37 research outputs found

    Generation and Analysis of Content for Physics-Based Video Games

    Get PDF
    The development of artificial intelligence (AI) techniques that can assist with the creation and analysis of digital content is a broad and challenging task for researchers. This topic has been most prevalent in the field of game AI research, where games are used as a testbed for solving more complex real-world problems. One of the major issues with prior AI-assisted content creation methods for games has been a lack of direct comparability to real-world environments, particularly those with realistic physical properties to consider. Creating content for such environments typically requires physics-based reasoning, which imposes many additional complications and restrictions that must be considered. Addressing and developing methods that can deal with these physical constraints, even if they are only within simulated game environments, is an important and challenging task for AI techniques that intend to be used in real-world situations. The research presented in this thesis describes several approaches to creating and analysing levels for the physics-based puzzle game Angry Birds, which features a realistic 2D environment. This research was multidisciplinary in nature and covers a wide variety of different AI fields, leading to this thesis being presented as a compilation of published work. The central part of this thesis consists of procedurally generating levels for physics-based games similar to those in Angry Birds. This predominantly involves creating and placing stable structures made up of many smaller blocks, as well as other level elements. Multiple approaches are presented, including both fully autonomous and human-AI collaborative methodologies. In addition, several analyses of Angry Birds levels were carried out using current state-of-the-art agents. A hyper-agent was developed that uses machine learning to estimate the performance of each agent in a portfolio for an unknown level, allowing it to select the one most likely to succeed. Agent performance on levels that contain deceptive or creative properties was also investigated, allowing determination of the current strengths and weaknesses of different AI techniques. The observed variability in performance across levels for different AI techniques led to the development of an adaptive level generation system, allowing for the dynamic creation of increasingly challenging levels over time based on agent performance analysis. An additional study also investigated the theoretical complexity of Angry Birds levels from a computational perspective. While this research is predominately applied to video games with physics-based simulated environments, the challenges and problems solved by the proposed methods also have significant real-world potential and applications

    Quantum games and interactive tools for quantum technologies outreach and education

    Get PDF
    We provide an extensive overview of a wide range of quantum games and interactive tools that have been employed by the quantum community in recent years. We present selected tools as described by their developers, including "Hello Quantum, Hello Qiskit, Particle in a Box, Psi and Delta, QPlayLearn, Virtual Lab by Quantum Flytrap, Quantum Odyssey, ScienceAtHome, and the Virtual Quantum Optics Laboratory." In addition, we present events for quantum game development: hackathons, game jams, and semester projects. Furthermore, we discuss the Quantum Technologies Education for Everyone (QUTE4E) pilot project, which illustrates an effective integration of these interactive tools with quantum outreach and education activities. Finally, we aim at providing guidelines for incorporating quantum games and interactive tools in pedagogic materials to make quantum technologies more accessible for a wider population. (C) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License.Peer reviewe

    Conditionals and the Hierarchy of Causal Queries

    Get PDF
    Recent studies indicate that indicative conditionals like "If people wear masks, the spread of Covid-19 will be diminished" require a probabilistic dependency between their antecedents and consequents to be acceptable (Skovgaard-Olsen et al., 2016). But it is easy to make the slip from this claim to the thesis that indicative conditionals are acceptable only if this probabilistic dependency results from a causal relation between antecedent and consequent. According to Pearl (2009), understanding a causal relation involves multiple, hierarchically organized conceptual dimensions: prediction, intervention, and counterfactual dependence. In a series of experiments, we test the hypothesis that these conceptual dimensions are differentially encoded in indicative and counterfactual conditionals. If this hypothesis holds, then there are limits as to how much of a causal relation is captured by indicative conditionals alone. Our results show that the acceptance of indicative and counterfactual conditionals can become dissociated. Furthermore, it is found that the acceptance of both is needed for accepting a causal relation between two co-occurring events. The implications that these findings have for the hypothesis above, and for recent debates at the intersection of the psychology of reasoning and causal judgment, are critically discussed. Our findings are consistent with viewing indicative conditionals as answering predictive queries requiring evidential relevance (even in the absence of direct causal relations). Counterfactual conditionals in contrast target causal relevance, specifically. Finally, we discuss the implications our results have for the yet unsolved question of how reasoners succeed in constructing causal models from verbal descriptions

    The use of computer manipulatives in building integrated concrete understandings in secondary mathematics education

    Get PDF

    New Game Physics - Added Value for Transdisciplinary Teams

    Get PDF
    This study focused on game physics, an area of computer game design where physics is applied in interactive computer software. The purpose of the research was a fresh analysis of game physics in order to prove that its current usage is limited and requires advancement. The investigations presented in this dissertation establish constructive principles to advance game physics design. The main premise was that transdisciplinary approaches provide significant value. The resulting designs reflected combined goals of game developers, artists and physicists and provide novel ways to incorporate physics into games. The applicability and user impact of such new game physics across several target audiences was thoroughly examined. In order to explore the transdisciplinary nature of the premise, valid evidence was gathered using a broad range of theoretical and practical methodologies. The research established a clear definition of game physics within the context of historical, technological, practical, scientific, and artistic considerations. Game analysis, literature reviews and seminal surveys of game players, game developers and scientists were conducted. A heuristic categorization of game types was defined to create an extensive database of computer games and carry out a statistical analysis of game physics usage. Results were then combined to define core principles for the design of unconventional new game physics elements. Software implementations of several elements were developed to examine the practical feasibility of the proposed principles. This research prototype was exposed to practitioners (artists, game developers and scientists) in field studies, documented on video and subsequently analyzed to evaluate the effectiveness of the elements on the audiences. The findings from this research demonstrated that standard game physics is a common but limited design element in computer games. It was discovered that the entertainment driven design goals of game developers interfere with the needs of educators and scientists. Game reviews exemplified the exaggerated and incorrect physics present in many commercial computer games. This “pseudo physics” was shown to have potentially undesired effects on game players. Art reviews also indicated that game physics technology remains largely inaccessible to artists. The principal conclusion drawn from this study was that the proposed new game physics advances game design and creates value by expanding the choices available to game developers and designers, enabling artists to create more scientifically robust artworks, and encouraging scientists to consider games as a viable tool for education and research. The practical portion generated tangible evidence that the isolated “silos” of engineering, art and science can be bridged when game physics is designed in a transdisciplinary way. This dissertation recommends that scientific and artistic perspectives should always be considered when game physics is used in computer-based media, because significant value for a broad range of practitioners in succinctly different fields can be achieved. The study has thereby established a state of the art research into game physics, which not only offers other researchers constructive principles for future investigations, but also provides much-needed new material to address the observed discrepancies in game theory and digital media design

    An Investigation of Cognitive Implications in the Design of Computer Games

    Get PDF
    Computer games have been touted for their ability to engage players in cognitive activities (e.g., decision making, learning, planning, problem solving). By ‘computer game’ we mean any game that uses computational technology as its platform, regardless of the actual hardware or software; games on personal computers, tablets, game consoles, cellphones, or specialized equipment can all be called computer games. However, there remains much uncertainty regarding how to design computer games so that they support, facilitate, and promote the reflective, effortful, and conscious performance of cognitive activities. The goal of this dissertation is to relieve some of this uncertainty, so that the design of such computer games can become more systematic and less ad hoc. By understanding how different components of a computer game influence the resulting cognitive system, we can more consciously and systematically design computer games for the desired cognitive support. This dissertation synthesizes concepts from cognitive science, information science, learning science, human-computer interaction, and game design to create a conceptual design framework. The framework particularly focuses on the design of: gameplay, the player-game joint cognitive system, the interaction that mediates gameplay and the cognitive system, and the components of this interaction. Furthermore, this dissertation also includes a process by which researchers can explore the relationship between components of a computer game and the resulting cognitive system in a consistent, controlled, and precise manner. Using this process, three separate studies were conducted to provide empirical support for different aspects of the framework; these studies investigated how the design of rules, visual interface, and the core mechanic influence the resulting cognitive system. Overall then, the conceptual framework and three empirical studies presented in this dissertation provide designers with a greater understanding of how to systematically design computer games to provide the desired support for any cognitive activity

    Automated posture analysis for detecting learner's affective state

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2002.Includes bibliographical references (leaves 87-94).As means of improving the ability of the computer to respond in a way that facilitates a productive and enjoyable learning experience, this thesis proposes a system for the automated recognition and dynamical analysis of natural occurring postures when a child is working in a learning-computer situation. Specifically, an experiment was conducted with 10 children between 8 and 11 years old to elicit natural occurring behaviors during a learning-computer task. Two studies were carried out; the first study reveals that 9 natural occurring postures are frequently repeated during the children's experiment; the second one shows that three teachers could reliably recognize 5 affective states (high interest, interest, low interest, taking a break and boredom). Hence, a static posture recognition system that distinguishes the set of 9 postures was built. This system senses the postures using two matrices of pressure sensors mounted on the seat and back of a chair. The matrices capture the pressure body distribution of a person sitting on the chair. Using Gaussian Mixtures and feed-forward Neural Network algorithms, the system classifies the postures in real time. It achieves an overall accuracy of 87.6% when it is tested with children's postures that were not included in the training set. Also, the children's posture sequences were dynamically analyzed using a Hidden Markov Model for representing each of the 5 affective states found by the teachers. As a result, only the affective states of high interest, low interest, and taking a break were recognized with an overall accuracy of 87% when tested with new postures sequences coming from children included in the training set. In contrast, when the system was tested with posture sequences coming from two subjects that were not included in the training set, it had an overall accuracy of 76%.by Selene Atenea Mota Toledo.S.M

    A modular physics methodology for games

    Get PDF
    Currently, games with rich environments allowing a wide range of possible interactions and supporting a large number of physical simulations make use of a large number of scripts and bespoke physical simulations, adapted to fit the needs of the game. This thesis proposes a methodology that can be used to tie together various different physical simulations, both off-the-shelf and bespoke, such as rigid body physics, electrical and magnetic simulations to give something greater than the sum of the individual parts. We present a notation for designing the overall physical simulation and a means for the different parts to interact. Experiments using an implementation of the methodology containing electricity, rigid body simulation, magnetics (including electro-magnetics), buoyancy and sound show that it is possible to model everyday objects such an electric motor or a doorbell. These object work ‘as expected’, without the need for special scripts and new, originally unexpected, interactions are possible without further modification of the experiment setup.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore