1,290 research outputs found

    Fast Convergence and Reduced Complexity Receiver Design for LDS-OFDM System

    Get PDF
    Low density signature for OFDM (LDS-OFDM) is able to achieve satisfactory performance in overloaded conditions, but the existing LDS-OFDM has the drawback of slow convergence rate for multiuser detection (MUD) and high receiver complexity. To tackle these problems, we propose a serial schedule for the iterative MUD. By doing so, the convergence rate of MUD is accelerated and the detection iterations can be decreased. Furthermore, in order to exploit the similar sparse structure of LDS-OFDM and LDPC code, we utilize LDPC codes for LDS-OFDM system. Simulations show that compared with existing LDS-OFDM, the LDPC code improves the system performance

    Self-concatenated code design and its application in power-efficient cooperative communications

    No full text
    In this tutorial, we have focused on the design of binary self-concatenated coding schemes with the help of EXtrinsic Information Transfer (EXIT) charts and Union bound analysis. The design methodology of future iteratively decoded self-concatenated aided cooperative communication schemes is presented. In doing so, we will identify the most important milestones in the area of channel coding, concatenated coding schemes and cooperative communication systems till date and suggest future research directions

    Space-Time Codes Concatenated with Turbo Codes over Fading Channels

    Get PDF
    The uses of space-time code (STC) and iterative processing have enabled robust communications over fading channels at previously unachievable signal-to-noise ratios. Maintaining desired transmission rate while improving the diversity from STC is challenging, and the performance of the STC suffers considerably due to lack of channel state information (CSI). This dissertation research addresses issues of considerable importance in the design of STC with emphasis on efficient concatenation of channel coding and STC with theoretical bound derivation of the proposed schemes, iterative space-time trellis coding (STTC), and differential space-time codes. First, we concatenate space-time block code (STBC) with turbo code for improving diversity gain as well as coding gain. Proper soft-information sharing is indispensable to the iterative decoding process. We derive the required soft outputs from STBC decoders for passing to outer turbo code. Traditionally, the performance of STBC schemes has been evaluated under perfect channel estimation. For fast time-varying channel, obtaining the CSI is tedious if not impossible. We introduce a scheme of calculating the CSI at the receiver from the received signal without the explicit channel estimation. The encoder of STTC, which is generally decoded using Viterbi like algorithm, is based on a trellis structure. This trellis structure provides an inherent advantage for the STTC scheme that an iterative decoding is feasible with the minimal addition computational complexity. An iteratively decoded space-time trellis coding (ISTTC) is proposed in this dissertation, where the STTC schemes are used as constituent codes of turbo code. Then, the performance upper bound of the proposed ISTTC is derived. Finally, for implementing STBC without channel estimation and maintaining trans- mission rate, we concatenate differential space-time block codes (DSTBC) with ISTTC. The serial concatenation of DSTBC or STBC with ISTTC offers improving performance, even without an outer channel code. These schemes reduce the system complexity com- pared to the standalone ISTTC and increase the transmission rate under the same SNR condition. Detailed design procedures of these proposed schemes are analyzed

    A reduced-CP approach to SC/FDE block transmission for broadband wireless communications

    Get PDF
    For conventional cyclic prefix (CP)-assisted single-carrier/frequency-domain equalization (SC/FDE) implementations, as well as for orthogonal frequency-division multiplexing (OFDM) implementations, the CP length is known to be selected on the basis of the expected maximum delay spread. Next, the data block size can be chosen to be large enough to minimize the CP overhead, yet small enough to make the channel variation over the block negligible. This paper considers the possibility of reducing the overall CP assistance, when transmitting sequences of SC blocks, while avoiding an excessively long fast Fourier transform window for FDE purposes and keeping good FDE performances through low-complexity, noniterative receiver techniques. These techniques, which take advantage of specially designed frame structures, rely on a basic algorithm for decision-directed correction (DDC) of the FDE inputs when the CP is not long enough to cope with the time-dispersive channel effects. More specifically, we present and evaluate a novel class of reduced-CP SC/FDE schemes, which takes advantage of a special frame structure for replacing "useless" CP redundancy by fully useful channel coding redundancy, with the help of the DDC algorithm. When using the DDC-FDE technique with these especially designed frame structures, the impact of previous decisions, which are not error-free, is shown to be rather small, thereby allowing a power-efficiency advantage (in addition to the obvious bandwidth-efficiency advantage) over conventional block transmission implementations under full-length CP. Additionally, the DDC algorithm is also shown to be useful to improve the power efficiency of these conventional implementations.Fundação para a Ciencia e Tecnologia (FCT), Centro de Análise e processamento de Sinais (CAPS

    Iterative Receiver for MIMO-OFDM System with ICI Cancellation and Channel Estimation

    Get PDF
    As a multi-carrier modulation scheme, Orthogonal Frequency Division Multiplexing (OFDM) technique can achieve high data rate in frequency-selective fading channels by splitting a broadband signal into a number of narrowband signals over a number of subcarriers, where each subcarrier is more robust to multipath. The wireless communication system with multiple antennas at both the transmitter and receiver, known as multiple-input multiple-output (MIMO) system, achieves high capacity by transmitting independent information over different antennas simultaneously. The combination of OFDM with multiple antennas has been considered as one of most promising techniques for future wireless communication systems. The challenge in the detection of a space-time signal is to design a low-complexity detector, which can efficiently remove interference resulted from channel variations and approach the interference-free bound. The application of iterative parallel interference canceller (PIC) with joint detection and decoding has been a promising approach. However, the decision statistics of a linear PIC is biased toward the decision boundary after the first cancellation stage. In this thesis, we employ an iterative receiver with a decoder metric, which considerably reduces the bias effect in the second iteration, which is critical for the performance of the iterative algorithm. Channel state information is required in a MIMO-OFDM system signal detection at the receiver. Its accuracy directly affects the overall performance of MIMO-OFDM systems. In order to estimate the channel in high-delay-spread environments, pilot symbols should be inserted among subcarriers before transmission. To estimate the channel over all the subcarriers, various types of interpolators can be used. In this thesis, a linear interpolator and a trigonometric interpolator are compared. Then we propose a new interpolator called the multi-tap method, which has a much better system performance. In MIMO-OFDM systems, the time-varying fading channels can destroy the orthogonality of subcarriers. This causes serious intercarrier interference (ICI), thus leading to significant system performance degradation, which becomes more severe as the normalized Doppler frequency increases. In this thesis, we propose a low-complexity iterative receiver with joint frequency- domain ICI cancellation and pilot-assisted channel estimation to minimize the effect of time-varying fading channels. At the first stage of receiver, the interference between adjacent subcarriers is subtracted from received OFDM symbols. The parallel interference cancellation detection with decision statistics combining (DSC) is then performed to suppress the interference from other antennas. By restricting the interference to a limited number of neighboring subcarriers, the computational complexity of the proposed receiver can be significantly reduced. In order to construct the time variant channel matrix in the frequency domain, channel estimation is required. However, an accurate estimation requiring complete knowledge of channel time variations for each block, cannot be obtained. For time- varying frequency-selective fading channels, the placement of pilot tones also has a significant impact on the quality of the channel estimates. Under the assumption that channel variations can be approximated by a linear model, we can derive channel state information (CSI) in the frequency domain and estimate time-domain channel parameters. In this thesis, an iterative low-complexity channel estimation method is proposed to improve the system performance. Pilot symbols are inserted in the transmitted OFDM symbols to mitigate the effect of ICI and the channel estimates are used to update the results of both the frequency domain equalizer and the PICDSC detector in each iteration. The complexity of this algorithm can be reduced because the matrices are precalculated and stored in the receiver when the placement of pilots symbols is fixed in OFDM symbols before transmission. Finally, simulation results show that the proposed MIMO-OFDM iterative receiver can effectively mitigate the effect of ICI and approach the ICI-free performance over time-varying frequency-selective fading channels

    Frequency Domain Hybrid-ARQ Chase Combining for Broadband MIMO CDMA Systems

    Get PDF
    In this paper, we consider high-speed wireless packet access using code division multiple access (CDMA) and multiple-input multiple-output (MIMO). Current wireless standards, such as high speed packet access (HSPA), have adopted multi-code transmission and hybrid-automatic repeat request (ARQ) as major technologies for delivering high data rates. The key technique in hybrid-ARQ, is that erroneous data packets are kept in the receiver to detect/decode retransmitted ones. This strategy is refereed to as packet combining. In CDMA MIMO-based wireless packet access, multi-code transmission suffers from severe performance degradation due to the loss of code orthogonality caused by both interchip interference (ICI) and co-antenna interference (CAI). This limitation results in large transmission delays when an ARQ mechanism is used in the link layer. In this paper, we investigate efficient minimum mean square error (MMSE) frequency domain equalization (FDE)-based iterative (turbo) packet combining for cyclic prefix (CP)-CDMA MIMO with Chase-type ARQ. We introduce two turbo packet combining schemes: i) In the first scheme, namely "chip-level turbo packet combining", MMSE FDE and packet combining are jointly performed at the chip-level. ii) In the second scheme, namely "symbol-level turbo packet combining", chip-level MMSE FDE and despreading are separately carried out for each transmission, then packet combining is performed at the level of the soft demapper. The computational complexity and memory requirements of both techniques are quite insensitive to the ARQ delay, i.e., maximum number of ARQ rounds. The throughput is evaluated for some representative antenna configurations and load factors to show the gains offered by the proposed techniques.Comment: Submitted to IEEE Transactions on Vehicular Technology (Apr 2009
    corecore