In this paper, we consider high-speed wireless packet access using code
division multiple access (CDMA) and multiple-input multiple-output (MIMO).
Current wireless standards, such as high speed packet access (HSPA), have
adopted multi-code transmission and hybrid-automatic repeat request (ARQ) as
major technologies for delivering high data rates. The key technique in
hybrid-ARQ, is that erroneous data packets are kept in the receiver to
detect/decode retransmitted ones. This strategy is refereed to as packet
combining. In CDMA MIMO-based wireless packet access, multi-code transmission
suffers from severe performance degradation due to the loss of code
orthogonality caused by both interchip interference (ICI) and co-antenna
interference (CAI). This limitation results in large transmission delays when
an ARQ mechanism is used in the link layer. In this paper, we investigate
efficient minimum mean square error (MMSE) frequency domain equalization
(FDE)-based iterative (turbo) packet combining for cyclic prefix (CP)-CDMA MIMO
with Chase-type ARQ. We introduce two turbo packet combining schemes: i) In the
first scheme, namely "chip-level turbo packet combining", MMSE FDE and packet
combining are jointly performed at the chip-level. ii) In the second scheme,
namely "symbol-level turbo packet combining", chip-level MMSE FDE and
despreading are separately carried out for each transmission, then packet
combining is performed at the level of the soft demapper. The computational
complexity and memory requirements of both techniques are quite insensitive to
the ARQ delay, i.e., maximum number of ARQ rounds. The throughput is evaluated
for some representative antenna configurations and load factors to show the
gains offered by the proposed techniques.Comment: Submitted to IEEE Transactions on Vehicular Technology (Apr 2009