101 research outputs found

    Applications of reprogrammability in algorithm acceleration

    Get PDF
    This doctoral thesis consists of an introductory part and eight appended publications, which deal with hardware-based reprogrammability in algorithm acceleration with a specific emphasis on the possibilities offered by modern large-scale Field Programmable Gate Arrays (FPGAs) in computationally demanding applications. The historical evolution of both the theoretical and technological paths culminating in the introduction of reprogrammable logic devices is first outlined. This is followed by defining the commonly used terms in the thesis. The reprogrammable logic market is surveyed, and the architectural structures and the technological reasonings behind them are described in detail. As reprogrammable logic lies between Application Specific Integrated Circuits (ASICs) and general-purpose microprocessors in the implementation spectrum of electronics systems, special attention has been paid to differentiate these three implementation approaches. This has been done to emphasize, that reprogrammable logic offers much more than just a low-volume replacement for ASICs. Design systems for reprogrammable logic are investigated, as the learning curve associated with them is the main hurdle for software-oriented designers for using reprogrammable logic devices. The theoretically important topic of partial reprogrammability is described in detail, but it is concluded, that the practical problems in designing viable development platforms for partially reprogrammable systems will hinder its wide-spread adoption. The main technical, design-oriented, and economic applicability factors of reprogrammable logic are laid out. The main advantages of reprogrammable logic are their suitability for fine-grained bit-level parallelizable computing with a short time-to-market and low upfront costs. It is also concluded, that the main opportunities for reprogrammable logic lie in the potential of high-level design systems, and the ever-growing ASIC design gap. On the other hand, most power-conscious mass-market portable products do not seem to offer major new market potential for reprogrammable logic. The appended publications are examined and compared to contemporaneous research at other research institutions. The conclusion is that for relatively wide classes of well-defined computation problems, reprogrammable logic offers a more efficient solution than a software-centered approach, with a much shorter production cycle than is the case with ASICs.reviewe

    System engineering and evolution decision support, Final Progress Report (05/01/1998 - 09-30-2001)

    Get PDF
    The objective of our effort is to develop a scientific basis for system engineering automation and decision support. This objective addresses the long term goals of increasing the quality of service provided complex systems while reducing development risks, costs, and time. Our work focused on decision support for designing operations of complex modular systems that can include embedded software. Emphasis areas included engineering automation capabilities in the areas of design modifications, design records, reuse, and automatic generation of design representations such as real-time schedules and software.U.S. Army Research OfficeFunding number(s): DSAM 90387, DWAM 80013, DWAM 90215

    Proceedings of Monterey Workshop 2001 Engineering Automation for Sofware Intensive System Integration

    Get PDF
    The 2001 Monterey Workshop on Engineering Automation for Software Intensive System Integration was sponsored by the Office of Naval Research, Air Force Office of Scientific Research, Army Research Office and the Defense Advance Research Projects Agency. It is our pleasure to thank the workshop advisory and sponsors for their vision of a principled engineering solution for software and for their many-year tireless effort in supporting a series of workshops to bring everyone together.This workshop is the 8 in a series of International workshops. The workshop was held in Monterey Beach Hotel, Monterey, California during June 18-22, 2001. The general theme of the workshop has been to present and discuss research works that aims at increasing the practical impact of formal methods for software and systems engineering. The particular focus of this workshop was "Engineering Automation for Software Intensive System Integration". Previous workshops have been focused on issues including, "Real-time & Concurrent Systems", "Software Merging and Slicing", "Software Evolution", "Software Architecture", "Requirements Targeting Software" and "Modeling Software System Structures in a fastly moving scenario".Office of Naval ResearchAir Force Office of Scientific Research Army Research OfficeDefense Advanced Research Projects AgencyApproved for public release, distribution unlimite

    Waveform Design for 5G and beyond Systems

    Get PDF
    5G traffic has very diverse requirements with respect to data rate, delay, and reliability. The concept of using multiple OFDM numerologies adopted in the 5G NR standard will likely meet these multiple requirements to some extent. However, the traffic is radically accruing different characteristics and requirements when compared with the initial stage of 5G, which focused mainly on high-speed multimedia data applications. For instance, applications such as vehicular communications and robotics control require a highly reliable and ultra-low delay. In addition, various emerging M2M applications have sparse traffic with a small amount of data to be delivered. The state-of-the-art OFDM technique has some limitations when addressing the aforementioned requirements at the same time. Meanwhile, numerous waveform alternatives, such as FBMC, GFDM, and UFMC, have been explored. They also have their own pros and cons due to their intrinsic waveform properties. Hence, it is the opportune moment to come up with modification/variations/combinations to the aforementioned techniques or a new waveform design for 5G systems and beyond. The aim of this Special Issue is to provide the latest research and advances in the field of waveform design for 5G systems and beyond

    Exploration d'architectures génériques sur FPGA pour des algorithmes d'imagerie multispectrale

    Get PDF
    Les architectures multiprocesseur sur puce (MPSoC) basées sur les réseaux sur puce (NoC) constituent une des solutions les plus appropriées pour les applications embarquées temps réel de traitement du signal et de l image. De part l augmentation constante de la complexité de ces algorithmes et du type et de la taille des données manipulées, des architectures MPSoC sont nécessaires pour répondre aux contraintes de performance et de portabilité. Mais l exploration de l espace de conception de telles architectures devient très coûteuse en temps. En effet, il faut définir principalement le type et le nombre des coeurs de calcul, l architecture mémoire et le réseau de communication entre tous ces composants. La validation par simulation de haut niveau manque de précision, et la simulation de bas niveau est inadaptée au vu de la taille de l architecture. L émulation sur FPGA devient donc inévitable. Dans le domaine de l image, l imagerie spectrale est de plus en plus utilisée car elle permet de multiplier les intervalles spectraux, améliorant la définition de la lumière d une scène pour permettre un accès à des caractéristiques non visibles à l oeil nu. De nombreux paramètres modifient les caractéristiques de l algorithme, ce qui influence l architecture finale. L objectif de cette thèse est de proposer une méthode pour dimensionner au plus juste l architecture matérielle et logicielle d une application d imagerie multispectrale. La première étape est le dimensionnement du NoC en fonction du trafic sur le réseau. Le développement automatique d une plateforme d émulation sur mono ou multi FPGA facilite cette étape et détermine le positionnement des composants de calcul. Ensuite, le dimensionnement des composants de calcul et leurs fonctionnalités sont validés à l aide de plateformes de simulation existantes, avant la génération du modèle synthétisable sur FPGA. Le flot de conception est ouvert dans le sens qu il accepte différents NoC à condition d avoir le modèle source HDL de ce composant. De nombreux résultats mettent en avant les paramètres importants qui ont une influence sur les performances des architectures et du NoC en particulier. Plusieurs solutions sont décrites, commentées et critiquées. Ces travaux nous permettent de poser les premiers jalons d une plateforme d émulation complète MPSoC à base de NoCThe Multiprocessor-System-On-Chip (MPSoC) architectures based on the Network-On-Chip (NoC) communication are the one of the most appropriate solution for image and signal processing applications under real time constraints. Due to the ever increasing complexity of these algorithms, the types and sizes of the data manipulated, the MPSoC architectures are necessary to meet the constraints of performance and portability. However exploring the design space of such architecture is time consuming. Indeed, many parameters should be defined such as the type and the number of processing cores, the memory architecture and the communication network between all these components. Validation by high-level simulations has the lack of the precision. Low-level simulation is inadequate for such big size of the architecture. Therefore, the emulation on FPGA becomes inevitable. In image processing, spectral imaging is more and more used. This technology captures light from more frequencies than the human eye increasing the number of wavelengths. Invisible details can be extracted from a scene. The difference between all spectral imaging applications is the number of wavelengths and the precision. Many parameters affect the characteristics of the algorithm, having a huge impact on the final architecture. The objective of this thesis is to propose a method for sizing one of the most accurate hardware and software architecture for multispectral imaging application. The first step is the design of the NoC based on the network traffic. The automatic development of an emulation platform on a single FPGA or multi-FPGAs simplifies this step and determines the positioning of the computational components. Then, the design of computational components and their functions are validated using existing simulation platforms. The synthesizable model of the architecture on FPGA is then generated. The design flow is open. Several NoC structures can be inserted using the source model of this component. The set of results obtained points out the major parameters influencing the performances of architecture and the NoC itself. Several solutions are described and analyzed. These studies allow us to lay the groundwork for a complete MPSoC emulation platform based on NoCST ETIENNE-Bib. électronique (422189901) / SudocSudocFranceF

    Third Workshop on Modelling of Objects, Components, and Agents

    Get PDF
    This booklet contains the proceedings of the Third International Workshop on Modelling of Objects, Components, and Agents (MOCA'04), October 11-13, 2004. The workshop is organised by the CPN group at the Department of Computer Science, University of Aarhus, Denmark and the "Theoretical Foundations of Computer Science" group at the University of Hamburg. The home page of the workshop is: http://www.daimi.au.dk/CPnets/workshop0

    Proceedings of the 5th International Workshop on Reconfigurable Communication-centric Systems on Chip 2010 - ReCoSoC\u2710 - May 17-19, 2010 Karlsruhe, Germany. (KIT Scientific Reports ; 7551)

    Get PDF
    ReCoSoC is intended to be a periodic annual meeting to expose and discuss gathered expertise as well as state of the art research around SoC related topics through plenary invited papers and posters. The workshop aims to provide a prospective view of tomorrow\u27s challenges in the multibillion transistor era, taking into account the emerging techniques and architectures exploring the synergy between flexible on-chip communication and system reconfigurability

    Annual Report Of Research and Creative Productions By Faculty and Staff, January to December, 2015

    Get PDF
    Annual Report Of Research and Creative Productions by Faculty and Staff from January to December, 2015
    corecore