850 research outputs found

    An overview of Mirjam and WeaveC

    Get PDF
    In this chapter, we elaborate on the design of an industrial-strength aspectoriented programming language and weaver for large-scale software development. First, we present an analysis on the requirements of a general purpose aspect-oriented language that can handle crosscutting concerns in ASML software. We also outline a strategy on working with aspects in large-scale software development processes. In our design, we both re-use existing aspect-oriented language abstractions and propose new ones to address the issues that we identified in our analysis. The quality of the code ensured by the realized language and weaver has a positive impact both on maintenance effort and lead-time in the first line software development process. As evidence, we present a short evaluation of the language and weaver as applied today in the software development process of ASML

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Systematic literature review of realistic simulators applied in educational robotics context

    Get PDF
    This paper presents a systematic literature review (SLR) about realistic simulators that can be applied in an educational robotics context. These simulators must include the simulation of actuators and sensors, the ability to simulate robots and their environment. During this systematic review of the literature, 559 articles were extracted from six different databases using the Population, Intervention, Comparison, Outcomes, Context (PICOC) method. After the selection process, 50 selected articles were included in this review. Several simulators were found and their features were also analyzed. As a result of this process, four realistic simulators were applied in the review’s referred context for two main reasons. The first reason is that these simulators have high fidelity in the robots’ visual modeling due to the 3D rendering engines and the second reason is because they apply physics engines, allowing the robot’s interaction with the environment.info:eu-repo/semantics/publishedVersio

    Fifth Biennial Report : June 1999 - August 2001

    No full text

    Semantic Model Alignment for Business Process Integration

    Get PDF
    Business process models describe an enterprise’s way of conducting business and in this form the basis for shaping the organization and engineering the appropriate supporting or even enabling IT. Thereby, a major task in working with models is their analysis and comparison for the purpose of aligning them. As models can differ semantically not only concerning the modeling languages used, but even more so in the way in which the natural language for labeling the model elements has been applied, the correct identification of the intended meaning of a legacy model is a non-trivial task that thus far has only been solved by humans. In particular at the time of reorganizations, the set-up of B2B-collaborations or mergers and acquisitions the semantic analysis of models of different origin that need to be consolidated is a manual effort that is not only tedious and error-prone but also time consuming and costly and often even repetitive. For facilitating automation of this task by means of IT, in this thesis the new method of Semantic Model Alignment is presented. Its application enables to extract and formalize the semantics of models for relating them based on the modeling language used and determining similarities based on the natural language used in model element labels. The resulting alignment supports model-based semantic business process integration. The research conducted is based on a design-science oriented approach and the method developed has been created together with all its enabling artifacts. These results have been published as the research progressed and are presented here in this thesis based on a selection of peer reviewed publications comprehensively describing the various aspects

    Sixth Biennial Report : August 2001 - May 2003

    No full text
    • 

    corecore