
Electronic Notes in Theoretical Computer Science 82 No. 3 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume82.html 16 pages

Exploiting XPG for Visual Languages
Definition, Analysis and Development

G. Costagliola, 1 V. Deufemia, 2 F. Ferrucci, 3 C. Gravino 4

Dipartimento Matematica e Informatica
Universitá di Salerno
Baronissi(SA), Italy

Abstract

In this paper we present the approach based on the formalism of Extended Po-
sitional Grammars (XPG) for specifying, designing and implementing visual lan-
guages. Special emphasis is put on describing the benefits deriving from the use
of such formalism. Indeed, it allows us to exploit the well-established theoretical
background and techniques developed for string languages in the setting of visual
languages. As a matter of fact, an efficient syntactic analysis of visual languages
can be effectively perfomed by using a suitable extension of LR techniques. More-
over, syntax-direct translations can be used to verify properties of visual sentences
during a semantic analysis phase. Finally, a visual environment for a target visual
language can be automatically generated by exploiting a YACC-like tool based on
XPG.

1 Introduction

The importance of graphical notations in human-computer interaction and
human-human communication, and the decreasing cost of hardware technolo-
gies and graphics software have caused the development of a large number
of visual languages in many different application fields [4,10,14]. In partic-
ular, visual modeling languages are largely used in the software engineering
field since they allow designers to provide suitable models of the system at
different levels of abstraction.

One of the main question in the visual languages research field is how to
specify visual languages. Informally, a visual language can be seen as a set

1 Email:gcostagliola@unisa.it
2 Email:deufemia@unisa.it
3 Email:fferrucci@unisa.it
4 Email:gravino@unisa.it

c©2003 Published by Elsevier Science B. V. CC BY-NC-ND license. Open access under

http://creativecommons.org/licenses/by-nc-nd/3.0/

Costagliola et al.

of diagrams which represent the valid sentences for the language and each
diagram is a collection of visual symbols arranged in the Cartesian plane.

During the last years formal methods are achieving increasing importance
in the context of visual languages. Indeed, much effort is presently put to
develop formal techniques for specifying, designing and implementing visual
languages [3,10,15,16,20]. Several of such methods are grammar-based, even
if, other different approaches have been investigated in the last years, such
as logic-based [12] and algebraic approaches [22]. The literature offers several
grammatical formalisms for the specification of visual languages, which differ
one from another under several aspects [10,15,16,20].

In this paper we focus our attention on the approach of Extended Po-
sitional Grammars which represent a direct extension of context-free string
grammars where more general relations other than concatenation are allowed.
Indeed, the idea behind the definition of such formalism has been to exploit the
well-established theoretical background and techniques developed for string
languages in the field of visual languages. The paper highlights the expressive
power of the formalism which turns out to be able to describe complex visual
languages and at same time to stress the benefits that can be derived from
providing a specification of a language in terms of the XPG model. In partic-
ular, we show how the use of context-free style productions can simplify the
development of complex visual languages allowing us to effectively adopt an
incremental approach. On the defined language several tasks can be easily per-
formed such as customization and modifications as well as the maintenance
and the debug. Moreover, syntax-directed translations can be carried out
based on the syntactic structure, which is the output of the syntactic anal-
ysis process, in order to verify properties of visual sentences. Analogously,
code and report generation can be effectively realized by suitably exploiting
the syntax structure. All of these benefits turn out to be especially interest-
ing in the setting of visual modeling languages because they are subject to
continuous changes as the history of UML diagrams shows.

Starting from a syntax and semantic specification of the language, a visual
environment specific for a language can be automatically generated exploiting
the Visual Language Compiler-Compiler (VLCC) system, a graphical system
which is able to assist a designer in the definition of a visual language and au-
tomatically generate a corresponding visual environment [6]. In recent years,
special focus has been put on the implementation of systems that generate
visual environments starting from formal specifications of visual languages
[2,5,6,8,9,22].

The formalism of Extended Positional Grammars provides the syntactic
framework for the VLCC. The most appealing feature of VLCC is that it
inherits and extends to the visual field concepts and techniques of traditional
compiler generation tools like YACC [13]. This is due to the characteristics of
the extended positional grammar model which represents a natural extension
of the context-free grammars. Indeed, a goal of the formalism is to overcome

2

Costagliola et al.

the inefficiency of visual languages parsing algorithms by researching suitable
extensions of the well-known LR technique. As a result, some versions of the
formalism have been defined as new more powerful parsing algorithms have
been devised. In particular, the Extended Positional Grammars formalism is
based on an extension of LR parsing, named XpLR methodology [7]. The
XpLR methodology consists of algorithms to encode a positional grammar
into an XpLR parsing table. Then this parsing table deterministically drives
a shift-reduce syntax analysis of diagrammatic sentences. As a main difference
with traditional LR parsing the input access is no longer sequential but driven
by the relations contained in the positional grammars. In particular, the parser
retrieves the next symbol to be analyzed by launching queries on the input
sentence.

The paper is organized as follows. Section 2 describes the main charac-
teristics of the Extended Positional Grammars. Section 3 shows an LR-based
methodology for the parsing of visual languages modeled through XPGs. Sec-
tion 4 illustrates how the use of Extended Positional Grammars formalism
allows to extend semantic analysis techniques developed for string languages
in the field of visual languages. Section 5 is devoted to describe the main
features of the VLCC system. Conclusions conclude the paper.

2 XPG: a Formalism to Define Visual Languages

In this section we illustrate the main characteristics of the eXtended Positional
Grammars (XPG, for short).

In order to represent visual sentences, the XPG formalism uses an attribute-
based approach [7], that is a sentence is conceived as a set of attributed sym-
bols. The attributes of each symbol can be classified in physic, syntactic, and
semantic attributes. The values of the syntactic attributes are determined by
the relationships holding among the symbols. Thus, a sentence is specified by
combining symbols with relations. As an example, a state transition diagram
could be specified by providing the symbols representing nodes and edges, and
the relations between them. In particular, the syntactic attribute to express
the attachment relation between the borderline of nodes and the end point of
edges could be an attaching region.

In its general definition an XPG is the pair (G, PE), where PE is a posi-
tional evaluator, and G can be seen as a particular type of context-free string
attributed grammar (N, T∪POS, S, P) where:
• N is a finite non-empty set of non-terminal symbols;

• T is a finite non-empty set of terminal symbols, with N∩T = ∅;
• POS is a finite set of binary relation identifiers, with POS∩N= ∅ and
POS∩T = ∅;

• S∈ N denotes the starting symbol;

3

Costagliola et al.

• P is a finite non-empty set of productions having the following format:

A → x1R1x2R2 . . . xm−1Rm−1xm,∆,Γ

where A is a non-terminal symbol, x1R1x2R2 . . . xm−1Rm−1xm is a linear
representation with respect to POS where each xi is a symbol in N ∪ T and
each Rj is partitioned in two sub-sequences

(〈RELh1
1 , . . . , RELhk

k 〉, 〈REL
hk+1

k+1 , . . . , RELhn
n 〉) with 1 ≤ k ≤ n

The relation identifiers in the first sub-sequence of an Rj are called driver
relations, whereas the ones in the second sub-sequence are called tester rela-
tions. During syntax analysis driver relations are used to determine the next
symbol to be scanned, whereas tester relations are used to check whether
the last scanned symbol (terminal or non-terminal) is properly related to
previously scanned symbols.
Without loss of generality we assume that there are no useless symbols, and
no unit and empty productions [1].
∆ is a set of rules used to synthesize the values of the syntactic attributes
of A from those of x1, x2 ,. . ., xm;
Γ is a set of triples (Nj, Condj, ∆j)j=1,..,t, t≥0, used to dynamically in-
sert new terminal symbols in the input visual sentence during the parsing
process. In particular,
· Nj is a terminal symbol to be inserted in the input visual sentence;
· Condj is a pre-condition to be verified in order to insert Nj;
· ∆j is the rule used to compute the values of the syntactic attributes of Nj

from those of x1,. . ., xm.

Moreover, a property that guarantee the convergence of parsing algorithms,
based on XPGs, is: “for each production A → x1 . . . xm, ∆, Γ the number
of triples in Γ whose conditions can simultaneously evaluate to true must be
less than m-1”. This means that no more than m-2 symbols can be inserted
in the input during the application of a production.

Informally, a Positional Evaluator PE is a materialization function which
transforms a linear representation into the corresponding visual sentence in
the attribute-based representation and/or graphical representation. In the
following we characterize the languages described by an extended positional
grammar XPG = ((N, T ∪ POS, S, P), PE).

We write α ⇐ β and say that β reduces to α in one step, if there exist δ,
γ, A, η such that

(i) A → η, ∆, Γ is a production in P,

(ii) β = δηγ,

(iii) α = δA’πγ, where A’ is a symbol whose attributes are set according to
the rule ∆ and π results from the application of the rule Γ.

We also write α
i⇐ β to indicate that the reduction has been achieved by

applying production i. Moreover, we write α
∗⇐ β and say that β reduces to

4

Costagliola et al.

α, if there exist α0, α1, . . ., αm (m ≥ 0) such that

α = α0 ⇐ α1 ⇐ . . . ⇐ αm = β

The sequence αm, αm−1, . . ., α0 is called a derivation of α from β.

• a positional sentential form from S is a string β such that S
∗⇐ β

• a positional sentence from S is a string β containing no non-terminals and
such that S

∗⇐ β

• a visual sentential form (visual sentence, resp.) from S is the result of
evaluating a positional sentential form (positional sentence, resp.) from S
through PE.

The language described by an XPG, L(XPG), is the set of the visual sen-
tences from the starting symbol S of XPG.

In order to exemplify the above concepts let us illustrate an XPG for
generating State Transition Diagrams.

Example 2.1 Let STD=((N, T ∪ POS, S, P), PE) be the XPG for State
Transition Diagrams, characterized as follows. The set of non-terminals is
given by N = {StateTD, Graph, Node} where each symbol has one attaching
region as syntactic attribute, and StateTD is the starting symbol, i.e. S =
StateTD.

The set of terminals is given by T = {NODEI, NODEIF, NODEF, NODEG,
EDGE, PLACEHOLD}. The terminal symbols NODEI, NODEIF, NODEF,
NODEG have one attaching region as syntactic attribute. They represent,
the initial, the initial and final, the final, and the generic node, respectively,
of a state transition diagram. The terminal symbol EDGE has two attaching
points as syntactic attributes corresponding to the start and end points of the
edge. Finally, PLACEHOLD is a fictitious terminal symbol to be dynamically
inserted in the input sentence during the parsing process. It has one attaching
region as syntactic attribute. The terminal symbols are graphically depicted
in Fig. 1. Here, each attaching region is represented by a bold line and is
identified by the number 1, whereas the two attaching regions of EDGE are
represented by bullets and are identified each by a number. In the follow-
ing, the notation Sym i denotes the attaching region i of the symbol Sym.
The set of relations is given by POS = {LINKi,j, any}, where the relation

11

NODEI NODEIF NODEF NODEG EDGE PLACEHOLD

1 1

1 2

1

Fig. 1. The terminals for the grammar STD.

identifier any denotes a relation that is always satisfied between any pair of
symbols. Moreover, we use the notation h k when describing the absence of
a connection between two attaching areas h and k.

5

Costagliola et al.

Next, we provide the set of productions for describing State Transition
Diagrams.

(1) StateTD → Graph

(2) Graph → NODEI
∆: (Graph1 = NODEI1)

(3) Graph → NODEIF
∆: (Graph1 = NODEIF1)

(4) Graph → Graph’ 〈〈1 1〉,〈1 2〉〉 EDGE 2 1 Node
∆: (Graph1 = Graph’1 - EDGE1)
Γ: {(PLACEHOLD; |Node1| >1; PLACEHOLD1 = Node1 - EDGE2)}

(5) Graph → Graph’ 〈〈1 1〉, 〈1 2〉〉 EDGE
∆: (Graph1 = (Graph’1 - EDGE1) - EDGE2)

(6) Graph → Graph’ 〈〈1 2〉, 〈1 1〉〉 EDGE 1 1 Node
∆: (Graph1 = Graph’1 - EDGE2)
Γ: {(PLACEHOLD; |Node1| >1; PLACEHOLD1 = Node1 - EDGE1)}

(7) Graph → Graph’ 〈any〉 PLACEHOLD
∆: (Graph1 = PLACEHOLD1)

(8) Node → NODEG
∆: (Node1 = NODEG1)

(9) Node → NODEF
∆: (Node1 = NODEF1)

(10) Node → PLACEHOLD
∆: (Node1 = PLACEHOLD1)

Notice that Graph1 = Graph’1 - EDGE1 indicates set difference and is to be
interpreted as follows: “the attaching area 1 of Graph has to be connected to
whatever is attached to the attaching area 1 of Graph’ except for the attaching
point 1 of EDGE”. Moreover the notation |Node1| indicates the number of
connections to the attaching area 1 of Node.

According to these rules, a State Transition Diagram is described by a
graph (production 1) defined as

• an initial node (production 2) or as

• an initial-final node (production 3) or, recursively, as

• a graph connected to a node through an outgoing (production 4) or incoming
(production 6) edge, or as

• a graph with a loop edge (production 5).

A node can be either a generic node (production 8) or a final node (production
9). The need for productions 7 and 10 will be clarified in the following example.

Figg. 2(a-i) show the steps to reduce a state transition diagram through the
extended positional grammar STD shown above. In particular, dashed ovals
indicate the handles to be reduced, and their labels indicate the productions to

6

Costagliola et al.

be used. The reduction process starts by applying production 2 to the initial
state transition diagram. This causes the terminal NODEI representing state
1 to be reduced to the non-terminal Graph. Due to the ∆ rule of production
2, Graph inherits all the connections of NODEI. Similarly, the application of
production 8 replaces the unique NODOG of Fig. 2(a) with the non-terminal
Node. Fig. 2(b) shows the resulting visual sentential form, and highlights
the handle for the application of production 4. The symbols Graph, EDGE,
and Node are then reduced to the new non-terminal Graph. Due to the ∆
rule of production 4, the new Graph is connected to all the remaining edges
attached to the old Graph. Moreover, due to the Γ rule, since |Node| = 4 > 1,
a new node PLACEHOLD is inserted in the input, and it is connected to all
the remaining edges attached to the old Node. Fig. 2(c) shows the resulting
visual sentential form.

 (a) (b) (c) (d)

Production 8
Production 2

1

3

2

Production 4

NodeGraph

Production 9

Graph

Production 4

Node

Graph

Production 7

Graph

Production 10

Production 5

Graph

(e) (f) (g) (h) (i)

StateTD

Production 4

Graph
’

Node Production 1

Graph

Enter Package

Show Tips

No Tips

Exit Tips

Next Tip

Fig. 2. The reduction process for a state transition diagram.

After the application of productions 9 and 4 the visual sentential form
reduces to the one shown in Fig. 2(e). Then, production 7 reduces the non-
terminals Graph and PLACEHOLD to a new non-terminal Graph. By apply-
ing the ∆ rule of production 7, the new Graph inherits all the connections to
PLACEHOLD (see Fig. 2(f)). The subsequent application of productions 10,
5, 4 and 1 reduces the original state transition diagram to the starting symbol
in Fig. 2(i), confirming that the visual sentence associated to the initial state
transition diagram belongs to the visual language L(STD).

3 Syntax Analysis of Visual Languages

The idea behind the definition of the XPG formalism is to overcome the ineffi-
ciency of the visual languages syntactic analysis by researching efficient parsing
algorithms based on suitable extensions of the well-known LR technique. As a
result, some versions of the formalism have been defined as new more powerful
parsing algorithms have been devised, thus allowing the specification and the
analysis of more complex classes of visual languages. In particular, the XPG

7

Costagliola et al.

is based on an extension of LR parsing, named XpLR methodology [7], which
is a framework for implementing visual systems. An XpLR parser scans the
input in a non-sequential way, driven by the relations used in the grammar.

The components of an XpLR parser are shown in Fig. 3 and are detailed
in the following. The input to the parser is a dictionary storing the attribute-

action goto next

XpLR Parsing Table

XpLR parsing

program
(driver program)

Input

sm

Xm

.....

s1

X1

s0

Stack

symbol

next symbol request

Output

Fig. 3. The architecture of an XpLR parser.

based representation of a picture as produced by the visual editor. No parsing
order is defined on the symbols in the dictionary. The parser retrieves the
symbols in the dictionary by a find operation driven by the relations in the
grammar.

An instance of the stack has the general format s0X1s1X2s2. . .Xmsm, where
sm is the stack top; Xi is a grammar symbol, and si is a generic state of the
parsing table. The parsing algorithm uses the state on the top of the stack
and the symbol currently under examination to access a specific entry of the
parsing table in order to decide the next action to execute.

An XpLR parsing table (see Fig. 4) is composed of a set of rows and is
divided in three main sections: action, goto, and next. Each row is composed
of an ordered set of one or more sub-rows each corresponding to a parser state.
The action and goto sections are similar to the ones used in LR parsing tables
for string languages [1], while the next section is used by the parser to select the
next symbol to be processed. An entry next[k] for a state sk contains the pair
(Rdriver, x), which drives the parser in selecting the next symbol to be parsed
(derivable from x) by using the sequence of driver relations Rdriver. The action
and goto entries are named conditioned actions and have the format “Rtester:
state” and “Rtester: shift state”, respectively, where Rtester is a possibly empty
sequence of tester relations. A shift or goto action is executed only if all the
relations in Rtester are true, or if Rtester is empty.

As an example, Fig. 4 shows the XpLR(0) parsing table for the XPG
grammar given in example 2.1. If the current state corresponds to sub-row
4.1 and the current symbol is EDGE, then if the relation 1 2 does not hold
between EDGE and the first symbol below the stack top then the parser
executes the conditioned action (1 2 : sh5), and it goes to state 5. Otherwise

8

Costagliola et al.

if the relation 1 2 holds between EDGE and the first symbol below the stack
top then the parser executes the conditioned action (1 2 : sh6), and it goes
to state 6. If it reaches state 5, due to next[5] = (2 1, Node), it looks for
a terminal derivable from Node which is in relation 2 1 with the just seen
EDGE. It can be noted that, in this case, the parser is matching the input
against production (4).

The XpLR methodology resolves the shift-reduce and reduce-reduce con-
flicts inherited from the pLR methodology [6] by splitting a state in one or
more ordered sub-states. As an example, let us consider again the XpLR(0)
parsing table in Fig. 4. It can be noted that row 4 has been split in 4 ordered
sub-states with no conflicts. In fact, even though entry (4.1, EDGE) presents
two conditioned actions, these have mutually exclusive conditions. State 4
records the fact that the parser has just reduced a Graph and is ready to
match, in this order, an outgoing EDGE with no loop (see state 4.1 and pro-
duction 4), or an outgoing EDGE with loop (see state 4.1 and production 5),
or an incoming EDGE (see state 4.2 and production 6), or any PLACEHOLD
(see state 4.3 and production 7), or and End-Of-Input (EOI) (see state 4.4
and production 1).

In general, an XpLR parsing table may present a positional conflict if
there exists an entry of the next section containing more than one element,
and a shift-shift conflict (goto-goto conflict, resp.) if the action section (goto
section, resp.) presents an entry with more than one conditioned action with
conditions that are not mutually exclusive [7].

St. Action G oto NEXT
NODEI NODEIF NODEF NODEG EDGE PLACEHOLD EOI StateTD Graph Node

0 :sh2 :sh3 :1 :4 (start, StateTD)
1 acc (end, EOI)
2 r2 r2 r2 r2 r2 r2 r2 -
3 r3 r3 r3 r3 r3 r3 r3 -
1 1 2_ : sh5

1_2: sh6

(1_1, EDGE)

4 2 1 1_ : sh7 (1_2, EDGE)

3 :sh8 (any, PLACEHOLD)
4 r1 r1 r1 r1 r1 r1 r1 -
5 :sh11 :sh10 :sh12 :9 (2_1, Node)
6 r5 r5 r5 r5 r5 r5 r5 -
7 :sh11 :sh10 :sh12 :13 (1_1, Node)
8 r7 r7 r7 r7 r7 r7 r7 -
9 r4 r4 r4 r4 r4 r4 r4 -
10 r8 r8 r8 r8 r8 r8 r8 -
11 r9 r9 r9 r9 r9 r9 r9 -
12 r10 r10 r10 r10 r10 r10 r10 -
13 r6 r6 r6 r6 r6 r6 r6 -

Fig. 4. An XpLR(0) parsing table.

As described in the previous section an XpLR parser may not converge
in the analysis of a visual sentence, since the parser may get into a loop
while reducing productions where the number of symbols introduced with Γ is
greater or equal to the number minus one of symbols popped from the stack.
Thus, the time complexity analysis of the XpLR parser is restricted to the

9

Costagliola et al.

class of convergent parsers.

The complexity of the parser is given by the cost of the shift and reduce
actions. In particular, the cost of a shift operation depends on the time to
find the next symbol and the time to test the possible tester relations. While
the cost of a reduce operation depends on the time to synthesize the syntactic
attributes, and the time to apply the Γ rule. These values depend on the
particular class of visual languages. Taking as an example the graph languages,
the time complexity to parse a visual sentence containing n symbols, and
with nt symbols inserted during the parsing is O(n(n + nt)). Indeed, the
parsing time complexity on the grammar STD is O(n2) since the number of
symbols introduced during the parsing is limited by the number of edges in
the sentence.

4 Semantic Analysis of Visual Languages

The development of visual languages can benefit from the use of grammatical
formalisms since techniques developed for string languages can be inherited
in the field of visual languages. As an example, properties of visual languages
could be verified during a static semantic analysis which could be carried out
by exploiting the syntax structure given in output by the parsing alghoritm.

To this aim, semantic attributes and semantic rules are to be added to
the symbols and to the productions of the XPG obtaining a syntax-directed
translation. Analogously to string languages, syntax-directed definitions can
be used to specify the construction of a syntax structure summarizing the
information of the input visual sentence.

In the following we will show how a semantic analysis phase performs the
static verification of visual modeling languages. In particular, we will consider
Statecharts [11] and UML Collaboration Diagrams [19].

In the software engineering field a static verification phase is especially
important because it allows to detect possible errors during specification or
design phase of a system. Statecharts are widely used to specify reactive
systems. For such model it would be useful to verify the presence of loop
transitions, conflicting transitions, etc. As an example, the statechart of Fig.
5 exhibits an anomalous behavior whenever the system is in CD Paused state
and a Pause event happened. Indeed two different transitions are triggered by
such event, causing the system to enter into both CD Playing and CD Stopped
states, that should be mutually exclusive.

By adding semantic rules to the productions of XPG grammar provided
in [21] the parser produces a syntax graph as output of the syntax analysis.
Fig. 6 shows the syntax graph corresponding to the statechart in Fig. 5.

Algorithms on graphs can be applied to such syntax graph in order to
determine the presence of specific properties such as conflicting transitions
and then detect possible anomalous behaviors of the system. As an example,
the conflicting transition of statechart in Fig. 5 can be detected by checking if

10

Costagliola et al.

Fig. 5. A statechart that models the behavior of a CD Player user interface.

No CD Loaded
Eject CD Loaded

CD Stopped CD Playing

root

CD Paused

Pause

Pause

Timer Expired

Stop

Play

Timer Expired

Stop

 CD in drawer

Play

Pause

Fig. 6. The syntax graph corresponding to the statechart in Fig. 5.

there exists a node, in the syntax graph of Fig. 6, with more than one output
transition with the same event (see node CD Paused).

Collaboration diagrams describe the set of interactions between UML classes
[19]. In particular, they show the sequence of messages that pass between the
linked objects. It is easy to modify the XPG grammar for state transition
diagrams given in example 2.1 in order to obtain an XPG for Collaboration
Diagrams.

In Fig. 7 it is depicted a collaboration diagram with an incorrect sequence
of messages, as a matter of fact there are two messages with number 4. It is
possible to verify such type of inconsistency by analyzing the syntax struc-
ture produced by the parser. In particular, the analysis could be effectively
performed by representing the information of a collaboration diagram with a

11

Costagliola et al.

table as shown in Fig. 8.

:Elevator Button

: passenger

1:press

:ElevatorController

2:update request

3:illuminate

:Elevator :Door

6:cancel illuminate

4:move

4:reach floor

7:open

8:close

5:stop

Fig. 7. A collaboration diagram for serving elevator button.

Source Target Message

passenger Elevator Button 1: press

Elevator Button ElevatorController 2: upadate

ElevatorController Elevator Button 3: illuminate

ElevatorController Elevator Button 6: cancel illuminate

ElevatorController Elevator 4: move

Elevator ElevatorController 4: reach floor

ElevatorController Elevator 5: stop

ElevatorController Door 8: close

ElevatorController Door 7: open

Fig. 8. The syntax structure produced from collaboration in Fig. 7.

It is worth noting that it is possible to define algorithms that exploit the
generated syntax structure to animate the models having a dynamic behavior.
As an example, in the case of statecharts the algorithm maintains the list of
active states, and the transitions from such states whose input events have
occurred are performed by deactivating their source states and activating their
target states.

Furthermore the syntax structure can be used to generate documents. As
an example, UML sentences could be translated into the corresponding XML
Model Interchange (XMI) format. XMI is a standard file format for inter-
changing UML designs [19].

12

Costagliola et al.

5 An XPG-based Generator of Visual Environments

It is widely recognized that a visual language can be effectively used only
if it is supported by a visual environment within which it is embedded and
tightly integrated. This has motivated the research for tools which generate
visual environments starting from formal specifications of visual languages
[2,5,6,8,17,18,9,22].

The Visual Language Compiler-Compiler (VLCC) is a visual environment
generation system based on the XPG model that inherits, and extends to the
visual field, concepts and techniques of compiler generation tools like YACC
[6,13]. Such tool assists the visual language designer in the definition of the
language by assisting him/her in the specification of the symbols, the syn-
tax and the semantics of the language, and automatically generates a visual
environment starting from the supplied language specification.

Visual Language Compiler-Compiler

Grammar

Editor

Symbol Editor

Production

Editor

Visual

Programming

Environment

Generator

VPE user

Language

designer

Visual Programming Environment

LR–based

compiler

Visual

Editor

Fig. 9. The VLCC architecture.

The architecture of VLCC is shown in Fig. 9. The designer creates the
terminal and the non-terminal symbols of the grammar by using the Symbol
Editor. This editor works in two modes, the drawing mode and the symbol
mode. In drawing mode the designer can create or modify images using the
usual graphical editor facilities. In symbol mode the designer can transform
an image into a grammar symbol (terminal or non-terminal) by adding the
syntactic and the semantic attributes, or can modify the syntactic or semantic
attributes of a symbol.

The set of terminal and non-terminal symbols are used by the language
designer to create the productions using the Production Editor (see Fig. 9)
that allows to define the production rules of the grammar through a text
editor.

13

Costagliola et al.

Once the XPG grammar has been defined the VPEG produces the editor
and the compiler of the defined visual language.

Fig. 10 shows the visual editor window for the statecharts language to-
gether with the windows containing the terminals and the relations of the
language. The user can edit a sentence of the language by selecting terminals
and arranging them on the working window.

Fig. 10. The Visual Editor window for the statecharts language showing a statechart
sentence that models the behavior of a blower with High and Low ventilation mode
and three different temperature modes.

The availability of such tool turns out to be a useful support for a validation
phase of the language development. As a matter of fact, the designer can
quickly receive feedback from the customer during the language prototyping
process and modify the prototype in agreement with the customer’s advice.
This user-centered design is especially desirable due to the nature of visual
languages whose effectiveness strongly depends on the consistency between
user’s intention and machine interpretation.

6 Conclusions

In the paper, the XPG model has been used to illustrate the benefits that
can derive from exploiting formal language descriptions for the development
of visual languages. Presently grammatical formalisms for the specification
of visual languages are considered of great interest. The literature offers a
wide variety of such formalisms, which differ one from another under several
aspects [10].

A notable feature of XPG is its ability to successfully balance the expressive
power and the efficiency of the parsing algorithm. As a matter of fact, a
powerful extension of the LR technique has been devised making efficient the
analysis of visual languages specified using XPGs. Nevertheless, this does not
reduce the expressive power of the formalism which is able to describe very
complex visual languages. Indeed, the XPG is turned out to be able to capture

14

Costagliola et al.

all the features of statecharts language that represents a very rich graphical
formalism [21].

Another notable advantage of using XPG derives from the availability
of an XPG-based system, which allows us to automatically obtain a visual
environments starting from the syntactic and semantic specification of the
language.

References

[1] A.V. Aho, R. Sethi, and J.D. Ullman, “Compilers, principles, techniques and
tools”, Addison-Wesley, New York , 1985.

[2] R. Bardhol, “GENGED - A Generic Graphical Editor for Visual Languages
Based on Algebraic Graph Grammars”, in Procs. 1998 IEEE Symposium on
Visual Languages, Halifax, Nova Scotia, Sept 1-4, 1998, pp. 48-55.

[3] P. Bottoni, M.F. Costabile, and P. Mussio, “Specification and dialogue control
of visual interaction through visual rewriting system”, ACM Transaction on
Programming Languages and Systems, 21(6) pp.1077-1136, 1999.

[4] E. C. Baroth and C. Hartsough, “Experience Report: Visual Programming
in the Real World”, Visual Object Oriented Programming, edited by M. M.
Burnett, A. Goldberg & T. G. Lewis, Manning Publications, Prentice Hall,
1995, pp. 21-42.

[5] S. S. Chok and K. Marriott, “Automatic construction of intelligent diagram
editors”, in Proceedings of the ACM Symposium on User Interface Software
and Technology UIST98, San Francisco, California, 1998, pp. 185194.

[6] G. Costagliola, A. De Lucia, S. Orefice, G. Tortora, “A Parsing Methodology
for the Implementation of Visual Systems”, IEEE Transactions on Software
Engineering, 23(12), 1997, pp. 777-799.

[7] G. Costagliola and G. Polese, “Extended Positional Grammars”, in Proceedings
of 2000 IEEE Symposium on Visual Languages, Seattle, WA, USA.

[8] C. Crimi, A. Guercio, G. Pacini, G. Tortora, and M. Tucci, “Automating Visual
Language Generation”, IEEE Transactions on Software Engineering, 16(10),
1990, pp. 1122-1135.

[9] F. Ferrucci, F. Napolitano, G. Tortora, M. Tucci, and G. Vitiello, “An
Interpreter for Diagrammatic Languages Based on SR Grammars”, Procs. 13th
IEEE Symposium on Visual Languages, Capri, Italy, September, 1997, pp. 296-
303.

[10] F. Ferrucci, G. Tortora, and G. Vitiello, “Visual Programming”, in Encyclopedia
of Software Engineering, J.J. Marciniak (Ed.), John Wiley and Sons, 2001.

[11] D. Harel, “StateCharts: A Visual Formalism for Complex Systems”, Science of
Computer Programming, 8, 1987, pp. 231-274.

15

Costagliola et al.

[12] R. Helm and K. Marriott, “Declarative Specification of Visual Languages”,
Procs. of the IEEE Workshop on Visual Languages, 98-103 (1990).

[13] S. C. Johnson, “YACC: Yet Another Compiler Compiler”, Bell Laboratories,
Murray Hills, NJ.

[14] G. Kent, “Automated RF Test System for Digital Cellular Telephones”, Procs
of the NEPCON West ’93, Anaheim, California, 1055-1064 (1993).

[15] K. Marriott and B. Meyer, editors. Visual language theory. Springer-Verlag,
1998.

[16] M. Minas, “Diagram Editing with Hypergraph Parser Support”, in Procs. of
13th IEEE Symposium on Visual Languages, Capri, Italy, Sept. 1997, 226-233.

[17] M. Minas, “Automatically Generating Environments for Dynamic Diagram
Languages”, Procs. 14th IEEE Symposium on Visual Languages, Halifax, Nova
Scotia, Sept. 1998, pp. 70-71.

[18] M. Minas, and G. Viehstaedt, “DiaGen: A Generator for Diagram Editors
Providing Direct Manipulation and Execution of Diagrams”, in Procs. 11th
IEEE International Symposium on Visual Languages, Darmstadt, Germany,
1995, pp. 203-210.

[19] Object Management Group: UML specification v1.4, OMG-Document
formal/01-09-67, 2001. Available from http://www.omg.org/technology/
documents/formal/uml.htm.

[20] J. Rekers, A. Schurr, “A Graph Based Framework for the Implementation of
Visual Environments”, in Proceedings 12th IEEE International Symposium on
Visual Languages, Boulder, Colorado, Sept. 1996, pp. 148-157.

[21] Statecharts Modeling Contest in Symposium on Human-Centric Computing
Languages and Environments (HCC’01), Stresa, (2001). http://www2.
informatik.uni-urlangen.de/VLFM01/Statecharts.

[22] S.M. Uskudarli, and T.B. Dinesh, “Towards a Visual Programming
Environment Generator for Algebraic Specifications”, Procs. 11th IEEE
International Symposium on Visual Languages, Darmstadt, Germany, 1995.

16

