation. In the case of Hyperledger Fabric, the contri-
bution is extended by providing an architecture and implementation for the aforementioned
ordering service, as well as presenting a proof-of-concept that demonstrates the potential of
this type of systems.

1.2 Thesis Structure

The remaining of this thesis is organized as follows:

Chapter 2: Background. This chapter provide the context for the thesis and presents the
related work. More precisely, it unpacks some basic concepts widely adopted in Byzantine
fault tolerance – such as the consensus problem and related challenges – and provides a
brief historical retrospective of the emergence of this research area. Many relevant works
related to SMR are addressed and discussed, including efforts that bring this technique into
geo-distributed scenarios.

Chapter 3: Mod-SMaRt. This chapter formally describes the VP-Consensus abstraction.
Following this, we describe how to use the abstraction to obtain the Mod-SMaRt protocol.
Possible optimizations to Mod-SMaRt are also discussed at the end of the chapter. Appendix
A and B complement this chapter by presenting the proof of correctness for Mod-SMaRt
and describing how to obtain the VP-Consensus out of a pre-existing consensus algorithm,
respectively.

Chapter 4: BFT-SMART. Following the work developed in Chapter 3, we present the
BFT-SMART replication library, the principal contribution developed during the course of
this PhD. We discuss the library’s architecture and API, as well as the lessons learned from
the practical effort geared towards maintaining the codebase. We also include a thorough

7

1. INTRODUCTION

experimental evaluation of the library, exploring how its performance evolves upon fiddling
with the size of the requests/replies, the number of replicas present in the system, ratio of
read/write operations, and the number of cores available per machine. We also showcase
how BFT-SMART’s performance fares against other BFT prototypes, and we find that the
library outperforms all the chosen prototypes.

Chapter 5: WHEAT. By re-purposing the codebase described in Chapter 4, we present a
study of protocol optimizations conducted on geo-distributed settings and describe how the
results guided the design of WHEAT. The chapter also includes a description of the vote
assignment schemes used by this modified version of Mod-SMaRt and an experimental eval-
uation of WHEAT, where the protocol exhibits a significant improvement over the standard
original one. Appendix C complements this chapter by presenting the proof of correctness
for the voting schemes used by the WHEAT protocol.

Chapter 6: Applications. This chapter describes the integration of WHEAT into of a geo-
replicated transactional middleware for relational databases and an ordering service used
by a blockchain platform. Both of these systems are given a practical evaluation within a
local cluster and in a wide-area network. We present measurements using BFT-SMART and
WHEAT for both the local and wide-area settings.

Chapter 7: Conclusions. This chapter concludes the thesis by discussing its impact on
the research area and its adoption in some blockchain platforms, as well as proposing some
future work.

8

2
Background

This chapter discusses the body of research on which this thesis is based on, in particular

Byzantine fault tolerance and state machine replication. An overview of Byzantine fault

tolerance is given is Section 2.1. The section also unpacks the terminology, system assump-

tions typically adopted in the research area, and a description of quorum systems. Section 2.2

presents the notion of consensus and state machine replication, which are the main topics of

this thesis. Section 2.3 explains the emergence of Byzantine fault tolerance as a research area

and describes the state of the art. Section 2.4 describes state machine replication solutions

aimed for wide-area networks.

2.1 Overview

In distributed systems, fault tolerance (Randell et al., 1978) is the body of techniques which

enable a system to endure execution upon failures (possibly at the cost of reduced perfor-

mance), rather than halting or deviating from its specified behavior. The system as a whole

is not stopped due to problems either in hardware or software. The goal of fault tolerance

is not to avoid faults, but rather to create systems that can withstand them. Fault-tolerant

systems are typically based on the concept of redundancy. This usually demands that the

system be partially or totally replicated, usually across multiple hosts connect by a network

– hence, the importance of state machine replication (SMR) in this research area.

Byzantine fault tolerance is a sub-field of fault tolerance research within distributed sys-

tems. In classical fault tolerance, processes are assumed to fail only by stopping to execute.

9

2. BACKGROUND

On the other hand, in the Byzantine faults model (Lamport et al., 1982), processes of a dis-

tributed system are allowed to fail in a arbitrary way, i.e., a fault is characterized as any

deviation from the specified algorithm/protocol imposed on a process. Thus, Byzantine fault

tolerance (BFT) is the body of techniques that aims at devising protocols, algorithms and

services that are able to cope with such arbitrary behavior of the processes that comprise the

system. Additionally, in Byzantine fault tolerance it is common practice to make assump-

tions as weak as possible, not only from the processes that comprise the system, but also

from the network that connects them.

2.1.1 Terminology and Assumptions

One of the fundamental concepts in computer science is the notion of a process. In the con-

text of distributed systems, a process is an instantiation of an algorithm that is being executed.

A process is considered to be correct if it always complies to the execution specified by the

algorithm that is instantiated. Otherwise, a process is deemed to be faulty. Furthermore,

every process is assumed to have access to a bidirectional link to any other process in the

system. Typically these links are modeled as being fair-loss (Lynch, 1996), an abstraction

that assumes that each message can be lost an unbounded number of times. Nonetheless, if

both sender and recipient are correct, the message is eventually delivered by the recipient,

as long as the sender keeps re-transmitting it. This abstraction can be used to derive a more

powerful abstraction called perfect point-to-point links, where messages are eventually de-

livered to the recipient, as long as both sender and recipient remain correct. If this abstraction

is augmented with cryptographic functions that enable the recipient to verify if the message

was indeed produced by the sender and was not fabricated by a malicious third-party, the

systems provides authenticated perfect point-to-point links.

Byzantine faults can be devided in two types: (1) omission faults (e.g., crash faults, fail-

ing to receive a message, or failing to send one) and (2) commission faults (e.g., processing

a request incorrectly, corrupting local state, and/or sending an incorrect/inconsistent reply to

a request).

Another important concept in distributed systems is the notion of network synchrony and

timeliness. Distributed algorithms created to execute across distinct processes need to make

assumptions about the network that connects them. In particular, the following models are

commonly considered (Hadzilacos & Toueg, 1993):

10

2.1 Overview

• Synchronous System: The network is timely and processes send and receive messages
within known and fixed time bounds. Time bounds for local computations are also
fixed and known;

• Eventually Synchronous System: Transmission/reception of messages is fixed but the
bounds are unknown (or they are known but don’t hold initially). The same principle
applies to local computations;

• Asynchronous System: There are no guaranteed time bounds for neither transmis-
sion/reception of messages or local computations.

The assumption of a synchronous system is the least likely to hold up on real world set-
tings. This can happen either due to periods where the system experiences heavy workload
(e.g., under a distributed denial of service attack), or due the high variation of latency ob-
served over the internet. Furthermore, protocols devised for the asynchronous model also
offer the advantage of being more easily ported to various settings and environment, since
they do not rely on the notion of time to fulfill their computations. On the other hand, some
services cannot be built under the assumption of a completely asynchronous system model
because their underlying algorithms require the notion of time. One such case is the SMR
technique itself, as discussed in Section 2.2. Because of this, the model typically adopted in
SMR is the eventually synchronous model, as it will be discussed in the following section in
more detail.

Finally, another assumption that is commonly made about the system model is that the
set of processes is finite and known a-priori. This is known as the n-arrival model and is
widely common across the distributed algorithms literature. On the other hand, there are also
distributed algorithms that that assume the set of processes to be infinite and changing over
the system’s lifespan. This is known as the infinite arrival model (Aguilera, 2004). These
models are also usually referred to the static and dynamic system model, respectively.

2.1.2 Quorum Systems

The overwhelming majority of BFT literature relies on some form of quorum systems to
enforce their safety properties. Given a set of hosts, a quorum system is a collection of
sets of hosts (called quorums) such that any two quorums intersect by at least one common
host (Garcia-Molina & Barbara, 1985; Gifford, 1979), as illustrated in Figure 2.1. Quorum

11

2. BACKGROUND

Figure 2.1: A quorum system comprised of 3 hosts. Quorum A contains hosts 1 and 2,
quorum B contains hosts 1 and 3, and quorum C contains hosts 2 and 3.

systems are building blocks also used to implement a variety of services such as mutual
exclusion (Agrawal & Abadi, 1991), distributed access control (Naor & Wool, 1998), and
many protocols that must execute a distributed commit (Dolev et al., 1982).

The most important guarantees that quorum-based protocols need to preserve are (1) all
possible quorums overlap in some correct node, and (2) even with up to f failed replicas,
there is always some quorum available in the system. In crash fault-tolerant protocols, quo-
rums must overlap in at least one node. Such intersection is enforced by accessing a simple
majority of nodes. More specifically, protocols access dn+1

2
e nodes out of n ≥ 2f + 1. BFT

protocols, on the other hand, usually employ disseminating Byzantine quorums (Malkhi &
Reiter, 1998) with at least f + 1 replicas in the intersection. In this case, protocols access
dn+f+1

2
e nodes out of n ≥ 3f + 1.

2.2 Consensus and State Machine Replication

As mentioned in Chapter 1, there are two basic approaches to replication: primary-backup

(Alseberg & Day, 1976; Budhiraja et al., 1993) and active replication (Lamport, 1978;
Schneider, 1990). Both assume the existence of clients, which issue commands to replicas
(which are copies of the service). With primary-backup replication, there exists a primary
replica, and all others are backups. Clients send their commands to the primary for execu-
tion. After the primary finishes processing the request (and before replying to the client), it
updates the other backups with its state. On the other hand, in active replication each client

12

2.2 Consensus and State Machine Replication

request is processed by all the replicas and all of them send a reply to the client. Active

replication is more commonly referred to as state machine replication (SMR).

In the SMR model, an arbitrary number of client processes issue commands to a set of

replica processes. These replicas implement a stateful service that changes its state after

processing client commands, and sends replies to the clients that issued them. The goal of

this technique is to make the state at each replica evolve in a consistent way, thus making

the service completely and accurately replicated at each replica. In order to achieve this

behavior, it is necessary to satisfy the following properties:

1. Operations from correct clients get executed;

2. If any two correct replicas r and r′ apply operation o to state s, both r and r′ will obtain

state s′;

3. Any two correct replicas r and r′ start with state s0;

4. Any two correct replicas r and r′ execute the same sequence of operations o0, ..., oi.

The first three requirements can be easily fulfilled, but the last one requires a total or-

der broadcast primitive (Hadzilacos & Toueg, 1993), which is equivalent to solving the

consensus problem – one of the most studied problems in the field of distributed systems

(Cachin, 2009; Lampson, 2001; Martin & Alvisi, 2006; Rütti et al., 2010). Within this

context, consensus aims at providing the following behavior: given some set of processes

connected through some communication medium, each process will propose a value to be

chosen across all processes in the set. Following this, all processes must decide exactly the

same value. Such value must have been previously proposed by at least one of the processes

on the set. More formally, protocols that solve the consensus problem typically satisfy the

following properties (Hadzilacos & Toueg, 1993):

• Termination: Every correct process eventually decides exactly one value;

• Agreement: If a correct process decides v, then all correct processes eventually decide

v;

• Integrity: If a correct process decides v, then v was previously proposed by some

process.

13

2. BACKGROUND

Among all the research related to solving consensus under several fault and system mod-

els, there is one important result presented by Fischer et al. (1985): it is impossible to solve

consensus under the asynchronous system model if at least one of the involved processes

can fail by crash. This is usually referred to as the FLP impossibility, and implies that, any

protocol that solves consensus, must take into consideration the timeliness of the network

and of the other processes involved — meaning that the asynchronous system model needs

to be expanded in same way.

Dwork et al. (1988) introduced the concept of partial synchrony mentioned in Section

2.1.1. This is a stronger model than the asynchronous one, in the sense that it provides

a fixed upper bound for the computation time within processes and the delays caused by

message transmission. However, such bounds are either not known a priori, or they shall

only hold after an unknown instant in time, dubbed the Global Stabilization Time. In this

approach, protocols must be built taking (eventual) timeliness explicitly into consideration.

Chandra & Toueg (1996) argued that the asynchronous model could be expanded using

external failure detectors, allowing consensus to be solved in the presence of crash fail-

ures. This expanded model encapsulates the required timeliness within failures detectors —

which are characterized as oracles — and allows for the construction of consensus protocols

that do not need to take timeliness explicitly into consideration.

However, in spite of the aforementioned extensions to the asynchronous model, time-

liness still remains an unavoidable requisite to devise any strongly consistent distributed

service. In particular, a more general observation than the FLP result is stated by the CAP

theorem (Gilbert & Lynch, 2002, 2012). This theorem takes into consideration the follow-

ing dimensions: consistency, availability, and network-partitioning. The observation made is

that there exists an unavoidable trade-off between these three properties: systems are unable

to remain strongly consistent or available upon network partitions or the complete absence

of synchrony. The network would need to be perfectly reliable and timely in order to fully

and equally guarantee all the aforementioned dimensions. This is the main reason why most

replicated system settle for eventual consistency (Saito & Shapiro, 2005) rather than strong

consistency (Lamport, 1978).

Essentially, what both the FLP result and the CAP theorem show is the fact that there

is a trade off between safety and liveness. Respectively, safety properties state what must

never occur, whereas liveness properties state that, eventually, something benign shall occur.

What is typically done in fault tolerance research, is to assume that safety properties are more

14

2.3 BFT State Machine Replication

critical than liveness, and build protocols and algorithms that enforce safety regardless of the

behavior of the network. Liveness is assumed to hold once the network displays desirable

behavior (thus putting some onus of progress upon the network). Such behavior is assumed

to occur eventually, during the system lifespan.

Many algorithms that implement SMR under the partial synchronous model have been

proposed. The most well-known algorithm in the literature is Paxos (Lamport, 1998, 2001).

Paxos assumes processes to take the following roles: clients (that issues operations), pro-

posers (that propose ordering upon operations sent by clients), acceptors (which validate

the proposers ordering), and learners (which learn the acceptors’ decisions). Another well

known state machine replication protocol is Viewstamped Replication (Oki & Liskov, 1988),

which operates in similar way to Paxos, but makes no distinction between proposers, accep-

tors and learners. Both protocols are resilient to faulty processes by being quorum-based,

thus requiring a minimum of 2f + 1 processes in the system. Paxos is more widely adopted

across the industry than Viewstamped Replication is, but it is also notoriously difficult to

understand and implement (Chandra et al., 2007). This drawback motivated the creation of a

new SMR protocol named Raft (Ongaro & Ousterhout, 2014). Raft main design principle is

understandability, which is achieved by using algorithm decomposition and by reducing the

number of internal states each replica can transition to.

2.3 BFT State Machine Replication

Paxos, Viewstamped Replication, and Raft are prominent examples of protocols that imple-

ment SMR, but they assume processes fail only by crashing. On the other hand, there is wide

and diverse research on SMR applied to the Byzantine fault model. This section provides an

overview of the existing literature dedicated to this research area.

2.3.1 BFT Emergence

Early work assuming Byzantine faults suggested it to be too expensive to be of any widespread

usage — either because it required many communication steps (which translates to increased

latency), required expensive cryptographic computations (which is a bottleneck to the whole

algorithm), or because it required synchrony for safety (Kihlstrom et al., 2001; Reiter, 1994,

1995, 1996). Nonetheless, Castro and Liskov showed that state machine replication under

15

2. BACKGROUND

Byzantine faults is actually feasible, by presenting the Practical Byzantine Fault Tolerance

(PBFT) protocol (Castro & Liskov, 1999, 2002). By constructing a replicated network file

system (NFS) above PBFT, Castro and Liskov showed that their implementation could have a

performance only 3% slower than a standard unreplicated NFS. The main difference between

PBFT and previous proposals for BFT were that PBFT avoided expensive cryptographic op-

erations such as digital signatures by using MAC vectors instead. Moreover, PBFT relied on

synchrony only for liveness. PBFT requires disseminating Byzantine quorums to secure its

safety properties, thus requiring a minimum of 3f + 1 replicas in the system. This protocol

spawned a renaissance in Byzantine fault tolerance research, and is considered the baseline

for all BFT state machine replication protocols published afterwards.

2.3.2 PBFT-Derivated Protocols

One of the works which followed PBFT was Query/Update (Q/U) (Abd-El-Malek et al.,

2005), an optimistic quorum-based protocol that presents better throughput with larger num-

ber of replicas than other agreement-based protocols. However, given its optimistic nature,

Q/U performs poorly under contention, and requires 5f + 1 replicas. To overcome these

drawbacks, Cowling et al. (2006) proposed HQ, a hybrid Byzantine fault-tolerant SMR pro-

tocol similar to Q/U in the absence of contention. However, unlike Q/U, HQ only requires

3f + 1 replicas and relies on PBFT to resolve conflicts when contention among clients is

detected.

Following Q/U and HQ, Kotla et al. (2009) proposed Zyzzyva, a speculative Byzantine

fault-tolerant protocol, which was considered to be the fastest BFT protocol at the time. It

is worth noticing that all these protocols tend to be more efficient than PBFT because they

avoid the complete execution of a total order broadcast, relying on it only to solve corner

cases.

Clement et al. (2009b) later showed that many of the aforementioned protocols are not

robust enough even if a single malicious client is present; if such client is able to craft

specially malicious requests, it can render the system’s performance extremely low. To tackle

this observation, the authors introduce a new protocol dubbed Aardvark, which introduces

a pletora of pro-active mechanisms to prevent such malicious requests to make a negative

impact on the performance. On the other hand, this gain in robustness comes at the cost of a

slighly inferior performance — even in the absence of faults or attacks.

16

2.3 BFT State Machine Replication

Clement et al. (2009a) also introduced the UpRight Cluster Service. This service consists

of a Java library that uses a protocol named Zyzzyvark, which is derived from Zyzzyva but

using the pro-active mechanisms introduced in Aardvark. Additionally, this library employs

a separation of concerns at the following request processing stages of SMR: request quorum

(used to generate a matrix of MACs equivalent to digital signatures (Aiyer et al., 2008)),

ordering, and execution (an idea first proposed by Yin et al. (2003), but only considering

agreement and execution). Furthermore, UpRight’s protocol assumes omission faults to be

more common than Byzantine faults, and thus only a subset of all faults are expected to be

Byzantine.

2.3.3 Protocols Resistant to Performance Degradation

All protocols mentioned so far rely on one designated replica — normally referred to as

leader, primary, or coordinator — to assign an order to each valid request issued by clients.

All other replicas must wait for the leader to make such assignment. Because of this, the

performance of the entire system is dictated by the performance of the leader. However, if

the leader becomes malicious, it might delay the order proposal to reduce global performance

significantly — and yet, keep itself fast enough so it won’t be suspected of being faulty (Amir

et al., 2011). As a countermeasure to this type of attack, the authors proposed Prime, an

SMR protocol fitted with mechanisms for detecting this type of attack and blacklisting such

malicious replica. However, the protocol requires knowledge about the networks bandwidth

in order to accurately detect this behaviour.

Veronese et al. (2009) proposed a different mechanism to assess this problem in the

Spinning protocol. Whereas in Prime (and other protocols) the system elects a new leader

only when it is suspected of being faulty, Spinning periodically elects a new leader in a

round-robin fashion, thus forcing all replicas to be elected as the leader during each iteration

of the protocol. If any replica is suspected of being faulty, it is added to a blacklist, and not

allowed to become the leader for some number of iterations.

Aublin et al. (2013) proposed an alternative approach to (Amir et al., 2011) for coping

with performance-degrading leaders named Redundant-BFT (RBFT). Instead of devising

a novel BFT SMR protocol with awareness of this type of attack, the authors devised a

framework that uses f + 1 instances of any single SMR protocol picked from the literature,

but with a different leader replica attached to each instance. All instances participate in

17

2. BACKGROUND

ordering requests, but only the requests ordered by the master instance are executed. In

addition, the performance of each instances is closely analyzed by a monitoring mechanism

to determine if the master instance provides lower performance than the others, in which

case it is suspected of being malicious and therefore replaced.

2.3.4 Hybrid Protocols

The fact that BFT SMR requires a theoretical minimum of 3f+1 replicas spawned a research

line aimed at reducing this minimum by means of an hybrid system model (Veríssimo et al.,

2003). The key idea is to assume the existence of a trusted and trustworthy sub-system that is

shielded from arbitrary behavior by construction. An example of such BFT SMR protocols

designed for an hybrid model are MinBFT and MinZyzzyvva, each one being derivations

from Zyzzyvva and PBFT respectively (Veronese et al., 2013). The protocols required a

trusted component called Unique Sequential Identifier Generator (USIG), which defines an

interface with operations to (1) increment a counter and generate a certificate that associates

that value to a given message; and (2) verify if such certificate is correctly signed for that

value/message pair. The simplicity of the interface enables to component to be realistically

implemented using either virtualization or a trusted platform module (TPM) device. This

component is assumed to deviate from its specified behavior only by crash. This allows the

resulting protocols to use only 2f + 1 replicas – and one less communication steps in case of

MinBFT – to implement state machine replication when compared to the original protocols.

A comparison of PBFT’s and MinBFT’s (resp. Zyzzyva and MinZyzzyva) message patterns

is illustrated in Figure 2.2 (resp. Figure 2.3). As it can be observed, PBFT (resp. Zyzzyva)

requires 4 replicas, whereas MinBFT (resp. MinZyzzyva) needs 3 replicas to tolerate a single

fault. In the particular case of MinBFT, an entire communication step can be omitted.

MinBFT was latter used as a building block for CheapBFT (Kapitza et al., 2012), a BFT

SMR protocol that uses a similar hybrid model, but that is capable of using only f + 1

active replicas in the presence of network synchrony and absence of faulty behavior from

replicas. During such period, the system executes a protocol that employs passive replication

to propagate client operations, but is unable to make progress if it suspects any replica to be

faulty. Because of this, CheapBFT executes a dedicated protocol which enables it to bring

the inactive replicas up-to-date and switch to MinBFT, so that the system is able to make

progress in the presence of f faults and a total of 2f + 1 replicas.

18

2.3 BFT State Machine Replication

P0

P1

P2

P3

Client

(a) PBFT message pattern.

P0

P1

P2

Client

(b) MinBFT message pattern.

Figure 2.2: Comparison of PBFT and MinBFT message patterns, with client c sending an
operation to the replicas.

P0

P1

P2

P3

Client

(a) Zyzzyva message pattern.

P0

P1

P2

Client

(b) MinZyzzyva message pattern.

Figure 2.3: Comparison of Zyzzyva and MinZyzzyva message patterns, with client c sending
an operation to the replicas.

More recently, Behl et al. (2017) proposed Hybster, a BFT SMR protocol also for an

hybrid model whose trusted component is based on Intel’s Software Guard Extensions (SGX)

technology. Previous protocols in this research line employed a sequential execution of

the ordering protocol. The main advantage Hybster offers over CheapBFT or MinBFT is

the fact that it allows for parallel execution of the ordering protocol – a mechanism that

is typically referred to as pipelining. However, this comes at the cost of using a software-

based trusted computing base, rather than a hardware-based one akin the USIG service of

MinBFT/MinZyzzyva.

2.3.5 Randomized Protocols

Randomized protocols are able to circumvent the FLP result discussed in Section 2.2 and

solve agreement under the asynchronous system model using randomization (Ben-Or, 1983;

Rabin, 1983). This approach also has the additional benefit of rendering the protocols com-

pletely leader-free and devoid of complicated corner-cases. However, the liveness guarantees

19

2. BACKGROUND

provided by these abstractions need to be weakened to allow a probabilistic termination of

the protocol rather than a deterministic one. In the particular case of the consensus problem,

the standard termination property needs to be re-written as "Every correct process eventually

decides exactly one value with probability 1". By consequence, any total order broadcast

protocol derived from this class of algorithm also provides probabilistic termination. In

addition, these algorithms also require more communication steps and higher message com-

plexity than their deterministic counterparts.

Randomized protocols are comprised by a non-deterministic mechanism that returns ei-

ther 0 or 1, with equal probability. This mechanism is typically referred to as a coin toss. This

coin-tossing mechanism can either be local to each process (Ben-Or, 1983), or distributed

across processes, thus returning the same value at all correct ones (Rabin, 1983). Typically,

local coin algorithms are simpler than their shared coin counterparts, but are expected to

finish in an exponential number of rounds (Bracha, 1984). On the other hand, shared coin

algorithms are expected (but not guaranteed) to finish in a constant number of rounds, but

require sophisticated cryptographic schemes to safely implement coin sharing (Cachin et al.,

2005; Canetti & Rabin, 1993). Two of the most important works developed in this research

area are SINTRA (Cachin & Poritz, 2002) and RITAS (Moniz et al., 2011). Both works

specify and implement a protocol stack that provides a total order broadcast primitive that

can be used for SMR. More precisely, they guarantee total order by using a binary-value

consensus algorithm and use a reliable broadcast protocol as the foundation for the stack.

Those protocols are used to obtain a multi-value consensus algorithm, followed by second

transformation from that multi-value algorithm to total order broadcast. The key difference

between SINTRA and RITAS is the fact that SINTRA uses the shared coin algorithm by

Cachin et al. (2005), whereas RITAS uses Bracha (1984) local coin algorithm.

2.3.6 Other Approaches

Aublin et al. (2015) proposed a well-defined modular abstraction unifying the optimizations

proposed by previous protocols through composition, making it easy to design new proto-

cols that are optimal in well-behaved executions (e.g., synchrony, absence of contention, no

faults), but revert on-the-fly to PBFT if such behavior does not hold. Such modularity is at

state machine replication level, in the sense that each module provides a way to totally order

client requests under the aforementioned conditions.

20

2.4 Wide-Area Replication

Porto et al. (2015) introduced a new system model to design distributed algorithms

dubbed Visigoth Fault Tolerance (VFT). In the VFT model, system assumptions are extended

to account, not just for a limit of f total faults, but also for a limit of s slow but correct pro-

cesses and o processes that may suffer from correlated commission faults. The authors show

that when taking such additional assumptions into consideration, the total number of repli-

cas required can be decomposed from n ≥ 3f + 1 to n ≥ f + min(f, s) + o + 1. Due to

the use of these additional parameters, the VFT model is more flexible than the traditional

asynchronous model, and as long as f > min(f, s) and f > o, systems require less repli-

cas to correctly secure liveness and safety properties, which in turn leads to better system

performance. On the other hand, this model is less resilient against networks partition and

assumptions violations: if the network is split in two parts, each one may continue executing

concurrently and independently of each other. This is a situation that cannot happen in any of

the three traditional models presented before. In addition, a violation of the limit s can lead

to safety violations, whereas a violation of f in other models leads to only a loss of liveness.

2.4 Wide-Area Replication

The previous section reviewed the state of the art for SMR algorithms that, even though

were designed for partially synchronous systems, are implemented and tested within local-

area networks, where latency is low and predictable; they are not optimized for wide-area

networks, were latency is high and variable. This section presents additional research that

proposes SMR protocols targeting wide area deployments. We start by presenting a collec-

tion of wide-area protocols derived from Paxos, and then we proceed to discuss protocols

designed to withstand Byzantine faults.

2.4.1 Protocols Derived From Paxos

One of the earliest works proposing an SMR protocol designed for wide-area was Mencius

(Mao et al., 2008), which forces replicas to take turn as the leader and propose client re-

quests in their turns. Clients send requests to the replicas in their sites, which are submitted

for ordering when a replica becomes the leader. According to the paper, this mechanism

significantly reduces clients’ latency in a WAN setting.

21

2. BACKGROUND

HP Paxos (Dobre et al., 2010) is another wide-area SMR protocol that combines features

of both classic and Fast Paxos (Lamport, 2006). Fast Paxos is able to finish each iteration

in just two communication steps at the cost of requiring 3f + 1 replicas instead of 2f + 1.

However, this is only possible in the absence of contention among clients. Otherwise, two

additional communication step are necessary to finish an iteration. HP Paxos circumvents

these limitations by employing operation history mechanisms inspired from Generalized

Paxos (Lamport, 2005). The resulting protocol is still capable of finishing an iteration in

two communication steps in the absence of collisions, while only requiring optimal number

of replicas (2f + 1) and demanding the same number of communication steps of classic

Paxos in the advent of collisions.

Kraska et al. (2013) proposed Multi-Data Center Consistency (MDCC), an optimistic

transactional protocol that can execute across multiple, geographically distributed datacen-

ters. Although its protocol is derived from Generalized Paxos (Lamport, 2005), its optimistic

execution renders it able to execute without using a master replica, thus being able to termi-

nate within a single communication round-trip when transactions do not conflict.

Egalitarian Paxos (EPaxos) (Moraru et al., 2013) does not rely on a single designated

leader for ordering operations. Instead, it enables clients to choose which replica should

propose their operations, and employs a mechanism for solving conflicts between interfering

operations. However, in order to correctly enforce such conflict resolution - and contrary

to most SMR protocols - EPaxos requires information from the application to determine

operations interference.

2.4.2 Protocols for the Byzantine Fault Model

Steward (Amir et al., 2010) is a hierarchical Byzantine fault-tolerant protocol for multi-site

systems. It is a hybrid algorithm in the sense that it runs a BFT agreement protocol within

each site, and a lightweight, crash fault-tolerant protocol across sites. Since Steward assumes

Byzantine failures, each site needs at least 3fi+1 replicas to run the BFT agreement protocol.

But since it uses a lightweight protocol among sites, it is able to perform well in WANs. This

comes at the cost of a complex protocol (over ten specialized algorithms that run within and

among sites) that demands plenty of resources (each site requires 3f + 1 replicas).

Mao et al. (2009) have addressed some challenges that rise when devising a BFT state

machine protocol over WANs. They propose a system model comprised of multiple sites

22

2.4 Wide-Area Replication

similar to Steward’s model, in which there is a lack of trust between sites; but unlike Steward,

there is some trust within each site. Given this stronger assumption, they designed RAM,

a protocol that takes advantage of 3 major concepts: (1) Mutually Suspicious Domains,

which states that clients are able to trust servers within their own sites, whereas inter-site

interactions are not trustworthy; (2) a rotating leader scheme similar to Mencius; (3) Attested

append-only memory (A2M), a trusted system facility first introduced by Chun et al. (2007).

This facility requires outgoing messages to be recorded into a trusted log, thus preventing

hosts from lying in different ways to other hosts.

Following their previous work on MinBFT and Spinning, Veronese et al. (2010) intro-

duced EBAWA, a BFT state machine replication protocol optimized for wide area networks.

Since it uses the same USIG service that is used by MinBFT and MinZyzivva, it requires only

2f+1 sites to tolerate f Byzantine faults. Each site can contain only one service replica, thus

requiring the same communication pattern of MinBFT (illustrated in Figure 2.2b). Also like

Spinning, it uses a rotating leader scheme to prevent a faulty leader from degrading system

performance. This protocol presents the following advantages over both Steward and RAM:

(1) it does not demand Steward’s minimum of 3fi + 1 replicas in each site i and can survive

compromised site; (2) whereas RAM requires the standard 3f +1 minimum number of sites,

EBAWA requires only 2f + 1 sites; and (3) since it supports the USIG trusted component,

it does not require a log that may grow considerably and additional mechanism to append,

look-up ans truncate entries like the A2M system needs.

A recent work by Miller et al. (2016) proposes Honeybadger, a leaderless BFT protocol

designed for high-performance in cryptocurrency-oriented system. The key difference from

Honeybadger to the above protocols discussed in this section is fact that it assumes a com-

pletely asynchronous system model, by adopting the same system model and randomization

techniques discussed in Section 2.3.5. In particular, HoneyBadger is a protocol inspired

by SINTRA (Cachin & Poritz, 2002) that is able to provide lower message complexity by

means of an alternative algorithmic reduction based on the work of Ben-Or et al. (1994).

In addition, HoneyBadger also adopts many optimizations that improve the performance of

the system, such as a communication-optimal reliable roadcast (Cachin & Tessaro, 2005),

the binary consensus proposed by Mostefaoui et al. (2015), and batching (Santos & Schiper,

2013b).

Finally, all the aforementioned algorithms explicitly separate the fault model from the

network model. This approach results in protocols that are able to guarantee eventual progress,

23

2. BACKGROUND

as long as less than a third of the replicas are faulty – regardless of how many replicas are
partitioned by an attacker.1 By contrast, Liu et al. (2016) propose a novel SMR approach
dubbed XFT, which introduces a limit on the amount of partitioned replicas present in the
system. This limit enabled the creation of XPaxos, an SMR protocol intended for wide-area
replication that requires 2f+1 replicas under the assumption that a majority of these replicas
remains both correct and synchronous.

2.5 Concluding Remarks

In this section we discussed the context for this thesis and presented the background for
BFT state machine replication. In particular, we have described why the consensus problem
is heavily related to this technique. We also presented important milestones such as the
FLP impossibility and ways to circumvent it, the PBFT protocol and the emergence of the
research area, as well as many important ideas such as hybrid protocols and randomization.
We also provided a brief overview of the work dedicated to deploy the SMR technique into
geo-replicated settings. For the remaining of the thesis, we will focus on describing the work
developed and the results obtained.

1In this context, a partitioned replica is one that is unable to reach other replicas within the time bounds
define for the network.

24

3
Mod-SMaRt

This chapter presents the thesis first step towards a robust SMR codebase in the form of Mod-

SMaRt (Modular State Machine Replication), a modular algorithm built directly around an

augmented Byzantine consensus primitive dubbed VP-Consensus (Validated and Provable

Consensus). Mod-SMaRt requires a minimal number of communication steps between repli-

cas, thus being an optimal transformation from Byzantine consensus to BFT-SMR.

The chapter is organized in the following way. We first describe the problem at hand

in Sections 3.1 and 3.2. In Section 3.3 we unpack the system model adopted for both VP-

Consensus and Mod-SMaRt. The VP-Consensus primitive is discussed in Section 3.4 and the

Mod-SMaRt algorithms is described in Section 3.5. Possible optimizations and additional

considerations are discussed in Section 3.6. In Sections 3.7 and 3.8 we discuss additional

related work and present our concluding remarks, respectively.

3.1 Modular vs Monolithic algorithms

In the last decade, many practical SMR protocols for the Byzantine fault model were pub-

lished (e.g., Abd-El-Malek et al. (2005); Castro & Liskov (2002); Cowling et al. (2006);

Kotla et al. (2009); Veronese et al. (2009)). However, despite their efficiency, such protocols

are monolithic: they do not clearly separate the consensus primitive from the remaining of

the protocol. Moreover, The implementation of these algorithms adds even more complexity

to these protocols – including for the crash fault model, as was observed in (Chandra et al.,

25

3. MOD-SMART

SEND READYECHO

Consensus

Reliable Broadcast

3 communication steps

P0

P1

P2

P3

Client

3 communication steps

Figure 3.1: Modular BFT SMR message pattern for a protocol that uses reliable broadcast
and a consensus primitive. This protocol is adapted from (Milosevic et al., 2011).

2007). Besides being hard to evaluate such implementations, its even harder to verify their

correctness.

By contrast, many of the BFT total order broadcast protocols proposed in the literature

(the main component of a BFT SMR implementation) are obtained by means of a protocol

stack, i.e., they are built using black-box Byzantine consensus primitives (e.g., Cachin et al.

(2001); Correia et al. (2006); Hadzilacos & Toueg (1993); Milosevic et al. (2011)). This

modularity simplifies the protocols, making them easier to both understand and implement.

However, these modular transformations plus the underlying consensus they use always re-

quire more communication steps than the aforementioned monolithic solutions.

To better understand the difference between them, Figure 3.1 presents the typical mes-

sage pattern of modular BFT total order broadcast protocols when used to implement SMR.

The key point of most of these transformations is the use of BFT reliable broadcast proto-

col (Bracha, 1984) to disseminate clients’ requests among replicas, ensuring they will be

eventually proposed (and decided) in some consensus instance that defines the order of mes-

sages to be executed. As illustrated in Figure 3.1, the usual BFT reliable broadcast requires

3 communication steps (Bracha, 1984).1

1Alternatively, some known transformations require the use of an echo broadcast (Toueg, 1984) instead of
a reliable broadcast, thus requiring two extra communication steps instead of three. However, those transfor-
mations require the replicas to sign each exchanged messages (Cachin et al., 2001; Doudou et al., 2005), being
thus even more inefficient, specially in local area networks.

26

3.2 Preserving Robustness, Modularity and Latency

Finally, it is known that optimally resilient Byzantine consensus protocols cannot safely

decide a value in 2 or less communication steps (Dutta et al., 2005; Martin & Alvisi, 2006).

This means that latency-optimal protocols for BFT SMR that use only 3f + 1 replicas to

tolerate f Byzantine faults needs to execute at least 3 communication steps for the consensus,

plus 3 more steps to receive the request from the client and send a reply.1 The consequence

is that the protocol of Figure 3.1 requires at least 6 communication steps to totally order a

message in the best-case, plus one more to send a reply to the client, making a total of 7

steps. By comparison, PBFT (Castro & Liskov, 2002) requires only 5 communication steps

(3 for the embedded Byzantine consensus plus 2 for client-replica communication – see

Figure 2.2a) in the best-case. Monolithic protocols, as already stated, circumvent those extra

steps by mixing the reliable broadcast with the consensus primitive, at the cost of becoming

considerably more complex than a modular approach.

3.2 Preserving Robustness, Modularity and Latency

The observation of previous section is strongly linked to the objectives of this thesis. More

precisely, since our intention is to provide a efficient SMR protocol implemented in a robust

codebase, the first step should be to devise a protocol that preserves optimal latency (i.e.,

the minimum number of communication steps) while still offering the modularity needed to

avoid the complexity of monolithic protocols.

The solution proposed in this chapter is a transformation from Byzantine consensus

to BFT SMR which uses an augmented Byzantine consensus primitive. This primitive is

called Validated and Provable Consensus (VP-Consensus) and the resulting transformation

is a BFT SMR algorithm dubbed Modular State Machine Replication (Mod-SMaRt). VP-

Consensus is used as a “grey-box” abstraction that allows modular implementation of SMR

without using reliable broadcast, thus avoiding the extra communication steps required to

safely guarantee that all requests arrive at all correct replicas. Moreover, this primitive can

be easily obtained by modifying existing leader-driven consensus algorithms (e.g., Cachin

(2009); Lampson (2001); Martin & Alvisi (2006); Rütti et al. (2010); Zielinski (2004)). By

clearly separating the Byzantine consensus from the rest of the protocol, we simplify its

1This excludes optimistic protocols that are very efficient in contention-free executions (Abd-El-Malek
et al., 2005; Cowling et al., 2006), speculative protocols (Kotla et al., 2009) and protocols requiring more than
3f + 1 replicas (Martin & Alvisi, 2006).

27

3. MOD-SMART

specification (thus, making it easier to prove correct), and encapsulate most of the complex-

ity within a consensus primitive (making it easier to understand by developers and users).

Mod-SMaRt avoids mixing protocols through the use of a well-defined interface exported

by VP-Consensus, that allows it to handle request’ timeouts and, if needed, triggers internal

consensus timeouts as necessary. We see the use of an augmented consensus primitive as

a good trade-off between modularity and efficiency, specially when this primitive can be

easily supported with simple modifications on several leader-driven partially-synchronous

Byzantine consensus protocols (Cachin, 2009; Lampson, 2001; Li et al., 2007; Martin &

Alvisi, 2006; Rütti et al., 2010; Zielinski, 2004). Moreover, even perfect black-box modular

transformations from Byzantine consensus to total order broadcast requires the consensus

module to satisfy special Validity properties to ensure that the decided value was proposed

by a correct process — or at least to ensure it is valid with respect to the remaining of the

algorithm (Milosevic et al., 2011).

3.3 System Model

We consider a system composed by a set of n ≥ 3f + 1 replicas R, where a maximum of

f replicas may be subject to Byzantine faults, and a set C with an unbounded (but finite)

number of clients, which can also suffer Byzantine faults.

Like in PBFT and similar protocols (Castro & Liskov, 2002; Cowling et al., 2006; Kotla

et al., 2009; Veronese et al., 2009), Mod-SMaRt does not require synchrony to assure safety.

However, it requires synchrony to provide liveness. This means that, even in the presence

of faults, correct replicas will never evolve into an inconsistent state; but the execution of

the protocol shall terminate only when the system becomes synchronous. Due to this, we

assume an eventually synchronous system model (Dwork et al., 1988). As discussed in

Section 2.1.1, this model assumes the system operates asynchronously until some unknown

instant, at which it will become synchronous. At this point, time bounds for computation

and communication (which are also unknown) shall be obeyed by the system.

We further assume the existence of authenticated perfect point-to-point links as described

in Section 2.1.1, cryptographic functions that provide digital signatures, message digests, and

message authentication codes (MAC).

28

3.4 Validated and Provable Consensus

3.4 Validated and Provable Consensus

In this section we introduce the concept of Validated and Provable Consensus (VP-Consensus).
By ‘Validated’, we mean the protocol receives a predicate γ together with the proposed
value — which any decided value must satisfy. By ‘Provable’, we mean that the protocol
generates a cryptographic proof Γ that certifies that a value v was decided in a consensus
instance i. More precisely, a VP-Consensus implementation offers the following interface:

• VP-Propose(i, l, γ, v): proposes a value v in consensus instance i, with initial leader l
and predicate γ;

• VP-Decide(i, v,Γ): triggered when value v with proof Γ is decided in consensus in-
stance i;

• VP-Timeout(i, l): Used to trigger a timeout in the consensus instance i, and appoint a
new leader process l. More details about the use of this procedure will be presented in
Section 3.5.5.

Three important things should be noted about this interface. First, VP-Consensus as-
sumes a leader-driven protocol, in the same sense as any Byzantine Paxos consensus primi-
tive. Second, the interface assumes the VP-Consensus implementation can handle timeouts
to change leaders, and a new leader is (locally) chosen after a timeout. The need for these two
requirements will be explained latter. Finally, we implicitly assume that all correct processes
will invoke VP-Propose for an instance i using the same predicate γ.

Besides respecting the classic properties described in Section 2.2 (Termination, Agree-
ment, and Integrity), VP-Consensus also introduces the following additional properties:

• External Validity: If a correct process decides v, then γ(v) is true;

• External Provability: If some correct process decides v with proof Γ in consensus
instance i, any correct process can verify that v is the decision of i through Γ.

External Validity was originally proposed by Cachin et al. (Cachin et al., 2001), but we
use a slightly modified definition. In particular, External Validity no longer explicitly de-
mands validation data for proposing v, because such data is already included in the proposed
value, as will be clear in Section 3.5.

29

3. MOD-SMART

3.4.1 Implementation requirements

Even though our primitive offers the classical properties of consensus, the interface imposes

some changes in its implementation. Notice that we are not trying to specify a new consensus

algorithm; we are only specifying a primitive that can be obtained by making simple mod-

ifications to existing ones. However, as described before, our interface assumes that such

algorithms are leader-driven and meant for the partially synchronous system. Most Paxos-

based protocols satisfy these conditions (Cachin, 2009; Lamport, 2006; Martin & Alvisi,

2006; Rütti et al., 2010; Zielinski, 2004), and thus can be used with Mod-SMaRt. In this

section we present an overview of the required modifications on consensus protocols, with-

out providing explanations for it. We will come back to the modifications in Section 3.5.5,

when it will become clear why they are required.

The first change is related to the timers needed in the presence of partial synchrony. To

our knowledge, all algorithms in literature for such system model requires a timer associ-

ated to such mechanism (Cachin, 2009; Lamport, 1998, 2006; Martin & Alvisi, 2006). The

primitive still needs such timer; but it will not be its responsibility to manage it (or even stop

it). Instead, we use the procedure VP-Timeout to indicate to the consensus that a timeout has

occurred, and it needs to be handled.

The second change is related to the assumption of a leader-driven consensus. To the

best of our knowledge, all the leader-driven algorithms in the literature have deterministic

mechanisms to select a new leader when sufficiently many of them suspect the current one.

These suspicions are triggered by a timeout. A VP-Consensus implementation still requires

the election of a new leader upon a timeout. However, the next leader will be defined by

Mod-SMaRt, and is passed as an argument in the VP-Propose and VP-Timeout calls. Notice

that these first two requirements are equivalent to assuming the consensus protocol requires

a leader election module, just like Ω failure detector, which is already required in some

algorithms (Cachin, 2009; Martin & Alvisi, 2006).

The third change imposes the consensus algorithm to generate the cryptographic proof

Γ to fulfill the External Provability property. This proof can be generated by signing the

messages that can trigger a decision of the consensus.1 An example of proofs would be a set

1Due to the efficiency cost of producing digital signatures, the cryptographic proof can be generated with
MAC vectors instead of digital signatures, just like in PBFT (Castro & Liskov, 2002).

30

3.5 The Mod-SMaRt Algorithm

VP-Consensus

Authenticated Perfect
Point-to-Point Links

Mod-SMaRt

Figure 3.2: Mod-SMaRt replica architecture. The authenticated perfect point-to-point links
guarantee the delivery of replica-to-replica messages, while the VP-Consensus module is
used to establish agreement on the message(s) to be delivered by consensus instances.

of 2f + 1 signed COMMIT messages in PBFT (Castro & Liskov, 2002) or dn+f+1
2
e signed

COMMITPROOF messages in Parametrized FaB (Martin & Alvisi, 2006).

Finally, we require each correct process running the consensus algorithm to verify if

the value being proposed by the leader satisfies γ before it is accepted. Correct processes

must only accept values that satisfy such predicate and discard others — thus fulfilling the

External Validity property.

3.5 The Mod-SMaRt Algorithm

In this section we describe Mod-SMaRt, our modular BFT SMR algorithm, which is divided

into three sub-algorithms: client operation, normal phase, and synchronization phase. The

full proofs showing that Mod-SMaRt satisfies the properties of a BFT SMR under our system

model are presented in Appendix A.

3.5.1 Overview

The general architecture of a replica is described in Figure 3.2. Mod-SMaRt is built on top

of an authenticated perfect point-to-point links communication layer, as well as the VP-

Consensus module described in previous section. Such module may also use the same

31

3. MOD-SMART

communication support to exchange messages among processes. Mod-SMaRt uses VP-

Consensus to execute a sequence of consensus instances, where in each instance i a batch

of operations are proposed for execution, and the same proposed batch is decided on each

correct replica. This is the mechanism by which we are able to achieve total order across

correct replicas.

During normal phase, a log of the decided values is constructed by the sequence of VP-

Consensus executions. Each log entry contains the decided value, the id of the consensus

instance where it was decided, and its associated proof. To simplify our design, Mod-SMaRt

assumes that each correct replica can execute concurrently only the current instance i and

previous consensus instance i−1 at any given moment. All correct replicas remain available

to participate in consensus instance i − 1, even if they are already executing i. This is done

to ensure that if there is one correct replica running consensus i− 1 but not i, there will be at

least 2f + 1 correct replicas executing i− 1, which ensures the delayed replica will be able

to finish i− 1.

Due to the expected asynchrony of the system, it is possible that a replica receives mes-

sages for a consensus instance j such that j > i (early message) or j < i − 1 (outdated

message). Early messages are stored in an out-of-context buffer for future processing while

outdated messages are discarded. Notice that we do not provide pseudo-code for this mech-

anism, relying on our communication layer to deliver messages in accordance with the con-

sensus instances being executed.

This pretty much describes the normal phase of the protocol, which is executed in the

absence of faults and in the presence of synchrony. When these conditions are not satisfied,

the synchronization phase might be triggered. Moreover, Mod-SMaRt makes use of the

concept of regencies. This is equivalent to the view mechanism employed by PBFT and

ViewStamped Replication (Castro & Liskov, 2002; Oki & Liskov, 1988), where a single

replica will be assigned as the leader for each regency. Such leader will be needed both

in Mod-SMaRt, and in the VP-Consensus module. During each regency, the normal case

operation can be repeated infinitely; during a synchronization phase, an unbounded (but

finite) number of regency changes can take place, since the system will eventually become

synchronous.

Since we avoid using reliable multicast before running the Byzantine consensus protocol,

two problems may happen. First, a malicious leader can make a client starve by not propos-

ing messages from that client for ordering. Second, a malicious client can send messages

32

3.5 The Mod-SMaRt Algorithm

to all replicas but to the current (correct) leader, making other processes suspect it for not

proposing messages from this client. The solution for these problems is to suspect the leader

only if the timer associated with a message expires twice, making the process forward the

pending message to the leader upon the first expiration.

In case a regency change is needed, timeouts will be triggered at all correct replicas and

the synchronization phase will take place. During this phase, Mod-SMaRt must ensure three

things: (1) a quorum of n − f replicas must have the pending messages that caused the

timeouts; (2) correct replicas must exchange logs to reach the same consensus instance; and

(3) a timeout is triggered in this instance, proposing the same leader at all correct replicas (the

one chosen during the regency change). Notice that Mod-SMaRt does not verify consensus

values to ensure consistency: all these checks are done inside of the VP-Consensus module,

after its timeout is triggered. This substantially simplifies faulty leader recovery by breaking

the problem in two self-contained blocks: SMR layer ensures all processes are executing

the same consensus with the same leader while VP-Consensus deals with the inconsistencies

caused by a faulty leader.

3.5.2 Client Operation

Algorithm 1 describes how the client invokes an operation in Mod-SMaRt. This algorithm

can be seen as a synchronous call of the Invoke function that will broadcast a given request

to all the replicas in the system and wait for replies from a quorum.

When a client wants to issue a request to the replicas, it sends a REQUEST message in

the format specified in line 9. This message contains the sequence number for the request, the

operation issued by the client, and a boolean parameter that indicates if the message contains

a read-only operation (i.e., an operation that does not modify the application’s state). The

inclusion of a sequence number uniquely identifies the operation (together with the client id),

and prevent replay attacks made by an adversary that might be sniffing the communication

layer. A digital signature αc is appended to the message to prove that such message was

produced by client c. Although this signature could be eschewed in favor of a MAC vector,

its use makes the system resilient against certain attacks (Amir et al., 2011).

The client waits for at least dn+f+1
2
e matching replies from different replicas, for the

same sequence number, as it can be observed in lines 12–13, when the result is returned in

33

3. MOD-SMART

Algorithm 1: Algorithm at client c
1 Upon Init do
2 nextSeq ← 0
3 requests[1..∞]
4 ∀i ∈ N0 : requests[i]← ∅
5 Replies← ∅

6 Upon Invoke(op, readOnly) do
7 nextSeq ← nextSeq + 1
8 requests[nextSeq]← 〈op, readOnly〉
9 send 〈REQUEST, nextSeq, op, readOnly〉αc to R

10 Upon reception of 〈REPLY, seq, rep〉 from r ∈ R do
11 Replies← Replies ∪ {〈r, seq, rep〉}
12 if ∃ seq, rep : |{〈∗, seq, rep〉 ∈ Replies}| >= dn+f+1

2
e

13 Replies← Replies\{〈∗, seq, rep〉}
14 return rep

15 if ∃ seq, op : (|{〈∗, seq, ∗〉 ∈ Replies}| >= dn+f+1
2
e ∧ requests[seq] =

〈op,TRUE 〉)
16 Invoke(op,FALSE)

line 14. In case the client invoke a request for a read-only operation but there are no dn+f+1
2
e

matching replies, the request is re-transmitted as a standard request (lines 15–16).

3.5.3 Normal Phase

The goal of the normal phase is to execute a sequence of consensus instances in each replica.

The values proposed by each replica will be a batch of operations issued by the clients.

Because each correct replica executes the same sequence of consensus instances, the values

decided in each instance will be the same in all correct replicas, and since they are batches of

operations, they will be totally ordered across correct replicas. All variables and functions

used in Algorithms 2-4 are described in Table 3.1.

Figure 3.3 illustrates this phase message pattern and Algorithm 2 formally describes it.

Reception of client requests are processed in line 1-2 through procedure RequestReceived

(lines 21–25). Requests are only considered by correct replicas if the message contains a

valid signature, a valid operation, and the sequence number expected from this client (to

34

3.5 The Mod-SMaRt Algorithm

P0

P1

P2

P3

Client

VP-Consensus

VP-Propose(i,l,γ,v) VP-Decide(i,v,Γ)

Figure 3.3: Communication pattern of Mod-SMaRt’ normal phase for f = 1. Each client
sends its operations to the replicas, a consensus instance is immediately started, and the
decided value is sent to the client.

avoid replay attacks). If a replica accepts an operation issued by a client, it stores it in the

ToOrder set, activating a timer associated with the request (lines 23–25). Notice that a

message is also accepted if it is forwarded by other replicas (lines 18–20).

When the ToOrder set contains some request to be ordered, there is no consensus being

executed and the ordering of messages is not stopped (see next section), a sub-set of opera-

tions Batch from ToOrder is selected to be ordered (lines 3–4). The predicate fair ensures

that all clients with pending requests will have approximately the same number of operations

in a batch to avoid starvation. The replica will then create a consensus instance, using Batch

as the proposed value (lines 5–6). The predicate γ given as an argument in the VP-Propose

procedure should return TRUE for a proposed value V if the following three conditions are

met: (1) fair(V) is TRUE (thus V is not an empty set); (2) Each message in V is either in

the ToOrder set of the replica or is correctly signed and contains the next sequence number

expected from the client that issued the operation; and (3) validCmd(m) is TRUE for all

messages contained in V .

35

3. MOD-SMART

Algorithm 2: Normal phase at replica r.
1 Upon reception of m = 〈REQUEST, seq, op,FALSE 〉αc from c ∈ C do
2 RequestReceived (c,m)

3 Upon (toOrder 6= ∅) ∧ (currentCons = −1) ∧ (¬stopped) do
4 Batch← X ⊆ ToOrder : |X| ≤ maxBatch ∧ fair(X)
5 currentCons← highCons(DecLog).i+ 1
6 VP-Propose (currentCons, creg mod R, γ,Batch)

7 Upon VP-Decide〈i, Batch, Proof〉 do
8 if stopped
9 Decided← Decided ∪ {〈i, Batch, Proof〉}

10 else
11 DecLog ← DecLog ∪ {〈i, Batch, Proof〉}
12 if currentCons = i then currentCons← −1

// Deterministic cycle

13 foreach m = 〈REQUEST, seq, op, readOnly〉αc ∈ Batch do
14 cancelTimers ({m})
15 ToOrder ← ToOrder\{m}
16 rep← execute(op)
17 send 〈REPLY, seq, rep〉 to c

18 Upon reception of 〈FORWARDED,M〉 from r′ ∈ R do
19 foreach m = 〈REQUEST, ∗, ∗,FALSE 〉αc ∈M do
20 RequestReceived (c,m)

21 Procedure RequestReceived(c,m)
22 if lastSeq[c] + 1 = m.seq ∧ validSig(m) ∧ validCmd(m)
23 ToOrder ← ToOrder ∪ {m}
24 if ¬stopped then activateTimers({m}, timeout)
25 lastSeq[c]← m.seq

26 Upon reception of m = 〈REQUEST, seq, op,TRUE 〉αc from c ∈ C do
27 rep← execute(op)
28 send 〈REPLY, seq, rep〉 to c

36

3.5 The Mod-SMaRt Algorithm

Variables

Name Initial Value Description
timeout INITIAL_TIMEOUT Initial timeout value
maxBatch MAX_BATCH Maximum number of operations that a batch may contain
creg 0 Replica’s current regency
nreg 0 Replica’s next regency
currentCons -1 Current consensus being executed
DecLog ∅ Replica’s log of all consensus instances and their proofs
ToOrder ∅ Operations to be ordered
Stops ∅ Requests collected in STOP messages
Decided ∅ Decision value obtained during the synchronization phase
stopped FALSE Indicates if the synchronization phase is activated or not
lastSeq[1..∞] ∀c ∈ C : lastSeq[c]← 0 Last sequence number sent by each client
ChangeReg[1..∞] ∀g ∈ N : ChangeReg[g]← ∅ Replicas that want a regency change
Data[1..∞] ∀g ∈ N : Data[g]← ∅ STOPDATA messages collected by the leader
Sync[1..∞] ∀g ∈ N : Sync[g]← ∅ Set of logs sent by the leader to all replicas

Functions

Interface Description
activateTimers(Reqs, timeout) Creates a timer for each request in Reqs with value timeout
cancelTimers(Reqs) Cancels the timer associated with each request in Reqs
execute(op) Makes the application execute operation op, returning the result
noGaps(Log) Returns TRUE if sequence of consensus Log does not contain any gaps
highCons(Log) Returns the consensus instance from Log with highest id
highLog(Logs) Returns the most advanced sequence of consensus contained in Logs
validDec(decision) Returns TRUE if decision contains a valid proof
validSig(req) Returns TRUE if request req is correctly signed
validCmd(req) Returns TRUE if request req contains a valid operation with respect to the application

The implementation of this function is provided by the developers

Table 3.1: Variables and functions used in Algorithms 2, 3, and 4.

When a consensus instance decides a value (i.e., a batch of operations) and produces

its corresponding proof (line 7), Mod-SMaRt will: store the batch of operations and its

cryptographic proof in each replica’s log (line 11); cancel the timers associated with each

decided request (line 14); deterministically deliver each operation contained in the batch to

the application (line 16); and send a reply to the client that requested the operation with the

corresponding result (line 17). Notice that if the algorithm is stopped (because the replica is

running a synchronization phase, see next section), decided messages are stored in aDecided

set (lines 8 and 9), instead of being executed.

Finally, if a replica receives a read-only operation, it immediately executes it and sends

the reply to the client (lines 26–28). Since read-only operations do not modify the application

state, they are not required to be totally ordered and can be executed instantly.1

1It is the responsibility of the developer to identify which operations can be classified as read-only. If
operations are miss-classified, Mod-SMaRt cannot guarantee consistency across replicas.

37

3. MOD-SMART

STOP STOP-DATA SYNC

VP-Consensus

P0

P1

P2

P3

Client

TIMEOUT

TIMEOUT

TIMEOUT

TIMEOUT

VP-TIMEOUT(i,l)

VP-TIMEOUT(i,l)

VP-TIMEOUT(i,l)

VP-TIMEOUT(i,l)
VP-Consensus

Figure 3.4: Communication pattern of synchronization phase for f = 1. This phase is started
when the timeout for a message is triggered for a second time.

3.5.4 Synchronization Phase

The synchronization phase is described in Algorithms 3-4, and its message pattern is illus-

trated in Figure 3.4. This phase performs a regency change and force correct replicas to

synchronize their states and go to the same consensus instance. It occurs when the system

is passing through a period of asynchrony, or there is a faulty leader that does not deliver

client’ requests before their associated timers expire. This phase is started when a timeout

event is triggered for a sub-set M of operations in ToOrder that were not ordered (line 1).

When the timers associated with a set of requests M are triggered for the first time, the

requests are forwarded to all replicas (lines 2–3). This is done because a faulty client may

have sent its operation only to some of the replicas, therefore starting a consensus in less than

2f + 1 of them. This step forces such requests to reach all correct replicas if clients behave

this way, without forcing a leader change. If there is a second timeout for the requests,

the replica starts a regency change (line 4). When a regency change begins in a replica,

the timers for all pending requests are cancelled (line 8) and a STOP message is sent to

all replicas (line 9). This message informs other replicas that a timeout for a given set of

requests has occurred. When a replica receives more than f STOP messages ordering the

next regency to be installed (line 14), it begins to change its current regency using the valid

messages in Stops (line 15), even if no timeout is triggered locally. This mechanism ensures

that at least one correct replica has begun a regency change, and therefore this replica can

safely begin to change its regency.

38

3.5 The Mod-SMaRt Algorithm

Algorithm 3: Synchronization phase at replica r (part 1).
1 Upon timeout for requests M do
2 Mfirst ← {m ∈M : first timeout of m}
3 if Mfirst 6= ∅ then send 〈FORWARDED,Mfirst〉 to R
4 if M\Mfirst 6= ∅ then StartRegChange (M\Mfirst)

5 Procedure StartRegChange(M)
6 if nreg = creg
7 nreg ← creg + 1
8 cancelTimers(ToOrder) // Cancel all timers
9 send 〈STOP, nreg,M〉 to R

10 Upon reception of 〈STOP, reg,M〉 from r′ ∈ R do
11 if reg = creg + 1
12 Stops← Stops ∪M
13 ChangeReg[reg]← ChangeReg[reg] ∪ {r′}
14 if |ChangeReg[reg]| > f
15 M ′ ← {m ∈ Stops : m.seq > lastSeq[m.c] ∧ validSig(m)}
16 StartRegChange (M ′)
17 ToOrder ← ToOrder ∪M ′

18 if |ChangeReg[reg]| > 2f ∧ reg = nreg
19 stopped← TRUE
20 creg ← nreg
21 leader ← creg mod |R|
22 if currentCons 6= −1
23 VP-Timeout (currentCons, leader)

24 activateTimers (ToOrder, timeout)
25 send 〈STOPDATA, reg,DecLog〉αr to leader

When a replica receives more than 2f STOP messages, the processing of decisions is

stopped (line 19), the new regency is installed (line 20), a new leader is elected (line 21), and

a timeout is triggered at the consensus instance being executed (lines 22–23) . It is necessary

to wait at for least 2f+1 messages to make sure that eventually all correct replicas install the

next regency and that the VP-Consensus primitive correctly handles its timeouts. Following

this, the timers for all operations in the ToOrder set are re-activated and a new leader is

elected (lines 23–24).

39

3. MOD-SMART

Algorithm 4: Synchronization phase at replica r (part 2).
26 Upon reception of m = 〈STOPDATA, creg, Log〉αr from r′ ∈ R do
27 if creg mod n = r
28 if (noGaps(Log)) ∧ (∀d ∈ Log : validDec(d))
29 Data[creg]← Data[creg] ∪ {m}
30 if |Data[creg]| ≥ n− f
31 send 〈SYNC, creg,Data[creg]〉 to R

32 Upon reception of 〈SYNC, creg, Proofs〉 from r′ ∈ R do
33 if (creg mod n = r′)
34 foreach 〈STOPDATA, creg, Log〉αr′′

∈ Proofs do
35 if (noGaps(Log)) ∧ (∀d ∈ Log : validDec(d))
36 Sync[creg]← Sync[creg] ∪ {〈r′′, Log〉}

37 if |Sync[creg]| ≥ n− f
38 L← highLog(Sync[creg] ∪ {〈r, (DecLog ∪Decided)〉})
39 if currentCons < highCons(L).i
40 currentCons = −1

41 Stops← ∅
42 Decided← ∅
43 stopped← FALSE

// Deterministic cycle

44 foreach 〈i′, B, P 〉 ∈ L : i′ > highCons(DecLog).i do
45 Trigger VP-Decide〈i′, B, P 〉

After the next regency is installed, it is necessary to force all replicas to go to the same

state (i.e., synchronize their logs and execute the logged requests) and, if necessary, start the

consensus instance. To accomplish this, all replicas send a STOPDATA message to the new

regency’ leader, providing it with their decision log (line 25). As long as the proof associated

with each decided value is valid and there is no consensus instance missing, the leader will

collect these messages (lines 28–29). This is necessary because it proves that each consensus

instances has decided some batch of operations (which will be important later). When at least

n− f valid STOPDATA messages are received by the leader, it will send a SYNC message

to all replicas, containing all the information gathered about their decided instances in at

least n− f replicas (lines 30–31).

40

3.5 The Mod-SMaRt Algorithm

When a replica receives the SYNC message, it executes the same computations per-

formed by the leader (lines 33–37). This is necessary to ensure that the leader has gathered

and sent valid information. If the leader is correct, after receiving the same SYNC message,

all correct replicas will choose the same highest log (line 38) and, in case the replica is not

executing the lattest consensus instance, make everything ready to start at that instance (line

39-40). All correct replicas resume decision processing (line 43) and evolve into the same

state, as they deliver the value of each consensus instance that was already decided in other

replicas (lines 44–45).

3.5.5 Reasoning about the Consensus Modifications

As we mentioned in Section 3.4.1, the VP-Consensus primitive does not need to manage

(i.e., start and stop) timers, since our SMR algorithm already implements them. Due to this,

the VP-Consensus module only needs to be notified by the SMR algorithm when it needs to

handle a timeout. This is done by invoking VP-Timeout for a consensus i, when installing

a new regency (lines 22-23 of Algorithm 3). The VP-Timeout operation also gives as an

argument the new leader that the replica should rely on. This is needed because we assume

a leader-driven consensus, and such algorithms tend to elect the leader in a coordinated

manner. But when a delayed replica jumps to a consensus i during the synchronization

phase, it will be out-of-sync with respect to the current regency, when compared with the

majority of replicas that have already started consensus i during the normal phase. For this

reason, we need to explicitly inform VP-Consensus about the new leader.

Let us now discuss why the External Validity is required for Mod-SMaRt. The classic

Validity property would be sufficient in the crash fault model, because processes are assumed

to fail only by stopping, and will not propose invalid values; however, in the Byzantine fault

model such behavior is possible. A faulty process may propose an invalid value, and such

value might be decided. An example of such value can be an empty batch. This is a case that

can prevent progress within the algorithm. By forcing the consensus primitive to decide a

value that is useful for the algorithm to keep making progress, we can prevent such scenario

from occurring, and guarantee liveness as long as the execution is synchronous.

Finally, it should now be clear why the External Provability property is necessary: in the

Byzantine fault model, replicas can lie about which consensus instance they have actually

finished executing, and also provide a fake/corrupted decision value if a synchronization

41

3. MOD-SMART

phase is triggered. By forcing the consensus primitive to provide a proof, we can prevent

faulty replicas from lying. The worst thing a faulty replica can do, is to send old proofs from

previous consensus, but because Mod-SMaRt requires at least n − f logs from different

replicas, there will be always more than f up-to-date, correct replicas that will provide their

most recent consensus decision.

3.5.6 Mod-SMaRt for Crash Faults Only

Even though Mod-SMaRt is designed for Byzantine fault tolerance, the protocol can be

easily adapted to crash fault tolerance, where the theoretical lower bound on the number of

replicas is 2f + 1 (Lamport, 1998; Oki & Liskov, 1988).

The first modification requires usage of simple majority quorums instead of Byzantine

dissemination quorums (Malkhi & Reiter, 1998). This can be done by changing lines 12

and 15 in Algorithm 1 to wait for dn+1
2
e replies instead of dn+f+1

2
e. Moreover, Algorithm 3

would required a single STOP message to agree to participate in the synchronization phase

(Algorithm 3, line 14) and f + 1 STOP messages to install a new regency and proceed with

the synchronization phase (lines 18–25). The above modifications can be done because,

since replicas only fail by stopping to execute, each individual process is allowed to trust any

message that it receives from its peers. For this same reason, Mod-SMaRt no longer requires

digital signatures either for REQUEST or STOPDATA messages. Finally, the protocol no

longer requires a consensus primitive to be either verifiable or provable.

3.6 Optimizations

In this section we discuss a set of optimizations for an effective implementation VP-Consensus

and Mod-SMaRt and discuss how these optimizations can result in a protocol similar to the

classic PBFT (Castro & Liskov, 2002).

3.6.1 Symmetric Cryptography

The first optimization aims to avoid the computational cost of generating and verifying dig-

ital signatures: client request can use MAC vectors instead of digital signatures, as is done

in PBFT. However, this results in a less robust SMR implementation vulnerable to certain

42

3.6 Optimizations

performance degradation attacks that were described by Amir et al. (2011). However, it is

important to notice that in our protocol the client pays the high price of generating the sig-

natures, while the replicas only verify them, which is at least an order of magnitude less

costly.

3.6.2 Checkpoints and State Transfer

The second important optimization is related with bounding the size of the decision log. In

Mod-SMaRt, such log can grow indefinitely, making it inappropriate for real systems. To

avoid this behavior we propose the use of checkpoints and state transfer. Checkpoints would

be performed periodically in each replica, after some number D of decisions were delivered,

and they would request the state from the application, save it in memory or disk, and clear

the log.1 If in the end of a synchronization phase a replica detects a gap between the latest

decision of its own log, and the latest decision of the log it chose, it invokes a state transfer

protocol. Such protocol would request from the other replicas the state that was saved in their

latest checkpoint. Upon the reception of f + 1 matching states from different replicas, the

protocol would force the application to install the new state, and the protocol would resume

execution.

3.6.3 Optimized Synchronization Phase

The third possible optimization is related to leader driven consensus algorithms, which are

prone to choose a faulty process as leader. Because of this, when a majority of processes

suspect the current leader is faulty, they deterministically elect a new leader. When a new

leader is elected, it needs to discover if some value might already been decided by a correct

process. This can be done by collecting the consensus’ state of n−f processes, computing a

safe value based on those states, and forwarding such value to all processes. If the consensus

algorithm uses digital signatures to sign the states that each process sends to the leader, the

message pattern is the same as the STOPDATA and SYNC messages, as illustrated in Figure

3.4. Therefore, to reduce the number of exchanged messages in a synchronization phase –

at the cost of breaking the modularity of standard Mod-SMaRt – the consensus states of

1Notice that, on contrary to the PBFT checkpoint protocol (Castro & Liskov, 2002), Mod-SMaRt check-
points are local operations.

43

3. MOD-SMART

each process could be piggy-backed in the STOPDATA, and the safe value in the SYNC

message.

This optimization requires the execution of the consensus primitive to be stoppable, and

the consensus state of each process to be returnable. This could be achieved using a Stop-

Consensus(i) procedure, that would stop the execution of an instance and return its current

state. This procedure would be invoked before transmission of the STOPDATA message

and its returning data would be included in that message, alongside the decision log. Fur-

thermore, the consensus primitive would also need to provide a deterministic function safe-

Value(states) that, upon taking a collection of n − f states from distinct processes, returns

a safe value or ⊥ (if no value could be chosen from the collection of states). This predicate

would be invoked upon reception of the STOPDATA messages. Finally, upon the reception

of the SYNC message, the execution of the consensus primitive would be resumed using

a procedure ResumeConsensus(i,states), that would internally invoke the safeValue(states)

function to obtain a safe value for the next proposal.

3.6.4 Obtaining PBFT from Mod-SMaRt

If we create our VP-Consensus primitive from Byzantine consensus algorithm matching the

generalization given in (Lampson, 2001) and employ the optimizations described previously,

we can obtain a protocol very similar to PBFT in respect to its message pattern and compu-

tational cost. This is what was done in Chapter 4, were we describe our implementation of

the Mod-SMaRt protocol adopting the optimizations discussed so far, together with a VP-

Consensus implementation based on the Byzantine consensus algorithm by Cachin (2009).

The formal specification of this implementation can be found in Appendix B.

3.7 Additional Related Work

The relationship between total order broadcast and consensus for the Byzantine fault model

is studied in many papers. Cachin et al. (2001) show how to obtain total order broadcast from

consensus provided that the latter satisfy the External Validity property. Their transformation

requires an echo broadcast plus public-key signature, adding thus at least two communication

steps (plus the cryptography delay) to the consensus protocol. Correia et al. (2006) proposed

a similar reduction without relying on public-key signatures, but using a reliable broadcast

44

3.7 Additional Related Work

and a multi-valued consensus that satisfies a validity property different from Cachin’s. The

resulting transformation adds at least three communication steps to the consensus protocol

in the best case. Milosevic et al. (2011) take in consideration many variants of the consen-

sus validity property proposed in the literature, and show which of them are sufficient to

implement total order broadcast. They also prove that if a consensus primitive offers the va-

lidity property proposed in (Dolev & Hoch, 2008), then it is possible to obtain a reduction of

atomic broadcast to consensus with constant time complexity — which is not the case of the

previously mentioned reductions (Cachin et al., 2001; Correia et al., 2006). However, their

transformation still requires a reliable broadcast, and thus adds at least three communication

steps to the consensus protocol. Doudou et al. (2005) show how to implement BFT total

order broadcast with a weak interactive consistency (WIC) primitive, in which the decision

comprises a vector of proposed values, in a similar way to a vector consensus (Correia et al.,

2006). They argue that WIC primitive offers better guarantees than a Byzantine consensus

primitive, eliminating the issue of the validity property of consensus. The overhead of this

transformation is similar to (Cachin et al., 2001): echo broadcast plus public-key signature.

All these works provide reductions from total order broadcast to Byzantine consensus

by constructing a protocol stack that does not take into account the implementation of the

consensus primitive; they only specify which properties such primitive should offer — in

particular, they require some strong variant of the Validity property. Mod-SMaRt requires

both a specific kind of Validity property, as well as a richer interface, as defined by our VP-

Consensus abstraction. The result is a transformation that adds at most one communication

step to implement total order broadcast, thus matching the number of communication steps

of PBFT at the cost of using a gray-box consensus abstraction.

There are many works dedicated to generalize, classify and decompose consensus algo-

rithms. Lampson (2001) proposed an abstract Paxos algorithm, from which several other

versions of Paxos can be derived (e.g., Byzantine, classic, and disk paxos). Another unifi-

cation of Paxos-style protocols is presented in (Li et al., 2007), with the unification reduced

to a write-once register that offers a special set of semantics and properties. Implementa-

tions of such register are given for different system and failures models. Rütti et al. (2010)

expands this study to propose a more generic construction than Lampson (2001), and iden-

tify three classes of consensus algorithms. More recently, Maric et al. (2015) proposed a

more elaborated taxonomy of consensus algorithms based on the mechanisms and design

choices adopted across the literature. Cachin (2009) proposes a simple and elegant modular

45

3. MOD-SMART

decomposition of Paxos-like protocols and show how to obtain implementations of consen-
sus tolerating crash or Byzantine faults based in the factored modules. All these works aim
to modularize Paxos either for implementing consensus or SMR under various assumptions.
Our work, on the other hand, aims at using a special kind of consensus to obtain BFT SMR
in a modular, but latency-optimal manner.

Finally, Milosevic et al. (2013) presented BFT-Mencius, a BFT SMR protocol that is
also modular and built on top of an abstraction called Abortable Timely Announced Broad-
cast (ATAB). However, whereas Mod-SMaRt and VP-Consensus are designed to obtain a
BFT SMR transformation that preserves optimal latency in terms of number of communi-
cations steps during normal execution, BFT-Mencius and ATAB’s are designed to obtain a
performance-oriented criterion known as bounded-delay (Amir et al., 2011).

3.8 Concluding Remarks

In this chapter we describe how to bridge the gap between efficient monolithic BFT SMR
protocols and modular BFT atomic broadcast algorithms by presenting Mod-SMaRt, a latency-
and resiliency-optimal BFT SMR algorithm that achieves modularity using a well-defined
consensus primitive. To achieve optimal number of communication steps, we introduce the
Validated and Provable Consensus abstraction, which can be implemented by making sim-
ple modifications on existing consensus protocols. The protocol here presented serves as the
foundation for the thesis next chapter, where we describe its implementation in BFT-SMaRt,
an open-source BFT SMR library.

46

4
BFT-SMaRt

In Chapter 3 we presented the thesis’ first step towards an efficient and reliable SMR im-

plementation by focusing on an BFT protocol that is both modular and latency-optimal. By

contrast, this chapter describes our effort in implementing and maintaining BFT-SMART,

a robust Java-based BFT SMR library which implements the protocol proposed in Chapter

3. BFT-SMART targets not only high-performance in fault-free executions, but also cor-

rectness if faulty replicas exhibit arbitrary behavior. Besides its robustness, BFT-SMART

is the first BFT SMR system to provide efficient and transparent support for durable ser-

vices (Bessani et al., 2013) and to fully support reconfiguration of the replica set (Aguilera

et al., 2010; Lamport et al., 2010).

This chapter is organized as follows: Section 4.2 and 4.3 describe the design of BFT-

SMART and its implementation, respectively. Section 4.4 gives an overview of the library’s

API and programing model. Section 4.5 describes an extensive evaluation of our system.

Section 4.6 highlights some lessons learned during the development and maintenance of the

system. Finally, Section 4.7 presents our concluding remarks.

4.1 SMR Research vs SMR Usage

The last decade and a half has seen an impressive amount of papers on Byzantine Fault-

Tolerant BFT SMR (Abd-El-Malek et al., 2005; Amir et al., 2011; Aublin et al., 2015; Behl

et al., 2017; Castro & Liskov, 2002; Clement et al., 2009b; Kapitza et al., 2012; Kotla et al.,

2009; Veronese et al., 2013, 2009), but almost no practical use of these techniques in real

47

4. BFT-SMART

deployments. Our view of this situation is that the fact that there are no robust-enough

implementations of BFT SMR available, only prototypes used for validating novel ideas in

papers, makes it quite difficult to use this kind of technique. The general perception is that

implementing BFT protocols is too complex and that commission faults are rare and can be

normally dealt with simpler techniques like checksums (Correia et al., 2012).

To the best of our knowledge, from all “BFT systems” that appeared on these fifteen

years, only the early PBFT (Castro & Liskov, 2002) and the more recent UpRight (Clement

et al., 2009a) and Prime (Amir et al., 2011) implement a complete replication system. How-

ever, PBFT employs a single-threaded architecture which does not fully exploit modern

hardware, UpRight uses two additional layers of servers between clients and replicas (be-

sides presenting a performance an order of magnitude lower than the other systems), and

Prime’s performance is affected by its several mechanisms for detection and prevention of

Byzantine behavior. Furthermore, both PBFT and UpRight are plagued by bugs and are not

maintained anymore. Even considering crash-only fault-tolerant (CFT) replication libraries,

which are usually based on the many variants of Paxos (Lamport, 1998) or Raft (Ongaro &

Ousterhout, 2014), it seems there is still no widely-used robust implementation that can be

used for developing dependable services. As a result, every organization that requires such

services need to develop its own implementation (e.g., (Chandra et al., 2007)). Therefore,

the main contribution of this chapter is to fill a gap in the BFT literature by documenting the

implementation of this kind of system, including associate protocols for state transfer and

reconfiguration.

4.2 BFT-SMaRt Design

The development of BFT-SMART started at the beginning of 2007 to implement a BFT

total order multicast protocol for the replication layer of the DepSpace coordination ser-

vice (Bessani et al., 2008). In 2009 the implementation was revamped to make it a complete

BFT replication library, including features such as checkpoints and state transfer. Nonethe-

less, it was only during the period of this PhD that the library was substantially improved in

terms of performance, functionality, and robustness.

48

4.2 BFT-SMaRt Design

4.2.1 Design Principles

BFT-SMART was developed with the following design principles in mind:

Tunable fault model. By default, BFT-SMART tolerates non-malicious Byzantine faults,

a realistic (albeit pessimistic) system model in which messages can be delayed, dropped and

even corrupted, while processes can crash or have their state and code corrupted, taking any

spurious action as a consequence. All these behaviors have been observed in real systems

and components (see Correia et al. (2012) for an overview). We believe this is an appropriate

fault model for a pragmatical system to support. Besides that, BFT-SMART also supports

the use of cryptographic signatures for improved tolerance to malicious Byzantine faults, or

the use of a simplified protocol, similar to Paxos (Lamport, 1998), to tolerate only crashes

and message corruptions.1

Simplicity. The emphasis on protocol correctness lead us to avoid the use of optimizations

that could bring extra complexity both in terms of deployment and coding or add corner

cases to the system. For this reason, we avoid techniques that, although promising in terms

of performance (e.g., speculation (Kotla et al., 2009) and pipelining (Aublin et al., 2015)) or

resource efficiency (e.g., trusted components (Kapitza et al., 2012; Veronese et al., 2013) or

IP multicast (Castro & Liskov, 2002; Kotla et al., 2009)), would make our code more difficult

to render correct (due to new corner cases) or deploy (due to lack of infrastructure support).

This emphasis also made us choose Java instead of C/C++ as the implementation language.

In Section 4.5 we show that even with these choices, the performance of BFT-SMART is

similar or better than some of these optimized SMR implementations.

Modularity. As discussed in Section 3.1, modular protocols tend to be easier to implement

and reason about when compared to monolithic protocols such as PBFT, even though they

are not optimal in terms of number of communication steps. Therefore, to benefit from

the advantages offered by modular protocols while preserving optimal performance in terms

of number of communication steps, BFT-SMART implements the Mod-SMaRt protocol

described in Chapter 3. Besides supporting the same modules of Mod-SMaRt for reliable

communication, client requests ordering and consensus, BFT-SMART also implements state

1Unless stated otherwise, we focus on the BFT setup of the system.

49

4. BFT-SMART

VP-Consensus

Authenticated Perfect
Point-to-Point Links

Mod-SMaRt

Extensible State Machine Replication

Reconfig
State

Transfer

Figure 4.1: The modularity of BFT-SMART.

transfer and reconfiguration modules, which are also separated from the agreement protocol,

as show in Figure 4.1.

Simple and Extensible API. Our library encapsulates all the complexity of SMR inside

a simple and extensible API that can be used by programmers to implement deterministic

services. More precisely, if the service strictly follows the SMR programming model, clients

can use a simple invoke(command) method to send commands to the replicas, that imple-

ment an execute(command) method to process the command after it is totally ordered by the

Mod-SMaRt protocol. If the application requires advanced features not supported by such

basic programming model, these features can be implemented with a set of alternative calls,

callbacks or plug-ins both at client- and server-side (e.g., custom voting by the client, reply

management and state management, among others).

Multi-core awareness. BFT-SMART takes advantage of ubiquitous multicore architec-

ture of servers to improve some costly processing tasks on the critical path of the protocol.

In particular, we make our system throughput scale with the number of hardware threads

supported by the replicas, specially when signatures are enabled and more computing power

is needed for their verification.

50

4.2 BFT-SMaRt Design

4.2.2 System Model

The system model is similar to what is defined in Section 3.3, but with two key differences:

replicas comply to the fail-recovery fault model (i.e., processes that are faulty can become

correct again) and the replica set is dynamic. In order to support fail-recovery and a dynamic

set of replicas, the total-order protocol (Section 4.2.3.1) must be augmented with a state

transfer and reconfiguration sub-protocols (Sections 4.2.3.2 and 4.2.3.3, respectively).

The system model must also account for replicas that are recovering the state while the

remaining replicas keep processing messages. However, replicas that entered this recovery

mode cannot participate in the total-order protocol, since their state is invalid and/or do not

have the necessary context (i.e., do not have information about which replica is the current

leader or which consensus instance is currently being processed). Therefore, even though

the theoretical lower bound for BFT-SMART is also n ≥ 3f + 1, f must represent the

maximum number of replicas that are both faulty or entered recovery mode. This means

that, if there are t replicas in recovery mode, then there must be at most f − t faulty replicas

in the system.1

At any instant, only replicas in the current view cv of the system are considered by the

BFT-SMART protocols. The list of servers in cv represents the most up-to-date view in-

stalled in the system. We denote by cv.n the number of replicas in cv and cv.f < cv.n/3

the number of replicas in cv allowed to fail arbitrarily. When reconfigurations are not being

considered we suppress the cv prefix.

4.2.3 Core Protocols

BFT-SMART uses a number of protocols for implementing SMR. In this section we give a

brief overview of these protocols.

4.2.3.1 Total Order Multicast

Total order multicast is achieved using the Mod-SMaRt protocol presented in Chapter 3

together with a VP-Consensus primitive derived from the Byzantine consensus algorithm

described by Cachin (2009) (Appendix B provides details on how VP-Consensus can be

51

4. BFT-SMART

ACCEPTWRITEPROPOSE

P0

P1

P2

P3

Client

Byzantine Consensus

(a) BFT message pattern.

ACCEPTPROPOSE

Crash ConsensusP0

P1

P2

Client

(b) CFT message pattern.

Figure 4.2: BFT-SMART normal phase message patterns.

derived from this algorithm).

Clients send their requests to all replicas in cv, and wait for their replies.In the absence of

faults and presence of synchrony, BFT-SMART executes in normal phase, whose message

pattern is illustrated in Figure 4.2a. This phase considers the execution of a sequence of con-

sensus instances, each of them deciding the order of a batch of one or more client requests.

Each consensus execution i begins with one of the replicas designated as the leader (initially

the replica with the lowest id) proposing some value for the consensus through a PROPOSE

message. All replicas that receive this message verify if its sender is the current leader, and

if the value proposed is valid (i.e., it contains only authenticated requests not yet ordered),

they weakly accept the value being proposed, sending a WRITE message to other replicas. If

1An alternative would be to expand the lower bound to n ≥ 3f + 2k + 1 replicas (Sousa, 2006), but this is
undesirable in practice.

52

4.2 BFT-SMaRt Design

some replica receives dn+f+1
2
e WRITE messages for the same value, it strongly accepts this

value and sends an ACCEPT message to other replicas. If some replica receives dn+f+1
2
e

ACCEPT messages for the same value, this value is used as the decision for consensus. The

collected ACCEPT messages of a consensus instance form a certificate of its decision (i.e.,

a proof for the VP-Consensus). Therefore, such messages include a MAC vector, to enable

the validation of a decision after a leader change. Finally, the decision is logged (either in

memory or disk) and the requests in the decided batch are executed in a deterministic order.

The normal phase of the protocol is executed in the absence of faults and in the presence

of synchrony. When these conditions are not satisfied, the synchronization phase might be

triggered. During this phase, Mod-SMaRt must ensure three things: (1) a quorum of n − f
replicas must have the pending messages that caused the timeouts; (2) correct replicas must

exchange logs to converge to the same consensus instance; and (3) a timeout is triggered

in this consensus, proposing the same leader at all correct replicas (see Section 3.5.4 for

details).

As mentioned before, BFT-SMART can also be configured for CFT only. In this case

it implements a Paxos-like message pattern Lamport (1998), illustrated in Figure 4.2b. The

main differences are that the CFT protocol does not require WRITE messages, waits only for

dn+1
2
e ACCEPT messages, and requires a simple majority of non-faulty replicas to preserve

correctness.

4.2.3.2 State Transfer

In order to implement a practical SMR system, the replicas should be able to be repaired

and reintegrated in the system, without restarting the whole replicated service. Furthermore,

the possibility of correlated failures that can bring down more than f replicas of the system

at once requires the employment of durability techniques (e.g., the use of stable storage) to

recover the whole system in such situations. BFT-SMART implements the efficient durabil-

ity techniques described in (Bessani et al., 2013) to deal with the recovery of replicas or the

whole system. In the following we give an overview of such techniques.

By default, replicas store each batch of ordered requests to a (stable) log and, periodically,

take snapshots of the application state and store it in stable memory. These two techniques

incur a non-negligible performance penalty when disks are used. To mitigate this effect, the

53

4. BFT-SMART

logging of operations can be done in batches and in parallel with their execution while snap-
shots are taken at different points of the execution in different replicas (Bessani et al., 2013).
This behavior is implemented in an well-defined layer between the replication protocol and
the application, and it can be changed in accordance with the requirements of the application.

The default state transfer protocol can be triggered either when (1) a replica crashes but
is later restarted, (2) a replica detects that it is slower that the others, (3) a synchronization
phase is triggered but the log is truncated beyond the point at which the replica could apply
the operations, and (4) a replica is added to the system while it is running (see next section).
When any of these scenarios are detected, the replica sends a STATE_REQUEST message
to all the other replicas asking for the application’s state. Upon receiving this request, they
reply with a STATE_REPLY message containing the version of the state that was requested
by the replica. Instead of having one replica sending the complete state (checkpoint and log)
and others sending cryptographic hashes for validating this state, as is done in PBFT and
other systems, we use a partitioning scheme in which one replica sends a checkpoint and the
others send parts of the logs (Bessani et al., 2013).

4.2.3.3 Reconfiguration

All previous BFT SMR systems assume a static system that cannot grow or shrink over time.
BFT-SMART, on the other hand, provides an additional protocol that enables the system
current view cv to be modified at runtime, i.e., replicas can be added or removed without
stopping the system. In order to accomplish this, BFT-SMART uses a special type of client
named View Manager, which is a trusted third party managed only by system administrators.
It can also remain off-line, being required only for adding and removing replicas.

Server operation. The reconfiguration protocol (depicted in Figure 4.3) works as follows:
the View Manager issues a signed request containing a special reconfigure operation to be
processed by the Mod-SMaRt algorithm just like any other client operation. Through this
operation, the View Manager notifies the system about the IP addresses, ports, and ids of
the replicas it wants to add to (or remove from) the system. In the current BFT-SMART

implementation, the View Manager can also request the update of the number of failures
tolerated in the system (cv.f , which is also part of a view). Since these operations are totally
ordered (just like client requests), all correct replicas will adopt the same view as the system’
current view cv at any given point in the execution of client operations.

54

4.2 BFT-SMaRt Design

P0

P1

P2

P3

View Manager

Total order
broadcast

P4

(a) JOIN pattern.

P0

P1

P2

P3

View Manager

Total order
broadcast

P4

(b) LEAVE pattern.

Figure 4.3: BFT-SMART reconfiguration message patterns.

A subtle issue with reconfiguration requests is that ACCEPT messages exchanged in the

consensus in which they are ordered should be signed (instead authenticated using MAC

vectors). This happens because such messages are used to build certificates that may be

needed in a future synchronization phase (i.e., leader change), and MAC vectors generated

in a view cannot always be verified in a posterior view.

Once the View Manager operation is ordered, it is not delivered to the application. In-

stead, the request signature is verified to assess if it was produced using the view manager

private key. If the signature is valid, the system current view cv is updated in accordance

with the updates requested in the reconfigure operation. Moreover, the replicas start estab-

lishing a secure channel with the new replicas joining the system (or closing channels with

the replicas leaving the system). Finally, the replicas reply to the View Manager informing it

if the view change succeeded. In the case of replicas joining the system, the View Manager

sends a special message to the replicas that are waiting to join the system, informing them

that they can start executing in cv (Figure 4.3a). After this point, the joining replicas trigger

the state transfer protocol to bring themselves up to date. In case is the a replica is leaving

the system, it simply ceases to process Mod-SMaRt messages.

Client operation. In order to support reconfigurations, each client c also needs to handle

a current view variable cvc that stores the current view known by itself. All client operations

need to carry cvc and the replicas reject any operation issued to an old view, replying instead

with their current view cv. The client then updates cvc and restarts its operation, avoiding

access to an outdated view.

55

4. BFT-SMART

Like several other reconfigurable systems (Aguilera et al., 2010), to ensure that a slow

client c always terminate its operation op, the number of reconfigurations executed concur-

rently with op must to be finite. This ensures that c will restart op due to reconfigurations a

finite number of times, eventually completing it.

The last requirement of a reconfigurable system is that, before accessing the system, a

client must obtain the system’ current view. This can be done with the use of a directory

service (Aguilera et al., 2010; Lorch et al., 2006), for example.

4.2.4 Intrusion Tolerance

Making a BFT replication library tolerate intrusions requires one to deal with several con-

cerns that are not addressed by most BFT protocols (Bessani, 2011). Here we discuss how

BFT-SMART deals with some of these concerns.

Previous works showed that the use of public-key signatures on client requests makes it

impossible for clients to forge MAC vectors and force leader changes (making the protocol

much more resilient against malicious faults) (Amir et al., 2011; Clement et al., 2009b). By

default, BFT-SMART does not use public-key signatures1 other than for establishing shared

symmetric keys between replicas and during the synchronization phase. However the system

optionally still supports the use of signed requests for avoiding this problem.

These same works also showed that a malicious leader can launch undetectable perfor-

mance degradation attacks, making the throughput of the system as small as 10% of what

would be achieved in fault-free executions. Currently, BFT-SMART does not provide de-

fenses against such attacks. However, the system can be easily extended to support periodic

leader changes to limit damage (Clement et al., 2009b). In fact, the codebase of an early

version of BFT-SMART was extended to implement a protocol resilient to this kind of at-

tack (Veronese et al., 2009).

Finally, the fact that we developed BFT-SMART in Java makes it easily deployable in

different platforms2 for avoiding single-mode failures, caused by accidental events (e.g.,

a bug or infrastructure problems) or malicious attacks exploiting common vulnerabilities.

1Client requests do not contain MAC vectors also, only point-to-point MACs as provided by the client
communication system.

2Although we did not support N-versions of the system codebase, we believe supporting the deployment
in several platforms is a good compromise solution.

56

4.3 Implementation

Such compromises on the running platforms can be mitigated by the deployment of replicas
in different operating systems (Garcia et al., 2013) or even cloud providers (Vukolić, 2010).

4.3 Implementation

The codebase of BFT-SMART contains approximately 15k lines of commented Java code
distributed across 139 classes and interfaces. This is significantly less than what was used
in similar systems: PBFT (Castro & Liskov, 2002) contains 20k lines of C code and Up-
Right (Clement et al., 2009a) contains 22k lines of Java code. Even JPaxos (Santos &
Schiper, 2013a), the most complete open-source CFT replication library we are aware of,
has more than 22k lines of commented Java code.

4.3.1 Building blocks

To achieve modularity, we defined a set of building blocks (or modules) containing the core
functionality of BFT-SMART. These blocks are divided in three groups: communication

system, state machine replication and state management. The first encapsulates everything
related to client-to-replica and replica-to-replica communication, including authentication,
replay attacks detection, and (re)establishment of communication channels after a failure or
reconfiguration. The second implements the core algorithms for establishing total order of
requests. The third deals with state management and is described in (Bessani et al., 2013).

4.3.1.1 Communication system

The communication system encapsulates all the code required for receiving requests from
clients and messages from other replicas, and sending messages to other processes addressed
by their ids. The three main modules are:

• Client Communication System. This module deals with the clients that connect,
send requests and receive responses from replicas. Given the open-nature of this com-
munication (replicas can serve an unbounded number of clients) we choose the Netty
communication framework1 for implementing client/server communication. The most
important requirement of this module is that it should be able to accept and deal with

1http://jboss.org/netty

57

http://jboss.org/netty

4. BFT-SMART

a few thousands of connections efficiently. To do this, the Netty framework uses the

java.nio.Selector class and a configurable thread pool.

• Client Manager. After receiving a request from a client, the replica verifies the au-

thenticity of a request and stores it to be ordered by the replication protocol. For each

connected client, this module stores the sequence number of the last request received

from this client (to detect replay attacks), the last reply sent to the client (to deal with

retransmissions), and maintains a queue containing the requests received but not yet

delivered to the service being replicated. The requests to be ordered in a consensus are

taken from these queues in a fair way.

• Server Communication System. While the replicas accept connections from an un-

limited number of clients, as is supported by the client communication system de-

scribed above, the server communication system implements a closed-group commu-

nication model used by the replicas to send messages between themselves. The im-

plementation of this layer was made through “usual” Java sockets, using one thread to

send and one thread to receive for each server. One of the key responsibilities of this

module is to reestablish the channels between every two replicas after a failure and a

recovery.

4.3.1.2 State machine replication

The SMR core was implemented using the simple interface provided by the communication

system to access reliable and authenticated point-to-point links. More specifically, BFT-

SMART uses six main modules to achieve SMR.

• Proposer: this simple module (which contains a single class) implements the role of

a proposer, i.e., it defines how to propose a value in a PROPOSE message and what a

replica should do when it is elected as a new leader.

• Acceptor: this module implements the core of the consensus algorithm: PROPOSE,

ACCEPT, and WRITE messages are processed and generated (in the case of the latter

two) here.

58

4.3 Implementation

• Total Order Multicast (TOM): this module gets pending messages received by the
client communication system and calls the proposer module to start a consensus in-
stance. Additionally, a class of this module is responsible for delivering requests to
the service replica and to create and destroy timers for the pending messages of each
client.

• Execution Manager: this module is closely related to the TOM and is used to manage
the execution of consensus instances. It stores information about consensus instances
and their rounds as well as who was the leader replica on these rounds. Moreover, the
execution manager is responsible to stop and re-start a consensus being executed.

• Leader Change Manager: Most of the complex code to deal with leader changes
is in this module. Although the rules for validation and verification of executed and
pending requests are notoriously hard to understand and implement, the code of this
module is sequential (i.e., a set of nested loops) and is not in the protocol critical path.
This means that this code does not suffer from concurrency problems and neither needs
to be very efficient.

• Reconfiguration Manager: The reconfiguration protocol is implemented by this mod-
ule. To avoid unnecessary modifications in other parts of the codebase, this module
provides a consistent view of the group of replicas in the system and the number of
tolerated faults.

4.3.2 Staged Message Processing

A key issue when implementing a high-throughput replication middleware is how to break
the several tasks of the protocol in an architecture that is robust and efficient at the same
time. In the case of BFT SMR there are two additional requirements: the system should deal
with hundreds of clients and resist malicious behaviors from both replicas and clients. The
architecture for BFT-SMART aims for a balance between high-performance (Behl et al.,
2015) and simplicity (Castro & Liskov, 2002) without ignoring multi-core awareness.

Figure 4.4 presents the main architecture with the threads used for staged message pro-
cessing (Welsh et al., 2001) of the protocol implementation. In this architecture, all threads
communicate through bounded queues and the figure shows which thread feeds and con-
sumes data from which queues.

59

4. BFT-SMART

Message

Processor

Thread

Netty

Thread Pool

...

client 3 queue

...
Client Manager

Service

Replica

decided

queue

in

queue

requests

replies

...

out

queue 1

...

Netty

Thread 2

Netty

Thread 3

Proposer

Thread

Receiver

Thread 1

Request

Timer

Thread

Sender

Thread n-1

Sender

Thread 1

Receiver

Thread n-1

Delivery

Thread

out

queue n-1

reply

queue

Reply

Thread

client 1 queue

client 2 queue

Netty

Thread 1

unordered requests

Figure 4.4: BFT-SMART replica staged message processing.

The client requests are received through a thread pool provided by the Netty commu-

nication framework. We have implemented a request processor that is instantiated by the

framework and executed by different threads as the client load demands. The policy for

thread allocation is at most one per client (to ensure FIFO communication between clients

and replicas), and we can define the maximum number of threads allowed.

Once a client message is received, it is checked whether it is an ordered or unordered

request. Unordered requests are directly delivered to the service implementation. Otherwise,

they are delivered to the client manager, that verifies the request integrity and (if validated)

adds them to the respective client’s pending requests queue. Notice that since client’ MACs

and signatures (optionally supported) are verified by the Netty threads, multi-core and multi-

processor machines would naturally exploit their power to achieve high throughput (verify-

ing several client signatures in parallel).

The proposer thread waits for three conditions before starting a new instance of the

consensus: (i) the replica is the leader for the next consensus; (ii) the previous instance is

already finished; and (iii) at least one client (pending requests) queue has messages to be

ordered. In a leader replica, the first condition will always be true, and it will propose a

60

4.3 Implementation

batch of new requests to be ordered as soon as a previous consensus is decided and there are

pending messages from clients. Notice the proposal size will contain all pending requests (up

to a maximum size, defined in the configuration file), so there is no waiting to fill a batch of

certain size before proposing. In non-leader replicas, this thread is always sleeping waiting

for condition (i).

Every message m to be sent by one replica to another is put on the out queue from which

a sender thread will get m, serialize it, produce a MAC to be attached to the message and

send it using TCP sockets. At the receiver replica, a receiver thread for this sender will read

m, authenticate it (i.e., validate its MAC), deserialize it and put it on the in queue, where all

messages received from other replicas are stored in order to be processed.

The message processor thread is responsible to process almost all messages of the Mod-

SMaRt protocol. This thread gets one message to be processed and verifies if this message

consensus is being executed or, in case there is no consensus currently being executed, it

belongs to the next one to be started. Otherwise, either the message consensus was already

finished and the message is discarded, or its consensus is yet to be executed (e.g., the replica

is executing a late consensus) and the message is stored on the out-of-context queue to be

processed when this future consensus is able to execute. As a side note, it is worth to mention

that although the PROPOSE message contains the whole batch of messages to be ordered,

the WRITE and ACCEPT messages only contain the cryptographic hash of this batch.

When a consensus is finished on a replica (i.e., the replica received dn+f+1
2
e ACCEPT

messages for the same value), the decision is put on the decided queue. The delivery thread

is responsible for getting decided values (a batch of requests proposed by the leader) from

this queue, deserialize all messages from the batch, remove them from the corresponding

client pending requests queues and mark this consensus as finalized. After that, the delivery

thread invokes the service replica to make it execute and log the requests and generate the

corresponding replies. When the batch is properly logged and the response is generated

by the replica, the service replica adds the reply into the reply queue. The reply thread is

responsible for sending the replies to the clients.

The request timer thread is periodically activated to verify if some request remained

more than a pre-defined timeout on the pending requests queue. The first time this timer

expires for some request, causes this request to be forwarded to the current known leader.

The second time this timer expires for some request, the instance currently running of the

consensus protocol is stopped and the synchronization phase is started (see Section 4.2.3.1).

61

4. BFT-SMART

The rationale for these timers is the same as explained in Section 3.5.4: a timeout may be
caused either by a client that did not send the request to the leader or by a leader that did not
ordered the client request. Since typically there are many clients and few replicas, we expect
to have much more faults among clients, so we first assume there was a problem with the
client and the leader is suspected only if the problem persists.

4.4 API and Programming Model

Two main classes are used to implement a service based on BFT-SMART. To instanti-
ate a BFT-SMART replica at server side, the ServiceReplica class is used, whereas
ServiceProxy is used at client side for accessing the replicated service. The instantiation
of ServiceReplica requires the provision of a numeric id (which is mapped to an IP and
port through a configuration file) and implementations of an Executable – which defines
the methods called when the service needs to process a request – and a Recoverable –
which defines the state management. Usually these two interfaces are implemented by a sin-
gle class (see bellow). At the client side, the ServiceProxy requires only the numeric id
of the client. In the following we present a brief overview of the BFT-SMART API.

Server-side. The abstract class DefaultRecoverable implements the Executable
and Recoverable interfaces considering a simple state transfer manager based on logging
and checkpoints. To use this manager, a developer needs to extend the class implementing
the following abstract methods:

public byte[] appExecuteOrdered(byte[][] cmd, MsgContext[] ctx);

public byte[] appExecuteUnordered(byte[] cmd, MsgContext ctx);

public byte[] getSnapshot();

public void installSnapshot(byte[] state);

BFT-SMART invokes both the appExecuteOrdered and appExecuteUnordered

methods upon delivering a batch of commands to the application. The former is invoked
when clients issue ordered commands, and the latter is invoked for unordered ones (typically
read-only operations). In the particular case of appExecuteOrdered, BFT-SMART de-
livers a batch of commands previously ordered by the Mod-SMaRt protocol. Both these
methods must implement the service code and return replies to be sent to the client. The
cmd argument represents the serialized command issued by the client, and ctx contains

62

4.4 API and Programming Model

command metadata (e.g., the id of the client, the consensus instance where it was ordered,

the latency of the consensus, etc). Additionally, ctx also contains a timestamp and a set of

nonces which are equal in all replicas. These values are necessary in applications that need

to access a local clock or generate random values; they should use these values instead, in

order to preserve the determinism property required by SMR (Castro et al., 2003).

Moreover, developers also need to implement getSnapshot and installSnapshot

to create and install serialized snapshots of the application state, respectively. The serializa-

tion implemented in getSnapshot must be done in a deterministic manner: the snapshot

created by a replica r representing state S, must be equal to the snapshot created by replica

r′ to represent the same state S.

The DefaultRecoverable class is usually employed by most BFT-SMART-based

services. However, an application can use custom implementations of Executable and

Recoverable. For instance, the API provides some specializations of Executablewith

methods to make the service execute one request at time (DefaultSingleRecoverable)

rather than a batch of commands at once.

The Recoverable interface can be used to implement custom state transfer protocols.

This class provides a set of callback methods called by the BFT-SMART core:

public ApplicationState getState(int eid, boolean sendState);

public int setState(ApplicationState state);

public StateManager getStateManager();

Developers need to implement getState and setState to create and define the applica-

tion state, respectively. These methods require an implementation of ApplicationState,

an abstract representation of the service state. Moreover, getStateManager returns the

strategy used to manage state transfer, which can also be implemented by programmers.

These features are used to implement the techniques described by Bessani et al. (2013).

By default, BFT-SMART replies directly to the clients that issued the commands after

ordering and executing their requests. However, it is possible to override this procedure by

providing a custom Replier to the ServiceReplica. This can be used (together with

asynchronous invocations – see bellow) to implement replicated forwarders (e.g., firewalls,

publish-subscribe brokers), where one client (a sender) sends the request to be processed and

the “reply” is sent to another client (a receiver) (Garcia et al., 2016).

63

4. BFT-SMART

Client-side. At client side, each instance of ServiceProxy represents a single BFT-

SMART client with a distinct id. This class provides the following methods to issue com-

mands to the server:

public byte[] invokeOrdered(byte[] request);

public byte[] invokeUnordered(byte[] request);

These methods are used to issue ordered/unordered commands and require both commands

and replies to be serialized into a byte array. In addition, the AsyncServiceProxy class

can be used to issue both types of commands in a non-blocking manner, i.e., the service

proxy will return without waiting for the replicas’ replies. This enables programmers to

create applications that can resume their execution while the library collects replies in back-

ground. To use this feature programmers will have to provide a callback defined by the

ReplyListener interface to explicitly manage the reception of replies. We used this fea-

ture, for example, to implement the client part of a variant of the Byzantium transaction

processing protocol (Garcia et al., 2011), which is discussed in Chapter 6.

Finally, the client can also modify how a BFT-SMART client parses replies through

the provision of a custom Comparator (used to compare server replies) and Extractor

(used to extract a reply from a set of consistent replies) implementations. This feature is used,

for instance, to support the confidentiality mechanisms employed in the DepSpace coordi-

nation service, where the servers reply cryptographic shares of a tuple, and the clients verify

if they are compatible, extracting the reply by cryptographically combining them (Bessani

et al., 2008).

4.5 Evaluation

In this section we present results from BFT-SMART’s performance evaluation. These exper-

iments consist of (1) some micro-benchmarks designed to evaluate the library’s raw through-

put and latency; (2) the comparison of this performance with some competing systems; and

(3) an experiment designed to depict the performance’s evolution of a small application im-

plemented with BFT-SMART once the system is forced to withstand events like replicas

faults, state transfers, and system reconfigurations.

64

4.5 Evaluation

4.5.1 Experimental Setup

Unless stated otherwise, all experiments ran with three (CFT) and four (BFT) replicas hosted

in separated machines. The client processes were distributed uniformly across another four

machines. Each client machine ran up to eight Java processes, which in turn executed up to

fifty threads implementing BFT-SMART clients (for a total of up to 1600 clients).

Clients and replicas executed in the Java Runtime environment 1.7.0_21 on Ubuntu

10.04, hosted in Dell PowerEdge R410 servers. Each machine has two quad-core 2.27 GHz

Intel Xeon E5520 processor with hyper-threading, i.e., supporting 16 hardware threads, and

32 GB of memory. All machines communicate through an isolated gigabit Ethernet network.

4.5.2 Micro-benchmarks

“Standard” benchmarks. We start by reporting the results we gathered from a set of

micro-benchmarks that are commonly used to evaluate SMR systems, and focus on replica

throughput and client latency. They consist of a simple client/service implemented over

BFT-SMART that performs throughput calculations at the server side and latency measure-

ments at the client side. Throughput results were obtained from the leader replica, and

latency results from a selected client (always the same). Figure 4.5 presents the results.

The figure illustrates BFT-SMART performance in terms of client latency against replica

throughput for both BFT and CFT protocols. The standard deviation in all experiments was

under 3%. For each protocol we executed four experiments for different request/reply sizes:

0/0, 100/100, 1024/1024 and 4096/4096 bytes. Figure 4.5 shows that for each payload size,

the CFT protocol consistently outperforms its BFT counterpart. This difference is due to

the smaller number of messages exchanged in the CFT setup, which reflects in less work

per client request for the replicas. Furthermore, as the payload size increases, BFT-SMART

overall performance decreases. This is because (1) the overhead of requests/replies trans-

mission between clients and replicas increases with message size, and (2) since Mod-SMaRt

orders requests in batches, the larger is the payload, the bigger (in bytes) the batch becomes,

thus increasing its transmission overhead among replicas.

We complement the previous results with Table 4.1, which shows how different pay-

load’s combinations affect throughput. This experiment was conducted under a saturated

system running 1600 clients using only the BFT protocol. Our results indicate that increas-

ing request’s payload generates greater throughput degradation than reply’s payload does.

65

4. BFT-SMART

 0

 5

 10

 15

 20

 25

 30

 10 20 30 40 50 60 70 80 90

La
te

nc
y

(m
ili

se
co

nd
s)

Throughput (kops/second)

Byz-0B
Crash-0B

Byz-100B
Crash-100B

Byz-1kB
Crash-1kB

Byz-4kB
Crash-4kB

Figure 4.5: Latency vs. throughput configured for f = 1.

XXXXXXXXXXXRequests
Replies

0 bytes 100 bytes 1024 bytes

0 bytes 83 75 37
100 bytes 79 73 37
1024 bytes 16 16 16

Table 4.1: Throughput in kops/sec for different requests and replies sizes for f = 1. Results are
given in operations per second.

This can also be explained by the larger batch submitted to the consensus protocol, since

request’s payload influences its size, whereas reply’s does not.

Fault-scalability. Our next experiment consider the impact of the size of the replica group

on the peak sustained throughput of the system under different benchmarks. The results are

reported in Figure 4.6.

The results show that, for all benchmarks, the performance of BFT-SMART degrades

graciously as f increases, both for CFT and BFT setups. In principle, these results contradict

the observation that protocols containing all-to-all communication patterns are less scalable

as the number of faults tolerated (Abd-El-Malek et al., 2005). This is not the case in BFT-

SMART because (1) it exploits the many cores of the replicas (which our machines have

plenty) to calculate MACs; (2) only the n−1 PROPOSE messages of the consensus protocol

are large, the other 2n(n − 1) messages are much smaller and contain only the hash of the

66

4.5 Evaluation

 0

 20

 40

 60

 80

 100

f = 1 f = 2 f = 3

T
hr

ou
gh

pu
t (

ko
ps

/s
ec

on
ds

)

Number of faults

BFT CFT

(a) 0/0

 0

 20

 40

 60

 80

 100

f = 1 f = 2 f = 3

T
hr

ou
gh

pu
t (

ko
ps

/s
ec

on
ds

)

Number of faults

BFT CFT

(b) 0/1024

 0

 20

 40

 60

 80

 100

f = 1 f = 2 f = 3

T
hr

ou
gh

pu
t (

ko
ps

/s
ec

on
ds

)

Number of faults

BFT CFT

(c) 1024/0

 0

 20

 40

 60

 80

 100

f = 1 f = 2 f = 3

T
hr

ou
gh

pu
t (

ko
ps

/s
ec

on
ds

)

Number of faults

BFT CFT

(d) 1024/1024

Figure 4.6: Peak sustained throughput of BFT-SMART for CFT (2f + 1 replicas) and BFT
(3f + 1 replicas) considering different workloads and group sizes.

proposed request batch; and (3) we avoid the use of IP multicast, which is know to cause

problems with many senders (e.g., multicast storms) (Birman et al., 2009).

Finally, it is also interesting to see that, with relatively big requests (1024 bytes), the

difference between BFT and CFT tends to be very small, independently on the number of

tolerated faults. Moreover, the performance drops between tolerating 1 to 3 faults is also

much smaller with large payloads (both requests and replies).

Mixed workloads. Figure 4.7 reports the results of our experiment considering a mix of

read and write requests. In the context of this experiment, the difference between reads

and writes is that the former issues small requests (almost-zero size) but gets replies with

payload, whereas the latter issues requests with payload but gets replies with almost zero

size. This experiment was also conducted under a saturated system running 1600 clients.

We performed the experiment both for the BFT and CFT setups of BFT-SMART, using

requests and replies with payloads of 100 and 1024 bytes. Similarly to the previous exper-

iments, the CFT protocol outperforms its BFT counterpart regardless of the ratio of read to

write requests by around 5 to 15%. However, the observed behavior of the system regarding

67

4. BFT-SMART

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

ko
ps

/s
ec

on
d)

Percentage of read-only requests

Byz-1kB
Crash-1kB

Byz-100B
Crash-100B

Figure 4.7: Throughput of a saturated system as the ratio of reads to writes increases. Experiment
considers n = 4 (BFT) and n = 3 (CFT).

the throughput differs between the case of 100 and 1024 bytes payloads, with the former

clearly benefiting from a larger read/write ratio.

This happens because 1024 bytes requests (a write operation) generate batches much

larger than requests with only 100 bytes of payload. This in turn spawns a much greater

communication overhead in the consensus protocol. Therefore, as we increase the read to

write ratio for payloads of 1024 bytes, the consensus overhead decreases, which in turn

improves performance. This happens with up to 75% reads, which has a better throughput

than 95%- or 100%-read workloads. This happens for payloads of 1024 bytes because at this

point sending the large replies of the read become the contention point of our system. Notice

this behavior is much less significant with small payloads.

Signatures and Multi-core Awareness. Our next experiment considers the performance

of the system when signatures are enabled, and used for ensuring resilience to malicious

clients (Clement et al., 2009b). In this setup a client signs every request to the replicas that

first verify its authenticity before ordering it. There are two fundamental service-throughput

overheads involved in using 1024-bit RSA signatures. First, the messages are 112 bytes

larger than when SHA-1 MACs are used. Second, the replicas need to verify the signatures,

which is a relatively costly computational operation.

68

4.5 Evaluation

 0

 10

 20

 30

 40

 50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
hr

ou
gh

pu
t (

ko
ps

/s
ec

on
ds

)

Number of cores

Figure 4.8: Throughput of BFT-SMART using 1024-bit RSA signatures for 0/0 payload and n = 4
considering different number of hardware threads.

Figure 4.8 shows the throughput of BFT-SMART with different number of threads being

used for verifying signatures. As the results show, the architecture of BFT-SMART exploits

the existence of multiple cores (or multiple hardware threads) to scale the throughput of the

system. This happens because the signatures are verified by the Netty thread pool, which

uses a number of threads proportional to the number of hardware threads in the machine (see

Figure 4.4).

Comparison with others. We compared BFT-SMART against some representative SMR

systems considering the 0/0 benchmark. More precisely, we compared BFT-SMART (both

in BFT and CFT setups) with PBFT (Castro & Liskov, 2002), UpRight (Clement et al.,

2009a) and JPaxos (Santos & Schiper, 2013a) (a CFT replication library). All systems were

downloaded from the internet1 in October 2013, installed and configured to mimic the setup

used in their respective papers. In the case of UpRight, we used four machines as servers,

three of them with a replica and an ordering server and the last one with only an ordering

server. Table 4.2 shows the peak sustained throughput obtained for all these systems and the

associated number of clients required to achieve this throughput in our environment.

1Projects home pages: http://www.pmg.csail.mit.edu/bft/, https://code.google.
com/p/upright/ and https://github.com/JPaxos/JPaxos.

69

http://www.pmg.csail.mit.edu/bft/
https://code.google.com/p/upright/
https://code.google.com/p/upright/
https://github.com/JPaxos/JPaxos

4. BFT-SMART

System Throughput Clients Throughput 200

BFT-SMART 84 1000 67
PBFT 79 100 66
UpRight 5 600 3
CFT-SMART 91 600 84
JPaxos 63 800 45

Table 4.2: Peak sustained throughput in kops/sec (and associated number of clients used for reaching
this value) of different replication libraries for the 0/0 benchmark and f = 1. Throughput 200 reports
the throughput obtained by these system with 200 clients.

The results presented in Table 4.2 show that, in our environment, BFT-SMART achieves

higher throughput than both PBFT and JPaxos. Even though PBFT reaches its peak through-

put with only 10% of the amount of clients required with BFT-SMART, it did not displayed

higher throughput with more than 100 clients. We hypothesize that this happens because

PBFT is single-threaded, which makes it very efficient with few clients but limits its scal-

ability. Nonetheless, this result is consistent with other reports about PBFT performance

(e.g., Correia et al. (2012)).

JPaxos displayed a performance lower than what is reported in (Santos & Schiper, 2013a)

(around 100 kops/sec). Since we are using the same type of network, the only reason for that

is that in the paper they use machines with 24 cores, while our servers support only 16

hardware threads.

As expected, the performance numbers obtained with UpRight were an order of magni-

tude lower than the others, which is consistent with the values presented by Clement et al.

(2009a).

Following these results, we sought to get the performance values when the number of

clients were the same for all libraries. The table also presents the throughput of the systems

with 200 clients for each system.1

BFT-SMART displayed again the highest throughput under these conditions. However,

notice that PBFT’s performance decreased with twice the number of clients. This indicates

that the system implementation suffers from some kind of trashing.

1The choice of 200 clients was not arbitrary; this is the maximum number of clients supported by PBFT
without crashing.

70

4.5 Evaluation

4.5.3 Faults, Reconfigurations, etc.

In this section we present an experiment designed to evaluate the behavior of an application

implemented using BFT-SMART, and how it fares against replica’s failures, recoveries,

and reconfigurations. For this test we use the BFTMapList service, an in-memory table

storing linked lists associated with each key. This is a simple (but non-trivial) data structure

commonly used in practice (e.g., in social network applications).

BFTMapList implementation. BFTMapList is an implementation of the Map interface

from the Java API which uses BFT-SMART to replicate its data in a set of replicas. It can be

initialized at the client side providing transparency of the underlying replication mechanism.

This is done by invoking BFT-SMART within its implementation. In BFTMapList, keys

correspond to string objects and values correspond to a list of strings. We implemented

the put, remove, size and containsKey methods of the aforementioned Java interface. These

methods insert/delete a new String/List pair, retrieve the amount of values stored, and check

if a given key was already inserted in the data structure. We also implemented an additional

method called putEntry so that we could directly add new elements to the lists given their

associated key.

To evaluate this system, we created client threads that constantly insert new strings of

100 bytes to these lists, but periodically purge them to prevent the lists from growing too

large and exhaust memory. Each thread corresponds to one BFT-SMART client.

Results. We sought to observe how BFTMapList performance would evolve upon several

events within the system - ranging from replicas faults, leader changes, state transfers and

system reconfigurations. For this experiment, BFT-SMART was configured with 4 replicas

(with ids ranging from 0 to 3), to tolerate a single Byzantine fault. Our results are depicted

in Figure 4.9, presenting throughput values collected from replica 1. We launched 30 clients

issuing the put, remove, size and putEntry operations over the course of 10 minutes.

As the clients started their execution, the service’s throughput increased until all clients

were operational around second 10. At second 120 we inserted replica 4 into the service.

As we did this, we observed a decrease in throughput. This can be explained by the fact

that more replicas demand larger quorums in the consensus protocol and more messages to

71

4. BFT-SMART

 0

 5

 10

 15

 20

 25

 0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600

 120 240 260 370 510

Replica 4 joins

Replica 0 halts

Replica 1 becomes the new leader

Replica 0 recovers and resumes

Replica 3 leaves

T
hr

ou
gh

pu
t (

ko
ps

/s
ec

on
d)

Time (seconds)

Figure 4.9: Throughput evolution across time and events, for n = 4 and f = 1.

be processed in each replica. This reconfiguration spawns more message exchanges among

replicas, which adds congestion to the network and results in lower performance.

At second 240, we crashed replica 0 (the current consensus’ leader). As expected, the

throughput dropped to zero during the 20 seconds (twice the timeout value configured in

the system) that took the remaining replicas to trigger their timeouts and run Mod-SMaRt’s

synchronization phase. After this phase was finished, the system resumed execution. Since

at this point there are less replicas executing, there are also less messages being exchanged

in the system and the throughput was only slightly smaller than in the initial configuration.

At second 370, we restarted replica 0, which resumes normal operation after triggering

the state transfer. Upon its recovery, the system goes back to the throughput exhibited before

replica 0 had crashed.

At second 510, we removed replica 3, thus setting the quorum size to its original value,

albeit with a different set of replicas. Since there is one less replica to handle messages from,

we are able to observe the system’s original throughput again by the end of the experiment.

4.6 Lessons Learned

More than five years of development and three generations of BFT-SMART gave us impor-

tant insights about how to implement and maintain high-performance fault-tolerant protocols

in Java. In this section we discuss some of the lessons learned on this effort.

72

4.6 Lessons Learned

4.6.1 Java as a BFT programming language

Despite the fact that the Java technology is used in most application servers and backend

services deployed in enterprises, it is a common belief that a high-throughput implementation

of a SMR protocol could not be possible in Java (Clement et al., 2009a). We consider

that the use of a type-safe language with several nice features (large utility API, no direct

memory access, security manager, etc.) that makes the implementation of secure software

more feasible is one of the key aspects to be observed when designing a replication library.

For this reason, and because of its portability, we choose Java to implement BFT-SMART.

However, our experience shows that these advantageous features, when not used carefully,

can cripple the performance of a protocol implementation. As an example, we will discuss

how object serialization can be a problem.

One of the key optimizations that made our implementation efficient was to avoid Java

default serialization in the critical path of the protocol. This was done in two ways: (1)

we defined the client-issued commands as byte arrays instead of generic objects, thus re-

moved the serialization and deserialization of this field of the client request from all message

transmissions; and (2) we avoid using standard object serialization on client requests, imple-

menting instead a customized method (using data streams instead of object streams). This

removed the serialization header from the messages and was specially important for client

requests that are put in large quantities on batches to be decided by a consensus.1

4.6.2 How to test BFT systems?

Although distributed systems verification and debugging is a lively research area (e.g., Bokor

et al. (2011); Martins et al. (2013)), there are still no tools mature enough to be used. Our

approach for testing BFT-SMART is based on the use of JUnit, a popular unit testing tool.

In our case we use it in the final automatic test of our build script to run test scripts that (1)

setup replicas, (2) run some client accessing the replicated service under test and verify if

the results are correct, and (3) kill the replicas in the end. This approach can be automated

with the use of fault-injection frameworks and, in fact, one of such tools was recently used

to test our system (Martins et al., 2013). Notice that this is black-box testing: the only way

1A serialized 0-byte operation request requires 134 bytes with Java default serialization and 22 bytes in our
custom serialization.

73

4. BFT-SMART

to observe the system behavior is through the client. Similar approaches are being used in

other distributed computing open-source projects like Apache Zookeeper.

Our JUnit-based test framework allows us to easily inject crash-faults on the replicas.

However, testing the system against malicious behaviors is much more tricky. The first

challenge is to identify the critical malicious behaviors that should be injected on up to f

replicas. The second challenge is how to inject the code of the malicious behaviors on these

replicas. The first challenge can only be addressed with careful analysis of the protocol being

implemented. Disruptive code can be injected to the code using patches, aspect-oriented

programming (through crosscutting concerns that can be activated on certain replicas) or

simple commented code (which we are currently using). Our pragmatic test approach can

be complemented with orthogonal methods such as the Netflix chaos monkey (Bennett &

Tseitlin, 2012) to test the system on site.

It is worth to notice that most faulty behaviors can cause bugs that affect the liveness of

the protocol, since basic invariants implemented in key parts of the code can ensure safety

(e.g., a leader proposing different values to different replicas should cause a leader change,

not a disagreement). This means that several recent efforts in verification of safety properties

in distributed systems through model checking (e.g., Bokor et al. (2011)) does not solve the

most difficult problem in our experience: liveness bugs.

Moreover, the fact that the system tolerates arbitrary faults makes it mask some non-

deterministic bugs, or Heisenbugs, turning the whole test process even more difficult. For

example, an older version of the BFT-SMART communication system losed some messages

sporadically when under heavy load. The effect of this was that in certain rare conditions

(e.g., when the bug happens in more than f replicas during the same protocol phase) there

was a leader change, and the system blocks. We call these bugs Byzenbugs, since they are a

specific kind of Heisenbugs that happen in BFT systems and that only manifest themselves if

they occur in more than f replicas at once. Consequently, these bugs are orders of magnitude

more difficult to discover (they are masked) and very complex to reproduce (they seldom

happen).

4.6.3 Dealing with heavy loads

When testing BFT-SMART under heavy loads, we found several interesting behaviors that

appear when a replication protocol is put under stress. The first one is that there are always

74

4.6 Lessons Learned

f replicas that stay late in message processing. The reason is that only n − f replicas are

needed for the protocol to make progress and naturally f replicas will stay behind. A possible

solution for this problem is to make the late replicas stay silent (and not load the faster

replicas with late messages that will be discarded) and, when they are needed (e.g., when

one of the faster replicas fails), they synchronize themselves with the fast replicas using the

state transfer protocol.

Another interesting observation is that, in a switched network under heavy load in which

clients communicate with replicas using TCP, spontaneous total order (i.e., client requests

reaching all replicas in the same order with high probability) almost never happens. This

means that the synchronized communication pattern described in Figure 4.2 does not happen

in practice. The main point here is that developers should not assume that client request

queues on different replicas will be similar.

The third behavior that commonly happens in several distributed systems is that their

throughput tends to drop after some time under heavy load. This behavior is called trashing

and can be avoided through a careful selection of the data structures1 used on the protocol

implementation and bounding the queues used for threads communication.

4.6.4 Signatures vs. MAC vectors

Castro and Liskov most important performance optimization to make BFT practical was the

use of MAC vectors instead of public-key signatures. They solved a technological limitation

of that time. When the development of BFT-SMART started, public-key signatures were

avoided at all costs due to the fact that the machines we had access at that time created and

verified signatures much slower than the machines we used in the experiments described in

Section 4.5: a 1024-bit RSA signature creation went from 15 ms to less than 1.7 ms while

its verification went from 1 ms to less than 0.09 ms (a 10× improvement). This means that

with the machines available today, the problem of avoiding public-key signatures is not so

important as it was a decade ago, specially if signature verification can be parallelized (as in

our architecture).

1For example, data structures that tend to grow with the number of requests being received should process
searches in log n (e.g., using AVL trees) to avoid losing too much performance under heavy load.

75

4. BFT-SMART

4.6.5 Maintenance & Robustness

Our experience with BFT-SMART showed us that implementing a robust BFT system is
indeed hard. Several experienced developers that worked in our system mentioned that it was
potentially the most complex codebase they had worked on, despite its reasonably modest
size. The main observation of these developers was that, at first glance, many parts of the
code appear to be unnecessary. The need for these parts was not obvious at first, but they
were introduced to deal with bugs that appeared as BFT-SMART was used in more and
more projects. This is a consequence of the well-known gap between protocol specifications
and descriptions and the code required to implement them efficiently and robustly (Chandra
et al., 2007).

We believe BFT-SMART is arguably more robust and efficient than other complete BFT
systems (PBFT or UpRight) for a single reason: it is being maintained and constantly im-
proved. Our view is that it is too hard to implement a BFT replication library at once. A more
sound strategy is to keep building and improving the system, finding application scenarios
and, in the case of academia, looking for opportunities for funding, publication, and student
projects as the software evolves.

4.7 Concluding Remarks

This chapter described our effort in building the BFT-SMART state machine replication
library. Our contribution with this work is to fill a gap in SMR BFT literature describing how
this kind of protocol can be implemented in a safe and efficient way. Our experiments show
that the current implementation already provides a very good throughput for both small- and
medium-size messages. The BFT-SMART system described here is available as open-source
software in the project homepage 1 and, at the time of this writing, there are several groups
around the world currently using or modifying our system for their needs. In addition, this
library is also fundamental for the next chapter of this thesis, where we explore ways to
optimize BFT SMR for geo-replicated scenarios.

1http://bft-smart.github.io/library/

76

http://bft-smart.github.io/library/

5
WHEAT

Chapters 3 and 4 presented the thesis effort towards an efficient and reliable BFT SMR solu-

tion both in the theoretical and practical levels. In this chapter we proceed to the next objec-

tive of the thesis, where the focus turns to usable BFT SMR in the geo-distributed context.

We start by evaluating some representative optimizations proposed in the literature by im-

plementing them in BFT-SMART and running the experiments in wide-area environments.

Based on this evaluation, we propose WHEAT (WeigHt-Enabled Active replicaTion), a con-

figurable crash and Byzantine fault-tolerant SMR protocol that uses the optimizations we

observed as most effective in reducing latency.

The chapter is organized as follows. Section 5.2 presents the results of our empirical eval-

uation of certain optimizations for decreasing latency. Section 5.3 describes WHEAT, with

particular focus on its novel vote assignment scheme and the protocol’s evaluation performed

at Amazon EC2. Finally, we discuss additional related work in Section 5.4 and present some

final remarks in Sectin 5.5.

5.1 From BFT-SMaRt to WHEAT

Many SMR protocols have been proposed for wide area networks (WANs) (e.g., Amir et al.

(2010); Mao et al. (2008); Moraru et al. (2013); Veronese et al. (2010)). These WAN SMR

protocols employ optimizations to reduce latency, usually by decreasing the number of com-

munication steps across the WAN. All these protocols were evaluated in real, emulated or

77

5. WHEAT

simulated environments, showing the proposed optimizations were indeed effective in de-

creasing the protocol latency.

However, even though such evaluations generally use comparable methodologies, they do

not use the same experimental environments and codebase across independent works. This

lack of a common ground makes it hard to not only compare results across distinct papers,

but also to assess which optimizations are actually effective in practice. This is aggravated

by the fact that these evaluations tend to compare SMR protocols in an holistic manner, and

generally do not compare individual optimizations.

In this chapter we present an extensive evaluations of several latency-related optimiza-

tions from the literature (both for local data centers and geo-replication) using the same

testbeds, methodology and, codebase. More specifically, we selected optimizations for de-

creasing the latency of strongly-consistent geo-replicated systems, implemented them in the

BFT-SMART and deployed the experiments in the PlanetLab testbed and in the Amazon

EC2 cloud.

Unexpected results. During these evaluations, we obtained some unexpected results. The

most notorious example is related with the use of multiple leaders – a widely accepted op-

timization used by several WAN-optimized protocols such as Mencius (Mao et al., 2008)

and EPaxos (Moraru et al., 2013). Specifically, our results indicate that this optimization

does not bring significant latency reduction just by itself; instead, we observed that using

a fixed leader in a fast replica is a more effective (and simpler) strategy to reduce latency.

We also found that adding a few more replicas to the system without increasing the size of

the quorums required by the protocol may lead to significant latency improvements. These

results shed light on which optimizations are really effective for improving the latency of

geo-replicated state machines.

New vote assignment schemes. The aforementioned results showcasing the benefit of hav-

ing extra replicas without necessarily increasing the quorum sizes required by the system led

to two novel vote (weight) assignment schemes designed to preserve (CFT and BFT) SMR

protocol correctness while also allowing the emergence of quorums of variable size. By

allowing quorums of different sizes, it is possible to avoid the need of accessing a major-

ity of replicas – a requirement of many SMR protocols. We introduce two vote assignment

schemes (for CFT and BFT SMR) and show that they enable the formation of safe and

78

5.2 Experiments

minimal quorums without endangering the consistency and availability of the underlying
quorum system (Malkhi & Reiter, 1998). To the best of our knowledge, this is the first work
that incorporates the idea of assigning different votes for different replicas (i.e., weighted
replication) (Garcia-Molina & Barbara, 1985; Gifford, 1979; Pâris, 1986) in replicated state
machines.

Weight-Enabled active replication. The results obtained from the experiments and cre-
ation of the vote assignment schemes spawned the design, implementation and evaluation
of WHEAT (WeigHt-Enabled Active replicaTion), a WAN-optimized SMR protocol devel-
oped by extending BFT-SMART with the most effective optimizations (according to our
experiments) and our vote assignment schemes. The evaluation of WHEAT – conducted
in Amazon EC2 – shows that this protocol could outperform BFT-SMART by up to 56%
in terms of latency. To the best of our knowledge, WHEAT is the first SMR protocol that
is both optimized for geo-replication and capable of withstanding general Byzantine faults;
Mencius (Mao et al., 2008) and EPaxos (Moraru et al., 2013) tolerate only crash faults while
BFT protocols like EBAWA (Veronese et al., 2010) or Steward (Amir et al., 2010) requires
either each replica to have a trusted component that can only fail by crash, or only tolerate
Byzantine faults within a site (i.e., do not tolerate compromised sites), respectively.

5.2 Experiments

In this section we present the experiments conducted to assess the effectiveness of certain
optimizations proposed for SMR in wide area networks (Castro & Liskov, 2002; Kotla et al.,
2009; Lamport, 1998; Mao et al., 2008; Moraru et al., 2013; Veronese et al., 2010; Zielinski,
2004) and quorum systems (Gifford, 1979; Pâris, 1986). More precisely, we evaluated the
following hypotheses related with such optimizations:

1. Fewer communication steps reduces latency (Section 5.2.2);

2. Clients that wait for fewer replies experience lower latency (Section 5.2.3);

3. Smaller quorums can reduce latency (Section 5.2.4);

4. Clients close to the leader experience lower latency than other clients (Section 5.2.5).

Before presenting our results, we describe some general aspects of our methodology.

79

5. WHEAT

5.2.1 Methodology

The considered hypotheses were evaluated by implementing the associated optimizations

in BFT-SMART’s code and executing it simultaneously with the original protocol. Our

experiments focus on measuring latency instead of throughput, in particular the median and

90th percentile latency perceived by clients. This is due to the fact that throughput can be

effectively improved by adding more resources (CPU, memory, faster disks) to replicas or

by using better links, whereas geo-replication latency will always be affected by the speed of

light limit and perturbations caused by bandwidth sharing. Furthermore, most practical geo-

replication works stress that link latencies and variability are the main issues geo-replicated

systems have to deal with (e.g., Corbett et. al (2013); Mao et al. (2008)).

During the experiments, clients were equally distributed across all hosts, i.e., a BFT-

SMART replica and a BFT-SMART client were deployed at each host that executed the

protocol. Similarly to other works (e.g., Hunt et al. (2010); Moraru et al. (2013)), each

client invokes 1 kbyte requests and receives 1 kbyte replies from the replicas that run a

null service. Requests were sent to the replicas every 2 seconds, and each client writes its

observed latency into a log file. This setup enabled us to retrieve results that are gathered

under similar network conditions without saturating the resources (CPU and memory) of the

hosts used.

The experiments in which we evaluated optimizations to the SMR protocol were con-

ducted mostly in PlanetLab.1 This testbed is known for displaying unpredictable latency

spikes and highly loaded nodes (Duarte et al., 2010; Warns et al., 2008). These conditions

allow us to evaluate the optimizations within unfavourable conditions.

Since our experiments are designed to evaluate solely the client latency in fault-free ex-

ecutions, we only report executions in which all hosts were online. However, since Plan-

etLab’s host are regularly restarted and sometimes become unreachable, we could seldom

execute each experiment during the same amount of time. Therefore, we had to launch mul-

tiple executions for the same experiment, so that within each execution there would be a

period in which all hosts were online. In any case, every experiment reported in this section

considers at least 24 hours of measurements.

All experiments were configured to tolerate a single faulty replica. Each experiment was

executed using between three to five hosts spread through Europe. The unavailability of

1http://www.planet-lab.org.

80

http://www.planet-lab.org

5.2 Experiments

Country City Hostname
Poland Wroclaw planetlab1.ci.pwr.wroc.pl
England London planetlab-1.imperial.ac.uk
Spain Madrid planetlab2.dit.upm.es
Germany Munich planetlab2.lkn.ei.tum.de
Portugal Aveiro planet1.servers.ua.pt
Norway Oslo planetlab1.ifi.uio.no
France Nancy host4-plb.loria.fr
Finland Helsinki planetlab-1.research.netlab.hut.fi
Italy Rome planet-lab-node1.netgroup.uniroma2.it

Table 5.1: Hosts used in PlanetLab experiments

nodes already mentioned led us to use a total of eight hosts through all experiments (see

Table 5.1).

To validate our results in a global scale, two of the experiments were executed on Amazon

EC2,1 using t1.micro instances distributed among five different regions. We used the same

methodology described for the PlanetLab experiments.

5.2.2 Number of Communication Steps

The purpose of our first experiment is to observe how the client latency is affected by the

number of communication steps performed by the SMR protocol. More precisely, we wanted

to observe how efficient read-only, tentative, speculative and fast executions are in a WAN.

The first two optimizations are proposed in PBFT (Castro & Liskov, 2002), whereas the

other two optimization are used by Zyzzyva (Kotla et al., 2009) and Paxos at War (Zielinski,

2004), respectively. Since these optimizations target Byzantine-resilient protocols, we only

evaluate them in BFT mode.

The message pattern for each of these optimizations is illustrated in Figure 5.1. Figure

5.1a displays the message pattern for tentative executions. This optimization consists of de-

livering client requests right after finishing the WRITE phase, thus executing the ACCEPT

phase asynchronously. This optimization comes at the cost of (1) potentially needing to per-

form a rollback on the application state if there is a leader change, and (2) forcing clients

to wait for dn+f+1
2
e messages from replicas (instead of f + 1) (Castro & Liskov, 2002).

1http://aws.amazon.com/ec2/.

81

planetlab1.ci.pwr.wroc.pl
planetlab-1.imperial.ac.uk
planetlab2.dit.upm.es
planetlab2.lkn.ei.tum.de
planet1.servers.ua.pt
planetlab1.ifi.uio.no
host4-plb.loria.fr
planetlab-1.research.netlab.hut.fi
planet-lab-node1.netgroup.uniroma2.it
http://aws.amazon.com/ec2/

5. WHEAT

ACCEPTPROPOSE WRITEP0

P1

P2

P3

Client

(a) Tentative execution.

PROPOSE WRITEP0

P1

P2

P3

Client

(b) Fast execution.

PROPOSEP0

P1

P2

P3

Client

(c) Speculative execution.

P0

P1

P2

P3

Client

(d) Read-only execution.

Figure 5.1: Evaluated message patterns.

Figure 5.1b displays the message pattern for fast executions. This optimization consists of

delivering client requests right after gathering dn+3f+1
2
e WRITE messages (before the AC-

CEPT phase finishes). If such amount of WRITE messages arrive fast enough, the protocol

can safely bypass the ACCEPT phase. Figure 5.1c displays the message pattern for specu-

lative executions. This optimization enables the protocol to finish executions directly after

the PROPOSE message is received in the replicas, as long as the clients are able to gather

replies from all the replicas within a pre-established time window. If the clients are not able

to gather all the replies within such time window, at least one additional round-trip message

exchange is required to commit the requests. Figure 5.1d displays the message pattern for

read-only executions. This optimization enables clients to obtain a response from the service

in two communication steps. However, it can only be used to read the state from the service.

Similarly to tentative executions, this optimization also demands that clients gather dn+f+1
2
e

messages from replicas, even for non-read-only operations, to ensure linearizability (Castro

& Liskov, 2002).

Setting: Three variants of BFT-SMART were created to evaluate fast, tentative and

speculative executions (read-only executions were already supported as unordered requests).

82

5.2 Experiments

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 150 1000

 0.5

 0.9

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Latency (milliseconds)

Standard
Fast-Decide

Tentative
Speculative
Read-Only

Figure 5.2: Cumulative frequency distribution of latencies for each type of execution.

Client Location
Execution Type

Standard Read-only Speculative Tentative Fast
Nancy (L) 129/135 49/50 58/88 105/109 109/121
Wroclaw 129/136 48/60 73/88 105/110 109/121
Helsinki 129/134 57/73 83/89 105/109 109/120

Rome 129/136 60/77 86/89 105/110 109/121
Overall 129/135 56/61 83/89 105/109 109/121

Improvement - 56%/55% 36%/34% 19%/19% 16%/10%

Table 5.2: Client latencies’ 50th/90th percentile (milliseconds) for each type of execution.

This experiment was deployed in Nancy (leader), Wroclaw, Helsinki and Rome.

Results: Figure 5.2 depicts the overall cumulative frequency distribution for the latency

observed by the clients for each type of execution. The median and 90th percentile for

each client is presented in Table 5.2. All evaluated optimizations exhibited latency reduc-

tion across all clients, with read-only executions finishing the protocol execution signifi-

cantly faster than any of the other optimizations (i.e., 90th percentile latency from 43% to

63% smaller than in standard executions and an overall improvement of 55%). Moreover,

speculative executions also displayed significant latency reduction, reaching an overall 90th

percentile (resp. median) latency 34% lower (resp. 36% lower) than standard execution.

In the same way, tentative and fast executions also manage to reach a lower median and

90th percentile than standard executions, albeit with more modest differences. Furthermore,

83

5. WHEAT

whereas fast executions displayed a latency decrease of about 10%, tentative executions

managed to reduce latency by almost 20% (when compared to standard executions).

Main conclusion: The lowest latency displayed by read-only executions were to be ex-

pected, since they bypass all three communications steps executed between sending requests

and gathering replies. Since speculative executions require the PROPOSE phase, they show

higher latency than read-only executions. Moreover, the advantage of tentative executions

over fast executions can be explained by the fact that the latter require gathering WRITE

messages from all four replicas, whereas the former only need it from three.

5.2.3 Number of Replies

In this experiment we intended to observe how the amount of replies required by clients

affects the operation latency. By default, BFT-SMART clients wait for dn+f+1
2
e (BFT) or

dn+1
2
e (CFT) replies from replicas to ensure linearizability. However, this number of replies

is required due to the use of read-only executions (Castro & Liskov, 2002): if this optimiza-

tion were not supported, f + 1 matching replies (BFT) or 1 (CFT) reply would suffice.

Setting: a variant of BFT-SMART client was developed to wait only for f + 1 (BFT) or

1 (CFT) replies, satisfying thus only sequential consistency (similarly to Zookeeper (Hunt

et al., 2010)) if the read-only optimization is employed. This experiment was deployed on

PlanetLab across hosts located in Nancy (leader), Wroclaw, Helsinki and Rome. The clients

from the modified version of BFT-SMART waited for two out of four replica replies (or one

out of three in CFT), while the original version waited for the usual three out of four (two

out of three in CFT). CFT experiments did not require the Helsinki’s host.

Results: Figure 5.3 shows the cumulative frequency distribution of the latencies ob-

served by clients. The values for the median and 90th percentile latency for each client are

shown in Table 5.3. It can be observed that both the original and modified protocols present

very similar performance in BFT mode. On the other hand, the optimization was quite ef-

fective in the CFT mode. For the 90th percentile, this optimization showed an improvement

from 8% to 11% in BFT mode and from 26% to 36% in CFT mode.

Main conclusion: The lower latency displayed when the protocol requires less replies

was to be expected, but such reduction was more significant in CFT mode. This can be

explained by the fact that the BFT mode employed one more replica and required one more

reply when compared to CFT.

84

5.2 Experiments

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 150 1000

 0.5

 0.9

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Latency (milliseconds)

Byzantine (3/4)
Crash (2/3)

Byzantine (2/4)
Crash (1/3)

Figure 5.3: Cumulative frequency distribution of latencies for different numbers of replies.

Client Location
Number of replies

BFT CFT
3/4 2/4 2/3 1/3

Nancy (L) 129/138 120/127 74/85 49/61
Wroclaw 129/139 120/125 73/80 49/51

Rome 129/143 120/129 73/80 49/59
Helsinki 129/142 120/126 - -
Overall 129/140 120/127 73/81 49/57

Improvement - 7%/9% - 33%/30%

Table 5.3: Client latencies’ 50th/90th percentile (milliseconds) for different numbers of
replies.

5.2.4 Quorum Size

This experiment is motivated by the works of Gifford (1979) and Pâris (1986), which use

voting schemes with additional hosts to improve the availability of quorum protocols. As

described in Section 4.2.3.1, BFT-SMART’s clients and replicas always wait for dn+f+1
2
e

messages from other replicas to advance to the next communication step (or dn+1
2
e in CFT

mode). More precisely, BFT-SMART waits for dissemination Byzantine quorums (Malkhi

& Reiter, 1998) if operating in BFT mode and majority quorums (Garcia-Molina & Barbara,

85

5. WHEAT

1985) if operating in CFT mode. During this experiment, we enable the system to make

progress without waiting for the aforementioned quorum types if spare replicas are present.

Notice that this optimization, which is not employed in any SMR protocol, might lead to

safety violations (discussed below).

Setting: We modified BFT-SMART to make replicas wait for only 2f + 1 (resp. f + 1)

messages in each phase of the BFT (resp. CFT) protocol, independently from the total

number of replicas n.1 This experiment was deployed on PlanetLab hosts located in Aveiro

(leader), London, Oslo, Munich and Madrid. The original BFT-SMART was configured to

execute across four replicas (three in CFT mode) and the modified version was configured

to execute in five (four in CFT mode). The extra replica needed for executing the modified

version was placed in Madrid, both for BFT and CFT mode. Experiments for CFT mode did

not require the use of Munich’s host. Since the modified version waits only for three out of

five (3/5) messages (or 2/4 messages in CFT mode), both versions of BFT-SMART will wait

for the same number of messages, even though the optimized versions use one additional

replica.

Results: Figure 5.4 plots the cumulative frequency distribution of latencies for all clients

considering the four SMR protocol variants. The median and 90th percentile latency ob-

served by each client for both BFT and CFT modes are reported in Table 5.4. The results

show that the modified protocols – which used one extra replica – exhibited lower latency

than the original protocols. This difference is more discernible in the CFT mode for two

reasons. First, the ratio between the quorum size and the number of replicas (2/4) is smaller

than the BFT case (3/5). Second, it did not use London’s host (which observed a much

worse 90th percentile latency than others). It can be observed that in the 90th percentile, the

optimizations showed an improvement of 12%-17% in the BFT mode and 4%-72% in CFT

mode, depending on the location of clients.

Main conclusion: The modified version BFT-SMART was able to experience lower

latency because it was given more choice: since both versions still waited for the same

number of messages in each communication step, the slowest replica was replaced by the

extra replica hosted in Madrid, thus decreasing the observed latency of the modified version.

In normal protocols this benefit would be smaller, since the quorum size would normally

increase with n.
1If the original BFT-SMART were deployed in five hosts, the quorums would be comprised of four hosts

(in the case of BFT mode).

86

5.2 Experiments

 0

 0.2

 0.4

 0.6

 0.8

 1

 40 200 1000

 0.5

 0.9

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Latency (milliseconds)

Byzantine (3/4)
Crash (2/3)

Byzantine (3/5)
Crash (2/4)

Figure 5.4: Cumulative frequency distribution of latencies with different quorum sizes.

Client Location
Quorum Size

BFT CFT
3/4 3/5 2/3 2/4

Aveiro (L) 196/202 163/177 156/161 27/45
London 156/6469 139/5639 85/5856 67/5650

Oslo 196/200 164/171 157/160 80/98
Munich 196/199 164/166 - -
Madrid - 164/170 - 42/57
Overall 196/199 164/169 156/160 43/82

Improvement - 16%/15% - 72%/49%

Table 5.4: Client latencies’ 50th/90th percentile (milliseconds) with different quorum sizes.

Even though usage of additional replicas reduces latency, this optimization cannot be
directly applied to existing protocols without impairing correctness. Limiting the amount of
messages to 2f + 1 (or f + 1) regardless of the total number of replicas n does not guarantee
formation of intersecting quorums, which are required to ensure safety in both BFT and CFT
modes (Castro & Liskov, 2002; Lamport, 1998). For example, in the CFT mode, our setup
of n = 4 and f = 1 did not ensure majority quorums, which can lead to safety violations. To
preserve correctness, it is necessary to force any combination of 2f + 1 (or f + 1) replicas to
intersect in at least one correct server. Section 5.3.2 presents a mechanism that ensures this
property and allows the use of this optimization in SMR systems.

87

5. WHEAT

5.2.5 Leader Location

The goal of our last experiment is to observe how much the leader’s location can affect the

client latency. This experiment is motivated by the fact that Mencius (Mao et al., 2008),

EBAWA (Veronese et al., 2010) and EPaxos (Moraru et al., 2013) use different techniques

to make each client use its closest (or co-located) replica as the leader for its operations. The

rationale behind these techniques is to make client-leader communication faster, bringing

down the end-to-end SMR latency.

Setting: We deployed BFT-SMART in PlanetLab and conducted several experiments

considering different replicas assuming the role of the leader. The hosts used were located in

Wroclaw, Madrid, Munich and London (not used in CFT mode). Moreover, the experiment

was repeated across Amazon EC2, using replicas in Ireland, Oregon, São Paulo and Sydney

regions (Sydney was only used in BFT mode).

Results: Figures 5.5 and 5.6 depicts the cumulative frequency distribution of latencies

gathered by each client, for BFT and CFT modes, respectively. The median and 90th per-

centile observed by each client for different leader locations is presented in Table 5.5. The

highlighted values represent the latency observed by clients in the same location as the leader

for that particular experiment.

Before launching this experiment, we expected that, for any client, its latency would be

the lowest when its co-located replica were the protocol’s leader. However, as can be seen in

Figures 5.5 and 5.6, the cumulative frequency distribution of the latencies does not change

significantly when the leader location changes. In particular, the 90th percentile latency is,

in general, lower when the leader was either in Madrid or Wroclaw, as seen in Table 5.5.

Since these results appeared to contradict the intuition of (Mao et al., 2008; Moraru et al.,

2013; Veronese et al., 2010), we decided to repeat this experiment in Amazon EC2, to find if

this phenomenon is due to our choice of testbed. Figures 5.7 and 5.8 depicts the cumulative

frequency distribution of latencies gathered by Amazon EC2’s clients, for BFT and CFT

modes, respectively. As with the PlanetLab results, the cumulative frequency distribution

of the latency observed by the different clients do not present any significant change as we

change the leader location.

88

5.2 Experiments

 0

 0.2

 0.4

 0.6

 0.8

 1

 150 500 1000

 0.5

 0.9

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Latency (milliseconds)

Leader in Wroclaw
Leader in Madrid
Leader in Munich
Leader in London

(a) Wroclaw client.

 0

 0.2

 0.4

 0.6

 0.8

 1

 150 500 1000

 0.5

 0.9

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Latency (milliseconds)

Leader in Wroclaw
Leader in Madrid
Leader in Munich
Leader in London

(b) Madrid client.

 0

 0.2

 0.4

 0.6

 0.8

 1

 150 500 1000

 0.5

 0.9

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Latency (milliseconds)

Leader in Wroclaw
Leader in Madrid
Leader in Munich
Leader in London

(c) Munich client.

 0

 0.2

 0.4

 0.6

 0.8

 1

 150 500 1000

 0.5

 0.9
C

um
ul

at
iv

e
fr

eq
ue

nc
y

Latency (milliseconds)

Leader in Wroclaw
Leader in Madrid
Leader in Munich
Leader in London

(d) London client.

Figure 5.5: Cumulative frequency distribution of latencies observed by each client when the
leader is placed across PlanetLab hosts (BFT mode).

 0

 0.2

 0.4

 0.6

 0.8

 1

 60 150 1000

 0.5

 0.9

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Latency (milliseconds)

Leader in Wroclaw
Leader in Madrid
Leader in Munich

(a) Wroclaw client.

 0

 0.2

 0.4

 0.6

 0.8

 1

 60 150 1000

 0.5

 0.9

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Latency (milliseconds)

Leader in Wroclaw
Leader in Madrid
Leader in Munich

(b) Madrid client.

 0

 0.2

 0.4

 0.6

 0.8

 1

 60 150 1000

 0.5

 0.9

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Latency (milliseconds)

Leader in Wroclaw
Leader in Madrid
Leader in Munich

(c) Munich client.

Figure 5.6: Cumulative frequency distribution of latencies observed by each client when the
leader is placed across PlanetLab hosts (CFT mode).

89

5. WHEAT

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000

 0.5

 0.9

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Latency (milliseconds)

Leader in Ireland
Leader in São Paulo

Leader in Oregon
Leader in Sydney

(a) Ireland client.

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000

 0.5

 0.9

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Latency (milliseconds)

Leader in Ireland
Leader in São Paulo

Leader in Oregon
Leader in Sydney

(b) São Paulo client.

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000

 0.5

 0.9

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Latency (milliseconds)

Leader in Ireland
Leader in São Paulo

Leader in Oregon
Leader in Sydney

(c) Oregon client.

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000

 0.5

 0.9

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Latency (milliseconds)

Leader in Ireland
Leader in São Paulo

Leader in Oregon
Leader in Sydney

(d) Sydney client.

Figure 5.7: Cumulative frequency distribution of latencies observed by each client when the
leader is placed across Amazon EC2 regions (BFT mode).

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000

 0.5

 0.9

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Latency (milliseconds)

Leader in Ireland
Leader in São Paulo

Leader in Oregon

(a) Ireland client.

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000

 0.5

 0.9

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Latency (milliseconds)

Leader in Ireland
Leader in São Paulo

Leader in Oregon

(b) São Paulo client.

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000

 0.5

 0.9

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Latency (milliseconds)

Leader in Ireland
Leader in São Paulo

Leader in Oregon

(c) Oregon client.

Figure 5.8: Cumulative frequency distribution of latencies observed by each client when the
leader is placed across Amazon EC2 regions (CFT mode).

90

5.2 Experiments

Location BFT mode CFT mode
PPPPPPPPPClient

Leader
Wroclaw Madrid Munich London Wroclaw Madrid Munich

Wroclaw 152/178 149/186 118/268 160/290 65/72 66/119 66/104
Madrid 153/203 148/160 119/297 145/266 66/100 66/84 66/161
Munich 153/188 149/177 113/249 145/276 66/100 77/113 66/72
London 151/200 148/200 132/185 111/248 - - -
Overall 153/191 149/177 111/230 146/270 66/100 67/111 66/131

Improvement 0%/7% 0%/10% -2%/-8% 24%/8% 2%/28% 1%/24% 0%/45%

Table 5.5: Client latencies’ 50th/90th percentile (milliseconds) when the leader is placed
across PlanetLab hosts.

Location BFT mode CFT mode
PPPPPPPPPClient

Leader
Ireland São Paulo Oregon Sydney Ireland São Paulo Oregon

Ireland 609/655 634/710 587/618 636/679 306/330 335/407 300/336
São Paulo 610/658 634/708 589/618 637/686 310/400 322/404 300/384

Oregon 610/657 634/712 588/617 637/682 309/336 325/412 299/334
Sydney 612/656 633/717 587/612 636/680 - - -
Overall 610/656 634/712 588/603 636/682 308/359 327/408 300/339

Improvement 0%/0% 0%/0% 0%/-2% 0%/0% 0%/8% 15%/1% 0%/1%

Table 5.6: Client latencies’ 50th/90th percentile (milliseconds) when the leader is placed
across Amazon EC2 regions.

Table 5.6 shows the median and 90th percentile observed in each Amazon EC2 region.

The comparison of the latency observed by the clients co-located with the leader (in bold)

with the overall latency observed by all clients shows a benefit of at most 8% (CFT mode

with the leader in Ireland) in having co-location, regardless of the region. However, having

the leader in Oregon results in a slightly lower 90th percentile for all clients.

Main conclusion: Since the obtained results depict a similar trend in the two different

testbeds, we can assert that co-locating clients with the leader does not necessarily improve

the latency of replicated state machines. On the other hand, placing the leader in the host

with better connectivity with the remaining replicas can yield more consistent improvements.

More precisely, the benefit of reaching the leader faster is not as important as hosting the

leader in the replica with faster links with others.

91

5. WHEAT

5.2.6 Discussion

The results presented in Section 5.2.2 indicate that, as expected, bypassing communication

steps reduces client latency in BFT SMR protocols. However, even though read-only (resp.

speculative) executions are up to 63% (resp. 35%) faster than standard executions, the bene-

fits of tentative and fast executions are not so impressive: about 20% and 10%, respectively.

The difference, as explained before, is due to the fact that fast executions requires larger quo-

rums than tentative execution, which requires waiting for more messages (that can be slow

in an heterogeneous environment such as a WAN). In the end, tentative execution matches

the theoretically expected benefits: by avoiding 20% of the communication steps (see Fig-

ure 5.1), we did obtain a latency reduction of approximately 20%.

The results of Sections 5.2.3 and 5.2.4 show that decreasing the ratio between the num-

ber of expected messages and the total number of replicas can decrease latency significantly,

especially for CFT replication. More specifically, clients that wait less replies had a 90th

percentile latency improvement of up to 36% (resp. 11%) in CFT (resp. BFT) mode; and

adding more replicas to the system while maintaining the same quorum size brings improve-

ments of up to 72% (resp. 17%) in CFT (resp. BFT) mode. These results are mainly due to

the performance-heterogeneity of hosts and links in real wide area networks: if the latency

between all replicas were similar and network delivery variance were small, the observed

improvements would be much more modest. Furthermore, they are in accordance with other

studies showing that using smaller quorums may bring better latency than decreasing the

number of communication steps (e.g., Junqueira et al. (2007)).

The results of Section 5.2.5 indicates that having the leader close to a client will not

significantly reduce the SMR latency for this client. This result is unexpected since several

protocols implement mechanisms such as rotating coordinator (Mao et al., 2008; Veronese

et al., 2010) and multiple proposers (Moraru et al., 2013) to make each client submit its

requests to the closest replica. We found two main explanations for this apparent contra-

diction. First, the heterogeneity of real environments such as PlanetLab and Amazon EC2

make optimizations for reducing latency less effective. In fact, the authors of Mencius ac-

knowledge that the protocol achieves lower latency than Paxos only in networks with small

latency variances (Mao et al., 2008). Second, in CFT mode, BFT-SMART clients wait for

replies from a majority of replicas to ensure linearizability due to the use of the read-only

optimization. EPaxos, Mencius and Paxos clients wait only for a single reply from the leader.

92

5.3 The WHEAT Protocol

This means that client-leader co-location in these protocols potentially reduce the latency in

two communication steps, while in BFT-SMART this reduction is in only one (clients still

need to wait for at least one additional reply). Consequently, having a client co-located with

the leader should decrease the number of communication steps by 25% in CFT mode and

20% in BFT mode, while in Mencius and EPaxos such theoretical improvement can reach

50%. Moreover, its worth to point out that these benefits appear only in favorable condi-

tions. For example, EPaxos presents almost the same latency of Paxos when under high

request interference (Moraru et al., 2013).

As a final remark, it is worth noting that our results show that having a leader in a well-

connected replica brings, in general, more benefits than having clients co-located with lead-

ers. For instance, we observed that latency was usually lower when the leader replica was

hosted in Madrid, rather than when the leader replica was placed in the same location as

a particular client. In the same line, adding faster replicas to the system may significantly

improve latency, as shown in Section 5.2.4. For example, the addition of Madrid to the set

of replicas decreased the 90th percentile latency in Oslo and Aveiro by 39% and 72%, re-

spectively (CFT mode). More generally, these results highlight the fact that not all replicas

are the same in geo-replication and that both the leader location and quorum formation rules

must take into account the characteristics of the sites being used.

5.3 The WHEAT Protocol

This section describes WHEAT, a WAN-optimized SMR protocol implemented on top of

BFT-SMART. We start by discussing the WAN optimizations employed in our protocol and

then we introduce two novel vote assignment schemes for using smaller quorums without

endangering the safety of SMR. We conclude the section with an evaluation of WHEAT in

Amazon EC2.

5.3.1 Deriving the protocol

WHEAT employs the optimizations that were most effective in improving the latency of

SMR in WANs. The selected optimizations (discussed below) reduce the number of com-

munication steps, the number of replies that clients wait, and the ratio between the quorum

size and the total number of replicas. Since the results of client-leader co-location were not

93

5. WHEAT

ACCEPTPROPOSE WRITE

P0

P1

P2

P3

Client

P4

(a) BFT
PROPOSE ACCEPT

P0

P1

P2

P3

Client

(b) CFT

Figure 5.9: WHEAT’s message pattern for f = 1 and one additional replica.

so expressive, and given that its implementation would require substantial changes in the

base SMR protocol (which is already complex enough, as discussed in previous chapters),

we rejected this optimization and followed the fixed leader approach. As with BFT-SMART,

WHEAT can be used in BFT or CFT modes, implementing the message patterns illustrated

in Figure 5.9.

Reducing the number of communication steps: In BFT mode, WHEAT employs

the read-only and tentative execution optimizations introduced in PBFT (Castro & Liskov,

2002). The reason to support tentative executions instead of fast or speculative executions is

as follows: (1) during our experiments, tentative executions displayed slightly better latency

than fast executions (i.e., they had a lower 90th percentile); (2) speculative executions are

useful in environments were the network is predictable and stable, which we cannot expect

in many geo-distributed settings. If such conditions are not met by the network (i.e, not

delivering replies from all replicas within the required time window), clients need to trigger

the commit phase and force the protocol to execute five communications steps (Kotla et al.,

2009); and (3) tentative executions do not require modifications to the synchronization phase

of BFT-SMART. Fast executions would required modifications to account for cases where

a value was decided solely with dn+3f+1
2
e WRITE messages, whereas the rollback operation

can be triggered using the state transfer protocol already implemented in BFT-SMART. Fur-

thermore, usage of speculative executions would demand the complete re-implementation of

the original protocol, to account for the several corner cases necessary to preserve correctness

under this type of executions, such as the aforementioned commit phase. Another advantage

of tentative executions is that ACCEPT messages can be piggybacked in the next PROPOSE

or WRITE messages, similarly to PBFT (Castro & Liskov, 2002).

94

5.3 The WHEAT Protocol

Reducing the number of replies a client waits: In BFT mode, the use of read-only and

tentative executions lead WHEAT clients to always gather responses from a Byzantine quo-

rum of replicas, i.e., at least dn+f+1
2
e replies. This means that it is impossible to enforce the

optimization evaluated in Section 5.2.3 without giving up linearizability (Herlihy & Wing,

1990). However, single-reply read-only executions can still be used in the CFT mode as long

as clients always contact the leader replica.1 Consequently, in CFT mode WHEAT clients

only need to wait for one reply (from any replica during write operations and from the leader

during read-only operations).

Reducing the ratio between the quorum size and the number of replicas: As ob-

served in Section 5.2.4, it is possible to significantly decrease latency by adding more repli-

cas to the system, as long as the quorums used in the protocol remain with the same size.

Both the Byzantine and crash variants of WHEAT are designed to exploit this phenomenon

by modifying the quorum requirements of the protocol. However, to avoid violating the

safety properties of traditional SMR protocols, we need to introduce a mechanism to secure

the formation of intersecting quorums of variable size. In the next section we introduce a

voting scheme that preserves this requirement.

5.3.2 Vote assignment scheme

Our voting assignment schemes integrate the classical ideas of weighted replication (Garcia-

Molina & Barbara, 1985; Gifford, 1979; Pâris, 1986) to SMR protocols. The goal is to

extend quorum-based SMR protocols to (1) rely primarily on the fastest replicas present in

the system; and (2) preserve its original safety and liveness properties.

The most important guarantees that quorum-based protocols need to preserve are (1) all

possible quorums overlap in some correct replica and (2) even with up to f failed replicas,

there is always some quorum available in the system. In CFT protocols like Paxos (Lam-

port, 1998), quorums must overlap in at least one replica. Such intersection is enforced

by accessing a simple majority of replicas during each communication step of a protocol.

More specifically, protocols access dn+1
2
e replicas out of n ≥ 2f + 1. BFT protocols like

PBFT (Castro & Liskov, 2002), on the other hand, usually employ disseminating Byzantine

quorums (Malkhi & Reiter, 1998) with at least f + 1 replicas in the intersection. In this case,

protocols access dn+f+1
2
e replicas out of n ≥ 3f+1. With this strategy, adding a single extra

1It is also necessary to use leases on the client, since the leader can be demoted at any point.

95

5. WHEAT

(a) Classical (always a majority of replicas).

3 votes

3 votes
2 1 1 1

(b) Weighted (from f + 1 to n− f replicas).

Figure 5.10: Quorum formation when f = 1 and n = 4 (CFT mode).

replica to the system results in higher latency, since any possible quorum becomes larger in

size – unlike the weighted quorums strategy we present below.

The fundamental observation that we make is that accessing a majority of replicas guar-

antees the aforementioned intersection, but that this is not the only way to secure such in-

tersection. More specifically, if n is greater than 2f + 1 (in CFT mode), it is possible to

distribute weights across replicas in such way that a majority is not always required to (cor-

rectly) make progress. As an example, consider the quorums illustrated in Figure 5.10 (with

one extra replica in the system). Whereas in Figure 5.10a the intersection is obtained by

strictly accessing a majority of replicas, in Figure 5.10b we see that we can still obtain an in-

tersection with a variable number of replicas (since we can obtain a sum of 3 votes by either

accessing 2 or 3 replicas). In particular, if the replica with weight 2 is successfully probed,

the protocol can finish a communication step with a quorum comprised by only half of the

replicas. Otherwise, a quorum comprised by all replicas with weight 1 is necessary to make

progress. Notice that for this distribution to be effective, it is necessary to attribute weight 2

to the fastest replica in the system.

We now generalize the weight distribution proposed in Figure 5.10b to account for other

values of f . The objective is to assign certain numbers of votes (i.e., weights) to each replica

in accordance with their connectivity/performance. This vote assignment must be done care-

fully to ensure that minimal quorums composed by faster replicas will be used under normal

conditions (i.e., when the faster replicas are indeed faster) and larger, yet available quorums

can be used to ensure that up to f faulty replicas are tolerated (despite their weights).

LetQv be the minimum number of votes that a quorum of replicas must hold to guarantee

that quorums overlap by at least one correct replica. A quorum is said to be safe and minimal

(or just minimal) if it is comprised by only f + 1 replicas that together hold Qv votes.

96

5.3 The WHEAT Protocol

This quorum size is minimal because if f or less replicas were considered a quorum, other

intersecting quorums would require more than n − f replicas. These quorums will not be

available when there are f faulty replicas in the system. This means that having quorums

with less than f + 1 replicas implies giving up consistency or availability, as described in

classical quorum definitions (Malkhi & Reiter, 1998). In a BFT system, for the same reasons,

a minimal quorum must be comprised of 2f + 1 replicas.

Using the above definitions, we consider vote distribution schemes that satisfy the fol-

lowing properties:

• Safe minimality: There exists at least one minimal quorum in the system.

• Availability: There is always a quorum available in the system that holds Qv votes.

• Consistency: All quorums that hold Qv votes intersect by at least one correct replica.

In the following, we deduce vote assignment schemes for CFT and BFT modes that abide

by these properties. The complete correctness proofs (both for CFT and BFT) can be found

in Appendix C.

CFT vote distribution: To calculate the vote distribution under CFT mode, we start by

introducing the parameter ∆, which represents the number of extra replicas available in the

system. Thus, n can be calculated using ∆ as follows:

n = 2f + 1 + ∆ (5.1)

We now introduce two additional variables. Nv represents the sum of the number of votes∑
Vi that are attributed to each replica i. Fv is the maximum number of votes that can be

dismissed in the system. Having these parameters, we can apply the standard quorum rules
to the votes instead of the replicas. Hence, Nv is calculated as follows:

Nv =
∑

Vi = 2Fv + 1 (5.2)

As an example, consider Figure 5.10b: the sum of all votes adds up to 5, which represents
an abstract quorum system comprised by 5 hosts capable of withstanding 2 faults. Therefore,
for this case, Nv = 5 and Fv = 2.

Since ∆ and f are our input parameters, we need to (1) find a relation between ∆ and
f and values for Nv, Fv and Vi; (2) use those variables to force the emergence of replica

97

5. WHEAT

quorums that intersect by one replica. More precisely, votes must be distributed in such a
way that once Fv + 1 votes are gathered, a quorum of replicas always overlap with other
quorums by at least one correct replica. Therefore, the value of Qv is calculated as follows:

Qv = Fv + 1 (5.3)

If we assume that only two possible values can be assigned to replicas (e.g., a binary vote
distribution), as in Figure 5.10b, we can introduce variables Vmax and Vmin. However, we
need to find how many replicas are assigned Vmax and Vmin. Let u be the number of replicas
holding Vmax votes and, consequently, n− u the number of replicas holding Vmin. Since the
sum of all votes must be equal to Nv, we have:

Nv = 2Fv + 1 = uVmax + (n− u)Vmin (5.4)

In the example of Figure 5.10b, Vmax = 2, Vmin = 1 and Qv = Fv + 1 = 3. We can
observe two cases where 3 votes can be obtained: either by (1) accessing the single Vmax
replica and one of the Vmin replicas, or (2) accessing all Vmin replicas. Notice that in both
cases, the same number of votes is dismissed, but not the same number of replicas; in case
(1) two replicas are ignored, but in case (2) only one replica is left unprobed. Also note
that the number of votes dismissed is 2, which happens to be the value of Fv (as we pointed
out previously). This indicates that Fv has a direct relation to Vmax and Vmin. Given this
observation, we generalize this example scenario to represent any ∆ and f :

Fv = (∆ + f)Vmin = fVmax (5.5)

We can derive the relation between Vmax and Vmin from (5.5) as follows:

Vmax =
(∆ + f)

f
Vmin (5.6)

If we assume Vmin = 1, equations (5.5) and (5.6) become:

Fv = ∆ + f (5.7)

Vmax =
∆ + f

f
= 1 +

∆

f
(5.8)

Having now more refined formulas for Fv, Vmax and Vmin, we can return to equation
(5.4) and obtain the value of u:

98

5.3 The WHEAT Protocol

2(∆ + f) + 1 = u(1 +
∆

f
) + (n− u)⇒ u = f (5.9)

Knowing that u = f , still by equation (5.4), there must be f replicas holding Vmax votes
and n− f replicas holding 1 vote (since Vmin = 1). We thus have our CFT vote assignment
scheme: equations (5.7) and (5.8) give us the values for Fv and Vmax respectively, all in
function of ∆ and f .

The main benefit of this scheme is that if all the f replicas holding Vmax are probed
faster than any other, then just one of the ∆ + f + 1 other replicas holding Vmin votes will
be disregarded (like the two-replica quorum of Figure 5.10b). However, in the worst case,
if f replicas holding Vmax votes fail (or are slow), then all replicas with Vmin votes will
be accessed instead (as the three-replica quorum of Figure 5.10b). Since we obtained this
scheme making 3 main assumptions (abstract quorums, binary distribution and Vmin = 1)
we give out a complete proof of correctness in Appendix C.

BFT assignment: The reasoning here is similar to the CFT scheme, but with the fol-
lowing differences. First, equations (5.1) and (5.2) become n = 3f + 1 + ∆ and Nv =∑
Vi = 3Fv + 1, respectively. These equations still lead to the same values of Fv and Vmax,

but u becomes 2f instead of f . This forces the system to have 2f replicas holding Vmax and
∆+f +1 replicas holding one vote (Vmin). Moreover, it is necessary to gather 2Fv +1 votes
on each quorum, which makes Qv = 2Fv +1. Finally, a minimal quorum must be comprised
by 2f + 1 replicas instead of f + 1. Like for the CFT mode, a complete proof of correctness
is available in Appendix C.

Improving latency: These weight assignment schemes can improve the latency of a
system by allowing more choice: if there is a spare replica in the system that is (or becomes)
faster than the rest, the optimal quorum (e.g., 2 out-of 4 replicas as in Figure 5.10b) would
contain this replica. In normal protocols this benefit would be smaller because quorums
always increase. For instance, Paxos always requires dn+1

2
e messages to make progress; but

if our voting scheme were introduced to Paxos, it could make progress collecting as less
as f + 1 messages. In the case of Byzantine protocols such as PBFT, the least number of
messages required to make progress would be 2f + 1 if our scheme were implemented. It is
worth mentioning that in the event that the systems experiences a period of high load, it is
possible that the minimal quorum becomes overloaded and unable to reply faster than other
quorums, thus forcing the system to make progress with different quorums. Nonetheless,
any SMR protocol based on quorum systems is subject to this issue.

99

5. WHEAT

Dynamically assigning weights: Our voting assignment schemes dictate that the sub-
set of the faster replicas hold Vmax votes. However, such subset can change at runtime as
the network conditions change. If suddenly any of the fastest replicas become slow or un-
available, the votes can be re-distributed so that other replicas take the place of the ones that
are no longer the fastest. This can be done using BFT-SMART’s reconfiguration protocol
(described in Section 4.2.3.3) to re-distribute the votes and even change the location of the
leader for improving the performance of the system. Our current implementation assumes
an external monitoring and administration entity is used to change the vote assignment, but
we posit this can be done at runtime if some kind of self-monitoring is employed (which we
left for future work).

Increased fault tolerance with spare replicas: SMR protocols such as PBFT (Castro
& Liskov, 2002) or Paxos (Lamport, 1998) stop making progress if more than f replicas
are unavailable. On the other hand, the additional spare replicas used in WHEAT can be
used to allow the system to continue executing even if more than f hosts are crashed or
slow. However, this is possible only for certain subsets of unavailable replicas. This happens
because, using this voting scheme, each phase of the protocol completes after gathering a
majority of votes instead of probing a majority of replicas. For instance, if in the example
shown in Figure 5.10b, two replicas Vmin fail, the protocol would continue to work, since
the remaining Vmax and Vmin replicas would still satisfy Fv + 1. Generally speaking, if more
than f replicas holding a total of no more than Fv votes fail, the protocol will still execute
correctly.1

Besides that, in case a fault is reliably detected, the same SMR reconfiguration protocol
used to change the replica group or (re)assign votes to replicas can be used by an administra-
tor to remove the failed replica(s) from the system and reassign votes to preserve the desired
fault tolerance threshold f . In the end, up to f + ∆ faulty replicas can be tolerated if such
reconfigurations are performed in a timely way, i.e., ensuring that there is never more than f
faulty replicas simultaneously in the system.

Notice that our approach is better than using BFT-SMART’s reconfiguration protocol to
replace unavailable replicas. Such replacement would require a state transfer, which can be
a slow operation for large state sizes and limited wide-area links. For example, a 4GB-state
will take more than fifty minutes to be transferred in a 10 Mbps network (better than several
links between EC2 regions). With our approach, the extra replicas are already active and
up-to-date in the system, so the reconfiguration takes approximately the time to execute a

1In the case of BFT mode, this only holds true if all those replicas fail strictly by crash.

100

5.3 The WHEAT Protocol

Sites Ireland São Paulo Oregon Sydney Virginia
Ireland 0 211 ± 10 171 ± 11 340 ± 11 88 ± 10

São Paulo 208 ± 14 0 217 ± 19 359 ± 4 123 ± 3
Oregon 171 ± 14 217 ± 11 0 205 ± 7 70 ± 12
Sydney 336 ± 26 359 ± 4 205 ± 10 0 255 ± 12
Virginia 88 ± 10 123 ± 4 71 ± 13 256 ± 5 0

Table 5.7: Average roundtrip latency and standard deviation (milliseconds) between Amazon
EC2 regions as measured during a 24 hour-period.

“normal” SMR operation.
Finally, our assignment schemes could also be used to assign a higher number of votes to

replicas on more reliable and available sites (instead of the faster ones), improving thus the
reliability and availability of the system in lieu of latency.

5.3.3 Implementation and Evaluation

We implemented WHEAT by extending BFT-SMART for supporting the chosen optimiza-
tions (Section 5.3.1) and considering replicas with different number of votes (Section 5.3.2).
This required around two hundred additional lines of (Java) code, with most of the modifica-
tions related with a new module that takes into account the weights of replicas for calculating
the quorums used in the protocol.

We evaluated WHEAT by running a set of experiments in Amazon EC2 and comparing
the results with the original BFT-SMART system. As in the EC2 experiments reported in
Section 5.2.5, we use sites on Ireland, Oregon, Sydney and São Paulo (only in BFT mode) for
BFT-SMART using also Virginia as the additional replica of WHEAT. This means that the
original version of BFT-SMART employed 4 replicas in BFT mode (resp. 3 in CFT mode)
whereas WHEAT employed 5 replicas in BFT mode (resp. 4 in CFT mode), with two of
these replicas in North America. In the BFT mode, the following parameters were employed
(obtained through the voting schemes described previously): Nv = 7, Fv = 2, Vmax = 2

for the replicas in Oregon and Virginia. In the CFT mode, the configuration was Nv = 5,
Fv = 2, Vmax = 2 for the replica in Virginia. We attributed the Vmax values to the these sites
because they were the ones with better connectivity to others, as shown in Table 5.7.

Figure 5.11 illustrates the latencies’ cumulative frequency distribution across all clients.
The median and 90th percentile latencies for each client location and protocol is presented
in Table 5.8.

101

5. WHEAT

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000

 0.5

 0.9

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Latency (milliseconds)

BFT-SMaRt (Byz)
BFT-SMaRt (Crash)

WHEAT (Byz)
WHEAT (Crash)

Figure 5.11: Cumulative frequency distribution of latencies for WHEAT and BFT-SMART

in Amazon EC2 with the leader in Oregon.

Client Region
BFT mode CFT mode

BFT-SMaRt WHEAT BFT-SMaRt WHEAT

Oregon (L) 587/605 178/336 174/336 72/92
Ireland 587/609 368/390 338/373 160/191
Sydney 586/600 375/470 370/386 270/297

São Paulo 587/609 377/482 - -
Virginia - 357/383 - 76/142

Overall 587/606 370/393 338/377 149/273
Improvement - 37%/35% - 56%/28%

Table 5.8: 50th/90th percentile latencies (milliseconds) observed by BFT-SMART and
WHEAT clients in different regions of Amazon EC2 with the leader in Oregon.

By employing the selected optimizations (Section 5.3.1) and using an additional replica
in Virginia without increasing the quorum requirements (i.e., three and two replicas for BFT
and CFT, respectively), WHEAT achieves a 90th percentile latency improvement of 35%
(BFT) and 28% (CFT), when compared with BFT-SMART. The overall median latency
improved even more with WHEAT: 37% in BFT and 56% in CFT. Interestingly, the client
in the leader region (Oregon) observed improvements even more impressive, with median
latency values matching the roundtrip times between Oregon and Ireland (BFT mode) or

102

5.4 Additional Related work

Virginia (CFT mode). This is a consequence of the fact that this client is co-located with the
leader in the most well-connected site of the system.

The improvements shown in these experiments for WHEAT should be taken with a bit
of salt since they may be due the use of an additional site with a good roundtrip latency
with other replicas (see Table 5.7). If the new replica used in WHEAT were added on
an hypothetical Amazon EC2 region “moon” (instead of Virginia), with a higher roundtrip
latency with all other sites, the WHEAT results would be less impressive since the faster
quorums will be the same of BFT-SMART. The only benefits will be due to the other
optimizations (tentative executions for BFT and single-reply for CFT) implemented in the
system. Nonetheless, our results illustrate the fact that in a real geo-replication setup there
are significant benefits in assigning different values to different replicas. Furthermore, even
with the required algorithmic support, it is important to choose the location of the spare
replicas employed in WHEAT, to ensure the smaller quorums will bring significant benefits.

A note on throughput: WHEAT aims to improve geo-replication latency, and thus all
of its optimizations target this performance metric. However, the fact it uses ∆ more replicas
than BFT-SMART, implies it might achieve a slight lower peak throughput than the original
system. This happens because more replicas lead to more message transmissions, which
results in higher CPU and network bandwidth utilization. More precisely, each consensus
instance on BFT-SMART requires the exchange of 3f + 18f 2 (resp. 2f + 4f 2) messages in
BFT mode (resp. CFT mode), whereas in WHEAT it requires 3f + ∆ + 2(3f + ∆)2 (resp.
2f + ∆ + (2f + ∆)2) message exchanges. Although undesirable, this drawback will only
affect a saturated system, which is rarely the case in production environments. Moreover,
as discussed in Section 5.2.1, throughput can be improved by increasing CPU and network
resources, while latency can only be addressed by better protocols.

5.4 Additional Related work

Weighted replication: This approach was originally proposed by Gifford (1979), and then
revisited by Garcia-Molina & Barbara (1985) and Pâris (1986). While Gifford made all
hosts hold a copy of the state with distinct voting weights, Pâris made a distinction between
hosts that hold a copy of the state and hosts that do not hold such copy, but still participate
in the voting process (thus acting solely as witnesses). More recent works have confirmed
the usefulness of these ideas also for performance by showing that adding few servers to a
group of replicas can significantly improve the access latency of majority quorums (Bakr &

103

5. WHEAT

Keidar, 2008), and the same kind of technique is being used in practical systems to improve
tolerance to slow servers (Dean & Barroso, 2013). By contrast, Garcia-Molina & Barbara
(1985) address the idea of weighted replication for coterie systems, which later evolved into
the classic quorum systems without including vote distribution. Unlike our approach, none
of these works target geo-replication: Pâris (1986) and Garcia-Molina & Barbara (1985) are
strictly theoretical contributions and Gifford (1979) considers a local datacenter. In addition,
as far as we are aware of, we present the first vote assignment scheme that unpacks a weight
distribution in function of the expected number of faults and the amount of spare replicas
available in the system, as well as demonstrating the correctness of the scheme.

WAN measurements: Quorum systems are building blocks for the most practical SMR
protocols (e.g., Castro & Liskov (2002); Lamport (1998); Mao et al. (2008); Moraru et al.
(2013); Veronese et al. (2010)), which makes it important to predict their availability and
performance in wide-area environments.

Amir & Wool (1996) proposed the earliest empirical evaluation of quorum systems that
we are aware of. Their approach consisted of gathering uptime data from a real system
deployed in multiple hosts. These hosts were scattered across two distinct sites which com-
municated with each other over the internet. The results suggest that machine crashes are
correlated, network partitions are frequent, and a whole-system crash is a rare, yet possible
event.

Whereas Amir & Wool investigated the availability of a quorum system, Bakr & Kei-
dar (2002) investigate the latency of distributed algorithms over the internet. Unlike Amir
& Wool, the hosts were geographically distributed across more than two sites. The authors
observed the message loss rate over the internet was not negligible and protocols with high
message complexity displayed higher loss rate. However, those experiments did not eval-
uated quorum systems, i.e., each communication round was considered finished only when
every host of the system replied to every message.

The authors conducted further research in (Bakr & Keidar, 2008) considering quorum
systems and how the number of hosts probed by a client impacts latency and availabil-
ity. Their results suggest that majority quorums do not perform well with small probe sets.
Moreover, they also claim that increasing the probe size by as few as a single host can reduce
latency by a considerable margin. Our results confirm these claims.

There are also studies which compare the performance of different total order broad-
cast protocols - a fundamental building block for SMR - over a WAN (e.g., Anker et al.
(2003); Cason et al. (2015); Ekwall & Schiper (2007); Schiper et al. (2009)). The exper-

104

5.5 Concluding Remarks

iments present in this chapter have a different goal: instead of evaluating the performance
of distinct protocols, we compare geo-replication-related optimizations employed by differ-
ent protocols, but implemented in the same codebase, to validate the effectiveness of these
optimizations in real WANs.

5.5 Concluding Remarks

In this chapter we revisited some optimizations proposed in the literature for improving the
latency of SMR protocols in wide-area networks. More concretely, we implemented such
optimizations in a modified version of BFT-SMART and compared its latency with a non-
modified version in the PlanetLab testbed and Amazon EC2 cloud to assess which of these
optimizations bring significant benefits. Our results indicated that removing communications
steps and demanding less replies from replicas lead to latency reductions of up to 20%,
depending on the hosts and fault model. Surprisingly, using the closer replica as the leader
held less benefits than what was expected.

These results guided our design for WHEAT, an SMR protocol optimized for geo-
replication that can be configured either for crash-only or Byzantine fault tolerance. WHEAT
was implemented by extending BFT-SMART with the optimizations we observed as most
effective and implementing a novel vote assignment strategy for efficient quorum usage. The
evaluation of WHEAT in Amazon EC2 showed gains of up to 56% for certain configura-
tions, when compared with the unmodified BFT-SMART. In the next chapter, we further
evaluate WHEAT’s and BFT-SMART’s performance within the context of two practical
systems.

105

6
Applications

In this chapter we explore the impact that BFT-SMART and WHEAT can have in practical
systems. In particular, we consider the following applications: a middleware that augments
the resilience of typical transactional databases and an open-source blockchain platform. We
describe how BFT-SMART/WHEAT was integrated into these systems and present experi-
mental evaluations for both of them on a local and geo-distributed networks.

6.1 Transactional Databases

Our first use case is a BFT database replication middleware that implements Byzantium (Gar-
cia et al., 2011), a transactional protocol which allows transactions to execute concurrently,
but eschews the need for a trusted node. This protocol is attractive for three reasons: (1)
it is capable of providing the robustness of Byzantine fault tolerance within acceptable loss
of performance; (2) it allows usage of off-the-shelf database management systems (DBMS)
without the need to modify their inner functionality, as long as the DBMS’ supports transac-
tional processing and snapshot isolation semantics (Berenson et al., 1995); and (3) it uses a
BFT total order broadcast primitive as a black box, thus rendering it ideal as a stress-test for
BFT-SMART and WHEAT.

Byzantium’s architecture is depicted in Figure 6.1. An application issues operations to
replicas using a client shim. The shim implements most of Byzantium’s protocol logic and
uses a proxy to provide total ordering of COMMIT and ROLLBACK operations. This proxy
is also used to disseminate all other operations to the replicas using best-effort broadcast.

107

6. APPLICATIONS

Application

BFT Proxy

Byzantium Driver

BFT Comunication

DBMS Driver

BFT Replica 0
DBMS

DBMS Driver

BFT Replica N-1
DBMS

Client side Replica side

Figure 6.1: Byzantium’s architecture.

Each replica hosts an instance of the chosen DBMS. Servers maintains a complete copy
of the database on their DBMS’ instance. Communication between the BFT Replica and the
server’s DBMS is done via a driver compatible to DBMS being used.

6.1.1 The Byzantium Protocol

Byzantium assumes a system model similar to BFT-SMaRt’s and most typical BFT state
machine protocols: it requires 3f + 1 replicas to withstand up to f faults, as well as an
unbounded, yet finite amount of malicious clients, all executing in a partially synchronous
environment. During normal case executions (i.e., in the absence of faults), clients and repli-
cas interact as shown in Figure 6.2. The most important feature of the protocol is the fact
that only two types of operations need to be propagated using total order. More precisely,
each client starts (resp. finishes) a transaction by issuing a BEGIN (resp. COMMIT/ROLL-
BACK) operation via total order broadcast. All other operations invoked within a transaction
are transmitted to all replicas using best-effort broadcast.1 However, only one of them can
execute operations as soon as they arrive and reply to the client. This replica is chosen and
agreed upon system start-up and is designated as the master replica.2 Non-master replicas
only execute operations at end of the transaction. Moreover, upon transmission of a COM-
MIT/ROLLBACK, clients include the order by which all the operations were executed at the

1However, all operations from a given client must enforce FIFO order. This is needed because, otherwise,
replicas might receive operations for a given transaction before receiving the BEGIN operation for that same
transaction.

2Byzantium’s master replica does not need to be the same as the leader process of the BFT total order
protocol.

108

6.1 Transactional Databases

Client

P0

P1

P2

P3

Total Order
Broadcast

BEGIN READ REPLY WRITE REPLY

Total Order
Broadcast

COMMIT
(order & results)

Figure 6.2: The Byzantium protocol.

master, as well as the cryptographic hashes of the results received from those operations.
During the COMMIT, all other replicas execute the operations using the order supplied by
the client, compute the cryptographic hashes of the results generated from their own exe-
cution, and compare them with the hashes received from the client. If a replica determines
that it received all operations associated with the transaction and that the hashes of their own
results match the ones given by the client, they locally commit the operations. Otherwise,
the transaction is rolled back and the client is notified about the misbehavior.

Byzantine behavior displayed by a non-master replica can be masked in the same way as
in BFT-SMART. On the other hand, the master could try to disrupt the system by issuing
erroneous results to clients and/or refusing to reply altogether. Nonetheless, the system can
withstand such erroneous replies because all correct replicas compare their own operation
results with the ones provided by the client. If the master fails to reply, clients will suspect
it and ask for a master change using the total order broadcast. In order to prevent Byzantine
clients from triggering divergent database states at different replicas, the total order primitive
needs to be augmented with the mechanism for masking non-determinism proposed by Cas-
tro et al. (2003), re-purposed for allowing replicas to determine whether or not they hold a
sequence of operations matching the sequence provide by any given client. If 2f +1 replicas
agree (resp. disagree) about holding such sequence, then the total order primitive will deliver
a COMMIT (resp. ROLLBACK) operation. If there is no set of 2f + 1 replicas either agree-
ing or disagreeing about a given sequence, the leader of the total order broadcast is changed
and the process is repeated.

One thing that is worth stressing about Byzantium is the fact that its normal case exe-
cution only requires total ordering among BEGIN and COMMIT/ROLLBACK operations.

109

6. APPLICATIONS

The reason why this is possible is because the system demands the DBMS to provide snap-
shot isolation (SI) semantics (Berenson et al., 1995). This is a level of isolation that forces
each transaction to provide clients with a snapshot of the database’s state obtained at the
moment the transaction began, i.e., when the BEGIN operation was executed. Each update
performed on a transaction is visible only within that transaction, and are only applied to the
database after the COMMIT operation. In case two concurrent transactions issue conflicting
updates, only one is allowed to commit, while the other is forced to abort. Since all BEGIN
and COMMIT/ROLLBACK operations are totally ordered, all correct replicas see the same
sequence of snapshots. Because of this, it is safe to execute the operations only at the master
and delay the execution at non-masters until commit time.

Since most of the communication between clients and replicas is done using best-effort
broadcast and clients only wait for a single reply from the master, read and update latency
is the same as in typical non-replicated systems. The performance penalty is therefore en-
capsulated in the BEGIN and COMMIT/ROLLBACK operations, since it is were the total
order broadcast is invoked. However, this is done not only for efficiency, but because SI may
lead concurrent transactions to experience conflicting updates. Without employing total or-
der across all operations, such conflicting updates may be executed in different order across
the different replica, thus causing transactions to abort non-deterministically.

6.1.2 Implementation

Byzantium is implemented in an open-source Java codebase called SteelDB (Santos, 2014).
This codebase is fully compliant with the JDBC specification and runs a simplified variant
of the protocol described in Section 6.1.1, which is illustrated in Figure 6.3a. The two main
simplifications are the following: (1) there is no need for a BEGIN operation, as the JDBC
specification mandates that new transactions are immediately started after a commit or roll-
back of a previous transaction from the same client; and (2) clients only send their operations
to the master instead of broadcasting them to all replicas. The other replicas only receive the
operations when clients issue COMMIT or ROLLBACK operations.

For this thesis, SteelDB’s codebase was refurbished to (1) use the most recent version of
BFT-SMART’s Java library; (2) support PostgreSQL 1 as its DBMS; and (3) withstand heav-
ier workloads than what it was originally designed to expect. In addition, we also developed
a variant of the codebase that implements the protocol illustrated in Figure 6.3b. This version

1https://www.postgresql.org/

110

https://www.postgresql.org/

6.1 Transactional Databases

Client

P0

P1

P2

P3

SELECT REPLY UPDATE REPLY

Total Order
Broadcast

COMMIT
(order & operations & results)

INSERT REPLY DELETE REPLY

(a) Normal.
Client

P0

P1

P2

P3

SELECT REPLY UPDATE REPLY

Total Order
Broadcast

COMMIT
(order & results)

INSERT REPLY DELETE REPLY

(b) Optimized.

Figure 6.3: SteelDB protocol.

is more similar to Byzantium’s standard protocol due to the fact that it not only broadcasts
operations to all replicas, but also implements the optimization which allows for non-masters
to speculatively execute operations before COMMIT time. To correctly and safely allow for
concurrent transactions to speculatively execute conflicting updates across all replicas, these
transactions must be forced to obtain the same set of locks on all replicas. Enforcing this
without access to the internals of the DBMS requires operations to be received in the same
order on all replicas. To achieve this without using total order broadcast, each correct non-
master must employ a mechanism similar to the commit barriers proposed by Vandiver et al.
(2007). This mechanism dictates that an operation opn from transaction tm can execute at
non-masters under the following conditions: (1) it receives operation opn+1 from tm, and (2)
Transaction tm−1 was commited.

111

6. APPLICATIONS

6.1.3 Evaluation

The goal of this evaluation is to measure SteelDB’s performance both in a local area network
and in a geo-replicated environment when using BFT-SMART and WHEAT as BFT total
order broadcast primitive.

6.1.3.1 Setup

Local area experiments were deployed within up to 6 virtual machines within a single Ama-
zon EC2 region, while the geo-replicated scenario was comprised by the same regions used
in Section 5.3.3: Oregon, Ireland, Sydney and São Paulo (four BFT-SMART replicas), with
Virginia standing as WHEAT’s additional replica (five replicas). Weight distribution is also
the same (Oregon and Virginia weighted Vmax, all others weighted Vmin). However, because
these experiments are more computing-intensive, we used instances of the type t2.medium
rather than t2.nano.

The setup was similar across both scenarios: SteelDB was set to withstand f = 1 (thus
requiring a minimum of 4 replicas), using PostgreSQL 9.6 and Ubuntu 14.04. We evaluated
both normal and optimized versions of the codebase, using BFT-SMART and WHEAT. We
also conducted experiments with a standard deployment of PostgreSQL 9.6. In the case of
the geo-replicated scenario, we placed the clients in an additional virtual machine running in
the same region as the master (hosted in Oregon).

Measurements were obtained using an open-source benchmark based on the TPC-C spec-
ification.1 TPC-C is an on-line transaction processing (OLTP) benchmark which simulates
a wholesale parts supplier that operates out of a number of warehouses and their associated
sales districts (TPC, 2010). This benchmark issues 3 types of read-write transactions desig-
nated NEW-ORDER (the main transaction of TPC-C), PAYMENT and DELIVERY, as well as
2 types of read-only transactions designated ORDER-STATUS and STOCK-LEVEL. We set
TPC-C to use a database comprised of 50 warehouses and launched 30 terminals using the
benchmark’s default workload (92% updates and 8% reads). All experiments executed for 5
minutes and were repeated 3 times.

As discussed in Section 6.1.1 the performance penalty associated with Byzantium is
reflected on the time it takes to complete a COMMIT operation. Therefore, besides gathering
TPC-C’s results about client throughput, we have adapted the benchmark to also collect

1https://sourceforge.net/projects/benchmarksql/

112

https://sourceforge.net/projects/benchmarksql/

6.1 Transactional Databases

data about the commit latency of NEW-ORDER transactions, as well measurements for the
duration of the entire transactions.

6.1.3.2 Results

Local area. Figure 6.4 presents the throughput observed by TPC-C’s terminals.1 As ex-
pected, standard PostgreSQL outperforms all SteelDB configurations, with normal SteelDB
with standard BFT-SMART being the least performant.

Optimized SteelDB with standard BFT-SMART improved performance significantly and
made the system reach 50% of the throughput of standard PostgreSQL. This is because this
codebase allows non-masters to speculatively execute operations, which results in less op-
erations to be executed at commit time. Optimized SteelDB with WHEAT also displayed
better performance, but the gain was negligible. This is to be expected, since WHEAT’s
weight distribution scheme is designed for wide-area environments comprised of heteroge-
neous links. This is not the case on a local datacenter, which is ought to be a homogeneous
environment. One could expect to still observe some kind of improvement due to WHEAT’s
tentative execution, but because the latency of the WRITE and ACCEPT communication
step is negligible in a local network (in the order of microseconds when compared to the
milliseconds observe in wide-area), the improvement is negligible.

Figure 6.5 presents the latency of NEW-ORDER operations as observed by TPC-C’s ter-
minals. The observed latencies are consistent with the throughput results discussed previ-
ously and support the claim that Byzantium’s loss of performance is directly dependent from
the commit latency. Across both percentiles, commit latency is reduced by more than 75%
when using the optimized codebase, which results in a decrease in transaction latency.

Geo-replication. Figure 6.6 presents TPC-C’s observed throughput when the replicas are
spread around the world. Under this scenario, WHEAT’s impact on performance is much
more significant, increasing throughput by more than 35% in relation to the optimized SteelDB
with BFT-SMART. This is because WHEAT’s weight distribution scheme is designed
to be effective in a heterogeneous environment such as a wide-area scenario. In addition,
WHEAT’s tentative executions also display a larger impact because the WRITE/ACCEPT
phases of the protocol have a larger overhead in wide-area. Latency results for NEW-ORDER

1tpmC stands for the throughtput associated with NEW-ORDER operations, while tpmTOTAL represents
the throughput from all types of operations combined.

113

6. APPLICATIONS

 0

 5

 10

 15

 20

PostgreSQL

SteelDB (Std w/ BFT-SM
aRt)

SteelDB (Opt w/ BFT-SM
aRt)

SteelDB (Opt w/ W
HEAT)

T
h

ro
u

g
h

p
u

t
(k

tr
a

n
s/

m
in

)

tpmC
tpmTOTAL

Figure 6.4: SteelDB throughput (local area).

 0

 100

 200

 300

 400

 500

 600

PostgreSQL

SteelDB (Std w/ BFT-SM
aRt)

SteelDB (Opt w/ BFT-SM
aRt)

SteelDB (Opt w/ W
HEAT)

L
a

te
n

cy
 (

m
ili

se
co

n
d

s)

Median
90th percentile

(a) Commit.

 0

 100

 200

 300

 400

 500

 600

PostgreSQL

SteelDB (Std w/ BFT-SM
aRt)

SteelDB (Opt w/ BFT-SM
aRt)

SteelDB (Opt w/ W
HEAT)

L
a

te
n

cy
 (

m
ili

se
co

n
d

s)

Median
90th percentile

(b) Transaction.

Figure 6.5: NEW-ORDER latency (local area).

operations are shown in Figure 6.7. These measurements are also consistent with the afore-
mentioned throughput results: median latency (resp. 90th percentile) is reduced by more
than 35% (resp. 20%) when using the optimized codebase.

6.1.4 Discussion

As expected, state machine replication adds a large overhead to the performance of a repli-
cated database when compared to a non-replicated setup. Nonetheless, this overhead can be
significantly mitigated by employing optimizations to the transactional protocol, and in the

114

6.1 Transactional Databases

 0

 1

 2

 3

 4

 5

SteelDB (Std w/ BFT-SM
aRt)

SteelDB (Opt w/ BFT-SM
aRt)

SteelDB (Opt w/ W
HEAT)

T
h

ro
u

g
h

p
u

t
(k

tr
a

n
s/

m
in

)
tpmC

tpmTOTAL

Figure 6.6: SteelDB throughput (Geo-distributed).

 0

 400

 800

 1200

SteelDB (Std w/ BFT-SM
aRt)

SteelDB (Opt w/ BFT-SM
aRt)

SteelDB (Opt w/ W
HEAT)

L
a

te
n

cy
 (

m
ili

se
co

n
d

s)

Median
90th percentile

(a) Commit.

 0

 400

 800

 1200

SteelDB (Std w/ BFT-SM
aRt)

SteelDB (Opt w/ BFT-SM
aRt)

SteelDB (Opt w/ W
HEAT)

L
a

te
n

cy
 (

m
ili

se
co

n
d

s)

Median
90th percentile

(b) Transaction.

Figure 6.7: NEW-ORDER latency (Geo-distributed).

case of wide-area, by deploying a total order broadcast designed to operate in such scenario.
More precisely, the implemented optimizations resulted in a combined performance gain of
50% in local-area and 60% in wide-area when compared to the non-optimized counterparts.
As a result, NEW-ORDER latency decreased to less than 500 milliseconds on both scenarios,
which still falls within acceptable limits for user interaction with production systems (Card
et al., 1991; Miller, 1968; Nielsen, 1993).

115

6. APPLICATIONS

6.2 Permissioned Blockchains

Our second application scenario considers the integration of BFT-SMART and WHEAT
into a platform for permissioned blockchains named Hyperledger Fabric.1 We start by de-
scribing the fundamentals of blockchain technology (Section 6.2.1) and proceed to present
the platform (Section 6.2.2). After that, we describe the BFT-SMART/WHEAT ordering
service (Section 6.2.3) and present an experimental evaluation of the system (Section 6.2.4).

6.2.1 Blockchain Technology

A blockchain is an open database that maintains a distributed ledger typically deployed
within a peer-to-peer network. It is comprised by a continuously growing list of records
called blocks that contain transactions (Nakamoto, 2009). Blocks are protected from tamper-
ing by cryptographic hashes and a consensus mechanism.

The structure of a blockchain – illustrated in Figure 6.8 – consists of a sequence of blocks
in which each one contains the cryptographic hash of the previous block in the chain. This
introduces the property that block j cannot be forged without also forging all subsequent
blocks j + 1...i. Furthermore, the consensus mechanism is used to (1) prevent the whole
chain from being modified; and to (2) decide which block is to be appended to the ledger.

The blockchain may abide by either the permissionless or permissioned models (Vukolić,
2015). Permissionless ledgers are maintained across peer-to-peer networks in a totally de-
centralized and anonymous manner (Nakamoto, 2009; Wood, 2015). In order to determine
which block to append to the ledger next, peers need to execute a Proof-of-Work (PoW)
consensus (Garay et al., 2015). The key idea behind PoW consensus is to limit the rate of
new blocks by solving a cryptographic puzzle, i.e., execute a CPU intensive computation
that takes time to solve, but can be verified quickly. This is achieved by forcing peers to find
a nonce N such that given their block B and a limit L, the cryptographic hash of B ||N is
lower than L (Back, 2002; Dwork & Naor, 1993). The first peer that presents such solution
gets its block appended to the ledger. Roughly speaking, as long as the adversary controls
less than half of the total computing power present in the network, PoW consensus prevents
the adversary from creating new blocks faster than honest participants.

Permissionless blockchains have the benefit of enabling the ledger to be managed in a
completely open way, i.e., any peer willing to hold a copy of the ledger can try to create new

1https://www.hyperledger.org/

116

https://www.hyperledger.org/

6.2 Permissioned Blockchains

Transaction
…

Transaction

Block Header

Hash

Block i

Transaction
…

Transaction

Block Header

Hash

Block i+1

Transaction
…

Transaction

Block Header

Hash

Block 1

Hash Block i = H(Block i-1)

...

Figure 6.8: Blockchain structure.

blocks for it. On the other hand, the computational effort associated to PoW consensus is
both energy- and time-consuming; even if specialized hardware is used to find a Proof-of-
Work, this mechanism still imposes a limit on transaction latency.

By contrast, permissioned blockchains employ a closed consortium of nodes tasked with
creating new blocks and executing a traditional Byzantine consensus protocol to decide the
order by which the blocks are inserted to the ledger (Buchman, 2016; Cachin & Vukolic,
2017a; Martino, 2016). Hence, permissioned blockchains do not expend the amount of re-
sources that open blockchains do and are able to reach better transaction latency and through-
put. In addition, it makes possible to control the set of participants tasked with maintaining
the ledger – rendering this type of blockchain a more attractive solution for larger corpora-
tions, since it can be separated from the dark web or illegal activities.

6.2.2 Hyperledger Fabric

Hyperledger Fabric (or simply, Fabric) (Androulaki et al., 2018) is an open-source project
within the Hyperledger collaborative effort.1 It is a modular permissioned blockchain system
designed to support pluggable implementations of different components, such as the ordering
and membership services. Fabric enables clients to manage transactions by using chaincodes,
endorsing peers and an ordering service.

Chaincode is Fabric’s counterpart for smart contracts (Szabo, 1996). It consists of code
deployed on the Fabric’s network, where it is executed and validated by the endorsing peers,
who maintain the ledger, the state of a database (modeled as a versioned key/value store),
and abide by endorsement policies. The ordering service is responsible for creating blocks

1https://www.hyperledger.org/

117

https://www.hyperledger.org/

6. APPLICATIONS

for the distributed ledger, as well as the order by which each blocks is appended to the ledger.

6.2.2.1 Fabric protocol

The Fabric general transaction processing protocol (Androulaki et al., 2018) – depicted in
Figure 6.9 – works as follows:

1. Clients create a transaction and send it to endorsing peers. This message is a signed
request to invoke a chaincode function. It must include the chaincode ID, timestamp
and the transaction’s payload.

2. Endorsing peers simulate transactions and produce an endorsement signature. They
must verify if the client is properly authorized to perform the transaction by evaluating
access control policies of a chaincode. Transactions are then executed against the
current state. Peers transmit to the client the result of this execution (read and write
sets associated to their current state) alongside the endorsing peer’s signature. No
updates are made to the ledger at this point.

3. Clients collect and assemble endorsements into a transaction. The client verifies the
endorsing peers signatures, determine if the responses have the matching read/write
set and checks if the endorsement policies has been fulfilled. If these conditions are
met, the client creates a signed envelope with the peers’ read and write sets, signatures
and the Channel ID. A channel is a private blockchain on a Fabric network, provid-
ing data partition. Each peers of the channel share a channel-specific ledger. The
aforementioned envelope represents a transaction proposal.

4. Clients broadcast the transaction proposal to the ordering service. The ordering ser-
vice does not read the contents of the envelope; it only gathers envelopes from all
channels in the network, orders them using atomic broadcast, and creates signed chain
blocks containing these envelopes.

5. The blocks of envelopes are delivered to the peers on the channel. The envelopes within
the block are again validated to (1) ensure the endorsement policies were fulfilled,
and (2) to check if there were changes to the peers’ state for read set variables (since
the read set was generated by the transaction execution). To this end, the read set
contains a set of versioned keys that endorsing peers read at the time of simulating

118

6.2 Permissioned Blockchains

1. Send signed tx
 to a chaincode

2. Simulate tx; Sign endorsement

3. Collect endorsements;
 Assemble proposal

4. Broadcast proposal

5. Verify endorsement and readset

6. Client notified

Client

Endorsing peers

Ordering Nodes

Figure 6.9: Hyperledger Fabric transaction processing protocol (Androulaki et al., 2018).

a transaction (step 2). Depending on the success of these validations, the transaction
proposal contained in envelopes are marked as either being valid or invalid.

6. Peers append the received block to the channel’s blockchain. For each valid transac-
tion, the write sets are committed to the peers’ current state. An event is triggered to
notify the client that the transaction has been immutably appended to the channel’s
blockchain, as well as notification of whether the transaction were deemed valid or
invalid. Notice that invalid transactions are also added to the ledger, but they are not
executed at the peers. This also has the added benefit of making it possible to identify
malicious clients, since their actions are also recorded.

An important aspect of the Fabric protocol is that endorsement (step 2) and validation
(step 5) can be done at different peers. Furthermore, contrary to the chaincode execution
during endorsement, the validation code needs to be deterministic, i.e., the same transaction
validated by different peers in the same state produces the same output (Androulaki et al.,
2018).

6.2.2.2 Pluggable Consensus

As mentioned before, Fabric is a modular blockchain system. In particular, one of the com-
ponents that support plug-and-play capability is the ordering service. Currently, Fabric’s
codebase includes the following ordering service modules: (1) a centralized, non-replicated
ordering service that does not execute any distributed protocol that is used mostly for test-
ing the system; and (2) a replicated ordering service capable of withstanding crash faults,
consisting of an Apache Kafka cluster1 and its respective ZooKeeper ensemble (Hunt et al.,
2010). At the time of this writing, both modules have limitations. The non-replicated module

1https://kafka.apache.org/

119

https://kafka.apache.org/

6. APPLICATIONS

requires very few hardware resources, but it is also a single point of failure. The Kafka-based
module is both decentralized and robust, but can only withstand crash faults.

6.2.3 BFT-SMaRt Ordering Service

The BFT-SMaRt module for Fabric’s ordering service consists of an ordering cluster and a set
of frontends. The ordering cluster is composed by a set of 3f+1 nodes that collect envelopes
from the frontends and execute the BFT-SMART’s replication protocol with the purpose of
totally ordering these envelopes among them. Once a node gathers a predetermined number
of envelopes, it creates a new block containing these envelopes and a hash of the previously
created block, generates a digital signature for the block, and disseminates it to all known
frontends, which collect 2f + 1 matching blocks from ordering nodes. The 2f + 1 blocks
are necessary because frontends do not verify signatures. However, this number guarantees
a minimum of f+1 valid signatures to peers and clients.1 Frontends are part of the peer trust
domain and are responsible for (1) relaying the envelope to the ordering cluster on behalf of
the client, and (2) receiving the blocks generated by the ordering cluster and relaying them
to the peers responsible for maintaining the distributed ledger.

6.2.3.1 Architecture

BFT-SMART’s ordering service architecture is illustrated in Figure 6.10. The frontend is
composed by the Fabric codebase and a BFT shim. The Fabric codebase (implemented in
Go) provides an interface for Fabric clients to submit envelopes. These envelopes are relayed
to the BFT shim using UNIX sockets. This shim is implemented in Java and maintains (1)
a client thread pool that receive envelopes and relays them to the ordering cluster, and (2)
a receiver thread that collects blocks from the cluster. Envelopes (resp. blocks) are sent to
(resp. received from) the cluster through the BFT-SMaRt proxy. The proxy does that by
issuing an asynchronous invocation request to the BFT-SMART client-side library, ensuring
it does not block waiting for replies. To ensure that the shim performs computations on
equivalent data structures to the Fabric codebase, the ordering service uses the Hyperledger
Fabric Java SDK to parse and assemble data structures used in Fabric.

1If the frontends are programmed to perform signature verification, only f + 1 matching blocks suffice.

120

6.2 Permissioned Blockchains

Fabric codebase

Recv Thread
Client
Threads

BFT-SMaRt Proxy

HLF SDK

Node Thread

Signing &
Sending
Threads

BFT-SMaRt Replica

HLF SDK

Block Cutter

B
F

T
 S

hi
m

Frontend Ordering Nodes

Figure 6.10: BFT-SMaRt ordering service architecture.

6.2.3.2 Batching

The ordering nodes are implemented on top of the BFT-SMART service replica, thus receiv-
ing a stream of totally ordered envelopes. Each node maintains an object named blockcutter,
where the envelopes received from the service replica are stored before being assembled into
a block. The blockcutter is responsible for managing the envelopes associated to each Fabric
channel and creating a batch of envelopes to be included in a block for the ledger associ-
ated to that channel. We implement this batching mechanism instead of relying on BFT-
SMART’s native batching because (1) each BFT-SMART’s batch may contain envelopes
that are not associated to the same channel, which means the envelopes cannot be all assem-
bled into the same block; (2) Fabric supports configuration envelopes, which are supposed
to remain isolated from regular envelopes; and (3) Fabric’s native batching policies are not
equivalent to BFT-SMART’s (for instance, Fabric imposes a batching limit based on its size
in terms of bytes, whereas BFT-SMART limit is based on number of requests per batch).
Once the blockcutter holds a pre-determined number of envelopes for a channel (the block
size), it notifies the node thread that it is time to drain its envelopes and create the next block.

6.2.3.3 Parallelization

After the blockcutter is drained, a sequence number is assigned to the future block and sub-
mitted to the signing/sending thread pool alongside with the respective block header. This
header contains the aforementioned sequence number and the cryptographic hashes from the
previous header and the hash for the block’s envelopes. Notice that this thread pool does
not cause non-determinism across the nodes because (1) the block header and envelopes to
be assigned to new blocks are generated sequentially within the node thread, and (2) the

121

6. APPLICATIONS

only structures that each node needs to maintain as part of the application state is the block
header from the previous iteration of the node thread. Similarly to the frontend, the Fabric
Java SDK is used to correctly handle and create the data structures used by the system. In
addition, this SDK is also used to generate cryptographic hashes and ECDSA (Elliptic Curve
DSA) signatures (Johnson & Menezes, 1998) that can be validated by other components of
Fabric. Once the block is created and signed, it is transmitted to all active frontends. This
is done through a custom replier (supported by the extensible API of BFT-SMART) that,
instead of sending the operation result (i.e., the generated block) to the invoking client, sends
it to a set of registered BFT-SMART clients (i.e., the frontends).

6.2.3.4 Application State

The state maintained by the ordering nodes is comprised by the headers for the last block
associated to each channel, information about the current configuration of channels, and the
envelopes currently stored at the blockcutter. Since the headers have a constant size and the
envelopes are periodically drained from the blockcutter, the state maintained at the ordering
nodes will always be bounded and remain smaller than the size of the ledger maintained by
Fabric peers.

6.2.3.5 Validation and Reconfiguration

One last aspect of this service relates to channel reconfiguration and transaction validation.
Fabric’s architecture is resilient to blocks contained junk transactions, hence ordering ser-
vices can avoid performing transaction validation. In the particular case of our ordering ser-
vice, transactions can be validated by the signing/sending threads prior to generating block
signatures. Transactions can then be removed from the block if the validation fails. The
exception to this is a special category of transactions that are used to perform channel recon-
figuration. These transactions need to be validated and executed prior to submitting them to
a blockcutter.

6.2.4 Evaluation

In this section we describe the experiments conducted to evaluate BFT-SMART’s ordering
service and discuss the observed results. Our aim here is not to evaluate the whole Fabric
system, but only the ordering service, which may typically be the bottleneck of the system.

122

6.2 Permissioned Blockchains

6.2.5 Parameters affecting the Ordering Performance

The throughput of the ordering service (i.e., the rate at which envelopes are added to the
blockchain TPos) is bounded by one of three factors: a) the rate at which envelopes are
ordered by BFT-SMART (TP bftsmart) for a given envelope size, number of envelopes per
block and number of receivers; b) the number of blocks signed per second (TP sign); or c)
the size of the generated blocks. These parameters are illustrated in Figure 6.11.

Given an envelope size es , block sizes bs , and a number of receivers r (i.e., the fron-
tends to which the ordering nodes transmit the generated blocks), the peak throughput of the
ordering service is bounded as follows:

TP bs,es,r
os ≤ min(TP sign × bs ,TP bs,es,r

bftsmart) (6.1)

An important remark is that this equation considers that a block is signed only once
by each ordering node. However, in Fabric a blocks need to be signed twice. The second
signature is needed to attach the block transaction to an execution context (details are out of
the scope of this chapter). If this is the case for the considered application, the TPsign term
used in the equation must be replaced by TPsign

2
.

6.2.6 Signature Generation

In order to estimate TP sign , we executed a very simple signature benchmark program written
in Java in one of the machines used in Chapter 4: a Dell PowerEdge R410 server, which
possesses two quad-core 2.27 GHz Intel Xeon E5520 processor with hyper-threading (thus
having 16 hardware threads) and 32 GB of memory. The server runs Ubuntu 14.04 with JVM
1.8.0. Our program spawns a number of threads to create ECDSA signatures for blocks of
fixed size and calculates how many of such signatures are generated per second.

Results. Our results show that our server can generate up to 8.4k signatures/sec, when
running with 16 threads (Figure 6.12). Furthermore, the effect of the block size is mostly
negligible as the ECDSA signature is computed over the hash of the block. These results,
together with the fact that a blocks are expected to contain 10+ envelopes in Fabric, lead us
to conclude that signature generation is not expected to be a bottleneck in our setup.1

1For example, by using blocks with bs = 100 envelopes, we can sign up to TP sign × bs = 840k en-
velopes/sec.

123

6. APPLICATIONS

…Workload
by	Clients

Tx size
(es)

Ordering	cluster	size
(n)

Block	size
(bs) Number	of	

Receiving
Frontends

(r)

Figure 6.11: Ordering service performance model.

6.2.7 Ordering Cluster in a LAN

The experiments aims to evaluate the BFT-SMART ordering service by using clients that
emulate the behavior of multiple ordering service frontends. They were executed with clus-
ters of 4, 7, and 10 nodes, withstanding 1, 2, and 3 Byzantine faults, respectively. Fur-
thermore, we also fiddled with the block size, by configuring each cluster configuration to
assemble blocks containing either 10 or 100 envelopes (i.e., transactions). This is meant to
observe the behaviour of each cluster when throughput is bound by either the rate of signa-
ture generation or by the rate of envelope reception. The environment is the same used in
Chapter 4: Dell PowerEdge R410 servers connected through a Gigabit ethernet.

For each micro-benchmark configured to have x nodes and y envelopes/block, we gath-
ered results for (1) envelopes with different sizes, and (2) a variable number of receivers.
More precisely, each envelope size is representative of submitting to the ordering cluster:
(1) a SHA-256 hash (40 bytes); (2) three ECDSA endorsement signatures (200 bytes); and
(3) transaction messages of 1 and 4 kbytes. Considering the way Fabric 1.0 operates, the
values related with (3) are more representative of the size of a transaction. In particular, our
limited experience shows that transactions compressed with gzip tend to be usually close to
1 kbyte. Nonetheless, measurements for (1) and (2) are important to show the potential of
the ordering service if different design choices were taken in future versions of Fabric.

Measurements for the throughput associated to block generation were gathered at order-
ing node 0 (the leader replica of BFT-SMART’s replication protocol). To reach the system’s
peak throughput, each execution was performed using 16 to 32 clients distributed across 2
additional machines. We also repeated the micro-benchmark with 4 nodes with blocks of
100 envelopes. All experiments used 16 signing threads (to match the number of available
cores) and were repeated 3 times taking 5 minutes each.

124

6.2 Permissioned Blockchains

 0

 2

 4

 6

 8

 10

 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

ks
ig

na
tu

re
s/

se
c)

Number of cores

Figure 6.12: Signature Generation for Fabric blocks.

Results. The obtained results for local-area are presented in Figure 6.13. Even though
throughput drops when increasing the number of receivers, the impact of the number of
receivers is considerably smaller for larger transactions (1k and 4 kbytes). This is because
for these envelope sizes, the overhead of the replication protocol is greater than the overhead
of transmitting blocks of 10 and 40 kbytes. In particular, since the batch limit of the BFT-
SMART is set to 400 requests (default value), the PROPOSE message of the underlying
replication protocol can have up to 0.4-1.6MBs with these envelope sizes.

It can be observed that when using 10 envelopes/block (Figures 6.13a, 6.13c, and 6.13e),
the maximum throughput observed is approximately 50k transactions/second (when there
exists only 1 to 2 receivers in the system), which is way below the 8.4k × 10 = 84k en-
velopes/sec capacity if only signatures are considered (Section 6.2.6). This can be explained
by the fact that signature generation needs to share CPU power with the replication protocol,
hence creating a thug-of-war between the application’s worker threads and BFT-SMART’s
I/O threads and queues – in particular, BFT-SMART alone can take up to 60% of CPU us-
age when executing a void service with asynchronous clients. Hence, the performance drops
when compared to the micro-benchmark from Section 6.2.6, which was executed in a sin-
gle machine, stripped of the overhead associated with BFT-SMART. Moreover, for up to
2 receivers and envelope sizes of 1 and 4 kbytes, the peak throughput becomes similar to
the results observed in Chapter 4. This is because for these request sizes BFT-SMART is
unable to order envelopes at a rate equal to the rate at which the system is able to produce
signatures.

125

6. APPLICATIONS

 0

 20

 40

 60

 80

 100

 120

 1 2 4 8 16 32

T
hr

ou
gh

pu
t (

kt
ra

ns
/s

ec
)

Number of receivers

40 bytes
200 bytes

1 kbytes
4 kbytes

(a) 4 orderers, 10 envelopes/block.

 0

 20

 40

 60

 80

 100

 120

 1 2 4 8 16 32

T
hr

ou
gh

pu
t (

kt
ra

ns
/s

ec
)

Number of receivers

40 bytes
200 bytes

1 kbytes
4 kbytes

(b) 4 orderers, 100 envelopes/block.

 0

 20

 40

 60

 80

 100

 1 2 4 8 16 32

T
hr

ou
gh

pu
t (

kt
ra

ns
/s

ec
)

Number of receivers

40 bytes
200 bytes

1 kbytes
4 kbytes

(c) 7 orderers, 10 envelopes/block.

 0

 20

 40

 60

 80

 100

 1 2 4 8 16 32

T
hr

ou
gh

pu
t (

kt
ra

ns
/s

ec
)

Number of receivers

40 bytes
200 bytes

1 kbytes
4 kbytes

(d) 7 orderers, 100 envelopes/block.

 0

 20

 40

 60

 80

 1 2 4 8 16 32

T
hr

ou
gh

pu
t (

kt
ra

ns
/s

ec
)

Number of receivers

40 bytes
200 bytes

1 kbytes
4 kbytes

(e) 10 orderers, 10 envelopes/block.

 0

 20

 40

 60

 80

 1 2 4 8 16 32

T
hr

ou
gh

pu
t (

kt
ra

ns
/s

ec
)

Number of receivers

40 bytes
200 bytes

1 kbytes
4 kbytes

(f) 10 orderers, 100 envelopes/block.

Figure 6.13: BFT-SMART Ordering Service throughput for different envelope, block and
cluster sizes.

126

6.2 Permissioned Blockchains

Figures 6.13b, 6.13d, and 6.13f show the results obtained for 100 envelopes/block, when
each node is not subject to CPU exhaustion. It can be observed that, across all cluster sizes,
throughput is significantly higher for smaller envelope sizes and up to 8 receivers. This hap-
pens because even though each node creates blocks at a lower rate – approximately 1100
blocks per seconds – each block contains 100 envelopes instead of only 10. Moreover, this
configuration makes the rate at which envelopes are ordered to become similar to the rate at
which blocks are created. This means that for smaller envelope sizes, it is better to adjust
the nodes’ configuration to avoid consuming all the CPU time and rely on the rate of enve-
lope arrival. However, for envelopes of 1 and 4 kbytes the behavior is similar to using 10
envelopes/block, specially from 7 nodes onward. This is because for larger envelope sizes –
as discussed previously – the predominant overhead becomes the replication protocol. Inter-
estingly, for a larger number of receivers (16 and 32), throughput converges to similar values
across all combinations of envelope/cluster/block sizes. Whereas for larger envelope sizes
this is due to the overhead of the replication protocol, for smaller envelope sizes this happens
because the transmission of blocks to the receivers becomes the predominant overhead.

6.2.8 Geo-distributed Ordering Cluster

In addition to the aforementioned micro-benchmarks deployed in a local datacenter, we also
conducted a geo-distributed experiment focused on collecting latency measurements at 4
frontends scattered across the Americas, with the nodes of the ordering service distributed
all around the world: Oregon, Ireland, Sydney, and São Paulo (four BFT-SMART replicas),
with Virginia standing as WHEAT’s additional replica (five replicas). Since signatures gen-
eration requires considerable CPU power, we used instances of the type m4.4xlarge, with 16
virtual CPUs each. The frontends were deployed in Canada (frontend only), Oregon (collo-
cated with leader node weighting Vmax in WHEAT), Virginia (collocated with non-leader
node, but still weighting Vmax) and São Paulo. Each frontend was configured to launch
enough client threads to keep node throughput always above 1000 transactions/second.

Results. Figure 6.14 presents the results for the geo-distributed micro-benchmark with a
a block size of 10 envelopes. As expected, WHEAT’s latency is consistently lower than
BFT-SMART’s across all frontends by almost 50%. It is worth pointing out that envelope
size has a relatively minor impact on latency: across all regions, the difference between a 40
and a 4k bytes envelope was never above 29 milliseconds for any percentile or protocol. By

127

6. APPLICATIONS

 0

 100

 200

 300

 400

 500

 600

 700

BFT-SM
aRt

W
HEAT

BFT-SM
aRt

W
HEAT

BFT-SM
aRt

W
HEAT

BFT-SM
aRt

W
HEAT

La
te

nc
y

(m
ili

se
co

nd
s)

Median 90th percentile

4 kbytes1 kbytes200 bytes40 bytes

(a) Canada (clients only).

 0

 100

 200

 300

 400

 500

 600

 700

BFT-SM
aRt

W
HEAT

BFT-SM
aRt

W
HEAT

BFT-SM
aRt

W
HEAT

BFT-SM
aRt

W
HEAT

La
te

nc
y

(m
ili

se
co

nd
s)

4 kbytes1 kbytes200 bytes40 bytes

(b) Oregon (weighted Vmax , leader node).

 0

 100

 200

 300

 400

 500

 600

 700

BFT-SM
aRt

W
HEAT

BFT-SM
aRt

W
HEAT

BFT-SM
aRt

W
HEAT

BFT-SM
aRt

W
HEAT

La
te

nc
y

(m
ili

se
co

nd
s)

4 kbytes1 kbytes200 bytes40 bytes

(c) Virginia (weighted Vmax).

 0

 100

 200

 300

 400

 500

 600

 700

BFT-SM
aRt

W
HEAT

BFT-SM
aRt

W
HEAT

BFT-SM
aRt

W
HEAT

BFT-SM
aRt

W
HEAT

La
te

nc
y

(m
ili

se
co

nd
s)

4 kbytes1 kbytes200 bytes40 bytes

(d) São Paulo (weighted Vmin).

Figure 6.14: Amazon EC2 latency results (4 receivers, blocks with 10 envelopes).

contrast, the placement of the frontends when using WHEAT exhibited a larger impact on
latency: the difference between Virginia (weighted Vmax) and São Paulo (weighted Vmin)
is above 43 milliseconds for BFT-SMART (+6.5%) and above 90 milliseconds (+23%) for
WHEAT. In addition, the difference between São Paulo’s and Oregon/Canada is even larger
(58 milliseconds for BFT-SMART and 100 miliseconds for WHEAT, corresponding to an
increase of +8,5% and +27% respectively). We also repeated the experiment for blocks of
100 envelopes (Figure 6.15). The pattern is similar to the previous configuration, but with
increased latency (up to 63 milliseconds higher). This is because with similar workload but a
larger block size, the rate of block generation decreases, which has a direct impact on latency.

6.2.9 Discussion

Our experimental evaluation shows that peak throughput is bound either by the rate at which
block signatures are generated by a replica, or the rate of envelopes ordered by the total or-
der protocol. Moreover, the results also suggest that, for smaller envelope sizes, increasing

128

6.2 Permissioned Blockchains

 0

 100

 200

 300

 400

 500

 600

 700

 800

BFT-SM
aRt

W
HEAT

BFT-SM
aRt

W
HEAT

BFT-SM
aRt

W
HEAT

BFT-SM
aRt

W
HEAT

La
te

nc
y

(m
ili

se
co

nd
s)

Median 90th percentile

4 kbytes1 kbytes200 bytes40 bytes

(a) Canada (clients only).

 0

 100

 200

 300

 400

 500

 600

 700

 800

BFT-SM
aRt

W
HEAT

BFT-SM
aRt

W
HEAT

BFT-SM
aRt

W
HEAT

BFT-SM
aRt

W
HEAT

La
te

nc
y

(m
ili

se
co

nd
s)

4 kbytes1 kbytes200 bytes40 bytes

(b) Oregon (weighted Vmax , leader node).

 0

 100

 200

 300

 400

 500

 600

 700

 800

BFT-SM
aRt

W
HEAT

BFT-SM
aRt

W
HEAT

BFT-SM
aRt

W
HEAT

BFT-SM
aRt

W
HEAT

La
te

nc
y

(m
ili

se
co

nd
s)

4 kbytes1 kbytes200 bytes40 bytes

(c) Virginia (weighted Vmax).

 0

 100

 200

 300

 400

 500

 600

 700

 800

BFT-SM
aRt

W
HEAT

BFT-SM
aRt

W
HEAT

BFT-SM
aRt

W
HEAT

BFT-SM
aRt

W
HEAT

La
te

nc
y

(m
ili

se
co

nd
s)

4 kbytes1 kbytes200 bytes40 bytes

(d) São Paulo (weighted Vmin).

Figure 6.15: Amazon EC2 latency results (4 receivers, blocks with 100 envelopes).

the block size while decreasing the rate of signature generation can yield higher throughput
than to simply rely on the maximum possible rate of signature generation. Nonetheless, for
a higher number of repliers, throughput tends to converge to similar values across all micro-
benchmarks. The obtained throughput are shown to be competitive with other production
systems such as Symbiont Assembly, which is reported to reach 80.000 transactions/second
with null data payloads on a Amazon EC2 setup of four nodes of type c4.8xlarge.1 Ad-
ditionally, even when transmitting blocks of 400 kbytes to 32 receivers in a cluster of 10
nodes, the ordering service still reaches a sustained throughput of approximately 2200 trans-
actions/second – which is more than twice of Ethereum’s theoretical peak of 1000 transac-
tions/second (Buterin, 2016), and vastly superior than Bitcoin’s peak of 7 transaction/second
(Vukolić, 2015). Finally, latency measurements taken from a geo-replicated setting are also
shown attractive, with values within half a second under moderate workload using WHEAT,
even when accounting for large block sizes.

1https://symbiont.io/technology/assembly/

129

https://symbiont.io/technology/assembly/

6. APPLICATIONS

6.3 Additional Related Work

BFT transactional databases. Garcia Molina et al. (1986) proposed the earliest work to
use state machine replication to tolerate Byzantine failures in the context of transactional
databases. However, even thought this work enabled stricter isolation levels than SI, its
sequential execution of transactions also provided limited performance.

In more recent years, there were other proposals for BFT transactional databases along-
side Byzantium such as HRDB (Vandiver et al., 2007), MITRA (Luiz et al., 2014), Augustus
(Padilha & Pedone, 2013) and Callinicos (Padilha et al., 2016). HRDB is a commit barrier
scheduling protocol that also provides Byzantine fault tolerance and supports concurrent
transactions. This system provides high performance while still providing 1-copy serializ-
ability, but it relies on a trusted node to coordinate replicas. MITRA is a middleware sim-
ilar to Byzantium that achieves 1-copy serializability and does not require multi-versioned
DBMSs such as PostgreSQL, but the authors’ evaluation of the system showcase lower per-
formance than Byzantium. Finally, Augustus, and Callinicos are transactional key-value
stores that tolerate Byzantine faults. Whereas Augustus relies on optimistic concurrency
control akin MITRA and Byzantium, Callinicos proposes a novel conflict resolution proto-
col that is able to prevents conflicting transactions from aborting.

Distributed ledgers. The concept of blockchain was originally introduced by Bitcoin to
solve the double spending problem associated with crypto-currency in permissionless peer-
to-peer networks (Nakamoto, 2009). Since Bitcoin’s inception and widespread adoption,
other platforms based on Proof-of-Work blockchain have emerged. Within these new plat-
forms, Ethereum is particularly relevant for its support of smart contracts (Wood, 2015).

Because of the known performance penalty associated with Proof-of-Work creation and
the fact that Blockchain technology is gaining the attention of many industries, the idea
of permissioned blockchains are quickly gaining traction. Examples of other permissioned
blockchain platforms include Chain,1 which uses the Federated Consensus algorithm.2 Ten-
dermint (Kwon, 2016) implements the BFT protocol designed by Buchman (2016). Kadena
(Martino, 2016) uses a variant of the Raft consensus protocol (Ongaro & Ousterhout, 2014)
adapted to Byzantine faults (Copeland & Zhong, 2014). Finally, Symbiont Assembly3 uses a
Go implementation of the Mod-SMaRt algorithm presented in Chapter 3 and heavily follows

1https://chain.com/
2https://chain.com/docs/1.2/protocol/papers/federated-consensus
3https://symbiont.io/technology/assembly/

130

https://chain.com/
https://chain.com/docs/1.2/protocol/papers/federated-consensus
https://symbiont.io/technology/assembly/

6.4 Concluding Remarks

the design of BFT-SMART. A recent survey compares all these permissioned protocols and
points BFT-SMART as a prominent candidate for implementing this type of ledgers (Cachin
& Vukolic, 2017b).

6.4 Concluding Remarks

In this final chapter we described the integration of our protocols into two practical systems.
We began by presenting SteelDB, an implementation of the Byzantium protocol for repli-
cated transactional databases and then proceeded to an ordering service created for the Hy-
perledger Fabric blockchain platform. Practical evaluations were performed for both these
systems within a local cluster and in a geo-distributed environment. The evaluations re-
vealed encouraging results for both systems. In the case of SteelDB, the system was shown
to deliver acceptable performance for user interaction once we implemented speculative ex-
ecution (local cluster) and integrated WHEAT into the codebase (geo-distributed). Mean-
while, our ordering service for Hyperledger Fabric displayed competitive throughput to other
blockchain solutions such as Symbiont Assembly, Ethereum, and the original Bitcoin. It
was also shown to display sub-second latency in a geo-distributed setting when powered by
WHEAT.

131

7
Conclusions

This document describes the research conducted within the context of a PhD developed
within the area of Byzantine fault tolerance, with a specialization on the state machine repli-
cation technique. This research explored methodologies aimed at achieving a higher level
of robustness and performance for this type of replication. Our efforts began at the theoreti-
cal level with Mod-SMaRt, a modular and latency-optimal protocol that enables SMR to be
more easily implemented and verifiable for correctness. Having Mod-SMaRt as our theoret-
ical foundation, we then proceeded to implement the protocol into a working library dubbed
BFT-SMART. This library was engineered to execute the protocol as efficiently as possible
and maintained over the course of the whole PhD, with the objective of rendering the code-
base as reliable as possible within the context of an academic endeavor. This accounts for
the main contribution of the work presented, which was followed by an effort to optimize
BFT-SMART for geo-distributed scenarios. The result of such effort was WHEAT, a vari-
ant of BFT-SMART that uses a novel vote assignment scheme that takes advantage of the
heterogeneous nature of wide-area networks to provide better latency to clients. Towards the
end of the thesis, we explored two use-cases for WHEAT: a BFT transactional middleware
for relational databases and a BFT ordering service for a permissioned blockchain platform.
The evaluation of both of these applications further indicates that within a geo-replicated
setting, WHEAT reaches lower latency than BFT-SMART.

133

7. CONCLUSIONS

7.1 Impact

Prior to the beginning of the thesis, there was a lack of BFT SMR solutions that were both
open-source and reliable. Even though a few open-source and generic codebases did exist
(e.g., Castro & Liskov (2002); Clement et al. (2009a)), they were created for academic re-
search and not continuously maintained over time. We posited that this situation caused an
hindrance for researchers wishing to contribute to the area of BFT SMR with novel ideas,
as well as other fields that may required replicated state machines as a building block. This
observation led us to pursue the research direction explored in this thesis.

Our assessment was ultimately proven to have merit, given that over the course of the
PhD we have noticed an increasing interest on BFT-SMART by our peers, as well as the
emergence of many novel academic works that use BFT-SMART either as a building block
or as codebase from which other system are derived from. At the time of this writing, the pub-
lications spawned from this thesis have a combined total of over 100 citations and used within
the context of EU projects like TCLOUDS,1 MASSIF,2 SEGrid,3 and SUPERCLOUD.4 Due
to to this thesis efforts at making the library stable and complete, the DepSpace coordination
service (Bessani et al., 2008) was rendered more resilient by association, which enabled that
system to eventually be adopted as one of the building blocks for the Shared Cloud-backed
File System (Bessani et al., 2014) and later augmented to obtain the Extensible DepSpace
model (Distler et al., 2015). Besides these systems, BFT-SMART was also used as a building
block for the FITCH platform (Cogo et al., 2013), the SMaRtLight SDN controller (Botelho
et al., 2014), the MITRA transactional middleware (Luiz et al., 2014), the SieveQ application
firewall (Garcia et al., 2016), a BFT Authentication and Authorization Infrastructure (Kreutz
et al., 2016) and an Intrusion-Tolerant SCADA control system (Nogueira et al., 2017a). All
these systems are rendered tolerant against Byzantine faults by integrating BFT-SMART

into their designs. BFT-SMART also serves as a codebase that was modified and extended
to create prototypes and deploy experimental evaluations for many papers. The library was
adopted as basis to develop the CheapBFT system (Kapitza et al., 2012), and more recently to
serve as the control for the practical evaluation of the authors’ COP architecture (Behl et al.,
2015). Due to the library’s high-performance, the Hermes fault-injecting framework elected
BFT-SMART as the target codebase to demonstrate the tool’s capabilities (Martins et al.,

1http://www.tclouds-project.eu/
2http://www.massif-project.eu/
3http://www.segrid.eu/
4https://supercloud-project.eu/

134

http://www.tclouds-project.eu/
http://www.massif-project.eu/
http://www.segrid.eu/
https://supercloud-project.eu/

7.2 Future Work

2013). BFT-SMART was also used to create VFT-SMaRt, the prototype that adopts the
Visigoth fault model (Porto et al., 2015). Very recently, the library served as basis for a pro-
tocol that allows for on-the-fly partition transfer within replicated state machines (Nogueira
et al., 2017b), a work facilitated by the reconfiguration protocol that the library provides.

The aforementioned works belong all to the scope of academic research. However, the
advent of blockchain technology also spawned new interest in Byzantine fault tolerance from
for-profit organizations that are developing blockchain platforms, and BFT-SMART is be-
ing adopted by some of these projects. In particular, the open-source R3 Corda platform
release a new version that provides a BFT distributed notary based on BFT-SMART.1 Fi-
nally, Symbiont Assembly also uses a Go re-implementation of BFT-SMART protocol and
architecture.2

7.2 Future Work

Due to the fact that the area of Byzantine fault tolerance is of high importance to distributed
ledgers, we have steered our final research efforts towards the context of permissioned
blockchains. Due to the modern interest by many organizations on this technology, we ex-
pect to follow up the research presented in the thesis within the context of geo-replication
applied to permissioned blockchains.

As mentioned in the beginning of this chapter, this thesis focused on exploring techniques
for achieving a robust and efficient deployment of replicated state machines. However, once
we started applying our efforts on blockchain technology, we realized one pertinent direction
of research not properly explored was scalability. This is because these systems are expected
to operate with hundreds of nodes scattered around the world, rather than just with the con-
figurations of 4 to 10 replicas used across the thesis (Vukolić, 2015). Any mid- to long-term
work will be aimed at exploring methodologies to improve scalability in terms of number of
nodes. Ideas currently being considered range from extending the Mod-SMaRt algorithm to
support pipelining akin to the classic PBFT protocol (Castro & Liskov, 2002), implement-
ing a propagation mechanism inspired by the well-known spanning tree protocol (Perlman,
1985), further research regarding partitioning of replicated state machines (Nogueira et al.,
2017b), and refurbishing BFT-SMART’s reconfiguration protocol to support dynamic re-
distribution of WHEAT’s vote assignment scheme.

1https://www.corda.net/2017/03/corda-m9-1-released/
2https://symbiont.io/technology/assembly/

135

https://www.corda.net/2017/03/corda-m9-1-released/
https://symbiont.io/technology/assembly/

7. CONCLUSIONS

Finally, the continued maintenance of BFT-SMART is an effort that shall remain as
on-going. In particular, our intention is to fully integrate WHEAT’s tentative execution and
voting scheme mechanisms into the codebase, thus rendering WHEAT as the primary branch
of development and support.

136

References

ABD-EL-MALEK, M., GANGER, G., GOODSON, G., REITER, M. & WYLIE, J. (2005).
Fault-scalable Byzantine fault-tolerant services. In Proceedings of the 20th ACM SIGOPS
Symposium on Operating Systems Principles, Brighton, UK.

AGRAWAL, D. & ABADI, A.F. (1991). An efficient and fault-tolerant solution for distributed
mutual exclusion. ACM Transactions on Computer Systems, 9, 1–20.

AGUILERA, M. (2004). A pleasant stroll through the land of infinitely many creatures. ACM
SIGACT News, 35, 36–59.

AGUILERA, M.K., KEIDAR, I., MALKHI, D., MARTIN, J.P. & SHRAER, A. (2010). Re-
configuring replicated atomic storage: A tutorial. Bulletin of the EATCS, 102, 84–108.

AIYER, A.S., ALVISI, L., BAZZI, R.A. & CLEMENT, A. (2008). Matrix signatures: From
macs to digital signatures in distributed systems. In Proceedings of the 22nd Springer-
Verlag International Symposium on Distributed Computing, Arcachon, France.

ALSEBERG, P. & DAY, J. (1976). A principle for resilient sharing of distributed resources.
In Proceedings of the 2nd IEEE International Conference on Software Engineering, San
Francisco, USA.

AMIR, Y. & WOOL, A. (1996). Evaluating quorum systems over the internet. In Proceedings
of the 26th IEEE International Symposium on Fault-Tolerant Computing, Sendai, Japan.

AMIR, Y., DANILOV, C., DOLEV, D., KIRSCH, J., LANE, J., NITA-ROTARU, C., OLSEN,
J. & ZAGE, D. (2010). Steward: Scaling Byzantine fault-tolerant replication to wide area
networks. IEEE Transactions on Dependable and Secure Computing, 7, 80–93.

AMIR, Y., COAN, B., KIRSCH, J. & LANE, J. (2011). Prime: Byzantine replication under
attack. IEEE Transactions on Dependable and Secure Computing, 8, 564–577.

ANDERSON, J.C., LEHNARDT, J. & SLATER, N. (2010). CouchDB: The Definitive Guide
Time to Relax. O’Reilly Media, Inc.

137

REFERENCES

ANDROULAKI, E., BARGER, A., BORTNIKOV, V., CACHIN, C., CHRISTIDIS, K., CARO,
A.D., ENYEART, D., FERRIS, C., LAVENTMAN, G., MANEVICH, Y., MURALIDHA-
RAN, S., MURTHY, C., NGUYEN, B., SETHI, M., SINGH, G., SMITH, K., SORNIOTTI,
A., STATHAKOPOULOU, C., VUKOLIC, M., COCCO, S.W. & YELLICK, J. (2018). Hy-
perledger fabric: A distributed operating system for permissioned blockchains. In Pro-
ceedings of the 13th ACM SIGOPS European Conference on Computer Systems, Porto,
Portugal.

ANKER, T., DOLEV, D., GREENMAN, G. & SHNAYDERMAN, I. (2003). Evaluating total
order algorithms in WAN. In Proceedings of the International Workshop on Large-Scale
Group Communication, Florence, Italy.

AUBLIN, P.L., MOKHTAR, S.B. & QUÉMA, V. (2013). RBFT: Redundant Byzantine fault
tolerance. In Proceedings of the 2013 IEEE 33rd International Conference on Distributed
Computing Systems, Philadelphia, PA, USA.

AUBLIN, P.L., GUERRAOUI, R., KNEŽEVIĆ, N., QUÉMA, V. & VUKOLIĆ, M. (2015).
The next 700 BFT protocols. ACM Transactions on Computer Systems, 32, 12:1–12:45.

BACK, A. (2002). Hashcash - a denial of service counter-measure.
http://www.hashcash.org/papers/hashcash.pdf.

BAILIS, P., DAVIDSON, A., FEKETE, A., GHODSI, A., HELLERSTEIN, J.M. & STOICA,
I. (2013). Highly available transactions: Virtues and limitations. Proceedings of the VLDB
Endowment, 7, 181–192.

BAKER, J., BOND, C., CORBETT, J.C., FURMAN, J., KHORLIN, A., LARSON, J., LEON,
J.M., LI, Y., LLOYD, A. & YUSHPRAKH, V. (2011). Megastore: Providing scalable,
highly available storage for interactive services. In Proceedings of the 5th Biennial Con-
ference on Innovative Data system Research, Asilomar, California, USA.

BAKR, O. & KEIDAR, I. (2002). Evaluating the running time of a communication round over
the internet. In Proceedings of the 21st Symposium on Principles of Distributed Comput-
ing, New York City, NY, USA.

BAKR, O. & KEIDAR, I. (2008). On the performance of quorum replication on the internet.
Tech. Rep. UCB/EECS-2008-141, EECS Department, University of California, Berkeley.

138

REFERENCES

BEHL, J., DISTLER, T. & KAPITZA, R. (2015). Consensus-oriented parallelization: How to
earn your first million. In Proceedings of the 16th Annual Middleware Conference, ACM,
New York City, NY, USA.

BEHL, J., DISTLER, T. & KAPITZA, R. (2017). Hybrids on steroids: SGX-based high
performance BFT. In Proceedings of the 12th ACM SIGOPS European Conference on
Computer Systems, ACM, New York City, NY, USA.

BEN-OR, M. (1983). Another advantage of free choice: Completely asynchronous agree-
ment protocols (extended abstract). In Proceedings of the 2rd ACM Symposium on Princi-
ples of Distributed Computing, New York City, NY, USA.

BEN-OR, M., KELMER, B. & RABIN, T. (1994). Asynchronous secure computations with
optimal resilience (extended abstract). In Proceedings of the Thirteenth Annual ACM Sym-
posium on Principles of Distributed Computing, ACM, Los Angeles, CA, USA.

BENNETT, C. & TSEITLIN, A. (2012). Chaos monkey released in the wild.
http://techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html.

BERENSON, H., BERNSTEIN, P., GRAY, J., MELTON, J., O’NEIL, E. & O’NEIL, P.
(1995). A critique of ANSI SQL isolation levels. SIGMOD Rec., 24, 1–10.

BESSANI, A. (2011). From Byzantine fault tolerance to intrusion tolerance (a position pa-
per). In Proceedings of the 5th Workshop on Recent Advances in Intrusion-Tolerant Sys-
tems, Hong Kong, China.

BESSANI, A., SANTOS, M., FELIX, J., NEVES, N. & CORREIA, M. (2013). On the effi-
ciency of durable state machine replication. In Proceedings of the 2013 USENIX Annual
Technical Conference, San Jose, CA, USA.

BESSANI, A., MENDES, R., OLIVEIRA, T., NEVES, N., CORREIA, M., PASIN, M. &
VERISSIMO, P. (2014). SCFS: A shared cloud-backed file system. In Proceedings of the
2014 USENIX Annual Technical Conference, Philadelphia, PA, USA.

BESSANI, A.N., ALCHIERI, E.P., CORREIA, M. & FRAGA, J.S. (2008). DepSpace: a
Byzantine fault-tolerant coordination service. In Proceedings of the 3rd ACM European
Systems Conference, New York City, NY, USA.

139

REFERENCES

BEYER, B., JONES, C., PETOFF, J. & MURPHY, N. (2016). Site Reliability Engineering:
How Google Runs Production Systems. O’Reilly Media, Incorporated.

BIRMAN, K., CHOCKLER, G. & VAN RENESSE, R. (2009). Toward a cloud computing
research agenda. SIGACT News, 40, 68–80.

BOKOR, P., KINDER, J., SERAFINI, M. & SURI, N. (2011). Efficient model checking of
fault-tolerant distributed protocols. In Proceedings of the 41st IEEE/IFIP International
Conference on Dependable Systems and Networks, Hong Kong, China.

BOTELHO, F., BESSANI, A., RAMOS, F.M.V. & FERREIRA, P. (2014). On the design of
practical fault-tolerant SDN controllers. In Proceedings of the 2014 3rd European Work-
shop on Software Defined Networks, Budapest, Hungary.

BRACHA, G. (1984). An asynchronous b(n − 1)/3c-resilient consensus protocol. In Pro-
ceedings of the 3rd ACM Symposium on Principles of Distributed Computing, Vancouver,
Canada.

BUCHMAN, E. (2016). Tendermint: Byzantine Fault Tolerance in the Age of Blockchains.
Master’s thesis, University of Guelph.

BUDHIRAJA, N., MARZULLO, K., SCHNEIDER, F.B. & TOUEG, S. (1993). Distributed
systems (2nd ed.). chap. The primary-backup approach, 199–216, ACM Press/Addison-
Wesley Publishing Co.

BURROWS, M. (2006). The Chubby lock service for loosely-coupled distributed systems. In
Proceedings of the 7th USENIX Symposium on Operating Systems Design and Implemen-
tation, Seattle, WA, USA.

BUTERIN, V. (2015). Ethereum white paper. https://github.com/ethereum/wiki/wiki/White-
Paper.

BUTERIN, V. (2016). Ethereum platform review: Opportunities and challenges for private
and consortium blockchains. http://r3cev.com.

CACHIN, C. (2009). Yet another visit to Paxos. Tech. Rep. RZ 3754, IBM Research Zurich.

CACHIN, C. (2016). Architecture of the hyperledger blockchain fabric.
https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf.

140

REFERENCES

CACHIN, C. & PORITZ, J.A. (2002). Secure intrusion-tolerant replication on the Internet.
In Proceedings of the IEEE/IFIP International Conference on Dependable Systems and
Networks - DSN 2002.

CACHIN, C. & TESSARO, S. (2005). Asynchronous verifiable information dispersal. In Pro-
ceedings of the 19th International Conference on Distributed Computing, Springer-Verlag,
Cracow, Poland.

CACHIN, C. & VUKOLIC, M. (2017a). Blockchain consensus protocol in the wild (invited
paper). In Proceedings of 31th International Symposium on Distributed Computing, Vi-
enna, Austria.

CACHIN, C. & VUKOLIC, M. (2017b). Blockchain consensus protocols in the wild. Tech.
Rep. arXiv:1707.01873, IBM Research - Zurich.

CACHIN, C., KURSAWE, K., PETZOLD, F. & SHOUP, V. (2001). Secure and efficient asyn-
chronous broadcast protocols. In Proceedings of the 21st Annual International Cryptology
Conference on Advances in Cryptology, London, UK.

CACHIN, C., KURSAWE, K. & SHOUP, V. (2005). Random oracles in constantinople: Prac-
tical asynchronous Byzantine agreement using cryptography. Journal of Cryptology, 18,
219–246.

CANETTI, R. & RABIN, T. (1993). Fast asynchronous Byzantine agreement with optimal
resilience. In Proceedings of the twenty-fifth ACM Symposium on Theory of Computing,
San Diego, CA, USA.

CARD, S.K., ROBERTSON, G.G. & MACKINLAY, J.D. (1991). The information visualizer,
an information workspace. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, New York City, NY, USA.

CASON, D., MARANDI, P.J., BUZATO, L.E. & PEDONE, F. (2015). Chasing the tail of
atomic broadcast protocols. In 2015 IEEE 34th IEEE Symposium on Reliable Distributed
Systems, Montreal, Quebec, Canada.

CASTRO, M. & LISKOV, B. (1999). Practical Byzantine fault tolerance. In Proceedings of
the 3rd Symposium on Operating Systems Design and Implementation, New Orleans, LA,
USA.

141

REFERENCES

CASTRO, M. & LISKOV, B. (2002). Practical Byzantine fault tolerance and proactive recov-
ery. ACM Transactions on Computer Systems, 20, 398–461.

CASTRO, M., RODRIGUES, R. & LISKOV, B. (2003). BASE: Using abstraction to improve
fault tolerance. ACM Transactions on Computer Systems, 21, 236–269.

CHANDRA, T., GRIESEMER, R. & REDSTONE, J. (2007). Paxos made live - an engineering
perspective. In Proceedings of the 26th ACM Symposium on Principles of Distributed
Computing, Portland, OR, USA.

CHANDRA, T.D. & TOUEG, S. (1996). Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43, 225–267.

CHUN, B.G., MANIATIS, P., SHENKER, S. & KUBIATOWICZ, J. (2007). Attested append-
only memory: making adversaries stick to their word. In Proceedings of the 21st ACM
SIGOPS Symposium on Operating Systems Principles, Stevenson, WA, USA.

CLEMENT, A., KAPRITSOS, M., LEE, S., WANG, Y., ALVISI, L., DAHLIN, M. & RICHÉ,
T. (2009a). UpRight cluster services. In Proceedings of the 22nd ACM SIGOPS Sympo-
sium on Operating Systems Principles, Big Sky, MT, USA.

CLEMENT, A., WONG, E., ALVISI, L., DAHLIN, M. & MARCHETTI, M. (2009b). Mak-
ing Byzantine fault tolerant systems tolerate Byzantine faults. In Proceedings of the 6th
USENIX Symposium on Networked Systems Design and Implementation, Boston, MA,
USA.

COBBS, A.L. (2016). JSimpleDB: Language-driven persistence for java.
https://cdn.rawgit.com/archiecobbs/jsimpledb/master/jsimpledb-language-driven.pdf.

COGO, V.V., NOGUEIRA, A., SOUSA, J., PASIN, M., REISER, H.P. & BESSANI, A.
(2013). FITCH: Supporting Adaptive Replicated Services in the Cloud. Springer Berlin
Heidelberg, Berlin, Heidelberg.

COPELAND, C. & ZHONG, H. (2014). Tangaroa: a Byzantine fault tolerant raft.
http://www.scs.stanford.edu/14aucs244b/labs/projects/copeland_zhong.pdf.

CORBETT ET. AL, J.C. (2013). Spanner: Google’s globally distributed database. ACM
Transactions on Computer Systems, 31, 1–22.

142

REFERENCES

CORREIA, M., NEVES, N.F. & VERÍSSIMO, P. (2006). From consensus to atomic broad-
cast: Time-free Byzantine-resistant protocols without signatures. The Computer Journal,
49, 82–96.

CORREIA, M., FERRO, D.G., JUNQUEIRA, F.P. & SERAFINI, M. (2012). Practical hard-
ening of crash-tolerant systems. In Proceedings of the 2012 USENIX Annual Technical
Conference, Boston, MA, USA.

COWLING, J., MYERS, D., LISKOV, B., RODRIGUES, R. & SHRIRA, L. (2006). HQ-
Replication: A hybrid quorum protocol for Byzantine fault tolerance. In Proceedings of
7th Symposium on Operating Systems Design and Implementation - OSDI 2006, Seattle,
Washington.

DEAN, J. & BARROSO, L.A. (2013). The tail at scale. Communications of the ACM, 56,
74–80.

DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI, G., LAKSHMAN, A.,
PILCHIN, A., SIVASUBRAMANIAN, S., VOSSHALL, P. & VOGELS, W. (2007). Dynamo:
Amazon’s highly available key-value store. In Proceedings of 21st ACM SIGOPS Sympo-
sium on Operating Systems Principles, New York City, NY, USA.

DISTLER, T., BAHN, C., BESSANI, A., FISCHER, F. & JUNQUEIRA, F. (2015). Extensible
distributed coordination. In Proceedings of the 10th ACM SIGOPS European Conference
on Computer Systems, Bordeaux, France.

DOBRE, D., MAJUNTKE, M., SERAFINI, M. & SURI, N. (2010). HP: Hybrid Paxos for
WANs. In Proceedings of the 2010 European Dependable Computing Conference, Wash-
ington, DC, USA.

DOLEV, D. & HOCH, E.N. (2008). Constant-space localized Byzantine consensus. In Pro-
ceedings of the 22nd EATCS international symposium on Distributed Computing, Berlin,
Heidelberg.

DOLEV, D., DIVISION, T.J.W.I.R.C.R. & STRONG, R. (1982). Distributed Commit with
Bounded Waiting. IBM Thomas J. Watson Research Division.

DOUDOU, A., GARBINATO, B. & GUERRAOUI, R. (2005). Dependable Computing Sys-
tems Paradigms, Performance Issues, and Applications, chap. Tolerating Arbitrary Fail-
ures with State Machine Replication, 27–56. Wiley.

143

REFERENCES

DUARTE, E., GARRETT, T., BONA, L., CARMO, R. & ZÜGE, A. (2010). Finding stable
cliques of planetlab nodes. In Proceedings of the 40th IEEE/IFIP International Conference
on Dependable Systems and Networks, Chicago, IL, USA.

DUTTA, P., GUERRAOUI, R. & VUKOLIĆ, M. (2005). Best-case complexity of asyn-
chronous Byzantine consensus. Tech. Rep. EPFL/IC/200499, School of Computer and
Communication Sciences, EPFL.

DWORK, C. & NAOR, M. (1993). Pricing via processing or combatting junk mail. In Pro-
ceedings of the 12th Annual International Cryptology Conference on Advances in Cryp-
tology, London, UK.

DWORK, C., LYNCH, N.A. & STOCKMEYER, L. (1988). Consensus in the presence of
partial synchrony. Journal of the ACM, 35, 288–322.

EKWALL, R. & SCHIPER, A. (2007). Modeling and validating the performance of atomic
broadcast algorithms in high latency networks. In Proceedings of the 13th International
Euro-Par Conference, Rennes ,France.

ELISHA, S. & HAMILTON, J. (2014). Under the covers of AWS: Core distributed systems
primitives that power our platform. In AWS re:Invent, Sands Expo, Las Vegas, NV, USA.

FISCHER, M.J., LYNCH, N.A. & PATERSON, M.S. (1985). Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32, 374–382.

FITZPATRICK, B. (2004). Distributed caching with memcached. Linux Journal, 124, 72–78.

FURLONGER, D. & VALDES, R. (2016). Hype cycle for blockchain technologies and the
programmable economy. http://www.gartner.com/smarterwithgartner/3-trends-appear-in-
the-gartner-hype-cycle-for-emerging-technologies-2016.

GARAY, J., KIAYIAS, A. & LEONARDOS, N. (2015). The bitcoin backbone protocol: Anal-
ysis and applications. In E. Oswald & M. Fischlin, eds., Proceedings of the 34th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria.

GARCIA, M., BESSANI, A., GASHI, I., NEVES, N. & OBELHEIRO, R. (2013). Analysis
of operating systems diversity for intrusion tolerance. Software - Practice and Experience,
44, 735–770.

144

REFERENCES

GARCIA, M., NEVES, N. & BESSANI, A. (2016). SieveQ: A layered BFT protection system
for critical services. IEEE Transactions on Dependable and Secure Computing, PP, 1–1.

GARCIA, R., RODRIGUES, R. & PREGUIÇA, N. (2011). Efficient middleware for Byzan-
tine fault tolerant database replication. In Proceedings of the 6th conference on Computer
systems, New York City, NY, USA.

GARCIA-MOLINA, H. & BARBARA, D. (1985). How to assign votes in a distributed system.
Journal of the ACM, 32, 841–860.

GARCIA MOLINA, H., PITTELLI, F. & DAVIDSON, S. (1986). Applications of Byzantine
agreement in database systems. ACM Transactions on Database Systems, 11, 27–47.

GIFFORD, D. (1979). Weighted voting for replicated data. In Proceedings of the 7th ACM
SIGOPS Symposium on Operating Systems Principles, Pacific Grove, CA, USA.

GILBERT, S. & LYNCH, N. (2002). Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News, 33, 51–59.

GILBERT, S. & LYNCH, N.A. (2012). Perspectives on the CAP Theorem. Computer, 45,
30–36.

HADZILACOS, V. & TOUEG, S. (1993). Distributed systems (2nd ed.). chap. Fault-tolerant
Broadcasts and Related Problems, 97–145, ACM Press/Addison-Wesley Publishing Co.

HERLIHY, M. & WING, J.M. (1990). Linearizability: A correctness condition for concur-
rent objects. ACM Transactions on Programing Languages and Systems, 12, 463–492.

HUNT, P., KONAR, M., JUNQUEIRA, F. & REED, B. (2010). Zookeeper: Wait-free coordi-
nation for internet-scale services. In Proceedings of the 2010 USENIX Annual Technical
Conference, Boston, MA, USA.

ISARD, M. (2007). Autopilot: Automatic data center management. SIGOPS Operating Sys-
tems Review, 41, 60–67.

JOHNSON, D.B. & MENEZES, A.J. (1998). Elliptic curve DSA (ECSDA): An enhanced
DSA. In Proceedings of the 7th Conference on USENIX Security Symposium - Volume 7,
Berkeley, CA, USA.

145

REFERENCES

JUNQUEIRA, F., MAO, Y. & MARZULLO, K. (2007). Classic Paxos vs Fast Paxos: Caveat
emptor. In Proceedings of the Workshop on Hot Topics in System Dependability, Edin-
burgh, UK.

KAPITZA, R., BEHL, J., CACHIN, C., DISTLER, T., KUHNLE, S., MOHAMMADI, S.V.,
SCHRÖDER-PREIKSCHAT, W. & STENGEL, K. (2012). CheapBFT: Resource-efficient
Byzantine fault tolerance. In Proceedings of the 7th ACM SIGOPS European Conference
on Computer Systems, Bern, Switzerland.

KIHLSTROM, K.P., MOSER, L.E. & MELLIAR-SMITH, P.M. (2001). The SecureRing
group communication system. ACM Transactions on Information and System Security,
4, 371–406.

KOTLA, R., ALVISI, L., DAHLIN, M., CLEMENT, A. & WONG, E. (2009). Zyzzyva: Spec-
ulative Byzantine fault tolerance. ACM Transactions on Computer Systems, 27, 45–58.

KRASKA, T., PANG, G., FRANKLIN, M.J., MADDEN, S. & FEKETE, A. (2013). MDCC:
multi-data center consistency. In Proceedings of the 8th ACM SIGOPS European Confer-
ence on Computer Systems, Prague, Czech Republic.

KREUTZ, D., MALICHEVSKYY, O., FEITOSA, E., CUNHA, H., DA ROSA RIGHI, R. &
DE MACEDO, D.D. (2016). A cyber-resilient architecture for critical security services.
Journal of Network and Computer Applications, 63, 173 – 189.

KWON, J. (2016). Tendermint: Consensus without mining, http://www.the-
blockchain.com/docs/tendermint

LAKSHMAN, A. & MALIK, P. (2010). Cassandra: A decentralized structured storage sys-
tem. SIGOPS Operating Systems Review, 44, 35–40.

LAMPORT, L. (1978). Time, clocks, and the ordering of events in a distributed system. Com-
munications of the ACM, 21, 558–565.

LAMPORT, L. (1998). The part-time parliament. ACM Transactions on Computer Systems,
16, 133–169.

LAMPORT, L. (2001). Paxos made simple. ACM SIGACT News, 32, 18–25.

146

REFERENCES

LAMPORT, L. (2005). Generalized consensus and Paxos. Tech. Rep. MSR-TR-2005-33, Mi-
crosoft Research.

LAMPORT, L. (2006). Fast Paxos. Distributed Computing, 19, 79–103.

LAMPORT, L., SHOSTAK, R. & PEASE, M. (1982). The Byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4, 382–401.

LAMPORT, L., MALKHI, D. & ZHOU, L. (2010). Reconfiguring a state machine. SIGACT
News, 41, 63–73.

LAMPSON, B. (2001). The ABCD’s of Paxos. In Proceedings of the 20th ACM Symposium
on Principles of Distributed Computing, Newport, RI, USA.

LI, H.C., CLEMENT, A., AIYER, A.S. & ALVISI, L. (2007). The Paxos register. In Pro-
ceedings of the 26th IEEE Symposium on Reliable Distributed Systems, Beijing, China.

LIU, S., VIOTTI, P., CACHIN, C., QUEMA, V. & VUKOLIC, M. (2016). XFT: Practical
fault tolerance beyond crashes. In 12th USENIX Symposium on Operating Systems Design
and Implementation, SAVANNAH, GA, USA.

LORCH, J.R., ADYA, A., BOLOSKY, W.J., CHAIKEN, R., DOUCEUR, J.R. & HOWELL,
J. (2006). The SMART way to migrate replicated stateful services. In Proceedings of the
1st ACM SIGOPS European Conference on Computer Systems, Leuven, Belgium.

LUIZ, A.F., LUNG, L.C. & CORREIA, M. (2014). MITRA: Byzantine fault-tolerant mid-
dleware for transaction processing on replicated databases. SIGMOD Rec., 43, 32–38.

LYNCH, N.A. (1996). Distributed Algorithms. Morgan Kauffman.

MALKHI, D. & REITER, M. (1998). Byzantine quorum systems. Distributed Computing,
11, 203–213.

MAO, Y., JUNQUEIRA, F.P. & MARZULLO, K. (2008). Mencius: building efficient repli-
cated state machines for WANs. In Proceedings of the 8th USENIX Conference on Oper-
ating Systems Design and Implementation.

MAO, Y., JUNQUEIRA, F.P. & MARZULLO, K. (2009). Towards low latency state machine
replication for uncivil wide-area networks. In In Workshop on Hot Topics in System De-
pendability, Lisbon, Portugal.

147

REFERENCES

MARIC, O., SPRENGER, C. & BASIN, D. (2015). Consensus refined. In Proceedings of the
45th IEEE/IFIP International Conference on Dependable Systems and Networks, Rio de
Janeiro, Brazil.

MARTIN, J.P. & ALVISI, L. (2006). Fast Byzantine consensus. IEEE Transactions on De-
pendable and Secure Computing, 3, 202–215.

MARTINO, W. (2016). Kadena: The first scalable, high performance private blockchain,
http://kadena.io/docs/kadena-consensuswhitepaper-aug2016.pdf.

MARTINS, R., GANDHI, R., NARASIMHAN, P., PERTET, S., CASIMIRO, A., KREUTZ, D.
& VERÍSSIMO, P. (2013). Experiences with fault-injection in a Byzantine fault-tolerant
protocol. In D. Eyers & K. Schwan, eds., Proceedings of the ACM/IFIP/USENIX 14th
International Middleware Conference, Beijing, China.

MILLER, A., XIA, Y., CROMAN, K., SHI, E. & SONG, D. (2016). The honey badger of
BFT protocols. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria.

MILLER, R.B. (1968). Response time in man-computer conversational transactions. In Pro-
ceedings of the December 9-11, 1968, fall joint computer conference, part I, ACM, San
Francisco, CA, USA.

MILOSEVIC, Z., HUTLE, M. & SCHIPER, A. (2011). On the reduction of atomic broad-
cast to consensus with Byzantine faults. In Proceedings of the 30th IEEE Symposium on
Reliable Distributed Systems, Madrid, Spain.

MILOSEVIC, Z., BIELY, M. & SCHIPER, A. (2013). Bounded delay in Byzantine-tolerant
state machine replication. In 2013 IEEE 32th IEEE Symposium on Reliable Distributed
Systems, 61–70, Braga, Portugal.

MONIZ, H., NEVES, N.F., CORREIA, M. & VERISSIMO, P. (2011). RITAS: Services for
randomized intrusion tolerance. IEEE Transactions on Dependable and Secure Comput-
ing, 8, 122–136.

MORARU, I., ANDERSEN, D.G. & KAMINSKY, M. (2013). There is more consensus in
egalitarian parliaments. In Proceedings of 24th ACM SIGOPS Symposium on Operating
Systems Principles.

148

REFERENCES

MOSTEFAOUI, A., MOUMEN, H. & RAYNAL, M. (2015). Signature-free asynchronous bi-
nary Byzantine consensus with T < n/3, O(n2) messages, and O(1) expected time. Journal
of the ACM, 62, 31:1–31:21.

NAKAMOTO, S. (2009). Bitcoin: A peer-to-peer electronic cash system,
http://bitcoin.org/bitcoin.pdf.

NAOR, M. & WOOL, A. (1998). Access control and signatures via quorum secret sharing.
Parallel and Distributed Systems, IEEE Transactions on, 9, 909–922.

NIELSEN, J. (1993). Usability Engineering. Morgan Kaufmann Publishers.

NISHTALA, R., FUGAL, H., GRIMM, S., KWIATKOWSKI, M., LEE, H., LI, H.C.,
MCELROY, R., PALECZNY, M., PEEK, D., SAAB, P., STAFFORD, D., TUNG, T. &
VENKATARAMANI, V. (2013). Scaling memcache at facebook. In Proceedings of the 10th
USENIX Symposium on Networked Systems Design and Implementation, Lombard, IL,
USA.

NOGUEIRA, A., BESSANI, A. & NEVES, N. (2017a). Intrusion-tolerant eclipse scada. In
Symposium on Innovative Smart Grid Cybersecurity Solutions, Vienna, Austria.

NOGUEIRA, A., CASIMIRO, A. & BESSANI, A. (2017b). Elastic state machine replication.
IEEE Transactions on Parallel and Distributed Systems, PP, 1–1.

OKI, B.M. & LISKOV, B. (1988). Viewstamped replication: A new primary copy method to
support highly-available distributed systems. In Proceedings of the 7th ACM Symposium
on Principles of Distributed Computing.

ONGARO, D. & OUSTERHOUT, J. (2014). In search of an understandable consensus algo-
rithm. In 2014 USENIX Annual Technical Conference, Philadelphia, PA, USA.

PADILHA, R. & PEDONE, F. (2013). Augustus: Scalable and robust storage for cloud ap-
plications. In Proceedings of the 8th ACM SIGOPS European Conference on Computer
Systems, Prague, Czech Republic.

PADILHA, R., FYNN, E., SOULÉ, R. & PEDONE, F. (2016). Callinicos: Robust transac-
tional storage for distributed data structures. In 2016 USENIX Annual Technical Confer-
ence, Denver, CO, USA.

149

REFERENCES

PERLMAN, R. (1985). An algorithm for distributed computation of a spanningtree in an
extended lan. SIGCOMM Computer Communication Review, 15, 44–53.

PORTO, D., LEITÃO, J.A., LI, C., CLEMENT, A., KATE, A., JUNQUEIRA, F. & RO-
DRIGUES, R. (2015). Visigoth fault tolerance. In Proceedings of the 10th ACM SIGOPS
European Conference on Computer Systems, Bordeaux, France.

PÂRIS, J. (1986). Voting with witnesses: A consistency scheme for replicated files. In In
Proceedings of the 6th International Conference on Distributed Computing Systems, Cam-
bridge, MA, USA.

RABIN, M.O. (1983). Randomized Byzantine generals. In Proceedings of the 24th IEEE
Symposium on Foundations of Computer Science, Tucson, AZ, USA.

RANDELL, B., LEE, P. & TRELEAVEN, P.C. (1978). Reliability issues in computing system
design. ACM Computing Surveys, 10, 123–165.

REITER, M.K. (1994). Secure agreement protocols: Reliable and atomic group multicast in
Rampart. In Proceedings of the 2nd ACM Conference on Computer and Communication
Security, Fairfax, VA, USA.

REITER, M.K. (1995). The Rampart toolkit for building high-integrity services. In Theory
and Practice in Distributed Systems, 938, 99–110, Springer-Verlag.

REITER, M.K. (1996). A secure group membership protocol. IEEE Transactions on Soft-
ware Engineering, 22, 31–42.

RÜTTI, O., MILOSEVIC, Z. & SCHIPER, A. (2010). Generic construction of consensus
algorithms for benign and Byzantine faults. In Proceedings of the 40st IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks, Chicago, IL, USA.

SAITO, Y. & SHAPIRO, M. (2005). Optimistic replication. ACM Computing Surveys, 37,
42–81.

SANTOS, M.H.D. (2014). Dependable data storage with state machine replication. Master’s
thesis, Faculty of Sciences, University of Lisbon.

SANTOS, N. & SCHIPER, A. (2013a). Achieving high-throughput state machine replica-
tion in multi-core systems. In Proceedings of the 33rd IEEE International Conference on
Distributed Computing Systems, Philadelphia, PA, USA.

150

REFERENCES

SANTOS, N. & SCHIPER, A. (2013b). Optimizing Paxos with batching and pipelining. The-
oretical Computer Science, 496, 170–183.

SCHIPER, N., SUTRA, P. & PEDONE, F. (2009). Genuine versus non-genuine atomic mul-
ticast protocols for wide area networks: An empirical study. In Proceedings of the 28th
IEEE Symposium on Reliable Distributed Systems, Niagara Falls, NY, USA.

SCHNEIDER, F. (1990). Implementing fault-tolerant service using the state machine aproach:
A tutorial. ACM Computing Surveys, 22, 299–319.

SOUSA, P. (2006). Proactive resilience. In Sixth European Dependable Computing Confer-
ence (EDCC-6) Supplemental Volume, Coimbra, Portugal.

SZABO, N. (1996). Smart contracts: Building blocks for digital markets. EXTROPY: The
Journal of Transhumanist Thought.

TOUEG, S. (1984). Randomized Byzantine agreements. In Proceedings of the 3rd ACM Sym-
posium on Principles of Distributed Computing, Vancouver, British Columbia, Canada.

TPC (2010). TPC BenchmarkTM C. http://www.tpc.org.

VANDIVER, B., BALAKRISHNAN, H., LISKOV, B. & MADDEN, S. (2007). Tolerating
Byzantine faults in database systems using commit barrier scheduling. In Proceedings
of the 21st ACM SIGOPS Symposium on Operating Systems Principles, Stevenson, WA,
USA.

VERÍSSIMO, P.E., NEVES, N.F. & CORREIA, M.P. (2003). Architecting dependable sys-
tems. chap. Intrusion-tolerant Architectures: Concepts and Design, 3–36, Springer-Verlag,
Berlin, Heidelberg.

VERONESE, G., CORREIA, M., BESSANI, A. & LUNG, L.C. (2010). EBAWA: Efficient
Byzantine agreement for wide-area networks. In Proceedings of the 12th IEEE Interna-
tional High Assurance Systems Engineering Symposium, San Jose, CA, USA.

VERONESE, G., CORREIA, M., BESSANI, A., LUNG, L.C. & VERISSIMO, P. (2013).
Efficient Byzantine fault-tolerance. IEEE Transactions on Computers, 62, 16–30.

VERONESE, G.S., CORREIA, M., BESSANI, A.N. & LUNG, L.C. (2009). Spin one’s
wheels? Byzantine fault tolerance with a spinning primary. In Proceedings of the 28th
IEEE Symposium on Reliable Distributed Systems, Niagara Falls, NY, USA.

151

REFERENCES

VUKOLIĆ, M. (2010). The Byzantine empire in the intercloud. ACM SIGACT News, 41,
105–111.

VUKOLIĆ, M. (2015). The quest for scalable blockchain fabric: Proof-of-work vs. BFT
replication. In Open Problems in Network Security - IFIP WG 11.4 International Work-
shop, 112–125, Zurich, Switzerland.

VUKOLIĆ, M. (2017). Rethinking permissioned blockchains. In Proceedings of the ACM
Workshop on Blockchain, Cryptocurrencies and Contracts, Abu Dhabi, United Arab Emi-
rates.

WALSH, L., AKHMECHET, V. & GLUKHOVSKY, M. (2009). RethinkDB - rethinking
database storage. http://www.cs.toronto.edu/ ryanjohn/teaching/csc2531-f12/rethinkdb-
whitepaper.pdf.

WARNS, T., STORM, C. & HASSELBRING, W. (2008). Availability of globally distributed
nodes: An empirical evaluation. In Proceedings of the 27th IEEE Symposium on Reliable
Distributed Systems, Naples, Italy.

WELSH, M., CULLER, D. & BREWER, E. (2001). SEDA: An architecture for well-
conditioned, scalable internet services. In Proceedings of the 18th ACM SIGOPS Sym-
posium on Operating Systems Principles, Chateau Lake Louise, Banff, Canada.

WOOD, G. (2015). Ethereum: A secure decentralised generalised transaction ledger,
http://gavwood.com/paper.pdf.

YIN, J., MARTIN, J.P., VENKATARAMANI, A., ALVISI, L. & DAHLIN, M. (2003). Sepa-
rating agreement form execution for Byzantine fault tolerant services. In Proceedings of
the 19th ACM SIGOPS Symposium on Operating Systems Principles, Bolton Landing, NY,
USA.

ZIELINSKI, P. (2004). Paxos at war. Tech. Rep. UCAM-CL-TR-593, University of Cam-
bridge Computer Laboratory, Cambridge, UK.

152

Appendices

153

A
Mod-SMaRt correctness proof

In this Appendix we prove the correctness of Mod-SMaRt. In order to make such proof, two
theorems need to be proven. The first theorem proves the safety of the protocol (i.e., it proves
that all correct replicas process the same sequence of operations), whereas the second proves
its liveness (i.e., that all operations sent by clients are eventually executed). However, before
proving these theorems, it is useful declare and prove the three following lemmas.

Lemma A1: All correct processes install the same sequence of regencies or a prefix of it.

Proof: All correct replicas start their execution at regency 0. If no faults occur and the sys-
tem remains synchronous, this is the regency all correct replicas will ever install, given that
the algorithm never changes its regency in the normal case. However, a period of asynchrony
or a faulty leader at the VP-Consensus primitive may trigger timeouts (lines 1-4 from Algo-
rithm 3) which will lead a correct replica to ask for the installation of the next regency via
the exchange of STOP messages (procedure StartRegChange). The algorithm guarantees
that it is necessary at least one correct replica to start the process of changing the regency
(line 14). Moreover, no correct replica installs a new regency without first receiving at least
2f + 1 STOP messages (line 18), which means that (1) at least f + 1 correct replicas asked
for the next regency to be installed; and (2) all correct replicas in the system will eventually
receive enough STOP messages to justify the installation of the next regency. In addition,
from procedure StartRegChange and line 20, we can observe that no correct process install
regency r without first having regency r−1 installed. Therefore, all correct processes install
the same sequence of regencies or a prefix of it. �

155

A. MOD-SMART CORRECTNESS PROOF

Lemma A2: Algorithm 3 enforces the Termination property of VP-Consensus.
Proof: In order for the Termination property to be preserved within VP-Consensus, Algo-
rithm 3 needs to guarantee that VP-Timeout is invoked as a result of expired timeouts, and
across all correct processes in the system. From the algorithm, we can see that VP-Timeout
is invoked after at least 2f + 1 STOP messages associated to same regency are received.
Given that a correct replica broadcast their STOP messages to all the others, this means
that VP-Timeout will eventually be invoked at all correct replicas in the system. Further-
more, since f + 1 correct replicas had to broadcast STOP messages, at least one correct
replica had to experience a timeout due to either lack of synchrony or a faulty leader within
VP-Consensus. Furthermore, since timers are re-activated after VP-Timeout is invoked, the
process is guaranteed to be repeated as many times as necessary. Hence, Algorithm 3 en-
forces the Termination property of VP-Consensus. �

Lemma A3 If a synchronization phase for regency g starts with a faulty leader l, then even-
tually a synchronization phase for regency g′ > g starts with correct leader l′ 6= l.
Proof: Each synchronization phase uses a special replica called ’leader’, that receives at least
n−f STOPDATA messages and sends a single SYNC message to all replicas in the system
(Algorithm 4, lines 26-31). The election of this leader is based on the current regency. Given
that Lemma A1 proves that all correct replicas install the same sequence of regencies, this
means that (1) an indefinite number of regency changes will take place; and (2) all correct
replicas choose the same leader. If such leader is Byzantine, it can try to break from the
protocol during this phase. But even if the leader is faulty, its behavior is constrained; it is
not able to create false logs (because such logs are signed by the replicas that sent them in the
STOPDATA messages). Additionally, each entry in the log contains the proof associated
with each value decided in a consensus instance, which in turn prevents the replicas from
providing incorrect decision values. Because of this, the worst a faulty leader can do, is:

1. Not send the SYNC message to all replicas in the system. The outcome if this situa-
tion depends on whether or not the leader sends the SYNC message to at least n − f
cooperative replicas (i.e., replicas that will follow the protocol, even if some of them
are actually controlled by an adversary). If the leader does send the message to such
replicas, the synchronization phase can finish, since there are n − f replicas follow-
ing the protocol. Otherwise, the timers associated with the operations waiting to be
ordered will eventually be triggered in at least f + 1 correct replicas, which is enough
to eventually restart the synchronization phase (Algorithm 3 and Lemma A1).

156

2. Send two different SYNC messages to two different sets of replicas. This situation
can happen if the faulty leader waits for more than n− f STOPDATA messages from
replicas. The leader will then create sets of logs L and L′, such that each set has exactly
n − f valid logs, and sends L to a set of replicas Q, and L′ to Q′. In this scenario, Q
and Q′ may create different logs at line 38 of Algorithm 4 and resume normal phase
at different consensus instances. But in order to make progress, at least n− f correct
replicas need to start the same consensus instance (because the consensus primitive
needs these minimum amount of correct processes). Therefore, if the faulty leader
does not send the same set of logs to a set Qn−f with at least n − f replicas that will
follow the protocol, the primitive will not make progress. Hence, if the faulty leader
wants to make progress, it has to send the same set of logs to at least n−f cooperative
replicas. Otherwise, timeouts will occur, and the synchronization phase is eventually
restarted (Algorithm 3 and Lemma A1).

Finally, the new leader may be faulty again, but in that case, the same constraints ex-
plained previously will also apply to such leader. Because of this, when the system reaches
a period of synchrony, after at most f regency changes, there there will be a new leader that
is correct, and progress will be ensured. �

Having the previous lemmas in mind, we now demonstrate that Mod-SMaRt upholds
safety in the form of the following theorem:

Theorem A1 Let r be the correct replica that executed the highest number of operations up
to a certain instant. If r executed the sequence of operations S = o1, ..., os, then all other
correct replicas executed the same sequence of operations or a prefix of it.

Proof: Assume that r and r′ are two distinct correct replicas and o and o′ are two distinct
operations issued by correct client(s). Assume also b and b′ to be the batch of operations
where, respectively, o and o′ were included upon being proposed in some consensus instance.
For r and r′ to be able not to execute the same sequence of operations or a prefix of it, at
least one of three scenarios described below needs to happen.

1. VP-Consensus instance i decides b in replica r, and decides b′ in r′. Since in this sce-
nario the same sequence number can be assigned to 2 different batches, this will cause
o and o′ to be executed in different order at both r and r′. But by the Agreement and

157

A. MOD-SMART CORRECTNESS PROOF

Termination properties of VP-Consensus, such behavior is impossible; Agreement for-
bids two correct processes to decide differently, and Termination (preserved by Lemma
A2) prevents any correct process from deciding more than once.

2. b is a batch decided at VP-Consensus instance i in both r and r′, but the operations
in b are executed in different orders at r and r′. This behavior can never happen
because Algorithm 2 in line 13 forces the operations to be ordered deterministically,
and since both r and r′ are correct, the operations cannot be ordered using different
criteria across correct replicas.

3. Replica r′ executes a sequence of operations containing gaps in relation to S. From
Algorithm 2, we can see that any operation is executed only after the VP-Decide event
is triggered. This event is triggered either when a consensus instance decides a batch —
which occurs during the normal phase — or when invoked by Algorithm 4 in line 45.
In the absence of a synchronization phase, lines 3-6 of Algorithm 2 ensure that any
consensus instance i is only started after instance i−1. This forces any correct process
to execute the same sequence of operations without gaps.

Lets now reason about the occurrence of a synchronization phase. In such case, r′ may
jump an to a consensus instance ahead of the one it was currently executing, effectively
creating a gap on the sequence of instances it participates in. Nonetheless, Algorithm
4 still ensures r′ will VP-Decide (and subsequently execute) all the decisions of the
instances it skipped. This is because Algorithm 4 creates the L set (line 38) using
batches from both the most up-to-date log contained in the SYNC message and from r′

ownDecLog. The algorithms also ensuresL is obtained out of a log of valid operations
(all satisfying validDec) that contains no gaps, i.e., satisfies the noGaps predicate
(lines 35-36). From Lemma A3, we know that there will eventually be a regency with
a correct leader that supplies a valid log in the SY NC message containing a log that
will satisfy the aforementioned conditions. Algorithm 4 then sequentially triggers the
VP-Decide event for each decision contained in L that has not been decided yet by r′

(lines 44-45), thus forcing r′ to execute a sequence of operations that is either S or a
prefix of it.

Given that all the three aforementioned scenarios are impossible to occur, all correct
replicas execute the sequence of operations S or a prefix of it. �

158

Next lemmas are used to prove Mod-SMaRt’ liveness in our system model (Theorem
A2). Before presenting these lemmas, we need to state some required definitions. We say
that an operation issued by a client c completes when c receives the same response for the
operation from at least dn+f+1

2
e different replicas. We also consider that an operation sent by

a client is valid if it is correctly signed, function validCmd returns TRUE for that operation,
and if its sequence number is greater than the last sequence number of the last operation sent
by that client.

Lemma A4 If a correct replica receives a valid operation o, eventually all correct replicas
receive o.
Proof: We have to consider four possibilities concerning correct or faulty client and the
synchrony of the system.

1. Correct client and synchronous system. In this case, the client will send its operation to
all replicas, and all correct ones will receive the operation and store it in the ToOrder

set before a timeout occurs (Algorithm 2, line 1-2 plus procedure RequestReceived).

2. Faulty client and synchronous system. Assume a faulty client sends a valid operation
o to at least one correct replica r. Such replica will initiate a timer t and start a con-
sensus instance i (Algorithm 2, line 1-2 plus procedure RequestReceived). However,
not enough replicas (less than n− f) will initialize a consensus instance i. Because of
this, the timeout for t will eventually be triggered on the correct replicas that received
it (Algorithm 3, line 1), and o will be propagated to all other replicas (line 2-3). From
here, all correct ones will store the operation in the ToOrder set (Algorithm 2, line
18-19 plus procedure RequestReceived).

3. Correct client and asynchronous system. In this case, a correct replica might receive an
operation, but due to delays in the network, it will trigger its timeout before the client
is able to reach all other replicas. Such timeout may be triggered in a correct replica
and the message will be forwarded to other replicas. Because the client is correct, the
operation will eventually be delivered to all correct replicas and each one will store it
in the ToOrder set.

4. Faulty client and asynchronous system. This case is similar to 3), with the addition
that the client may send the request to as few as one correct replica. But like it was
explained in 2), the replica will send the operation to all other replicas upon the first

159

A. MOD-SMART CORRECTNESS PROOF

timeout. This ensures that eventually the operation will be delivered to all correct
replicas and each one will store it in the ToOrder set.

Therefore, if a correct replica receives a valid operation o, them all correct replicas even-
tually receive o. �

Lemma A5 If one correct replica r starts consensus i, eventually n− f replicas start i.
Proof: We need to consider the client that issues the operations that are ordered by the
consensus instance (correct or faulty), the replicas that start such instance (correct or faulty),
and the state of the system (synchronous or asynchronous).

We can observe from Algorithm 2 that an instance is started after selecting a batch of op-
erations from the ToOrder set (lines 4-6). This set stores valid operations issued by clients.
From Lemma A4, we know that a valid operation will eventually be received by all correct
replicas, as long as at least one of those replicas receives it. Therefore, it is not necessary to
consider faulty clients in this lemma.

When analyzing the protocol, we can verify that a consensus instance can be started,
either during the normal phase (Algorithm 2, line 12), or at the end of the synchronization
phase (Algorithm 4, lines 39-40). For both cases, we will prove that if at least one correct
replica r starts a consensus instance i, at least n− f replicas will also eventually start i.

The first case to consider is when i is started by r for the first time during the normal
phase. Following this, there are two scenarios:

1. r decides a value for i before a timeout is triggered. For this scenario to happen, it is
necessary that at least n − f processes participated in the consensus instance without
breaking the protocol. Therefore, n− f replicas had to start instance i.

2. A timeout is triggered before r is able to decide a value for i. This situation can happen
either because the system is passing through a period of asynchrony, or because of
the presence of a faulty leader in the consensus instance (we are assuming that our
primitive is leader driven). Let us consider a consensus instance j such that j is the
highest instance started by a correct replica r′. Let us now consider the following
possibilities:

2-a) r started i and i < j. Remember that our algorithm executes a sequence of
consensus instance, and no correct replica starts an instance without first deciding
the previous one (Algorithm 2, lines 3-6). If i < j, j had to be started after i was

160

decided. But for i to have been decided, at least n − f processes had to participate in
the consensus instance without breaking the protocol. Therefore, n− f replicas had to
start instance i.

2-b) r started i and i > j. This situation is impossible, because if j is the highest
instance started, and since both r and r′ are correct, i cannot be higher than j.

2-c) r started i and i = j. In this case, the synchronization phase might be initialized
before all correct replicas start i. Due to the period of asynchrony that triggered the
synchronization phase, only f or less correct replica might have both decided i − 1

and started i. Hence, the log contained in the SYNC message may be one containing
instances only up to i− 2 (received at Algorithm 4, line 32), even though there exist a
log that goes up to i− 1. This is because, even if all replicas are correct, the leader can
only safely waits for n − f correct STOPDATA messages. Nonetheless, any correct
replica that receives such log will either be already executing instance i or a previous
one. Lines 39-40 ensure that any correct replica either jump to instance i − 1 or keep
executing i, and because of the Termination property (ensured by Lemma A2) and
lines 3-6 from Algorithm 2, any correct replica will start i after i− 1 is decided.

However, we still need to consider the correctness of the leader (correct or faulty), and
the state of the system (synchronous or asynchronous). If the system is asynchronous,
multiple synchronization phases might occur, where in each one a new leader will be
elected. In each iteration, a faulty/malicious replica may be elected as leader and dis-
rupt the behavior previously described; but from Lemma A3, we know that a faulty
leader cannot prevent progress nor force replicas to process an invalid log. There-
fore, when the system finally becomes synchronous, eventually a correct leader will
be elected, and either i or i− 1 are started by n− f replicas.

The second case to consider is when r starts i for the first time at the end of a syn-
chronization phase. If r is starting i at this point in the protocol, it is because i is not the
consensus instance that it was currently executing; r received a decision for i− 1 in the log
contained in the SYNC message, thus starting i based in such log. Nonetheless, this is a
situation equivalent to scenario 2-c. Therefore, eventually n− f replicas will start i. �

Theorem A2 A valid operation requested by a client eventually completes.
Proof: Let o be a valid operation which is sent by a client, and I the finite set of consensus
instance where o is proposed. Due to Lemma A4, we know that o will eventually be received

161

A. MOD-SMART CORRECTNESS PROOF

by all correct replicas, and at least one of them will propose o in at least one instance of I
(because the fair predicate ensures this). By Lemma A5, we also know that such instances
will eventually start in n− f replicas.

Furthermore, let us show that there must be a consensus instance i ∈ I where o will be
part of the batch that is decided in i. As already proven in Lemma A4, all correct replicas will
eventually receive o. Second, we use the fair predicate to avoid starvation, which means that
any operation that is yet to be ordered, will be proposed again. Because of this, all correct
replicas will eventually include o in a batch of operations for the same consensus instance i.
Furthermore, the γ predicate of our external validity property ensures that 1) the operations
in the batch sent by the consensus leader is not empty 2) it is correctly signed, and 3) each
sequence number of each operation is the next sequence number expected from the client
that issued it.

Because there are enough replicas starting i (due to Lemma A5) and the Termination
property of consensus will hold (due to Lemma A2), the consensus instance will eventually
decide a batch containing o in dn+f+1

2
e correct replicas. Finally, these same replicas will

send a REPLY message to the client (Algorithm 2 at line 17), notifying it that the operation
o was ordered and executed. Therefore, a valid operation requested by a client eventually
completes. �

162

B
VP-Consensus algorithm

In this appendix we discuss how a VP-Consensus primitive can be implemented from a stan-
dard consensus algorithm that already provides the three classic properties mentioned in
Section 3.4 (Termination, Integrity and Agreement). More precisely, we explain how the
Byzantine algorithm described in (Cachin, 2009) can be extend to implement VP-Propose,
VP-Decide and VP-Timeout, as well as to satisfy the External Validity and External Prov-
ability properties.

B.1 Algorithm

Cachin’s Byzantine algorithm is a leader-based consensus abstraction (lc), that uses multiple
modules to provide Termination, Integrity and Agreement. Specifically, these modules are
called epoch and epoch-change.1 The module epoch (ep) enforces the Integrity and Agree-
ment properties, by enabling processes to propose values and potentially decide a value. By
contrast, epoch-change (ec) enforces Termination by creating and aborting epochs until a
value is eventually decided in one.

Figure B.1 illustrates an execution of (Cachin, 2009), which is comprised by a sequence
of epochs ep. The message pattern employed by ep is depicted in Figure B.2, which generally
requires 5 communication steps (Figure B.2a), but can be reduce to 3 steps during the first
epoch for any instance of lc (Figure B.2b).

1Depending of the implementations of these two modules, the consensus algorithm can either withstand
crash or Byzantine faults. We focus on the implementations for the Byzantine fault model.

163

B. VP-CONSENSUS ALGORITHM

P0

P1

P2

P3

Timeout i-1 Trust Li

NEWEPOCH

Epoch 0
Leader L0

Eventual
Leader

Detector

Epoch i
Leader Li

DecidePropose

......

Figure B.1: Byzantine leader-driven consensus.

P0

P1

P2

P3

Epoch-Propose Epoch-Decide

READ ACCEPT WRITEINPUT COLLECTED

(a) Standard pattern (i > 0).

P0

P1

P2

P3

Epoch-Propose Epoch-Decide

PROPOSE ACCEPT WRITE

(b) Optimized pattern (i = 0).

Figure B.2: Epoch message pattern.

Epoch-change is responsible for managing the sequence of epochs related to an lc in-
stance, by assigning epoch i to a leader li. If an epoch is unable to finish before a timeout
is triggered, epoch-change complains to an eventual leader detector oracle (Ω) (Chandra &
Toueg, 1996). Once each process is notified to trust a different leader by Ω, it broadcasts a
NEWEPOCH message and waits for other processes to also broadcast this message. Once
enough messages are received, epoch i is aborted and epoch i + 1 is initialized with leader
li+1.

To obtain the VP-Consensus primitive from lc, it is necessary to modify lc and ep as
illustrated in Algorithms 5-6. Upon initializing the algorithm (lines 1–10), the leader for
ep is appointed by the application that invokes VP-Propose instead of being selected by the
algorithm. Furthermore, each VP-Consensus instance is uniquely identified by consID .

164

B.1 Algorithm

Algorithm 5: VP-Consensus implementation derived from Cachin (2009) (part 1).
// Replaces 〈Init〉 in Abstract Leader-Based Consensus

1 Upon VP-Propose(i, l, γ, v) do
2 consID ← i
3 proposed← FALSE
4 decided← FALSE
5 Obtain initial timestamp ets0

6 Initialize an instance of Epoch-change ec with ID i
7 Initialize a new instance of Epoch ep with ID i, timestamp ets0,
8 leader l, predicate γ and state 〈0,⊥〉
9 state← 〈ets0, l〉

10 val← v

// Replaces 〈T.timeout〉 in Abstract Leader-Based Consensus
11 Upon VP-Timeout(consID, l) do
12 if decided = FALSE
13 Trigger 〈Ω.trust | l〉

// Replaces 〈ep.decide | v〉 in
// Abstract Leader-Based Consensus

14 Upon 〈ep.decide | (v,Γ)〉 do
15 if decided = FALSE
16 decided← TRUE
17 Trigger VP-Decide(consID, v, Γ)

// Replaces 〈ep.propose | v〉 in Epoch with
// Byzantine faults (only leader l)

18 Upon 〈ep.propose | v〉 do
19 if val =⊥
20 val← v

21 if ets = ets0

22 Trigger 〈abeb.broadcast | [PROPOSE, v]〉
23 else
24 Trigger 〈abeb.broadcast | [READ]〉

165

B. VP-CONSENSUS ALGORITHM

Algorithm 6: VP-Consensus implementation derived from Cachin (2009) (part 2).
// Additional event for Epoch with Byzantine faults

25 Upon 〈abeb.deliver | pj, [PROPOSE, v]〉 do
26 if ets = ets0

27 writeset← {(ets, v)}
28 Trigger 〈abeb.broadcast | [WRITE, v]〉

// Modifies generation of WRITE messages for
// Epoch with Byzantine faults

29 Upon ∃ v such that |{j|written[j] = v}| > n+f
2

do
30 (valts, val)← (ets, v)
31 written← [⊥]n

32 σ ← sign(self, ACCEPT ||self ||v)
33 Trigger 〈abeb.broadcast | [ACCEPT, v, σ]〉

// Modifies generation of ACCEPT messages for
// Epoch with Byzantine faults

34 Upon 〈abeb.deliver | j, [ACCEPT, v, σ]〉 do
35 accepted[j]← [ACCEPT, v, σ]

// Modifies decision generation for
// Epoch with Byzantine faults

36 Upon ∃ v such that |{j|accepted[j] = [ACCEPT, v, ∗]}| > n+f
2
∧ γ(v) = TRUE

do
37 Trigger 〈ep.decide|(v, accepted)〉
38 halt

Instead of having processes complain to Ω upon an internal timeout, processes expect
the application to invoke VP-Timeout to force Ω to immediately appoint a new trusted leader
(lines 11–13). This can be done because correct processes must only invoke VP-Timeout
after a new leader is elected.

To enforce External Validity, we make the algorithm verify the committed value using
predicate γ (line 36). To ensure External Provability, each process sign its own ACCEPT
message (lines 29–33), store signatures from ACCEPT messages sent from all replicas (lines
34–35), and VP-Decide the decision value alongside the collected messages (lines 14–17,
36–38). In addition, we also implement the optimization that enables the protocol to decided
a value within three communication steps in the first epoch (lines 18–24).

166

B.2 Correctness

B.2 Correctness

To prove that our extension is correct, we show that (1) our modifications preserve the origi-
nal properties of the protocol, and (2) the extension makes the algorithm satisfy the External
Validity and External Provability properties. Moreover, since the aforementioned optimiza-
tion is already discussed in Cachin (2009), we abstain from proving its correctness in the
theorems bellow.

Theorem B1 For any VP-Consensus instance c, if all correct processes (1) eventually ap-
point a correct leader l to c; and (2) propose values vi such that ∀i, γ(vi) = TRUE, the
algorithm still enforces Termination, Integrity and Agreement.

Proof: Correct processes can appoint a leader to the consensus primitive using VP-Propose
(lines 1–10) and VP-Timeout to force the algorithm to trust a different process (lines 11–13).
If all correct processes eventually appoint a correct leader l to c, they enforce the properties
of the eventual leader detector Ω that is required by the original algorithm.

Line 36 prevents a correct process from deciding a value v if γ(v) = FALSE. This can
happen if an epoch is appointed a faulty leader that proposes v. However, as long as all cor-
rect processes enforce Ω, eventually a new epoch will be started with a correct leader which
proposes value v′ such that γ(v′) = TRUE. Given that all correct processes propose a value
that respects predicate γ, such value must exist and will eventually become the decision.

Finally, the generation of Γ (lines 29–35) and respective delivery (lines 14–17, 36–38)
only adds additional information to be delivered alongside the decided value, which does not
result in any alteration to the original protocol. Hence, if all correct processes implement Ω

using VP-Propose/VP-Timeout and those processes propose a valid value, the algorithm still
enforces its original properties (Termination, Integrity and Agreement). �

Theorem B2 Algorithms 5-6 satisfy External Validity.

Proof: Line 36 prevents a correct process from deciding a value v if γ(v) = FALSE, hence
any value that is decided must satisfy predicate γ. From theorem B1, we know that such
value will eventually be decided. Hence, our extension provides External Validity. �

Theorem B3 Algorithms 5-6 satisfy External Provability.

Proof: Lines 29–35 produce signatures for the ACCEPT messages exchange among pro-
cesses. These messages and respective signatures are then delivered alongside the decision

167

B. VP-CONSENSUS ALGORITHM

obtained in the consensus instance (lines 14–17, 36–38). Since signatures are assumed to
be unforgeable, processes can validate the ACCEPT messages to verify if a quorum of pro-
cesses did produce the messages. Since a quorum of signed ACCEPT messages comprise the
last communication step before a decision is delivered, they can be used to prove if a value
v was indeed decided in a consensus instance c. Hence, our extension provides External
Provability. �

168

C
WHEAT vote assignment scheme

correctness proof

In this appendix, we present proofs of correctness for the properties of the vote assignment
schemes presented in Section 5.3.2.

C.1 Preliminary Definitions

We start by establishing the following definitions:

Definition 1. A subset that contains all replicas holding Vmax votes is called a MAX subset.

Definition 2. A subset that contains all replicas holding Vmin votes is called a MIN subset.

Note that the above definitions do not prohibit a MAX subset to contain Vmin replicas,
or a MIN subset to contain Vmax replicas.

C.2 CFT vote assignment

Theorem C1 (Safe minimality): There exists at least one minimal quorum in the system.
Proof: To satisfy this property, the sum of all votes in a minimal quorum must be Fv + 1

(the CFT value of Qv). In addition, the minimal quorum must also be comprised by f + 1

replicas.
By equation (5.5), we know that f replicas holding Vmax votes equals Fv:

169

C. WHEAT VOTE ASSIGNMENT SCHEME CORRECTNESS PROOF

fVmax = Fv

The above expression already accounts for a MAX subset, i.e, all the f replicas holding
Vmax votes. However, we can see that these f replicas are not enough to reach Fv + 1 votes.
To reach this value, we need to add one of the replicas holding Vmin votes. Since we assume
that Vmin = 1, we can expand the previous expression as follows:

fVmax + Vmin = Fv + 1

This gives us the sum of votes provided by a minimal quorum under CFT mode (i.e.,
Qv = Fv + 1). Furthermore, it also shows that any minimal quorum is comprised by f + 1

replicas. Hence, there exists at least one minimal quorum in the system. �

Theorem C2 (Availability): There is always a quorum available in the system that holds
Qv votes.
Proof: Since f replicas may fail by crash or be too slow, the quorum may need at most n−f
replicas. From equation (5.1) we can unpack:

n− f = (2f + ∆ + 1)− f = f + ∆ + 1

Let us assume the worst case scenario, where all of the f replicas holding Vmax are not
present in a subset of n − f replicas. This is the scenario that will subtract the most from
the sum of all votes, leaving the system with an MIN subset comprised strictly by the Vmin
replicas. In this case, we can expand the previous expression to infer the number of votes as
follows:

f + ∆ + 1⇒ (f + ∆ + 1)Vmin

Using equation (5.5), we have:

(f + ∆ + 1)Vmin = (f + ∆)Vmin + Vmin = Fv + 1

Given that we considered the worst case scenario, any other combination of hosts will
hold a sum of votes equal or greater than Qv = Fv + 1. Hence, there is always a quorum
available in the system that holds Qv votes. �

170

C.2 CFT vote assignment

Before proving the Consistency property, we start by presenting the following lemmas:

Lemma C1: All MAX subsets intersect by at least one replica.
Proof: Any MAX subset contains all f replicas holding Vmax votes. Therefore, any MAX

subset will share all these f replicas among them. Since f ≥ 1, MAX subsets always inter-
sect by at least one replica. �

Lemma C2: All MIN subsets intersect by at least one replica.
Proof: Any MIN subset contains all f + ∆ + 1 replicas holding Vmin votes. Therefore, any
MIN subset will share all these f + ∆ + 1 replicas among them. Since f + ∆ + 1 ≥ 1, MIN

subsets always intersect by at least one replica. �

Lemma C3: If a subset holds Qv = Fv + 1 votes, it is either a MAX or a MIN subset.
Proof: This lemma is proved by contradiction. Lets attempt to obtain Qv = Fv + 1 votes
from a subset comprised by all but one Vmax replica and all but one Vmin replica:

Qv = (f − 1)Vmax + (∆ + f)Vmin ⇒
Fv + 1 = fVmax − Vmax + (∆ + f)Vmin

By equation (5.5), we can convert the above expression to:

Fv + 1 = Fv − Vmax + ∆ + f ⇒
1 = −Vmax + ∆ + f

By equation (5.8), we can convert the above expression to:

1 = −(1 +
∆

f
) + (∆ + f)⇒ ∆ + f = 2 +

∆

f

To solve the equation above, we can either assume that ∆ = 2, f = ∆
f

or ∆ = ∆
f

, f = 2.
We thus use two equation systems to find a solution.

(a)

∆ + f = 2 + ∆

f

∆ = ∆
f

f = 2

171

C. WHEAT VOTE ASSIGNMENT SCHEME CORRECTNESS PROOF

(b)

∆ + f = 2 + ∆

f

∆ = 2

f = ∆
f

If we develop ∆ from system (a), we obtain:

∆ =
∆

f
⇒ f = 1

However, system (a) already has f = 2, which leads to a contradiction. This leaves us
with system (b), where we can develop f as follows:

f =
∆

f
⇒ f 2 = ∆

Since ∆ = 2, it follows that:

f 2 = 2

However, f must be a natural number, since it represents the maximum amount of repli-
cas that can fail. Therefore, given our system model, this solution is invalid.

Finally, we cannot consider even less Vmax or Vmin replicas, since the sum of votes de-
creases even more fromQv. On the other hand, if we assume more replicas, we are rendering
the set either MAX or MIN . Hence, any subset that holds Qv votes must be either MAX or
MIN . �

We now state the following corollaries:

Corollary C1: If a MAX subset holds Qv = Fv + 1 votes, it contains f + 1 replicas.

Proof: From Safe minimality, a minimal quorum holds Qv = Fv + 1 votes and contains
f + 1 replicas. In addition, the correspondent proof shows that a minimal quorum contains
all Vmax replicas, which makes it a MAX subset. �

Corollary C2: If a MIN subset holds Qv = Fv + 1 votes, it contains n− f replicas.

Proof: From Availability, it is always possible to access a quorum holdingQv = Fv+1 votes
with at most n − f replicas. In addition, the correspondent proof shows that such quorum
contains all Vmin replicas, which makes it a MIN subset. �

172

C.3 BFT vote assignment

Now we use Lemmas C1-C3 and Corollaries C1-C2 to prove the following theorem:

Theorem C3: All subsets holding Qv = Fv + 1 votes are quorums that intersect in at least
one replica.
Proof: From Lemma C3, we can infer that any possible quorum can be classified as either
a MAX or MIN subset. We already showed that MAX (resp. MIN) subsets intersect in at
least one replica in Lemma C1 (resp. Lemma C2). To finish proving this theorem, we need
to show that, as long as they hold Qv = Fv + 1 votes, any MAX and MIN intersect in at
least one replica. From Corollary C1, any MAX that is a minimal quorum (i.e., holds Qv

votes) contains f + 1 replicas. From Corollary C2, any MIN holding Qv votes is comprised
by n−f replicas. Therefore, if we sum the number of replicas contained in MAX and MIN ,
we have:

(f + 1) + (n− f) =

f + 1 + 2f + ∆ + 1− f =

2f + ∆ + 2

Since 2f + ∆ + 2 ≥ n, MAX and MIN intersect in at least one replica. Therefore, all
subsets holding Qv = Fv + 1 votes are quorums that intersect in at least one replica. �

We can finally prove the Consistency property using Theorem C3:

Theorem C4 (Consistency): All quorums that holdQv votes intersect by at least one correct
replica.
Proof: Theorem C3 shows that gathering Qv votes guarantee quorum intersection in one
replica. Since replicas can only fail by crash, the replica in the intersection must be correct.
Therefore, if Qv votes are gathered, we have quorums that intersect by at least one correct
replica. �

C.3 BFT vote assignment

Theorem C5 (Safe minimality): There exists at least one minimal quorum in the system.

173

C. WHEAT VOTE ASSIGNMENT SCHEME CORRECTNESS PROOF

Proof: To satisfy this property, the sum of all votes in a minimal quorum must be 2Fv + 1

(the BFT value of Qv). In addition, the minimal quorum must also be comprised by 2f + 1

replicas.

As we concluded in Section 5.3.2, there must exist 2f replicas holding Vmax votes under
BFT mode. Furthermore, by equation (5.5), we know that f replicas holding Vmax votes
equals Fv. Based on these two observations, we can unpack the expression:

2fVmax = 2Fv

The above expression already accounts for a MAX subset, i.e, all the 2f replicas holding
Vmax votes. However, we can see that these 2f replicas are not enough to reach 2Fv + 1

votes. To reach this value, we need to add one of the replicas holding Vmin votes. Since we
assume that Vmin = 1, we can expand the previous expression as follows:

2fVmax + Vmin = 2Fv + 1

The above expression gives us the sum of votes provided by a minimal quorum under
BFT mode (i.e., Qv = 2Fv + 1). Furthermore, it also shows that any minimal quorum is
comprised by 2f + 1 replicas. Hence, there exists at least one minimal quorum in the sys-
tem. �

Theorem C6 (Availability): There is always a quorum available in the system that holds
Qv votes.

Proof: Since f replicas may fail by crash or refuse to answer a request, the quorum may
need at most n− f replicas. From equation (5.1)1 we can unpack:

n− f = (3f + ∆ + 1)− f = 2f + ∆ + 1

Let us assume the worst case scenario, where f replicas holding Vmax are not present in
a subset of n − f replicas. This is the scenario that will subtract the most from the sum of
all votes, leaving the system with an MIN subset. However, since the total amount of Vmax
replicas in the system is 2f , there are still other f Vmax replicas that did not fail. In this case,
we can expand the previous expression to infer the number of votes as follows:

1Under BFT mode, equation (5.1) becomes n = 3f + 1 + ∆

174

C.3 BFT vote assignment

2f + ∆ + 1 = f + f + ∆ + 1⇒ fVmax + (f + ∆ + 1)Vmin

= fVmax + (f + ∆)Vmin + 1

Using equation (5.5), we have:

Fv + Fv + 1 = 2Fv + 1

Given that we considered the worst case scenario, any other combination of hosts will
hold a sum of votes equal or greater than Qv = 2Fv + 1, since they will contain at least one
replica with Vmax votes. Hence, there is always a quorum available in the system that holds
Qv votes. �

Before proving the Consistency property, we start by presenting the following lemmas:

Lemma C4: All MAX subsets intersect by at least f + 1 replicas.

Proof: Any MAX subset contains all 2f replicas holding Vmax votes. Therefore, any MAX

subset will share all these 2f replicas among them. Since 2f ≥ f + 1, MAX subsets always
intersect by at least f + 1 replicas. �

Lemma C5: All MIN subsets intersect by at least f + 1 replicas.

Proof: Any MIN subset contains all f + ∆ + 1 replicas holding Vmin votes. Therefore, any
MIN subset will share all these f + ∆ + 1 replicas among them. Since f + ∆ + 1 ≥ f + 1,
MIN subsets always intersect by at least f + 1 replicas. �

Lemma C6: If a subset holds Qv = 2Fv + 1 votes, it is either a MAX or a MIN subset.

Proof: This lemma is proved by contradiction. Lets attempt to obtain Qv = 2Fv + 1 votes
from a subset comprised by all but one Vmax replica and all but one Vmin replica:

Qv = (2f − 1)Vmax + (∆ + f)Vmin ⇒
2Fv + 1 = 2fVmax − Vmax + (∆ + f)Vmin

By equation (5.5), we can convert the above expression to:

175

C. WHEAT VOTE ASSIGNMENT SCHEME CORRECTNESS PROOF

2Fv + 1 = 2Fv − Vmax + ∆ + f ⇒
1 = −Vmax + ∆ + f

By equation (5.8), we can convert the above expression to:

1 = −(1 +
∆

f
) + (∆ + f)⇒ ∆ + f = 2 +

∆

f

To solve the equation above, we can either assume that ∆ = 2, f = ∆
f

or ∆ = ∆
f

, f = 2.
We thus use two equation systems to find a solution.

(c)

∆ + f = 2 + ∆

f

∆ = ∆
f

f = 2

(d)

∆ + f = 2 + ∆

f

∆ = 2

f = ∆
f

If we develop ∆ from system (c), we obtain:

∆ =
∆

f
⇒ f = 1

However, system (c) already has f = 2, each leads to a contradiction. This leaves us
with system (d), where we can develop f as follows:

f =
∆

f
⇒ f 2 = ∆

Since ∆ = 2, it follows that:

f 2 = 2

However, f must be a natural number, since it represents the maximum amount of repli-
cas that can fail. Therefore, given our system model, this solution is invalid.

Finally, we cannot consider even less Vmax or Vmin replicas, since the sum of votes de-
creases even more fromQv. On the other hand, if we assume more replicas, we are rendering

176

C.3 BFT vote assignment

the set either MAX or MIN . Hence, any subset that holds Qv votes must be either MAX or
MIN . �

We now state the following corollaries:

Corollary C3: If a MAX subset holds Qv = 2Fv + 1 votes, it contains 2f + 1 replicas.

Proof: From Safe minimality, a minimal quorum holds Qv = 2Fv + 1 votes and contains
2f + 1 replicas. In addition, the correspondent proof shows that a minimal quorum contains
all Vmax replicas, which makes it a MAX subset. �

Corollary C4: If a MIN subset holds Qv = 2Fv + 1 votes, it contains n− f replicas.

Proof: From Availability, it is always possible to access a quorum holding Qv = 2Fv + 1

votes with at most n− f replicas. In addition, the correspondent proof shows that such quo-
rum contains all Vmin replicas, which makes it a MIN subset. �

Now we use Lemmas C4-C6 and Corollaries C3-C4 to prove the following:

Theorem C7: All subsets holding Qv = 2Fv + 1 votes are quorums that intersect in at least
f + 1 replicas.

Proof: From Lemma C6, we can infer that any possible quorum can be classified as either
a MAX or MIN subset. We already showed that MAX (resp. MIN) subsets intersect in at
least f+1 replicas in Lemma C4 (resp. Lemma C5). To finish proving this theorem, we need
to show that, as long as they hold Qv = 2Fv + 1 votes, any MAX and MIN intersect in at
least f + 1 replicas. From Corollary C3, any MAX that is a minimal quorum (i.e., contains
Qv votes) contains 2f + 1 replicas. From Corollary C4, any MIN holding Qv votes must
contain n− f replicas. Therefore, if we sum the number of replicas contained in MAX and
MIN , we have:

(2f + 1) + (n− f) =

2f + 1 + 3f + ∆ + 1− f =

4f + ∆ + 2

Furthermore, we can also observe that:

177

C. WHEAT VOTE ASSIGNMENT SCHEME CORRECTNESS PROOF

4f + ∆ + 2 ≥ n =

4f + ∆ + 2 ≥ 3f + ∆ + 1 =

2f + 2 ≥ f + 1

Since 2f + 2 ≥ f + 1, MAX and MIN intersect in at least f + 1 replicas. Therefore,
all subsets holdingQv = 2Fv+1 votes are quorums that intersect in at least f+1 replicas. �

We can finally prove the Consistency property using Theorem C7:

Theorem C8 (Consistency): All quorums that holdQv votes intersect by at least one correct
replica.
Proof: Theorem C7 shows that gathering Qv votes guarantee quorum intersection in f + 1

replicas. Since at least one out of those f + 1 replicas must be correct, if Qv votes are
gathered, we have quorums that intersect by at least one correct replica. �

178

