33 research outputs found

    Getting Past the Language Gap: Innovations in Machine Translation

    Get PDF
    In this chapter, we will be reviewing state of the art machine translation systems, and will discuss innovative methods for machine translation, highlighting the most promising techniques and applications. Machine translation (MT) has benefited from a revitalization in the last 10 years or so, after a period of relatively slow activity. In 2005 the field received a jumpstart when a powerful complete experimental package for building MT systems from scratch became freely available as a result of the unified efforts of the MOSES international consortium. Around the same time, hierarchical methods had been introduced by Chinese researchers, which allowed the introduction and use of syntactic information in translation modeling. Furthermore, the advances in the related field of computational linguistics, making off-the-shelf taggers and parsers readily available, helped give MT an additional boost. Yet there is still more progress to be made. For example, MT will be enhanced greatly when both syntax and semantics are on board: this still presents a major challenge though many advanced research groups are currently pursuing ways to meet this challenge head-on. The next generation of MT will consist of a collection of hybrid systems. It also augurs well for the mobile environment, as we look forward to more advanced and improved technologies that enable the working of Speech-To-Speech machine translation on hand-held devices, i.e. speech recognition and speech synthesis. We review all of these developments and point out in the final section some of the most promising research avenues for the future of MT

    A Survey of Word Reordering in Statistical Machine Translation: Computational Models and Language Phenomena

    Get PDF
    Word reordering is one of the most difficult aspects of statistical machine translation (SMT), and an important factor of its quality and efficiency. Despite the vast amount of research published to date, the interest of the community in this problem has not decreased, and no single method appears to be strongly dominant across language pairs. Instead, the choice of the optimal approach for a new translation task still seems to be mostly driven by empirical trials. To orientate the reader in this vast and complex research area, we present a comprehensive survey of word reordering viewed as a statistical modeling challenge and as a natural language phenomenon. The survey describes in detail how word reordering is modeled within different string-based and tree-based SMT frameworks and as a stand-alone task, including systematic overviews of the literature in advanced reordering modeling. We then question why some approaches are more successful than others in different language pairs. We argue that, besides measuring the amount of reordering, it is important to understand which kinds of reordering occur in a given language pair. To this end, we conduct a qualitative analysis of word reordering phenomena in a diverse sample of language pairs, based on a large collection of linguistic knowledge. Empirical results in the SMT literature are shown to support the hypothesis that a few linguistic facts can be very useful to anticipate the reordering characteristics of a language pair and to select the SMT framework that best suits them.Comment: 44 pages, to appear in Computational Linguistic

    Getting Past the Language Gap: Innovations in Machine Translation

    Get PDF
    In this chapter, we will be reviewing state of the art machine translation systems, and will discuss innovative methods for machine translation, highlighting the most promising techniques and applications. Machine translation (MT) has benefited from a revitalization in the last 10 years or so, after a period of relatively slow activity. In 2005 the field received a jumpstart when a powerful complete experimental package for building MT systems from scratch became freely available as a result of the unified efforts of the MOSES international consortium. Around the same time, hierarchical methods had been introduced by Chinese researchers, which allowed the introduction and use of syntactic information in translation modeling. Furthermore, the advances in the related field of computational linguistics, making off-the-shelf taggers and parsers readily available, helped give MT an additional boost. Yet there is still more progress to be made. For example, MT will be enhanced greatly when both syntax and semantics are on board: this still presents a major challenge though many advanced research groups are currently pursuing ways to meet this challenge head-on. The next generation of MT will consist of a collection of hybrid systems. It also augurs well for the mobile environment, as we look forward to more advanced and improved technologies that enable the working of Speech-To-Speech machine translation on hand-held devices, i.e. speech recognition and speech synthesis. We review all of these developments and point out in the final section some of the most promising research avenues for the future of MT

    SRL for low resource languages isn’t needed for semantic SMT

    Get PDF
    Previous attempts at injecting semantic frame biases into SMT training for low resource languages failed because either (a) no semantic parser is available for the low resource input language; or (b) the output English language semantic parses excise relevant parts of the alignment space too aggressively. We present the first semantic SMT model to succeed in significantly improving translation quality across many low resource input languages for which no automatic SRL is available —consistently and across all common MT metrics. The results we report are the best by far to date for this type of approach; our analyses suggest that in general, easier approaches toward including semantics in training SMT models may be more feasible than generally assumed even for low resource languages where semantic parsers remain scarce. While recent proposals to use the crosslingual evaluation metric XMEANT during inversion transduction grammar (ITG) induction are inapplicable to low resource languages that lack semantic parsers, we break the bottleneck via a vastly improved method of biasing ITG induction toward learning more semantically correct alignments using the monolingual semantic evaluation metric MEANT. Unlike XMEANT, MEANT requires only a readily-available English (output language) semantic parser. The advances we report here exploit the novel realization that MEANT represents an excellent way to semantically bias expectation-maximization induction even for low resource languages. We test our systems on challenging languages including Amharic, Uyghur, Tigrinya and Oromo. Results show that our model influences the learning towards more semantically correct alignments, leading to better translation quality than both the standard ITG or GIZA++ based SMT training models on different datasets.This material is based upon work supported in part by the Defense Advanced Research Projects Agency (DARPA) under LORELEI contract HR0011-15-C-0114, BOLT contracts HR0011-12-C-0014 and HR0011-12-C-0016, and GALE contracts HR0011-06-C-0022 and HR0011-06-C-0023; by the European Union under the Horizon 2020 grant agreement 645452 (QT21) and FP7 grant agreement 287658; and by the Hong Kong Research Grants Council (RGC) research grants GRF16210714, GRF16214315, GRF620811 and GRF621008

    A Deep Source-Context Feature for Lexical Selection in Statistical Machine Translation

    Get PDF
    this is the author’s version of a work that was accepted for publication in Pattern Recognition Letters . Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Pattern Recognition Letters 75 (2016) 24–29. DOI 10.1016/j.patrec.2016.02.014.This paper presents a methodology to address lexical disambiguation in a standard phrase-based statistical machine translation system. Similarity among source contexts is used to select appropriate translation units. The information is introduced as a novel feature of the phrase-based model and it is used to select the translation units extracted from the training sentence more similar to the sentence to translate. The similarity is computed through a deep autoencoder representation, which allows to obtain effective lowdimensional embedding of data and statistically significant BLEU score improvements on two different tasks (English-to-Spanish and English-to-Hindi). © 2016 Elsevier B.V. All rights reserved.The work of the first author has been supported by FPI UPV pre-doctoral grant (num. registro - 3505). The work of the second author has been supported by Spanish Ministerio de Economia y Competitividad, contract TEC2015-69266-P and the Seventh Framework Program of the European Commission through the International Outgoing Fellowship Marie Curie Action (IMTraP-2011-29951). The work of the third author has been supported by the Spanish Ministerio de Economia y Competitividad, SomEMBED TIN2015-71147-C2-1-P research project and by the Generalitat Valenciana under the grant ALMAPATER (PrometeoII/2014/030).Gupta, PA.; Costa-Jussa, MR.; Rosso, P.; Banchs, R. (2016). A Deep Source-Context Feature for Lexical Selection in Statistical Machine Translation. Pattern Recognition Letters. 75:24-29. https://doi.org/10.1016/j.patrec.2016.02.014S24297

    Adjunction in hierarchical phrase-based translation

    Get PDF
    corecore