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Whitmire, Jane, Ph.D., May 2006 Mathematics

The Use of Computer Manipulatives in Building Integrated Concrete 
Understandings in Secondary Mathematics Education

Chair: Libby Knott, Ph.D.

This study explored the impact o f using virtual computer manipulatives as an 
aid in developing secondary mathematical abilities. In particular, a comparison 
was made between the effects o f using a concrete or virtual computer 
manipulative on student semantic processes. Topics included solving two-step 
linear equations with a concrete or virtual balance beam and multiplying and 
factoring polynomial expressions using an alternative form of concrete or virtual 
Algebra Lab Gear. This study provides mathematics educators with insight 
into learning outcomes that surface as a result of the computer manipulative 
replacing the concrete manipulative.

The primary research question was “Do learning outcomes differ when activity- 
based instruction includes the use o f a virtual computer or a concrete 
manipulative?” The objective was to determine potential differences in accuracy 
measures and adopted solution strategies in problem solving. A secondary 
question was “Does the sequencing of mathematics instruction from manipulative 
to symbolic or symbolic to manipulative alter learning outcomes at the secondary 
level?”

Data were collected from a total of 14 classes that were given one o f four 
treatments: symbolic-virtual computer, symbolic-concrete object, virtual 
computer-symbolic, and concrete object-symbolic. A total of 304 students 
participated. Each student participant successfully completed a pretest and 
similar posttest.

Three randomly selected students from each of 14 classes were chosen for a 
task-based interview from a list of student volunteers. Interview questions 
prompted students to voice their thoughts and solve problems with and without 
the use o f a concrete or virtual computer manipulative. Five o f a total o f 42 
student interviews were selected according to student performance and analyzed 
in terms o f semantic processes.

All treatments were effective in improving overall achievement from pretest to 
posttest. Results favored the concrete manipulative as the manipulative that 
provided the greatest probability for student posttest improvement. One specific 
inaccurate strategy was linked to instruction with the concrete manipulative. No 
differences were found when instruction was sequenced from manipulative to 
symbolic or symbolic to manipulative.
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CHAPTER 1

INTRODUCTION

Computers have become commonplace in academia. Each new generation of 

students has greater comfort and familiarity with computer programs and usage. The 

mathematics classroom is enhanced by taking advantage of the new platform that 

computer-aided instruction can provide. A desire to establish a theoretical foundation for 

the utility of computer software in the mathematics classroom has led to an interest in 

exploring the potential of computer-aided instruction as a means by which concrete 

models can be linked to abstract-symbolic representations of mathematical content.

Suydam (1986) found that students obtain greater mathematical achievement 

when mathematical concepts are initially introduced with the use o f a manipulative. In 

the opinion of the author, this is a challenge for the secondary level instruction because 

classrooms are typically filled with students who possess a blend of background 

experiences in mathematical content. That is, within the same secondary classroom, 

some students may have received a great deal of symbolic instruction while others may 

have had little or no exposure to content. Others may have been exposed to content 

solely with the use of manipulatives. Therefore, the problem requires consideration of 

what topic specific background experience each student brings to the classroom prior to 

receiving instruction that utilizes a virtual computer or physical manipulative.

1

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2

Need for study

Moyer, Bolyard, and Spikell (2002b) found that some educators see virtual 

manipulatives taking the place of physical manipulatives in some classrooms. Before 

teachers can replace a proven instructional tool such as physical manipulatives (Olkum, 

2003), data will need to be gathered about potential student learning outcomes that may 

result from the use of this new instructional tool.

Educators should not accept a new instructional tool simply because it is new. 

Technology is inviting and motivating for both teachers and students. The benefits and 

challenges of using virtual manipulatives need to be identified before virtual 

manipulatives are standard in every classroom. In this study, information will be 

gathered with regard to student learning outcomes that result after exposure to instruction 

with a virtual manipulative. In particular, we seek to compare the virtual manipulative to 

an equivalent form of physical manipulative. This information can be used to determine 

if the virtual manipulative is comparable to the physical manipulative in terms of student 

learning outcomes.

The research questions

The focus o f this study is to determine if the virtual computer manipulative can 

replace the sensory-concrete manipulative in terms of class achievement and learning 

outcomes at the secondary level. In particular, research will investigate inaccurate 

problem solving strategies students adopt when students receive activity-based 

instruction with a virtual computer or sensory-concrete manipulative and whether or not

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



3

these strategies differ among students with various topic specific background 

experiences. The following research questions are investigated.

1. Does the sequencing o f mathematics instruction from manipulative to 

symbolic or symbolic to manipulative alter student learning outcomes 

at the secondary level?

2. Do student learning outcomes differ when activity-based instruction 

includes the use of a virtual computer or a sensory-concrete 

manipulative?

a) Do students complete problems with greater or less accuracy when 

given instruction using either the virtual computer or sensory- 

concrete manipulative?

b) What inaccurate problem solving strategies might students adopt 

after receiving instruction with a virtual computer or sensory- 

concrete manipulative?

Limitations

The hypotheses are based on a small qualitative and quantitative study conducted 

by the researcher with four secondary teachers and several school administrators. The 

concerns and opinions of these teachers and administrators formed constructs that guided 

the study. Conclusions drawn cannot be generalized, but will hopefully prompt more 

research.

The sample is not large enough to provide adequate statistical power. Broad 

generalizations are not possible due to a number of limitations. First, the secondary
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classrooms sampled were not a random sample from any population. Second, teacher 

and student participation were completely voluntary. The researcher did not include 

teachers or students who were not open to the use o f manipulatives in classroom 

instruction.

Each sequence of instruction within a particular manipulative type is viewed as a 

treatment. The regular classroom teacher is another factor to consider. Each group of 

students had already been exposed to what might be considered a different treatment with 

regard to instruction in mathematics. To minimize this potential confounding effect, the 

researcher conducted the experiment as early in the academic year as possible.

Topics may or may not have been taught to students in previous academic years. 

Participating teachers agreed to teach the topic immediately prior to or immediately after 

each treatment depending on the instruction sequence. Teachers also agreed that the 

topic would not be taught at any other time during the current academic year. The depth 

and extent of content of which the topic was taught was at the discretion of the 

participating teacher.

Each treatment included the same lesson plan performed by the researcher for 

both the virtual and concrete manipulative type. There were, however, differences in 

what was taught due to the mechanics of computer operation. Simple computer-specific 

instructions were conveyed within treatments that utilized the virtual manipulative while 

these mechanics were not needed for treatments that involve the concrete manipulative.

Student participants who had more educational background in the subject area 

were more likely to receive treatments that assumed initial symbolic instruction. That is, 

student participants who were in more advanced mathematics classes were given
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treatments that assumed some topic specific instruction and practice had occurred in the 

previous academic years. The educational background of each class was determined by 

class level. The selective nature of which group receives which treatment restricts the 

results of the study to this specific group of students. It is therefore inappropriate to use 

the results for extensions to general secondary mathematics classrooms.

Definitions

A learning outcome is the specification o f what a student should learn as the 

result of a period of specified and supported study (Harvey, 2004). Learning outcomes 

are concerned with the achievements o f the learner rather than the intentions of the 

teacher. They can take many forms and can be broad or narrow in nature (Adam, 2004).

Semantic analysis involves the connecting and developing processes, as defined 

by Weame and Heibert (1988, p. 375). Students’ connect mathematical meanings when 

they link symbols with tangible referents. They develop mathematical meanings when 

actions that parallel those in the referent world are applied in the symbol world. Five 

interviews were analyzed in terms o f the semantic processes of connecting and 

developing.

Physical or concrete manipulatives are tangible objects that can be handled and 

arranged by students in an effort to stimulate their understanding o f abstract mathematical 

ideas by allowing them to model or represent their ideas concretely. The concrete 

manipulatives used in this research are colored chips and a home-made form of wooden 

Algebra Lab Gear.

Integrated concrete understandings are formed when a person uses a physical or 

concrete manipulative to develop current understanding of a mathematical concept to
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multiple forms o f representation. This understanding of the relationships between 

tangible objects and a connected mathematical concept enables the use o f the physical 

referent as a guide to associated mathematical symbolic procedures.

Virtual manipulatives are “interactive computer-based visual representations of 

dynamic objects that present opportunities for constructing mathematical knowledge” 

(Moyer, Bolyard, & Spikell, 2002b, p. 372). Virtual manipulatives are seen as “dynamic 

visual representations of concrete manipulatives” (Moyer, Bolyard, & Spikell, 2002a, p. 

133). Currently, virtual manipulatives are modeled after concrete manipulatives such as 

base-ten blocks, coins, pattern blocks, tangrams, spinners, rulers, fraction bars, balance 

scales, algebra tiles, geoboards, and geometric plane and solid figures.

The virtual manipulatives utilized in this research consist o f interactive concept 

tutorials in the form of Java applets. These applets provide dynamic visual 

representations o f balance scales or algebra tiles on a computer monitor. The applet used 

for the lesson on multiplying and factoring polynomials is named Algebra Tiles. This 

applet is, in fact, a multi-colored form of Algebra Lab Gear. Just as a physical object can 

be flipped, turned, moved and rotated, so can the visual representation on the computer, 

by using a mouse and keyboard.

Sensory-concrete knowledge is used when students use sensory material to make 

sense o f an idea. For example, at early stages, children cannot count, add, or subtract 

meaningfully unless they have actual objects to touch (Clements, 1999). “Mathematics 

cannot be engineered into sensory-concrete materials since ideas such as numbers are not 

out there” (Clements, 1999, p. 48).
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Integrated-concrete knowledge is built through learning. It is knowledge that is 

connected in special ways. When children have this type of interconnected knowledge, 

the physical objects, the actions they perform on the objects, and the abstractions they 

make are all interrelated in a strong mental structure (Clements, 1999).

Dragging is the process of using a mouse to move visual representations of 

objects on a computer monitor. Dragging is accomplished by placing the mouse pointer 

over the object, pressing down with the forefinger on the mouse, and sliding the mouse in 

the direction of desired object movement.

Mathematical visualization is “the process o f producing or using geometric or 

graphic representations of mathematical concepts, principles, or problems, whether hand 

drawn or computer generated” (Zimmermann & Cunningham, 1991, p. 1).
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CHAPTER 2

LITERATURE REVIEW

The purpose of this chapter is to present the existing research with regard to 

student learning outcomes resulting from instruction that incorporates the use of a virtual 

or physical manipulative. This exploration begins with the historical outline of cognitive 

development. Next the author will establish the theoretical basis for the research of this 

dissertation. Developmental stages will be examined to determine what student learning 

outcomes might be expected from students at the secondary level o f mathematics. 

Definitions of mathematical processes performed by computers will be described to 

clearly explain di stinctions between different types of mathematical education computer 

software. Finally, studies that utilize dynamic, virtual, or concrete manipulatives within 

instruction will be described. In this way, the literature review will outline what is 

known or might be expected with regard to student learning outcomes that result from 

instruction with a virtual or concrete manipulative.

Theoretical background

Shaffer and Kaput (1999) outlined a theory of cognitive development developed 

by Donald (1991). They explain that human cognition has evolved through four distinct 

stages; episodic, mimetic, mythic, and theoretical. Thinking was based on literal recall of 

events in the episodic stage, representational acts in the mimetic stage, narrative 

transmission in the mythic stage, and written symbols and paradigmatic thought in the

8
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theoretical stage.

Although these cognitive abilities developed during different time periods of 

human development, these ways of thinking currently exist in our minds simultaneously 

and we move among them and use them in a fluid way. Shaffer and Kaput (1999) 

theorize that evolutionary development of a cognitive ability and individual development 

o f the same ability might differ in their pattern of acquisition. They believe that the 

evolutionary development of a new form of representation might have profound 

developmental consequences. In fact, it is suggested that a new cognitive stage is 

emerging (Shaffer & Kaput, 1999).

Nelson (1996) studied the work of Donald (1991) from a developmental, rather 

than evolutionary standpoint. Nelson argues that new cognitive processes affect the way 

older modes of thought emerge in individual development. The presence of various 

modes of representation within a culture changes the way we learn to understand our 

worlds as individuals.

Computers have the capability to store and retrieve information. This reflects the 

theoretical stage o f cognitive development, which, according to Shaffer and Kaput (1999) 

has been going on for the past 300,000 years. Current scientific culture developed from 

and depends on the existence of external notations for thinking and on external records 

for ideas.

In the cognitive stage o f the future, computers or other forms of external devices 

actually perform some of the functions that a mind might take on in a similar 

circumstance. Shaffer and Kaput describe the capability as autonomous symbolic 

processing (Shaffer & Kaput, 1999). An example of this type of processing is the student
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who uses a calculator to add two fractions. Assuming the student knows how to operate 

the calculator, the student can produce accurate results, with or without knowing or even 

considering the meaning of the fractions or the mathematically appropriate algorithm 

used in finding the sum.

With developing technologies, such as the calculator and computer, the pedagogy 

of mathematics education will shift towards fluency in representing problem situations in 

a variety of systems and towards students’ ability to coordinate among representations. 

Kaput (1986) suggests that one of the important features of computational media in 

mathematics learning is their ability to help students see the relationship among different 

representations o f the same mathematical situation. Similarly, from a virtual perspective, 

mathematics is not exclusively about calculations. That is the role o f the external 

symbolic processing system. Mathematics is about understanding a problem, 

representing it in an external processing system, and being able to use the information 

produced by the external calculations in a meaningful way (Shaffer & Kaput, 1999). 

Mathematics education in a virtual culture will move us from computational fluency 

towards representational models. Mathematical experience in a virtual culture will thus 

be more intimately connected with students’ wider worlds of experiences (Kaput, 1986). 

Theoretical framework

The underlying foundations of this dissertation rely on exogenous constructivist 

views on the teaching and learning of mathematics. According to these views, within the 

individual domain o f knowledge there may be a number of individually constructed 

knowledge representations that are equally valid. The focus of teaching then becomes
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one of guiding the learner as they build and modify their existing mental models. It is a 

focus on knowledge construction, rather than knowledge transmission (Slavin, 1994).

Constructivists generally agree that mathematical knowledge is constructed, at 

least in part, through a process of reflective abstraction (Noddings, 1990). Reflective 

abstraction is different from classical abstraction in that it does not proceed from a series 

of observations of events or objects. Rather, it is a process of interiorizing our physical 

operations on objects. According to Noddings, “as we move sets of objects about, we 

interiorize properties of mathematical operations rather than objects; we acquire implicit 

understanding of commutativity, associativity, and reversibility” (p. 9). This implies an 

essential connection between purposive activity with concrete manipulatives and the 

development of mathematical cognitive structure.

A notable example o f reflective abstraction is characterized by Papert (1993). As 

a child, Papert had an erector set from which he actively assembled gear systems. Papert 

believes that working with the differentials o f these gear systems did more for his 

mathematical development than anything he was taught in elementary school. He 

explained how his first brush with equations in two variables brought to mind an analogy 

between the equations and how many teeth each gear needed. In this way, the equations 

became “a comfortable friend” (p. xix). It was his ability to assimilate mathematical 

content to his collection of gear models that made the process of learning mathematics 

easier for him. Papert further hypothesized that what an individual can learn and how 

they learn depends on what concrete models are available.

According to Piagetian theory, 7-year old and 8-year-old children must have 

action experiences before they can add new ideas to their cognitive structure. Bruner
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(1966) also reported on the importance of actions in learning. However, according to 

Bruner, the need for actions depends on the stage o f maturity and experiential 

background. The individual is supposedly able to learn with symbols, if  appropriate 

actions have been experienced previously. Hence, the issue of whether it is better to 

teach mathematical content symbolically or with manipulatives is dependent on 

individual background experiences.

It is difficult at best to determine what background experiences an individual does 

or does not possess. Nevertheless, work has been done to establish what is believed to be 

the optimal sequence of learning mathematical processes. Weame and Hiebert (1988) 

identified four critical processes that, when sequenced appropriately, yield mathematical 

competence. The four major processes, in favorable order of occurrence are connecting, 

developing, elaborating and routinizing, and abstracting. Students’ connect 

mathematical meanings when they link symbols with tangible referents. They develop 

mathematical meanings when actions that parallel those in the referent world are applied 

in the symbol world. The connecting and developing processes can be thought of as 

semantic analyses. Next, students elaborate rules to harder problems. Then students 

practice or routinize rules until these rules require little cognitive effort. Finally, students 

abstract mathematical meanings when the symbols and rules become the referents for 

building more abstract systems. According to Weame and Hiebert, “An alternate 

sequence of acquisition is difficult cognitively and may prevent the development of 

mathematical competence” (p. 372).

To affirm their claim of sequence-of-acquisition, Weame and Hiebert (1988) 

conducted a study with 4th, 5th, and 6th graders that focused on the use of written
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symbols of the decimal fraction system. Dienes base-10 blocks were used as referents. 

Nine lessons, covered in seven to nine 25-minute sessions, made up the instructional unit. 

Instruction began with a unit block and demonstration of how to write the symbols for 

quantities shown with blocks. Students were asked to use block referents and the 

combining and separating actions on blocks to decide how to combine the symbols in 

addition and subtraction problems. All assessments were administered in individual 

interviews. The computation problems were ‘ragged’ decimal problems because 

previous work showed that such problems discriminate most clearly between students 

who use semantic analyses and those who recall and execute syntactic rules (Weame & 

Hiebert, 1988). Results indicaite that students who have already routinized syntactic rules 

without establishing connections between symbols and referents were less likely to 

engage in. the semantic processes than students who are encountering decimal symbols, in 

the form of Dienes base-10 blocks, for the first time (Weame & Hiebert, 1988). This 

result is consistent with the claim that it is preferable to develop meanings for symbols 

before practicing syntactic routines (Resnick & Omanson, 1987).

Research has also been conducted at the elementary level that compares learning 

with concrete manipulatives to learning with computer-generated manipulatives. 

Thompson (1992) performed a study of fourth-grade students who used sensory-concrete 

manipulatives versus another group that used a computer program written by Thompson 

and called Blocks MicroWorld. The concept was using decimals in addition and 

subtraction.

Thompson (1992) used wooden Dienes base-10 blocks as the concrete 

manipulatives of his study. The Blocks MicroWorld program was the complementing

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



14

computer program. It was designed to support students’ continual development of 

meaning for their notational actions and interpretation o f notation. Notation changed 

automatically when blocks were moved around. For example, a touch o f the mouse 

would alter a ten block to a block with ten single units. This helped students to visually 

see what it means to regroup in a subtraction problem (Thompson, 1992).

“Blocks Microworld was designed so that students could combine collections of 

blocks in a number of ways. One way would be to treat them as wooden blocks, 

dragging a collection in one region into the other region, one block at a time, several at a 

time, or all at once” (Thompson, 1992, p. 128). Figure 2.1 illustrates the image on a 

Blocks Microworld workspace.

Base Ten carry  Combine
t  .......................— % r  /

Borrow J (Separate] [  Empty

0
fl C u b e  i s  1 /1 0 Numbers Mod*

C ^anup Blocks Help

Cub* 1 Flat 11 Longs I Single ■ 0,1211 0 Cubes t f l i t  0 Longs 1 Single « 0.0101

■■■■■■■*!■
■■■■■■■■■■
■■■■■■■■ill

fl

Figure 2.1. Screen display of Blocks Microworld after a student has selected A cube is 
1/10 in the Unit menu. (Thompson, 1992)

Results o f the Thompson (1992) study indicate no significant differences between 

groups that used the wooden Dienes base-10 blocks and groups that used the Blocks
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Microworld program. Thompson also found no significant differences in improvement 

from pretest to posttest for the group using computer-generated manipulatives to those 

using concrete manipulatives. Thompson speculated that this result was due to previous 

instruction that the students in both groups had received. That is, each student was 

initially taught a standard procedural method of addition and subtraction o f decimals. 

This instruction was given to classes of students. In subsequent testing, students were 

attempting to repeat this procedure without reference to work performed on the computer 

or sensory-concrete manipulatives.

Apparently, it is difficult for semantic processes to alter the tendency to follow 

routinized procedures (Weame & Hiebert, 1988). Thompson (1992) reached a similar 

conclusion stating that, “If students memorize a procedure meaninglessly, it is extremely 

difficult to get them to change it, even with extended, meaningful remediation” (p. 144). 

In particular, Thompson pointed out that even though the older children understood more 

about the task of solving decimal problems (line up decimal points and proceed as with 

whole numbers), this understanding made the task more complex for them.

The theory of a concept image, developed by Vinner (1991), may help to explain 

why students ignore semantic processes in favor of procedures. According to Vinner, to 

understand means to have a concept image. A concept image is more than simply 

knowing a definition. In fact, knowing the definition of a concept does not imply 

understanding. Algorithms and procedures associated with a given concept are a part of 

the concept image. Pictures and individual experiences working with concrete 

manipulatives also play a role in building the concept image. Students make connections 

between various aspects of the concept image when they explore different strategies for
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solving a problem. It is the ability to make these connections that establishes conceptual 

understanding.

A concept image is unique to each individual and this same individual may react 

differently to a concept in different situations. Vinner (1991) use the term “evoked 

concept image” to describe the part of the concept image evoked in a given context 

(p. 73). It is not meant to imply that this is all a certain individual knows about a concept.

Vinner (1991) found that people will often ignore other aspects of the concept 

image, including visual and concrete representation, in favor of using concept associated 

procedures. Surprisingly, preference for symbolic procedures occurs even when prior 

problems verify that the student has achieved a visual and concrete understanding of 

basic underlying notions (Ferrini-Mundy, 1984). Possible explanations for why students 

tend to avoid visual aspects of a problem include: “a cognitive one (visual is more 

difficult), a sociological one (visual is harder to teach), and one related to beliefs about 

mathematics (visual is not mathematical)” (Dreyfus & Eisenberg, 1991, p. 30).

According to Dreyfus and Eisenberg, “While this is also true for many teachers, it does 

not seem to hold for professional mathematicians. For them, the choice of representation 

in which to solve a problem seems to depend as much on the problem itself as on 

personal preferences” (p. 26). Thus, establishing connections between different aspects 

of ones’ concept image, namely integrated concrete knowledge, may be a determinant of 

mathematical achievement.

It is necessary to clearly define concrete thinking in order to explore the 

cognitive needs of typical secondary mathematics students. The notions of concrete and 

formal thinking stem from the work of Piaget. The cognitive theory of Piaget (1972)
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deals with three levels of development; pre-operational, concrete, and formal operational. 

The pre-operational cognitive level is a low level of thinking. A person in the pre- 

operational cognitive level “can use symbols from visual and body sensation to represent 

objects, but has problems mentally reversing actions” (Biehler & Snowman, 1986, p. 62). 

An example of the pre-operational cognitive level occurs when a person states that a tall 

container has more water than a squat container, even though the person views the water 

in the squat container being poured into the tall container. The next cognitive level is 

concrete operational. A person at this level can understand conservation of matter, 

classification, and generalization. For example, this person can conclude that all dogs are 

animals and not all animals are dogs. However, such a person is unable to comprehend 

mathematical ratios (Barker & Unger, 1983). Formal operational level is the highest 

cognitive development level defined by Piaget. It is “the ability to deal with abstractions, 

form hypotheses, solve problems systematically, and engage in mental manipulations” 

(Biehler & Snowman, 1986, p. 63).

Piaget's theory indicates that formal operational thinking abilities normally 

develop around age 12 (Chiapetta, 1976). It is at this age that some students begin to 

move from concrete thinking to formal thinking. However, formal operations, such as 

thinking in abstractions and logically, can develop at different ages or not at all (Griffiths, 

1973; Schwebel, 1975; Pallrand, 1979; Epstein, 1980). Many high school students and 

adults fail to attain full formal operational thinking (Renner, Grand, & Sutherland, 1978). 

Several studies have shown that a majority of adults, including college students and 

professionals, fail at many formal operational tasks (Griffiths, 1973; Schwebel, 1975; 

Schwebel, 1972). To assume a level of formal operations thinking in the secondary
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mathematics classroom is to fail to meet the educational needs of a majority of the 

students.

If the use of concrete manipulatives leads young children to an ability to use 

symbolic reasoning at a meaningful level and many adolescent youths have not reached 

levels of formal operations thinking, then it is not unreasonable to assert that some 

secondary students will also benefit from the use of concrete manipulatives. Research at 

the elementary level suggests that the form of the manipulative, concrete or virtual 

computer, is not a factor in producing the ability to use symbolic reasoning at a 

meaningful level (Clements & McMillen, 1996). “Mathematical ideas are ultimately 

made integrated-concrete not by their physical or real-world characteristics, but rather by 

how meaningfully connected to other ideas and situations - they are” (Clements & 

McMillen, 1996, p. 273).

Sharp (1995) affirmed this belief with students at the secondary level. Her 

qualitative study of the use of algebra tiles showed some students found it easy to think 

about algebraic manipulations when they visualized the tiles. Sharp believed that 

meanings might be achieved or at least enhanced when individuals construct translations 

between algebra symbolic systems and physical systems that represent one another.

Sharp concluded that “students who successfully make connections between physical 

representations and mathematical representations have created meaning of mathematical 

ideas” (p. 4).

The crux of the matter is that it is an entirely different process to construct a rule 

from the basis of understanding than it is to memorize a rule or procedure that simplifies 

what might otherwise be a complex conceptual task. Moreover, if  we tie this conclusion
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to the observation of Thompson (1992) with older students, namely that memorized rules 

and procedures may hinder the ability to learn underlying principles, literature provides 

reason to speculate that students at the secondary level are failing to make integrated- 

concrete connections when learning mathematics begins and ends with syntactic 

procedural techniques.

Allowing students to use a tool, concrete or virtual computer manipulative, does 

not guarantee that all students will develop the same meanings for them (Hiebert, 1997). 

Students who use manipulatives as aids for calculating answers are likely to develop 

different meanings than students who use them to explore alternative solution methods or 

reflect on the reasons the methods work. Meanings developed for manipulatives and 

meanings developed with manipulatives both result from the active use o f manipulatives. 

When students are using a manipulative, they are working on two fronts simultaneously: 

what the manipulative means and how it can be used effectively to understand something 

else.

The use of a manipulative in a classroom activity does not guarantee that the 

manipulative will be used for thoughtful reflection. O f interest is whether the virtual 

computer manipulative activity influences students to develop different understandings 

than students who engage in the same activity with a concrete manipulative. One kind of 

understanding is not necessarily better than another. Rather, it is important to understand 

potential differences between using a virtual computer or concrete manipulative at the 

secondary level of mathematics.
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Historical Background

The use of dynamic computer manipulatives in teaching secondary mathematics 

began with software programs such as Logo and Geometers Sketchpad. Student learning 

outcomes have the potential to be similar to the learning outcomes already discovered 

from previous research with these programs. For this reason, a brief historical 

background of these programs is provided as a means of identifying possible strengths of 

using a dynamic computer manipulative.

Logo Research

The computer programming language Logo was originally developed in 1968 as a 

part of a National Science Foundation sponsored research project conducted at Bolt, 

Beranek, and Newman, Inc. in Cambridge, MA (Feurzeig et. al., 1969). Logo began to 

emerge in its present form under the direction of Papert at Massachusetts Institute of 

Technology (MIT) from 1970 to 1981. Other Logo research leaders include Harold 

Abelson, Andrea di Sessa, Marvin Minsky, and Wallace Feurzeig from Bolt, Beranek, 

and Neman Inc. (Fiske, 1983). The publication of Mindstorms: Children, Computers, 

and Powerful Ideas in 1980 (Papert), coupled with the increased availability of 

microcomputers in the schools stimulated more independent research on this topic.

One of the first research studies on Logo was the Brookline Project (Papert, et. al., 

1979). This project began in 1977 and ended in 1978. The goal of the project was to 

examined how fourth, fifth, and sixth grade students learned to program the Logo turtle. 

In particular, there was interest in which programming experiences would help students 

master the mathematical concepts and the degree to which the Logo programming
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experience would help to develop problem solving skills using debugging strategies. No 

significant differences were found.

The second Brookline Project focused on the development of a curriculum 

supporting classroom use of Logo (Papert et. al., 1979). Results o f the student’s 

involvement with Logo were presented as a breakdown of the mathematical skills and 

concepts to which the students were exposed during the project. The students using Logo 

in the Brookline Project did better on angle and line estimation than other students with 

no computer experience. Several studies that included primary school students succeeded 

the Brookline Projects (Statz, 1973; Howe, O ’Shea, & Lane, 1980; Gorman & Bourne, 

1983; Clements, 1987). This paper will focus on research at the secondary mathematics 

level of instruction.

In a study by Horton and Ryba (1986), sixteen junior high school students were 

randomly assigned to treatments with or without the use o f Logo software. The control 

group received no treatments apart from the regular school program. In addition to the 

regular school program, the Logo students were given two one-hour Logo sessions each 

week over a seven-week period of instruction. All students were assessed before and 

after treatments on six tasks; (a) exploration, (b) analysis and planning, (c) creativity,

(d) debugging, (e) coding, and (f) prediction.

Within the Horton and Ryba (1986) study, secondary students who worked with 

Logo progressed individually through levels including basic turtle commands, repeat 

commands, defining procedures, editing and system operating, and sub-procedures. 

Students advanced according to their abilities to master the thinking skills and 

programming operations. Instruction was incremental in that no student was allowed to
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progress to the next level until all the thinking skills at a previous level were acquired. 

Progress records for each student were kept using a checklist for: (a) assessing the 

development of each learner’s thinking skills, (b) assessing the progress of a group of 

learners, and (c) deciding upon the content and organization of activities to be included in 

each subsequent Logo session. After skills were assessed at an appropriate level, students 

worked on individual Logo projects which required them to create a drawing of their own 

choice by planning and analyzing the steps to completion and then programming the 

drawing into the Logo language.

Findings o f the Horton and Ryba (1986) study indicate that the students in the 

Logo treatment group tended to outperform their control group counterparts on all tasks. 

The results suggest that the focus on development of specific thinking skills using Logo 

can enhance cognitive development.

Yusuf (1991) described a pretest and posttest experimental design study to 

determine the effects of Logo- based instruction compared to instruction by teacher 

lecture and pencil-and-paper activities. Sixty-seven students in the seventh and eighth 

grades of a Cincinnati middle school made up an experimental group that received 

instruction with Logo, and a control group that received traditional teacher lecture 

instruction. Students in the experimental group were taught the basic turtle commands of 

Logo. They then were taught the concepts of points, rays, lines, and segments using Logo 

tutorial modules. The control group was taught the same concepts using the lecture 

format and paper and pencil activities. An analysis of covariance indicated that students 

taught within the Logo treatments scored significantly higher on the posttest than the 

control group, and moreover showed significant differences in students’ positive attitude
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toward mathematics and geometry. Yusuf (1991) concluded that logo-based instruction 

was an effective tool for teaching geometry at the secondary level.

In summary, the review of literature on the use o f Logo in mathematics suggests 

that students may benefit from using Logo in terms o f mathematics achievement, 

problem solving skills, and the ability to articulate mathematical concepts. At the 

secondary level, student cognitive development may be enhanced when Logo instruction 

is added to regular classroom instruction.

Geometric Supposer and Geometers Sketchpad Research

The Geometric Supposer software series (Schwartz & Yerushalmy, 1986) began 

prior to the introduction of The Geometers Sketchpad (Jackiw, 1991). The Geometric 

Supposer programs allow students to choose primitive shapes and perform measurement 

operations on these shapes. The Geometers Sketchpad program allows students to 

construct a shape, change it, and then maintain any constructions that were created. Both 

the Geometric Supposer and Geometers Sketchpad record constructions performed on 

shapes and can repeat the action on other shapes. The following paragraphs summarize 

some of the research performed with these programs at the secondary mathematics level.

Yerushalmy, Chazan, and Gordon (1987) presented a yearlong project on the 

implementation of a guided inquiry approach using Geometric Supposer to teach high 

school geometry in three Boston area suburbs during the 1985-1986 academic school 

year. The study design included a pretest and posttest to compare the difference of mean 

scores between the experimental and the control group of five major variables: level, 

originality, accuracy, the change in accuracy, and the number of arguments. In the 

beginning of the school year, few students in the experimental or the control classes had
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any background in geometry. Results indicate that students who used Geometers 

Sketchpad were significantly more able to develop general conjectures. No other 

differences between groups were statistically significant.

Chazan (1988) reported in a study that high school students have difficulties in 

understanding the topic of similarity. A unit addressing these concerns was designed for 

use with Geometer Supposer. Students were observed as they learned similarity with this 

unit and were given a pretest and posttest on fractions, ratio and proportion, and 

similarity. Achievement results on the posttest were found to be significantly in favor of 

the experimental group. In additional qualitative analysis, Chazan (1989) observed that 

unlike textbook theorems, which students can assume as true because they are in the 

book, students using Geometer Supposer believed that theorems generated with Supposer 

software needed to be proved before they could be accepted as true.

McCoy (1991) studied the geometry achievement of a single class of students that 

used Geometers Sketchpad regularly compared to another class which implemented the 

traditional path of teaching geometry. This research provided evidence in support o f the 

effectiveness of Geometers Sketchpad. Results indicated the integration of Geometer 

Sketchpad activities provided students with a better understanding of mathematical 

content and improved performance by the high school geometry students.

While positive contributions of the Geometer Supposer and Geometers Sketchpad 

software are well documented, the use of technology is not a panacea. For instance, it 

has been pointed out that Geometers Sketchpad does not seem to improve students’ 

abilities to visualize in three dimensions (Dixon, 1997). This is possibly a shortcoming 

of modeling three-dimensional objects in only two dimensions. Nevertheless, these
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programs have been shown to be successful in improving student performance and 

achievement in a pretest and posttest design.

Examples that illustrate computer software definitions

Additional computer software vocabulary will be introduced as an instrument for 

distinguishing among the various kinds of educational mathematical programs. These 

distinctions will clarify how the computer virtual manipulative used in this study is or is 

not like its concrete counterpart. They will also establish a foundation by which the 

researcher can compare research results within the literature review.

Cunningham (1991) described three kinds of computer visualization. These are:

(a) post-processing occurs when the student knowledge is complete and the student is 

creating a display of the finished product, (b) tracking occurs when the knowledge is 

being developed and the user is watching it being displayed to see its nature, and (c) 

steering occurs when the student is in the processing loop and can interact with and 

manipulate a simulation (p. 70). This section of the literature review provides examples 

of post-processing, tracking, and steering as methods for defining what is and what is not 

a virtual manipulative.

Cunningham provided an example of post-processing with an image of output 

including a function, its graph, and the computed local minimum and maximum. This 

image was generated with the use software developed in 1964 by Dartmouth College 

Professors John G. Kemeny and Thomas E. Kurtz called True Basic. Figure 2.2 is a 

similar image showing the definition o f the same function, its graph, and a computed 

local minimum using Waterloo Maple Software. The student who uses this mathematical 

software knows the computer software specific language of Maple Software, and
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specifically the commands restart and plot. She or he also knows how to find the 

derivative within the Maple environment. Finally, the student creates a plot of the 

derivative to display its graphical interpretation. This is an example o f post-processing if 

we assume the student knows how to take the derivative and is using Maple software to 

quickly access the graphical representation. In this way, the student has the acquired 

knowledge and is creating a display of a finished product, namely, the graphical 

representation of the derivative.

>  r e s t a r t ;

> f  : = X 1 V

2 * s i n ( x ) * c o s ( 3 * x ) ;
f : = x —> s in (x ) c o s ( 3  x )

> E i E l i f  <*> , x = 0 .  . P i )  ;

0.6 /  \
0.6 / \/ v

/  \0.4
0.2 /  \/  \  1 \  /  \ ..................../ ........\

0
-0.2"

o l  T  T $ .'..'.

\  /*-0.4- \  /
. -0.6-

-0.6 \ /\  y

Figure 2.2. Post-processing. A plot of a function with local minimum computed, from the 
Maple Version 7 computer algebra software developed by Waterloo Maple Software©.

Tracking involves showing a display as it is computed so that the order of 

development illustrates the mathematical processes shown. For example, a statistical 

experiment can show graphical representations of sampling as samples are virtually 

generated. Figure 2.3 illustrates three of several rapidly changing displays that are meant
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to develop student understanding of the central limit theorem. This display provides 

user-friendly directions for flipping coins, with an outcome of heads or tails, in samples 

o f size twelve. The images of Figure 2.3 show the virtual workspace: (a) the leftmost 

image is the initial workspace, (b) the middle image displays the workspace after the user 

selects the New Coin Flip icon, and (c) the rightmost image is the workspace after the 

user selects New Coin Flip , 10 at a Time, and 100 at a Time, icons repeatedly until N  = 

3054 trials of sample size 12 are obtained.

Steering techniques actually get the user involved in the development of the 

simulation. One of the earliest developed mathematical software programs, Logo, 

provides an example of steering. To produce a triangle similar to a given triangle, the 

user need only change the scale factor in the procedure. As the simulation is in process, 

the user can stop the turtle by clicking on its back with the mouse or by backspacing over 

a dot that appears below the display on the command line. This allows the user to make 

appropriate modifications in the construction of the defining procedure.

The construction o f the thirty-sixty-ninety procedure may be viewed as a 

prerequisite to developing an understanding of constant ratios associated with similar 

triangles. In the following diagram, Figure 2.4, the user writes a procedure, named 

“thirty_sixty_ninety” that produces a 30-60-90 degree triangle of a specified scale factor. 

The turtle on the right is in the process of completing the procedure named thirty-sixty- 

ninety as indicated by a black dot at the end of the command line. Procedures are written 

by the researcher using pre-defined Logo commands specific to this version of Logo 

software.
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Figure 2.3. Tracking. These applets were developed by Gary McClelland and published 
by Duxbury Press© 1999 and are freely available at the website: 
http://www.seeingstatistics.com/seeingl999/resources/opening.html
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to thirty_sixty_nin*ty 
jet [ scale 140} 
pdW { 1,732* :scai*} 
i t  ( 1 8 0  - 30  I 
pdfd (2 ' :scale ) 
rtf 180-60} 
pd fd (1 ’ :scal* ) 
rt90 

end

thirty __*ixty_n«nety2 
lit | scale 80 ] 
p d  f d  ( 1 . 7 3 2  * }

rt { ISO - 3# ) 
pd fd ( 2 * }

rt ( 180 - 60 } 
pd fd { i * ;s««le } 

r t  90 
md
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Figure 2.4. Steering. Image is developed with the use of MicroWorlds™ Version 2.05 1 
Logo Computer Systems Inc., 2003.

Another example of steering involves the use of Geometers Sketchpad Version 

4.04. Here, an analogous lesson on similar triangles begins with instruction on how to 

build two similar triangles within a Geometers Sketchpad workspace. The triangle on the 

right is similar to the triangle on the left in Figure 2.5. Measurements o f corresponding 

line segments and an angle are in the upper left and lower right hand comers.

To produce-this image with Geometers Sketchpad, the user must (a) construct 

point A and triangle BCD, (b) double-click point A, (c) draw a marquis around triangle 

BCD, (d) select dilate from the Transform menu, (e) select a scale factor of 2 by typing
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this value into an alternate window and pressing the Okay icon, and (f) select Measure 

Corresponding Sides and Angles to view ratios.
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Figure 2.5. Steering. Image is developed with the use of Geometer’s Sketchpad Version 
4.04 © Key Curriculum Press, 2003.

Students can alter the formation o f any one of the two triangles by placing the 

mouse pointer over a single vertex and dragging it in any desired direction. This 

movement automatically causes the second triangle to move in the same direction, thus 

maintaining the properties of similar triangles. That is, measurements between 

corresponding lengths and angles change as the image is moved around. What does not 

change is the ratio between corresponding line segments and the equality in measure of
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corresponding interior angles. In this way, the student is able to see that the ratios of side 

lengths of similar triangles are constant.

The student can also impose a grid over the workspace. The whole triangle can 

then be freely moved around the workspace by placing the mouse over a red dot that 

appears on the grid and dragging the grid up, down, left or right. This allows the student 

to actively discover relevant properties of similar triangles. In this way, the dynamic 

computer program instantaneously links the triangles to their relevant symbolic 

mathematical interpretations.

“Informal studies with students across the sciences indicate that students respond 

much more strongly to dynamic images than to static ones” (Cunningham, 1991, p. 71). 

These are defined by Cunningham to be precisely the images that are obtained via 

tracking or steering. In fact, the interactive environment provided by Geometer’s 

Sketchpad has the potential to foster students’ movement from concrete experiences with 

mathematics to more formal levels of abstraction, to nurture students’ conjecturing spirit, 

and to improve their mathematical thinking (Manouchehri, Enderson, & Pagnucco,

1998).

The Logo and Geometer’s Sketchpad computer environments illustrate tracking 

and steering properties in that the user can translate, rotate, dilate, or measure aspects of 

geometrical shapes by using program specific commands. Many of these commands are 

built into the mathematical software and must be acquired vocabulary of the user prior to 

working within either environment. With the necessary vocabulary and knowledge of 

operating commands, the user can interact with and manipulate any number of 

simulations as well as explore and develop mathematical properties.
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The Logo and Geometer’s Sketchpad computer environments also illustrate 

dynamic properties. For example, recent versions o f Logo allow the user to rotate the 

direction of the turtle by pointing the mouse arrow over the turtle, holding down on the 

mouse, and moving the mouse in the direction of the desired rotation. In the provided 

Geometer’s Sketchpad example, the user was able to change the shape of the original 

triangle by holding the mouse pointer over one vertex point and dragging the mouse (and 

subsequently the point) to another location on the workspace. It was also possible to 

transform the triangle by dragging a grid over the workspace. These capabilities of 

current versions of Logo and Geometer’s Sketchpad provide a glimpse o f virtual 

manipulatives in that their dynamic nature allows the user to freely move aspects of the 

visual representation without having to incorporate program specific vocabulary or 

commands.

Virtual manipulatives are dynamic (computer) visual representations of concrete 

manipulatives (Moyer, Bolyard, & Spikell, 2002a, p. 133). These manipulatives have 

tracking and steering capabilities. However, virtual manipulatives incorporate visual 

cues as a replacement for specific language o f computer software commands. Moving 

objects with a virtual manipulative involves strictly placing the mouse pointer on an 

object and dragging the mouse in the desired direction, clicking on instructional icons 

that maximize the use of visual cues, or using the backspace button to delete prior icon 

selections. Virtual manipulatives make every effort to simplify the movement of 

computer images. In this way, virtual manipulatives are not unlike any number of 

computer games.
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According to Spicer (2000), there are two types of web-based manipulatives: 

static and dynamic. Both are referred to as virtual. The virtual manipulatives of this 

research are described by Moyer, Bolyard, and Spikell (2002b) as dynamic visual 

representations that are essentially objects in that they can be manipulated in the same 

way a concrete manipulative is manipulated. For example, one can move a concrete 

algebra tile by applying pressure on the surface with one finger. Similarly we can move a 

virtual algebra tile by applying pressure with one finger on the mouse. The action is 

strikingly similar between the concrete and virtual manipulative.

Static manipulatives are visual images ordinarily associated with pictures in 

books, drawings on an overhead projector, and sketches on a chalkboard (Moyer,

Bolyard, & Spikell, 2002b). They may resemble concrete manipulatives, but they cannot 

be used in the same way as concrete manipulatives are. In this case, a computer might 

move the images in response to a command from the user, but the user does not directly 

manipulate the object.

Logo and Geometers Sketchpad have been used in the development o f their web- 

based counterparts at Utah State University’s National Library of Virtual Manipulatives 

(NLVM): Turtle Geometry and Transformations - Dilations. These manipulatives are 

freely available on The World Wide Web: http://www.matti.usu/nlvm. The applets,

Turtle Geometry and Transformations - Dilations, were developed as a National Science 

Foundation (NSF) supported project that began in 1999 to create a library of uniquely 

interactive, web-based virtual manipulatives or concept tutorials, mostly in the form of 

Java applets, for mathematics instruction with emphasis in grades kindergarten through 

high school.
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Other mathematical software programs

To clarify the definition of a virtual manipulative, a comparison to other types of 

mathematical software will be considered. Some mathematical program designers have 

advocated using computer technology to create more learner-centered, open-ended 

learning environments (OELE) in which the learner is provided with varying amounts of 

help and support to decide what is needed to learn and what resources are required 

(Cognition & Technology Group at Vanderbilt [CTGV], 1992). Proponents of OELEs 

assume that by identifying goals and constructing meanings, learners become active 

managers, rather than passive receptacles, of information.

According to Land and Hannafin (1996), one characteristic of an OELE is that it 

provides learners with opportunities to engage the environment in ways that support their 

unique needs and intentions for making sense of the world. OELEs generate learning 

sequences based on the computer’s assessment of student prior achievement as 

interpreted by the teacher. The teacher can assess and develop lessons according to 

student performance by logging into their teacher account and clicking on the students’ 

name. When this is done, the teacher can view the current lesson and performance as 

well as choose future lessons.

New Era Classroom, Technology, and Research Foundation developed an 

example of an OELE with a program called Math Trek Calculus (2004). Figure 2.6 

shows some of the images a student would see as they complete a lesson on limits.

Image (a) is the first window in the lesson. Notice that the student has the option of 

taking the posttest at any time. Image (b) presents the student with a list of lessons within 

the lesson. Figure 2.7 is an illustration of Image (c) and Image (d). In Image (c), the
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student has selected Evaluating Limits. In Image (d), the student has selected 10 as the 

value of ‘a ’ and is prompted for an answer. The computer automatically records student 

responses to questions. This eliminates the need for paper grading and lecture while 

allowing the student to progress through lessons at their own pace.

L im its  M aster M enu
File

|_  n  x

M as te rin g  C a lcu lu s  S e rie s :  

Lim its  M o d u le

wmmiiMBi■mmm
lillll

■ I 11

Select a component from the list below 

Limits Prerequisite Skills

Limits Lessons

Limits Post Test

(a)

L im it s  Lessons
File Help Background

i .  In troduc tion  to Limits 2 .  Eva luating Limits

11m f(x) - ???

. I'i.',i«

4. Applica tions  of Limits3 .  P ro p e r t ie s  of Limits 

11m ( f  + g) -  ? ? ?

(b)

Figure 2.6. Math Trek Calculus©, New Era Classroom, Technology, and Research 
Foundation, 2004.
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Figure 2 .7. Math Trek Calculus©, New Era Classroom, Technology, and Research 
Foundation, 2004.

Notice that the student who uses an OELE must not only keep track o f computer 

navigations, but must also attempt to understand new problems in isolation of fellow 

students or the teacher. It is static in that visual images are those that are ordinarily 

associated with pictures in books or drawings on an overhead projector. Although
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student cognitive development may occur, the design of this computer software favors 

ease and simplicity of instruction rather than supporting the students’ cognitive ability to 

focus on higher levels of abstraction.

In contrast, the Blocks Microworld program, presented earlier in this chapter, is an 

example of a mathematical microworld that employs multiple, linked mathematical 

systems (Kaput, 1986). The term microworld was first coined by Papert (1993) who 

described the Logo microworld for exploring and constructing within a geometrical 

concept space. A microworld is defined as a model o f a concept space, which may be a 

very simplified version of a real world environment, or it may be a completely abstract 

environment. Normally, a user can create constructions within a microworld which will 

behave in a way consistent with the concepts being modeled (Papert, 1993, Rieber,

1992). A popular example of a microworld includes a mechanical problem solving 

environment called The Incredible Machine (1992).

Extensive review of the literature failed to provide a clear distinction between a 

virtual manipulative and a microworld. The adopted definition of a virtual manipulative 

refers to a virtual manipulative as being “web-based” (Moyer, Bolyard, & Spikell, 2002b, 

p. 372). This suggests that virtual manipulates are web-based computer programs. A 

microworld is a computer program. This suggests that a computer program written in the 

format of a virtual manipulative is a form o f a microworld presented via access to the 

internet. No research to date has been performed on the virtual manipulatives offered at 

the National Library of Virtual Manipulatives website (Jim Dorward, personal 

communication, March 7, 2005). Therefore, the remaining review o f research will focus
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on student learning outcomes that result from the use of concrete manipulatives, 

microworlds, or a comparison between the two.

Concrete manipulatives

The use o f concrete manipulatives has a long history o f importance in teaching 

and learning mathematics. Early people used mechanical devices such as fingers, 

counters, and the abacus to assist with calculations (Toney, 1968). In the 1600s, John 

Amos Comenius was among the first educational theorists to advocate the use of real and 

useful things that can make an impression on the senses and on the imagination (Baker, 

1977). In the late 1800s, Johann Heinrich Pestalozzi also emphasized the value of using 

concrete objects for instruction. He believed classroom experiences should be based 

upon actual experiences of the child, proceeding from the concrete to the abstract, from 

the particular to the universal (Sobol, 1998).

Many journal articles and research reports have been published over the past 30 

years on the use of manipulatives in mathematics. Rather than exploring individual 

studies, summaries o f results of many studies will be addressed to determine overall 

themes in the literature. After critical analysis, four reviews (Fennema, 1972; Parham, 

1983; Sowell, 1989; Suydam & Higgins, 1977) were identified as being exemplary. The 

remainder o f this section will be a summary of the results of these reviews.

Fennema (1972) compared 16 studies on the effectiveness of learning 

mathematical ideas through the use of concrete manipulatives for students in grades 1 to 

8. Results of this review suggest concrete manipulative materials should be included in 

mathematics instruction. The inclusion and the use of manipulatives were justified as 

they: (a) help make the abstract world o f mathematics meaningful, (b) help provide a
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variety of situations that assist the transfer o f knowledge from learned to unlearned 

situations, (c) improve motivation, and (d) help teachers gain insight into children’s 

thinking (p. 637).

Suydam and Higgins (1977) published a comprehensive review and synthesis of 

research conducted in Grades K-8 on the use of physical manipulatives. They found that 

students using manipulative materials produced greater achievement scores than those not 

using them, at all grade and age levels in elementary school. Suydam and Higgins (1977) 

stated, “We believe that lessons involving manipulative materials will produce greater 

mathematical achievement than will lessons in which manipulative materials are not used 

if the manipulative materials are used well” (p. 92).

In particular, the use of counters and base-10 blocks aid the learning of four 

arithmetic operations (addition, subtraction, multiplication, and division) as well as 

increasing the understanding of place value and number sense (Kennedy, 1986). 

Moreover, students at the elementary level develop better proportional reasoning skills 

when instructed with concrete materials (Hiebert, 1991).

Similar results were reported by Parham (1983) in an analysis of 64 research 

studies conducted from 1965 to 1979 on the effects o f manipulative use on achievement 

for elementary school students in Grades 1-6. Parham (1983) reported a decided 

difference in achievement scores, with students who had used concrete manipulatives 

scoring on average at approximately the 85th percentile on the California Achievement 

Test, as opposed to similar students not using physical manipulatives scoring at the 50th 

percentile. Results supported earlier research findings (Suydam & Higgins, 1977) and
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favored the use o f concrete manipulatives for their positive effect on student 

achievement.

Parallel conclusions were reported in a comprehensive analysis by Sowell (1989) 

who examined 60 studies (38 journal reports, three unpublished reports, and 19 

dissertations) conducted from 1954 to 1987 on the effectiveness of using concrete 

manipulatives for students in grades kindergarten through college. According to Sowell 

(1989), “Results showed that mathematics achievement is increased through the long

term use of concrete instructional materials and that students’ attitudes toward 

mathematics are improved when they have instruction with concrete materials provided 

by teachers knowledgeable about their use” (p. 498). Length of treatment using concrete 

manipulatives was linked to achievement. As explained by Sowell (1989), “When 

treatments lasted a year or longer, the result was significant in favor of the concrete 

instructional condition” (p. 502). Treatments of shorter duration did not produce 

statistically significant results.

Kaput (1989) established that “meanings are developed within or relative to 

particular representations or ensembles of [particular representations]” (p. 38).

Sharp (1995) interpreted this statement to mean, “students who successfully make 

connections between physical representations and mathematical representations have 

created meaning of mathematical ideas” (p.4). In particular, Sharp hypothesized that 

meanings might be achieved or at least enhanced when individuals construct translations 

between algebra symbol systems and physical systems that represent one another.

A qualitative study by Sharp (1995) on the use of algebra tiles in five high school 

classes showed some students found it easy to think about algebraic manipulations when
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they visualized the tiles. Sharp observed that students would often try to apply 

procedures for factoring to everything whether these procedures were appropriate or not. 

The algebra tiles gave many of these students enough conceptual understanding for these 

students to experience some success. However, results indicate no significant differences 

between groups divided according to: treatment (algebra tiles used only once during a 

factoring lesson), control (year of manipulatives), and control (algebra tiles as the only 

manipulative used in instruction). This result may be due in part to small group sizes that 

range from 10 to 13 students between the ages of 9 to 18 years.

A more noteworthy reason for the lack o f significant differences in the Sharp 

(1995) study is that the participants were chosen from a school district list o f students 

identified as gifted. Some students will learn mathematics regardless of the quality of 

instruction. It is also difficult to measure success of the manipulative when students can 

accurately perform procedures before and after treatments.

While much has been written about the perceived benefits of using manipulative 

aids in the learning of mathematics, concrete manipulative materials are not widely used 

in secondary mathematics instruction (Char, 1991). The lack o f use is due to several 

difficulties including classroom management; structuring, monitoring, assessing the use 

of manipulatives, relating manipulatives to mathematical symbols and procedures, lack of 

financial resources, and lack of professional development (Kim, 1993).

Manipulatives are concrete in one sense because students can experience them in 

a sensory way. However, concrete manipulatives by themselves are devoid of 

mathematical meaning (Clements & McMillen, 1996). The connection to mathematics 

and to abstract symbolism depends on the actions students take on the objects and on
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their subsequent reflections about those actions. These actions and reflections depend on 

the nature of instruction, which includes the activities the students are presented, and the 

constraints and supports provided by the teacher or computer software.

In summary, one can expect greater mathematical achievement measures when 

concrete manipulatives are used. This is especially true when there is long-term use of 

manipulatives. This use of concrete manipulatives can make mathematics more 

meaningful to students. They also have the potential to improve student attitudes toward 

mathematical content.

Studies that compare virtual to concrete manipulatives

In a study by Kim (1993), 35 kindergarten children were assigned to hands-on or 

on-screen teaching groups. Students were taught classification, geometric, and arithmetic 

concepts using the software, Hands on Math (1982), published by Ventura Educational 

Systems. This study did not consider the use of both types of manipulatives, concrete or 

virtual computer, in combination. Results were strictly based on pretest and posttest 

accuracy scores that indicated no statistically significant differences between 

kindergarten students who used concrete manipulatives and those using virtual 

manipulatives on measures of addition, geometric classification, and counting skills.

Char (1991) studied 63 kindergarten and first grade students making “computer 

bean sticks” to develop basic addition concepts. No control group was included in this 

study. The software allowed students to move images of Popsicle sticks and beans with 

the computer mouse. They could also add text to the screen. Thirty-one students were 

observed working in pairs with the virtual computer images of Popsicle sticks and beans. 

The other 32 children were observed working with physical Popsicle sticks and beans in
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two classrooms. All students worked in thirty minute sessions three mornings per week 

for three weeks. Researchers interviewed all student participants.

Char (1991) found that the virtual computer bean sticks were easier for the 

children to manage than the physical sticks that involved gluing actual beans and were 

easier for teachers’ housekeeping. She observed that the close resemblance of the virtual 

computer bean sticks to physical bean sticks contributed to this ease o f computer use. She 

found that children independently integrated numbers with the manipulatives when using 

the software, which prompted richer exchanges in the classroom.

Ball (1988) used a fraction program that models concrete manipulatives with five 

fourth grade classes. As shown in Figure 2.7, the following figures are present when the 

graphic first appears: (a) the fraction strip table in the upper left hand comer, (b) the face,

(c) two strips in the lower left-hand comer, and (d) the directions below the face. As the 

fraction addition problem appears below the strip chart, portions o f the two strips at the 

bottom are shaded representing the two fractions to be added together. Then the shaded 

strip just above the two bottom strips appears as a result o f taping the two strips together

end-to-end from the two original strips and ^ . The face smiles when a correct

response is given. The computer simulated measuring lengths, cutting, and taping which 

were originally done on the concrete level.

Figure 2.8 displays the graphic image on the monitor screen at the end of a 

fraction addition problem. The student has selected a row in the table. The strip was 

colored in a lower row to simulate the actual placing of a strip there. The change in color 

made it possible for the student to decide if the selection was correct.
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Figure 2.8. Fraction Strips. Image is taken from Computers, Concrete Materials and 
Teaching Fractions by Stanley Ball found in School o f  Science and Mathematics, Volume 
88 (6) October 1988.

Three classes used concrete and virtual fraction strips and two were instructed 

using traditional methods with paper fraction strips, but no computers. Teachers of the 

experimental classes were trained in a summer workshop. The program was used to help 

students to concretize abstract concepts of adding fractions. The students worked with 

fraction strips manipulatives where they taped paper strips representing different 

fractional amounts together and then tried to figure out the new length by comparing the 

composite strip with other fraction strips. After working with these, the students moved 

to a computer manipulative with similar fraction strips. A t-test of posttest means 

revealed a significant difference between the achievement of the experimental group and 

the control group. Ball concluded that the treatment was effective in improving students’ 

abilities to solve fractional addition problems.
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Ball (1988) found that fourth-grade students using both the virtual and physical 

manipulatives scored significantly higher on conceptual understanding of fractions than 

students that used no manipulatives. Ball (1988) did not attempt to separate the effect of 

the physical manipulative from that of the virtual manipulative. Comparisons between 

the three groups of students using both the concrete and virtual computer strips and the 

two groups of students using the concrete paper fraction strips were not included in the 

results. It could be that only one type of manipulative is needed for significantly higher 

test scores.

Berlin and White (198(5) studied 113 second and third grade students’ spatial 

ability while using concrete and virtual manipulatives. The goal of the study was to 

investigate the effects of combining interactive microcomputer simulations and concrete 

activities on the development of abstract thinking in elementary school mathematics. 

Treatments included concrete-only activities, virtual computer only activities, and 

concrete and virtual computer combined activities.

During a three-week treatment period, instruction consisted of students’ 

completion of concrete and virtual task cards. Task cards required students to duplicate 

and extend patterns of colored cubes and pegs. The concrete manipulative was in the 

form of a pegboard task card. The virtual manipulative simulated the pegboard using 

cubed activities. In the computer simulations, students used the keyboard to select color 

and location of the pegs and colored cubes on the screen. Figure 2.9 illustrates the 

appearance of the two types of manipulatives. On the left is a sketch of the wooden 

pegboards used in the Berlin and White (1986) study. On the right is the general 

appearance o f the virtual computer manipulative.
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Figure 2.9. Pegboard TaskCard and MicroWorld. Images are taken from Computer 
Simulations and the Transition from Concrete Manipulation of Objects to Abstract 
Thinking in Elementary School Mathematics by Donna Berlin and Arthur White found in 
School o f  Science and Mathematics, Volume 86 (6) October 1986.

A six-question paper and pencil instrument was used to assess student 

achievement. Berlin and White (1986) found no statistically significant differences 

between second- and third- grade students using concrete manipulatives, virtual 

manipulatives, and both treatments on measures of spatial sense and patterning.

However, treatment activities had different effects for different genders and socio

cultural backgrounds. Some students did better with concrete manipulatives while others 

did better with virtual manipulatives. For example, rural-white boys using virtual 

manipulatives performed better than suburban-black girls using concrete manipulatives. 

The authors suggest using all three types of instruction to recognize different processing 

modes.
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Nute (1997) studied 241 fourth, fifth and sixth graders’ learning about shapes and 

transformations by way of quilt making exercises. Children were separated into six 

experimental groups and one control group. Children created different size quilts using 

their own four-square designs. This involved transformations on physical and/or virtual 

manipulatives. After four twenty-minute lessons, Nute used an ANOVA with an 

achievement score as the response variable and found no effects. This study was limited 

by the small number of sessions and the narrow curricular goals o f the manipulative tasks 

and thus, generalizations cannot be made about other manipulatives. In this study, 

teachers provided assistance when asked. Nute found no statistically significant 

differences between fourth-, fifth-, and sixth-grade students who viewed or used concrete 

manipulatives, virtual manipulatives, or both on measures of patterning and geometric 

transformations. However, all groups scored higher than those students with no 

manipulative exposure.

Drickey (2000) investigated the effectiveness of physical and virtual 

manipulatives on middle school students’ visualization and spatial reasoning skills. 

Students in two treatment groups, physical manipulatives and virtual manipulatives, were 

compared to students in a traditional instruction control group using a teacher-guided 

discussion format without the use of manipulatives. Also of interest in this investigation 

was the effect of manipulative use on visualization and spatial reasoning skills for 

students of differing mathematics abilities and attitudes. Comparisons were based on 

student scores on pretest and posttest measures o f visualization and spatial reasoning and 

attitude about mathematics.
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Results of the Drickey (2000) study indicated no statistically significant 

differences in mathematics posttest mean scores for students in the three treatment 

groups, as well as for students of differing mathematics abilities and attitudes about 

mathematics. Students in the concrete and virtual manipulative groups reported a 

preference for using manipulatives during instruction. Students in the virtual 

manipulative group had higher rates of on-task behavior than students in the physical and 

no manipulative groups. Posttest mathematics scores in all treatment groups were 

associated with the teacher, student gender, amount of homework completed during the 

unit, and the students’ current mathematics grade.

Terry (1996) found that students in the second, third, fourth, and fifth grades 

using both the physical and virtual manipulatives scored significantly higher on tests of 

addition, multiplication, and spatial sense than students using either o f the treatments 

alone. Terry also used a combination of physical and virtual manipulatives for 

instruction and found that students in grades two through five made significantly higher 

gains from pretest to posttest than students who were instructed using either type of 

manipulative alone. She studied 102 students at each grade level using base-10 blocks or 

attribute blocks. Pleet (1990) who also looked at differences between pretest and 

posttest scores, found no difference between a combination o f manipulatives and either 

type alone. In this case, 56 eighth graders were studied over three weeks as they learned 

transformation geometry.

Smith (1995) developed a microworld program that was used in the experimental 

group and called The Cy-Bee Chips. The study took place at two urban middle schools 

and involved three sixth grade and three eighth grade classes. A total of 128 students
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were involved in the study. The treatments of computer micro world, concrete 

manipulatives, or both computer microworld and concrete manipulatives were randomly 

assigned to the sixth and eighth grade classes. Seven 45-minute work sessions were used 

for each group. The sessions were on consecutive days with testing on the first and 

seventh day and treatments on the second through sixth days.

Prior to treatments in the Smith study, students’ understanding and use of integers 

were assessed by a pretest which was used as a covariate for analyses. The posttest 

paralleled the pretest in computational exercises. The primary explanatory variables were 

treatment group membership and level of previous formal instruction. Statistical analysis 

for this study was divided into parts: (a) factorial analysis of covariance for the entire 

sample and (b) analysis of variance for subsets of the sample.

The microworld treatment group used only the computer microworld shown in 

Figure 2.10 to explore adding and subtracting integers. The student can select a positive 

white or negative black chip by clicking on the icons with the respective images. When 

this is done, the chip appears in the workspace. In the case shown in Figure 2.10, the 

student has selected three positive and two negative chips.

O P

U ser Action 
Script Remove

Zeroes
j .___

Combining (+3) and (-2) a Ell
F ig u re  5 Cy-Bee Chips Addition  M odule  

S c re e n  2

Figure 2.10. Cy-Bee Chips Addition Module.
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Smith (1995) found that sixth- and eighth-grade students using the virtual 

manipulatives scored significantly higher on tests of integer addition and subtraction than 

both those students who worked with concrete manipulatives and those who used both 

treatments. The concrete manipulatives group used two-color counters to explore adding 

and subtracting integers. The objective of the research was to determine the effects of a 

computer microworld on middle school students’ use and understandings o f integers.

Results of the Smith study (1995) indicate statistically significant differences 

between three treatment groups in terms o f mean posttest scores o f students with and 

without previous instruction. Data indicate that previous instruction is also statistically 

significant in analyzing posttest scores. Students without previous instruction actually 

had higher adjusted mean posttest scores than students with previous instruction. Smith 

concluded that “previous instruction may interfere with students’ acquisition of 

knowledge under new methods” (p. 130).

In summary, several studies found no difference in student achievement using 

concrete versus virtual manipulatives. However, when instruction is sequenced with the 

manipulative instruction preceding symbolic instruction, there is some evidence to 

suggest that students who use virtual manipulatives experience higher achievement in 

mathematics than those using only the associated concrete manipulative (Smith, 1995; 

Thompson, 1992). Two studies suggest that students who use both virtual and physical 

manipulatives show an increase in conceptual understanding in mathematics (Ball, 1988; 

Terry, 1996) and one study indicated a decrease (Smith, 1995). Other studies found no 

statistically significant difference in achievement o f students using physical
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manipulatives, virtual manipulatives, a combination o f both concrete and virtual 

manipulatives, and no manipulatives (Pleet, 1990).

Comparisons made between physical and virtual manipulatives may be affected 

by design and sampling characteristics. It is unclear whether increases in academic 

achievement were partially due to the specific manipulative chosen for each study. For 

example, computer-simulated base-10 blocks, two-color counters, and fraction strips 

produced positive results, whereas studies using pegboards and color cubes (Berlin & 

White, 1986), and geometric shapes (Nute, 1997) realized no noticeable increase in 

student achievement.

Conclusions

The exploration of virtual manipulatives and/or microworlds has outstanding 

potential and support. This potential lies in bringing mathematics instruction to a level 

that balances computational methods with visual and concrete methods that focus on 

student understanding of concepts. If students are provided with rich environments for 

learning, they will come to understand mathematical content from numerous 

perspectives.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Chapter 3 

Methodology

This chapter describes methodology used for answering the research questions 

outlined in Chapter 1. It includes a description of the participants and selection tools 

used for participation in the study. It also includes a description of the processes 

involved in research implementation.

Overview and purpose of the study

For over a decade, the importance of implementing technology in the mathematics 

classroom has been underscored. From The Agenda fo r  Action (National Council of 

Teachers of Mathematics, 1980) to Measuring Up (Mathematical Sciences Education 

Board, 1993), every major document which paints a vision of the future of mathematics 

education included a description of technologically-enhanced instruction. And while 

significant transitions are taking place in secondary learning environments, computer 

software continues to evolve as well, augmenting the teaching tools that promote active 

construction of mathematical knowledge.

This study was designed to allow the researcher to compare two types of 

manipulative, concrete and virtual computer, within sequencing of instruction that moves 

from symbolic to manipulative or vice versa. To do this, the researcher explored various 

sequences of manipulative types shown in Figure 3.1. Thus, there were four treatments 

that allowed the researcher to compare the two types of manipulatives within sequencing 

of instruction.

52
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Sensory-Concrete Manipulative”

Virtual Computer Manipulative ■

equence -  Manipulative / Symbolic 

equence -  Symbolic / Manipulative

equence -  Manipulative / Symbolic 

equence -  Symbolic / Manipulative

Figure 3.1. Treatments. Manipulative type within sequence o f instruction.

Many secondary mathematics classrooms have a mixture of students who have or 

have not received symbolic instruction in the past. This problem was addressed in the 

implementation of methods with multiple strategies. First, teachers agreed to not teach 

either topic until treatment implementation during the current academic year. Second, 

students in higher level mathematics classes, namely, Integrated Three or Integrated Two 

Honors were typically placed in sequences that began with symbolic procedures. It is 

reasonable to assume that students in these math classes had received some symbolic 

instruction in the years prior to the academic year of this research. It would therefore be 

unreasonable to place these students in categories that assumed no previous symbolic 

instruction. Students with more background knowledge of the mathematical content 

being predominately placed in treatment groups that assume initial symbolic instruction 

could add bias in favor of sequences with symbolic instruction first. Third, the pretest 

included questions that asked students about their own perceived background experience 

in the topic as well as whether or not they had experienced instruction in the topic within 

the framework of a manipulative. Finally, the pretest score was used as an indicator of 

student’s background knowledge in the topic area.
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The participants

Several school officials collaborated with the researcher to make this study 

successful. Approval began with the school district superintendent. This paved the way 

for the researcher to obtain a computer account that would allow internet access for a 

class of no more than thirty students. Principals at each school were contacted for 

approval and informed of presentation dates. Librarians assisted in scheduling the 

computer lab.

Teacher selection

Four teachers at one local high school were selected to be in this study. Each 

teacher agreed to the conditions of the study (see Appendix A). There were multiple 

reasons why these four teachers were selected for the study. First, other schools in the 

district had different time schedules. Classes at another local high school met for fifty- 

minute class sessions. Selecting all participating teachers at a single high school 

provided reasonable assurance that all presentations would have equal instruction and 

activity time periods of ninety minutes. Second, using one location eliminated the 

additional factor o f having multiple schools. Teachers who volunteered outside of this 

high school were selected for pilot studies.

Student selection

Each student received the Parental Permission Form from the classroom teacher 

(see Appendix B). Students who did not return this form to the classroom teacher by the 

date of the manipulative presentation were not allowed to participate. Parental 

Permission Forms were given to the student early in the academic year. As a result, less
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than five percent of students asked to participate did not have the forms needed to 

participate or opted to not participate.

Presentations included an explanation o f what was required of each student 

participant. The researcher read the Student Informed Assent aloud in front of the class 

of students (see Appendix C). Next, the researcher answered questions and addressed 

concerns of the students. If  the student agreed to participate, she/he signed the assent 

form and immediately returned it to the researcher. Students who did not immediately 

return this form to the researcher were not allowed to participate.

A total of 304 students with both signed forms were escorted to a computer lab by 

the researcher after Parental Consent and Student Assent forms were collected from 14 

classes. The computer lab was located in the library of the high school. Students without 

both signed forms remained in the regular classroom with their assigned classroom 

teacher.

Students received a pretest upon entering the computer lab (see Appendix D). 

Depending on the treatment, either the concrete or virtual computer manipulative was on 

every desk and available for student use. Each student was given fifteen minutes to 

complete the pretest. Students also completed a posttest the same week of one of the four 

instruction sequences (see Appendix E). The posttest included a final question that asked 

the student participant if  they would be willing to participate in a task-based personal 

interview at a later date. Students selected for interviewing were chosen randomly from a 

list of students who agreed to be interviewed by indicating so on this final posttest 

question.
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Three students were selected to be interviewed from each of the 14 class 

presentations. Four of these students were absent on the selected interview date. Twenty 

-three interviews were performed on the topic of multiplying and factoring polynomial 

expressions. Fifteen interviews were performed on the topic of solving two-step linear 

equations.

Interviews ranged from 20 to 45 minutes in length and covered basic topic 

foundational knowledge, problems presented in the treatment activity, and extension 

problems. For example, an interviewee on the topic of multiplying and factoring 

polynomial expressions was asked about which pieces of Algebra Lab Gear represented 

the variable x. This represents basic topic foundational knowledge. Next the student was 

given a problem that required the student to multiply two binomials. This is the type of 

problem the student practiced during the treatment activity. Finally, the student was 

asked to factor polynomials with more than four terms. This is an extension of the 

problems the student practiced during the treatment activity.

Class levels

Students at the high school are tracked according to their academic records, age, 

grade level, and perceived abilities in mathematics. This means that upon entry into the 

high school, the student’s counselor determines math placement using the student 

academic record. Class levels included in this study were Pre-Algebra, Integrated One, 

Integrated Two, Integrated Two-Honors, and Integrated Three. Students were in ninth 

grade, tenth grade, eleventh grade, or twelfth grade.
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The researcher

I earned a M.S. in mathematics in 1995. I have had a variety of courses including 

differential equations, engineering physics, analysis, probability, statistics, and learning 

theories in mathematics education. My teaching experience includes four years in the 

public schools, one year at a tribal community college, and several years as a graduate 

student at two different universities. During this time, I have taught a number of classes 

ranging from basic math to multi-variable calculus.

As a mathematics educator, I believe that the people who understand mathematics 

best are precisely those people who have multiple ways of expressing mathematical 

content. What a person knows about any mathematical concept is inseparably linked to 

the number of ways in which that person can express the concept. Indeed, this research 

assumes a person understands a concept when that person can demonstrate the concept in 

a manner that a fellow mathematician can understand, but can also demonstrate the 

concept in a manner that a non-mathematician can understand. In order to do this, one 

must understand the concept from multiple perspectives. It is the number of mental 

connections that a person makes with respect to a given concept that establishes how 

much that person truly understands the mathematical concept.

The researcher also believes that students’ perceptions and understandings of 

different aspects of a mathematical concept are often incomplete. The typical secondary 

student will tend to use taught procedural techniques without referring to the relevant 

definitions or meanings behind the procedures. When a procedural technique fails to 

provide a student with a straight answer, the student will sometimes attempt to solve the 

problem with self-defined logical operations.
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Through exploration of student errors, one can attempt to gain insight into pre

conceived student misconceptions. The researcher favors the belief that some 

misconceptions can be linked to instruction that focused on procedures prior to providing 

meaningful representation of the symbolic structure. There is bias in favor of using an 

alternate form of mathematical representation. This representation could be sensory- 

concrete, pictorial, or virtual computer.

Since many secondary students are not at a formal operations stage o f thinking, it 

is, in the opinion o f this researcher, better to begin any new secondary mathematical 

concept with activity-based instruction that provides a sensory-concrete or virtual 

computer form of symbolic representation. In doing so, the instructor is providing the 

student with a frame of reference from which the student can build meanings behind 

mathematical content.

Results o f all relevant research conclusions in this dissertation will be reported 

without favoritism towards admitted bias. Above personal preferences is the desire to 

investigate student learning outcomes that result from the use of a concrete or virtual 

manipulative in secondary mathematics instruction.

The research tools and their implementation

Many educational mathematical software programs have the steering feature.

That is, the user can move objects by providing instructions. These instructions are 

typically defined within the software program. For example, the Logo program allows 

the user to instruct a turtle to move forward a number of units, to rotate a degree angle, 

and/or follow prewritten procedures. To operate this type of steering manipulative, the 

user must become familiar with the command set of the particular program.
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The virtual applets chosen in this study move beyond this steering capability in 

that they do not require the user to learn predefined routines to move or manipulate 

objects. The movement, rather, is caused by simply placing the mouse pointer over the 

object on the computer monitor, holding the forefinger down on the mouse, and moving 

the mouse left, right, up, or down. The mouse movement directly causes the objects to 

move on the computer screen in the same direction that the hand is moving with the 

mouse. Thus, mental processes one must undergo when using predefined commands are 

avoided. In this way, the virtual manipulatives utilized within this study more closely 

model actual physical movements.

Topics

The research consisted of two topics: solving two-step linear equations and 

multiplying and factoring polynomial expressions. These topics were chosen because of 

the features of the virtual computer manipulative that complemented each topic, the 

frequency with which the topic was taught within the chosen high school, and the 

potential to duplicate the images on the virtual applet into a concrete form.

Virtual solving of two-step linear equations

The virtual computer manipulative that was used for instruction in solving two- 

step linear equations is an applet located at the National Library of Virtual Manipulatives 

website: http://www.matti.usu.edu/. This applet can be reached by selecting the Virtual 

Library icon available under the topic of algebra grades 6-9, and choosing the option 

titled, Algebra Balance Scales. Each student manipulated this applet with the use o f the 

computer keyboard and mouse. Movements were controlled with the computer mouse 

within an area on the computer screen called the workspace.
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The Algebra Balance Scales virtual manipulative allows the student to solve 

simple linear equations through the use of a balance beam. Unit blocks (representing Is) 

and X-blocks (for the unknown variable), were placed on the pans o f a virtual balance 

beam. The beam balances to represent equilibrium of the given linear equation. As long 

as the student keeps the scale in balance by performing equivalent operations on both 

sides of the equation, the student can choose to perform any arithmetic operation. The 

goal is to get a single X-block on one side with any number o f unit blocks needed for 

balance, thus revealing the appropriate value of X that makes the original equation a true 

statement.

To place blocks on the balance scale, the student would have to click on an object 

and drag it toward the side of the beam she/he wanted to place it on. When the student 

releases the object, it snaps into place on the scale. When the student first places an object 

on a pan the scale swings down on that side (no longer balances), but when the given 

equation is fully represented, the balance is restored. Note that a student cannot click the 

continue button until they have successfully represented the equation, whether or not the 

scale balances. Blocks and boxes may be placed on either pan and in any order.

To remove blocks from the scale, the student would click and drag any object 

(even from the middle of a stack) to the trash can in the lower right comer of the 

workspace. This removal would cause the balance scale to tilt in one direction or another 

if  a similar object had not been removed from both sides of the balance scale.

When the student believes she or he has correctly represented the equation, they 

can click the continue button. A message appears if  the equation is not set up correctly. 

The message informs the student that the two sides do not match the equation. If the
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equation is set up correctly, the initial display shows the options to add, subtract, 

multiply, or divide. The only allowable operations require the student to perform the 

same operations on both sides of the balance scale (and thus to both sides of the 

equation). The equation is updated with each operation. When the student has a single X- 

block on one pan and any number of unit blocks on the other pan, the virtual 

manipulative displays the solution in the form of an equation where X is equal to the 

number of unit blocks on the right pan of the balance beam.

The following is an example of what the successful student would do to solve the 

two-step linear equation,4x + 2 = x  + 5, using this virtual computer applet. Figure 3.2 

displays the process of setting up the problem on the virtual applet. The student begins 

with the workspace on the computer screen. Next the student places 4 X-blocks and 2 

unit blocks on the left pan of the balance scale. Then the student places one X-block and 

5 unit blocks on the right pan of the balance scale. At this point the problem is correctly 

set up and the student can click the continue button. When this happens, a third virtual 

image appears giving the student the option of adding, subtracting, multiplying, or 

dividing from both sides of the equation.

The problem is now ready for solving. Suppose the student decides to subtract 2 

unit blocks. The student would click the icon with a subtraction symbol. This becomes 

highlighted when selected. Then the student would type in the number 2 in the white box 

that appears just after the words, subtract from both sides. At this point, the student 

would click on the go button. Two unit blocks would instantly disappear from both sides 

of the balance beam and a new equivalent equation appears: 4x = x  + 3 . Next, the
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Figure 3.2. The process of setting up an equation for solving on the virtual balance scale. 
Algebra Balance Scales, National Library of Virtual Manipulatives, © 1999-2005 Utah 
State University.
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student would subtract one X-block from both sides of the balance scale. This is done by 

selecting the subtraction icon and typing the letter X or the number and letter IX into the 

white box. Again, the student clicks on the go button. Finally, the student divides both 

sides by three using a similar process. Figure 3.3 displays the steps involved in this 

process.

This virtual manipulative has no predetermined sequence of operations that must 

be discovered. The student chooses the operation to be performed and after each 

operation the displayed equation is updated so that both the original equation and the 

latest equivalent form are seen together. Note that the student can choose to represent 

either side of the equation on either balance pan, and after pressing the continue button, 

the student works with the form of the equation thus selected. The only operations that 

are allowed are those that leave positive whole numbers as coefficients. Thus, for 

example, it is not possible to divide by 2 unless the numbers of unit-blocks and X-blocks 

on each side is even. The student must decide when the equation is solved; there are no 

whistles or bells when there is just one X-block appearing on one pan or the other and the 

student can continue on through another loop of operations if desired.

Concrete solving of two-step linear equations.

The concrete manipulative that was used for instruction in solving two-step linear 

equations was similar to the virtual computer manipulative in that it included a balance 

beam for instructional demonstration of solving equations. Materials for instruction 

included laminated sheets of paper and adhesive square plastic chips that represented an 

X-block and a unit block respectively. The square plastic chips were approximately one- 

tenth of a centimeter in thickness. For this reason, they are referred to as chips instead of
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Figure 3.3. The completion of the process for solving a two-step linear equation on the 
balance scale applet. Algebra Balance Scales, National Library of Virtual Manipulatives, 
© 1999-2005 Utah State University.
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blocks. All plastic chips were the same size. However, the X-chip was blue and the unit 

chip was yellow.

A poster board was set up at the front of the classroom to remind students that the 

blue chip was the X-chip and the yellow chip was the unit chip. Each student was given 

a sheet of laminated paper, an activity sheet, and twenty-five plastic square chips in each 

color. The laminated sheet o f paper had the image of a balance scale at the bottom of the 

page.

The operation of subtraction was similar to what was performed on the virtual 

computer in that equal amounts of X-chips or unit chips were removed from both sides of 

the balance beam. However, the operation of division involved grouping chips according 

to the number o f remaining X-chips and identifying how many unit chips were in a group 

with a single X-chip.

To set up a problem, students placed the chips on both sides of a large equal sign 

in the center of the laminated page. For example, if  asked to solve the two-step linear 

equation, 4x + 2 = x + 5, the student would begin by placing 4 blue X-chips and 2 yellow 

unit chips on the leftmost side of their equal sign. Next the student would place 1 blue X- 

chip and 5 yellow unit chips on the rightmost side of their equal sign. At this point, the 

problem would be correctly represented with the chips. Now, the student could begin the 

process of solving the equation. Figure 3.4 displays the proper set up of the equation 

4x + 2 = x + 5 with the concrete manipulative.
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Figure 3.4. The equation 4x + 2 = x  + 5 set up on the concrete balance scale. 
Homemade manipulative created by the researcher with laminated sheet of paper and 
plastic detachable squares.

To solve the two-step linear equation, the student was asked to think of the 

problem in terms o f the balance scale. First, the student would remove equal amounts of 

the same color chip from both sides. In our example, the student would remove two 

yellow unit chips from both sides of the equal sign. Next, the student would remove one 

X-chip from each side of the equal sign. The remaining chips include 3 blue X-chips on 

the leftmost side and 3 yellow unit chips on the rightmost side of the equal sign. At this 

point, the student can no longer remove chips of the same color from both sides. One 

side, the leftmost, has only X-chips and the other side, the rightmost, has only yellow unit 

chips. The student must recognize that the process of removing equal amounts is

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



6 7

complete and that for each blue X-chip there is exactly one yellow unit chip. Therefore, 

the final solution is: x  Figure 3.5 illustrates these final steps.

Although necessary with the concrete manipulative, the physical process for 

performing division was not clearly illustrated by the virtual manipulative. For example, 

the problem 2x = 6 requires division by 2. Students who used the concrete manipulative 

divided all the chips into two groups of equal color distribution. The answer was the 

number of unit chips in a group that included one X-chip. The same problem on the 

virtual manipulative required the student to select the division icon with the mouse and 

type the value 2 on the keyboard.

As with the virtual manipulative, the concrete manipulative had no predetermined 

sequence of operations. However, unlike the virtual manipulative, the student read the 

problem from their activity sheet and was asked to represent the initial setup with pencil 

and paper by drawing an X in appropriate provided squares. This allowed the researcher 

the opportunity to check that all student participants were correctly setting up each 

equation during the activity portion of the treatment. The virtual manipulative 

accomplished this by not allowing the student to continue unless the blocks were properly 

placed on the pads of the balance scale.

Every effort was made to make content of both the concrete and virtual 

manipulative as similar as possible. Some differences, such as the advantage of the 

virtual manipulative to place the scale in equilibrium without regard to the weight of the 

X-block or unit block, were impossible to overcome. However, content was 

mathematically the same. The activity sheet for classes using the concrete manipulative
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Figure 3.5. The process of solving the equation 4x  + 2 = x  + 5 on the concrete balance 
scale. Homemade manipulative created by the researcher with laminated sheet of paper 
and plastic detachable squares.
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was created from problems that were generated on the virtual applet. This would insure 

that the activity problems both groups encountered would be similar, if  not identical. 

Virtual algebra lab gear

The virtual computer manipulative that was used for instruction in multiplying 

and factoring polynomial expressions is an applet located at the National Library of 

Virtual Manipulatives website: http://www.matti.usu.edu/. This applet can be reached 

by selecting the Virtual Library icon available under the topic o f algebra grades 6-9, and 

choosing the option titled, Algebra Tiles. The manipulative created by the applet is very 

useful as an introduction to the physical representation of multiplication and division. 

However, the applet is limited to binomial operations, positive integers and variables, and 

factors with no integer exponents greater than one.

Using the Algebra Tiles virtual manipulative, the student can add tiles to a 

workspace, rotate tiles, change the length of the X or Y tiles, and delete tiles by putting 

them in a trash bin. To add tiles to the workspace the student simply clicks on any of the 

buttons below the workspace. The respective algebra tile instantly appears in the center 

of the workspace. Once the tile is added to the workspace, the student can click and drag 

the algebra tile to the desired location in the workspace. To rotate an algebra tile, the 

student must move the mouse over the comer of the tile. A round black dot appears.

This dot can be used to rotate the tile. When the student places the mouse over the 

location of the dot and drags the mouse in a circular motion, the tile will rotate. When 

the student releases the mouse, the tile will snap into a vertical or horizontal orientation. 

The student can also change the length of the X- and Y-tiles. Two scroll bars located at 

the bottom of the workspace allow the student to adjust the size of the tiles. The scroll
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bars are colored in a manner that matches the tile they resize. Finally, students can delete 

tiles by dragging the tile over a trash bin located in the lower right hand comer of the 

workspace. It is also possible to clear the screen by clicking on the Clear icon. Figure 

3.6 illustrates the Algebra Tiles workspace.

To form a product of two polynomial expressions, the student must place one 

factor in the space just above the variable icons and the other factor in the space on the 

far left. When the student selects the icon of choice, the item appears in the center of the 

workspace. Then the student drags the item to the provided space. When both factors are 

in place, two lines outline a rectangle that forms the space where the product solution 

should be placed.

Figure 3.6. The workspace. Algebra Tiles, National Library of Virtual Manipulatives,
© 1999-2005 Utah State University.

Figure 3.7 illustrates how a student would set up the problem: (2x +1 ){y + 3). 

Here, the student has selected the x  icon in the topmost image. In the middle image, the 

student has place the factor (2x  +1) in the provided space above the variable icons. The 

student has placed the factor (y  + 3) in the far left space in the bottom image.
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To find the product of (2x  + !)(>’ + 3), the student must fill in the rectangular 

space with variables that correspond to the cross product of what is below and to the left 

o f the rectangle. Depending on the particular problem, this may or may not require the 

student to rotate the variables after they are introduced into the workspace. Nevertheless, 

the solution will be the sum of all the tiles in the rectangular box.

This virtual manipulative also provided a method by which students could check 

that their solutions were correct. If  students had already filled in the rectangle, they could 

check their work by adjusting the size of the tiles. The students knew that their solution 

were not correct if  the tiles no longer fit into the outlining rectangle when the tiles were 

resized. Figure 3.8 illustrates how students, who incorrectly filled in the rectangle, may 

discover that their answer is not correct. In the image on the left, a student has filled in 

the rectangle with algebra tiles that do not correspond to the factors. In the image on the 

right, a student has used the scroll bars located on the bottom of the workspace, to resize 

the tiles. Notice that the tiles that once seemed to fit into the rectangular space no longer 

fit.

This applet was also used to factor polynomial expressions. Problems involving 

factoring required the student to form a rectangular shape. Then, based on the 

rectangular shape, the student had to determine the appropriate factors by filling in the 

space just above the variable icons and on the far left. The process of factorization is 

simply the reversal of the process of multiplication.
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Figure 3.7. Algebra Tiles, National Library of Virtual Manipulatives©, 1999-2005 Utah 
State University.
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Concrete Algebra Lab Gear

Algebra Lab Gear is a manipulative that was developed by Creative Publications 

and is sold by Wright Group/McGraw-Hill 2004. Tiles in this commercial set are 

typically light blue and yellow in color. The concrete manipulative used in the 

instruction of multiplying and factoring polynomials was not this type o f Algebra Lab 

Gear. Rather, the researcher used a homemade form o f Algebra Lab Gear that was made 

out of wood and colored in a manner similar to the virtual manipulative.

(. leal-

Figure 3.8. Algebra Tiles, © 1999-2005 Utah State University.
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The X-tiles were painted red, the Y-tiles were painted blue, the unit tiles were 

painted green, and the XY-tiles were painted purple. The homemade set also included a 

wooden L-shaped frame. It did not, however, include the string of 5 unit tiles. Each 

student participant was provided with a homemade set of tiles that included six red X- 

squared-tiles, six blue Y-squared-tiles, eight X-tiles, eight Y-tiles, six XY-tiles, and 

fifteen unit tiles.

Students who used the concrete manipulative to multiply or factor polynomials 

did so by moving their tiles, with their hands, into their appropriate positions around the 

L-shaped wooden frame. For example, a student who wanted to find the product of 

(2x + \){y  + 3) would begin by placing two X-tiles and one unit tile below the horizontal 

bar of the L-shaped wooden frame. Next, the student would place one Y-tile and three 

unit tiles on the leftmost side of the L-shaped wooden frame. Finally, the student would 

indicate multiplication by creating a rectangle that fit into the space outlined by the lower 

and leftmost factors.

Figure 3.9 illustrates this process with the concrete manipulative. In the image on 

the top, the student has placed two X-tiles and one unit tile below the axis on the L- 

shaped wooden frame. In the middle image, the student has placed a single Y-tile and 

three unit tiles in the leftmost region of the L-shaped wooden frame. The bottom image 

displays the final step in finding the solution. That is, the tiles that form the interior 

rectangle represent the expression: 2xy + 6x + y  + 3.

To factor an expression, say, 2xy + 6x + y  + 3, the student would begin with 12 

tiles. Namely, 2 XY-tiles, 6 X-tiles, 1 Y-tile, and 3 unit tiles. Next, the student would try 

to form a rectangle in the interior of the L-shaped wooded frame. Once this is done, the
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(c)

Figure 3.9. The process of finding the product of (2x + l)(y + 3) with the concrete 
manipulative. Homemade manipulative created by the researcher with colored wooden 
pieces.
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student places the appropriate tiles below and to the left o f the L-shaped wooden frame to 

determine the factors of the polynomial expression.

The concrete manipulative was designed to be as similar to the virtual computer 

manipulative as possible. However, obvious differences exist. First, the concrete 

manipulative cannot vary in size. Second, a rectangular outline did not appear on the 

concrete manipulative when the factors were placed below or to the left of the L-shaped 

wooden frame. Third, the length of the Y-tile was similar to the length of three unit tiles 

and could therefore cause the confusion that Y is equal to 3. These differences tend to 

favor the virtual computer manipulative. However, the concrete manipulative offered a 

tactile experience that could reasonably make the experience more meaningful for some 

learners.

Lesson plans

One lesson plan was designed for each topic: solving two-step linear equations 

and multiplying and factoring polynomial expressions (see Appendix F). Regardless of 

manipulative type, instruction included the use of a computer applet in the computer lab. 

That is, instruction on the topic of how to solve a two-step linear equation was given with 

the use of the Algebra Balance Scales applet but included the demonstration of one 

problem on a wooden balance scale. Instruction on the topic of how to multiply or factor 

polynomial expressions was given strictly with the use of the Algebra Tiles applet.

The researcher prepared the lab so that it would be ready for use prior to each 

presentation. This preparation involved setting out the objects when a concrete 

manipulative would be used in instruction. In the case of the virtual manipulative, 

preparation involved turning on the computers and selecting the applet Website.
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Students entered the computer lab and sat down behind any one of eight rows of 

computers. The computer lab has a total o f 40 computers. Thus, each student had their 

own computer and a small desk area about which they could work.

Instruction was aimed at semantic analysis outlined in Chapter 2. Semantic 

analysis is similar to mapping instruction. Both approaches “aim to help students make 

sense of symbolic rules or algorithms by connecting the rules with the referents” (Weame 

& Hiebert, 1988, p. 381). However, instruction aimed towards semantic analysis begins 

by establishing the meaning of individual symbols and spends a major portion of the 

instructional time connecting symbols with referents. Actions on referents are then used 

to generate procedures with symbols. Some rules, such as add the product o f the first, 

outer, inner, and last terms, are not needed as independent rules in the syntactic system. 

According to Weame and Hiebert (1988), the differences between the instructional 

approaches might be summarized by noting that the goal of semantic analysis instruction 

is to promote the analysis of symbol expressions in terms of meaningful referents and 

thereby eliminate the need for many syntactic rules, whereas the goal of mapping 

instruction is to help students understand syntactic rules and apply them appropriately.

Each lesson was activity based. The lecture portion of instruction lasted no more 

than 10 minutes. The remaining 80 minutes of class time was dedicated to the treatment 

activity. This design was chosen in part because of bias in favor of action-based learning 

experiences. It is felt that some students learn best when they are engaged in mental 

activities that require them to move objects. Another reason for this design is to 

eliminate, as much as possible, the influence of instructional abilities.
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At the end of the short presentation, an activity sheet was passed out to the 

students. Once the students began the activity, the researcher walked around the room 

checking the work of each student. The researcher checked a box on the activity sheet 

with her initials. The researcher initialed a single problem on the activity sheet when the 

student presented a visual representation of the solution and had correctly written the 

answer on her/his activity sheet. This process was used to encourage students to use the 

manipulative to solve problems.

Pretest and posttest questions

Pretest questions addressed the students’ prior experience using manipulatives, 

recollection of prior instruction in the content area, and content specific problem solving 

abilities. Student participants were asked about previous instruction with manipulatives 

to validate the underlying assumption that many of the participants have not previously 

experienced content from the perspective of the manipulative. Questions on recollection 

of prior instruction were given to validate student background experience in the topic.

Content specific problems are problems that require the same skills as those that 

the student is asked to perform in the treatment activity. Pretest problems in the content 

area were given to provide a measure of how much background experience in the topic 

the student possessed when entering the computer lab. Upon entry in the computer lab, 

each student picked a seat. In front of each seat was a fully equipped computer that was 

previously turned on, logged into the appropriate website, and ready to use. Regardless 

of treatment type, the concrete manipulative was also placed by the computer. Each 

student had these resources when taking the pretest. Students were neither encouraged 

nor discouraged from using either manipulative to solve problems.
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Posttest content questions repeated the pretest content questions in that they 

required the same skills to complete. The process for giving the posttest was similar to 

the pretest. Students were escorted to the computer lab. Upon entry into the computer 

lab, each student picked a seat. In front of each seat was a fully equipped computer that 

was previously turned on, logged into the appropriate website, and ready to use. The 

concrete manipulative was placed by each computer. Each student had these resources 

when taking the posttest. The posttest also included questions with regard to student 

attitudes about the instructional methods incorporated in the administration of the 

treatment and a final question addressing the students’ willingness to participate in the 

interview process.

Each content specific problem included the image of a square box on both the 

pretest and posttest. Under the box were words indicating the use of the manipulative. 

The students were told to place a check mark into the box if they used a manipulative to 

solve the problem or thought o f objects and used these images to solve the problem. It 

was hoped that this would serve as a measure of how many students were using a 

manipulative to solve problems on both the pretest and posttest.

Solving two-step linear equations

The pretest and posttest given to students asked to solve two-step linear equations 

had 7 content specific problems. Problems on the posttest were designed to be similar to 

the pretest problems. Content specific problems on the pretest were randomly selected by 

the Algebra Balance Scales applet that was used as an instructional aide in all classes that 

received treatments involving finding the solution to two-step linear equations.
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Content problems on the pretest and posttest o f students receiving instruction in 

solving two-step linear equations differed only in that some problems required division to 

complete while others simply required removing equal quantities from both sides o f the 

equal sign. Thus, the level o f difficulty o f problems had a small margin of variation 

within the tests themselves. All problems required a reasonably equal amount of 

mathematical skill to solve. This design was adopted because students who received the 

treatments in solving two-step linear equations are typically younger and have less 

background experience than students who received instruction in multiplying and 

factoring polynomial expressions.

Multiplying and factoring polynomial expressions

The pretest and posttest given to students in multiplying and factoring polynomial 

expressions had 10 content specific problems. Problems on the posttest were designed to 

be similar to the pretest problems. Unlike the pretest and posttest given to students in 

solving two-step linear equations, the pretest and posttest of this topic required a variety 

of mathematical skills. For example, both tests had problems involving finding the 

product of a monomial and a binomial, two binomials, binomials in one variable, and 

binomials in two variables. They also included factoring of expressions with two, three, 

four, and five unlike terms.

These tests were designed to cover several concepts because students who 

received this pretest or posttest were typically students with a wide range of background 

knowledge and skill in simplifying polynomial expressions. Additionally, the lesson on 

multiplying and factoring polynomial expressions focused on relationships between the 

two operations and the similarities of concrete procedural approaches to solving both
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types of problems. This relationship between multiplication and factoring is represented 

by the process o f forming a rectangle from two factors in multiplication and the reverse 

process of forming a rectangle and then determining the factors based on the length and 

width of the formed rectangle. Both the virtual and concrete manipulatives were 

available to the student to use during the pretest and posttest. Treatments and instruction 

provided students with an activity using one type of manipulative to explore content 

relationships within the content area.

Data analysis methods

Quantitative data were collected from pretest and posttest questions given to all 

student participants. O f interest is whether or not instruction with the use of a 

manipulative improved student accuracy or student attitudes on the use of a manipulative, 

and whether or not students tended to answer questions differently based on the type of 

manipulative. Accuracy was measured in terms of the mean number o f correct answers 

on the pretest and posttest for each class. Student accuracy was measured in terms of 

achievement groups. Attitudes were measured in terms of weighted mean Likert scale 

class values. Finally, student incorrect answers were grouped and compared by placing 

identical incorrect solutions into researcher defined categories.

Background knowledge categories

Students who had previous knowledge o f the correct methods for solving 

problems were not able to demonstrate improvement. That is, any student participant 

who scored 100% on a pretest had no room to demonstrate improvement on the posttest. 

Since the quantitative measurement of treatment effect is largely based on this 

improvement score, the inclusion of these students makes it more difficult to identify
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variables that are possibly essential to determining treatment effects. For this reason, 

analysis will be conducted on specific categories of pretest score.

Category divisions were chosen based on the approximate percentage 

equivalence. For example, students who scored 6 or 7 out of 7 problems on the pretest in 

solving two-step linear equations were thought to have mastered the concept prior to 

taking the pretest. These students scored 86% or more on the pretest. Similarly, students 

who scored 8, 9, or 10 out of 10 problems on the pretest in multiplying and factoring 

polynomial expressions answered approximately 80% or above correctly. These students 

were grouped together in a category indicating students who had reached topic mastery 

prior to taking the pretest. This grouping facilitated the evaluation of overall success by 

providing a measure of background knowledge for each student.

Students who received instruction on solving two-step linear equations were 

divided into three categories according to a pretest score of 7 possible points;

1. NO KNOWLEDGE - SCORE 0 OR 1

Assume the student participant has no sufficient understanding of how to 

solve two-step linear equations.

2. SOME KNOWLEDGE - SCORE 2, 3, 4, OR 5

Assume the student participant has some background understanding of 

how to solve two-step linear equations.

3. MASTERY - SCORE 6,7

Assume the student has mastered the concept of how to solve two-step 

linear equations with at least one type of strategy.
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Students who received instruction on multiplying and factoring polynomial 

equations were divided into the same three categories according to a pretest score o f 10 

possible points;

1. NO KNOWLEDGE - SCORE 0, 1, 2

Assume that either the student participant has no sufficient understanding 

of how to multiply polynomials or the student participant has no sufficient 

understanding of how to factor polynomials.

2. SOME KNOWLEDGE - SCORE 3, 4, 5, 6 OR 7

Assume that either the student has some background understanding of how 

to multiply polynomial expressions or some background understanding of 

how to factor polynomial expressions or both.

3. MASTERY - SCORE 8, 9, OR 10

Assume the student has mastered the concept of how to multiply and 

factor polynomial expressions with at least one type of strategy.

The sequencing of instruction is inherently bound to the use of manipulatives. 

Studies indicate the learning outcomes that result from instruction that adopts 

manipulatives differ among students who have experienced procedural/symbolic 

instruction and those who have not (Thompson, 1992).

The student background knowledge is related to the issue of sequencing. More 

than likely, students who demonstrated mastery of content on the pretest have had some 

instruction in the topic in their prior academic years of education. It is reasonable to 

assume that this instruction was primarily procedural if  the student agrees, in the form of 

a pretest question, that they have not received instruction that utilized a manipulative. By
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default, students who demonstrated mastery on the pretest and indicated not having 

experienced the topic with the use of a manipulative were receiving instruction that began 

with a procedural approach prior to the introduction of methods that incorporate the use 

of a manipulative.

On the other hand, students who score 0, 1, or 2 problems on a pretest may or may 

not have received prior instruction. These students were also asked if they had received 

prior instruction with the use of a manipulative. It is not reasonable to assume these 

students received prior symbolic instruction of content. Thus, within this pool of students 

are the students who received initial instruction in the form of a manipulative.

Statistical methods

This study uses analysis of covariance to determine if the sequence of instruction 

involving the two manipulatives, concrete and virtual computer, has any effect on 

improvement in test score from pretest to posttest. Analysis of covariance (ANCOVA) is 

a statistical technique that allows examination of the effect of an explanatory variable on 

a response variable, while removing the effects o f other variables. In this case, interest 

lies in the improvement students made in their test scores after receiving instruction 

under one of the four manipulative sequences. However, there are other factors that 

contribute to an improvement in test score. These factors, or covariates, may include 

familiarity with computers, stage o f learning, classroom teacher, class level, and the age 

of the student. ANCOVA will look at the effect of the manipulative teaching sequence 

treatment after accounting for the effects of the covariates.

Next, students are divided into background knowledge categories. ANOVA 

procedures were performed for each background category to determine differences
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among students based on their pretest scores. The hypothesis is that students who scored 

above 80% on the pretest had more background experience or ability with the topic than 

those who scored below 25% on the pretest. This analysis explores the issue o f whether 

the manipulative type was more or less effective among students of varying background 

experience and ability in both topics.

Answers to posttest student opinion questions will be categorized according to a 

Likert scale. Student attitude towards the use of the concrete or virtual manipulative may 

influence learning outcomes. Chi-square contingency tables compare the concrete and 

virtual computer manipulative in terms of overall student attitude. This test provides 

some indication of whether student opinion is a factor in the final overall results.

Close examination of the accuracy of each pretest and corresponding posttest 

problem is considered for both topics. There are four achievement groups for each test 

problem. The first group represents a count of students who incorrectly answered a 

question on the pretest but correctly answered the corresponding posttest question. The 

second group represents a count of students who correctly answered the pretest but 

incorrectly answered the corresponding posttest question. The third group represents a 

count of students who correctly answered both the pretest and corresponding posttest 

question. The fourth group represents a count of students who incorrectly answered both 

the pretest and corresponding posttest question. Chi-square analysis is used to determine 

if these counts were significantly different between the two manipulative types for each 

type of question.
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Interview methods

Thirty-eight task-based interviews were given to two or three student participants 

in each class. These interviews were 20 to 45 minutes in length and occurred within 10 

days of the treatment. Students were asked questions similar to those on the activity 

sheet they received during the presentation (see Appendix G). They were also asked 

questions beyond the scope of what was covered in class. The researcher consistently 

asked students to solve the interview problems using more than one method. Interviewed 

students were asked to say what they were thinking while solving problems.

Qualitative analysis focused on the semantic processes involved in making 

connections between the manipulative and the corresponding symbolic representations 

and procedures. This approach was based on semantic analysis categories developed by 

Weame and Hiebert (1988) that are outlined in the literature review o f this dissertation. 

The analysis process involved the researcher making the determination if the student was 

able to connect the concrete or virtual manipulative to its corresponding symbolic 

representation. The researcher also determined if the student was able to identify actions 

on the concrete or virtual manipulative as analogous to mathematical operations. Finally, 

the researcher observed whether students who had incorrect answers used the 

manipulative to correct or guide their symbolic procedures.

Interviews with students who received instruction in solving two-step linear 

equations were omitted from the final analysis and were not included here. This was 

done because of unforeseen discrepancies between the treatments. Students who received 

instruction with the virtual manipulative did not directly receive instruction in the 

physical representation of division. Students who received instruction with the concrete
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manipulative had to physically represent division by grouping X-chips with unit chips in 

such a way that each group included exactly one X-chip. Instruction in this 

representation of long division with the chips typically was given as one-on-one 

communication between the researcher and the student or the teacher and the student 

during the course of the concrete manipulative activity. It was mistakenly assumed that 

students in all treatment groups would be able to connect the symbolic representation of 

long division to its analogous concrete representation.

The difference between the instructional activity of the concrete and virtual 

manipulative in the topic of solving two-step linear equations is related to the connecting 

process outlined by Weame and Hiebert (1988). Direct comparisons of the connecting 

process were inappropriate within these interviews because students who used the 

concrete manipulative may have received instruction on the physical representation of 

long division while students who received instruction with the virtual manipulative did 

not. It was also impossible to compare whether the student was able to represent 

symbolic division with the virtual manipulative because students could not freely move 

the blocks on the virtual manipulative into groups. Thus, analysis o f student connecting 

processes for the topic of solving two-step linear equations was omitted from the final 

qualitative results.

Twenty-three interviews were performed on the topic of multiplying and factoring 

polynomial expressions. Interviewees selected for final analysis were chosen based on 

whether or not a single incorrect solution strategy was adopted during the course o f the 

interview. The only exception to this rule was one question that required the student to 

factor a trinomial of negative terms ( 4 x2 - 2 x - 2 ) .  This question cannot be answered
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using the provided form of concrete or virtual Algebra Lab Gear. It was included strictly 

as an indicator of student background knowledge in procedural techniques o f multiplying 

and factoring polynomial expressions. If the student was able to factor this problem 

using a procedural approach, then it is not unreasonable to assume that the student had 

considerable background instruction in the symbolic procedures of multiplying and 

factoring polynomial expressions.

In a similar study with fourth and fifth grade students using Dienes base-10 

blocks by Weame and Heibert (1988), interview questions were designed to discriminate 

between semantic analyzers and syntactic-rule appliers. This was accomplished with the 

inclusion of problems that would be difficult to solve unless the student engaged in 

semantic analysis. Students were credited with using the semantic processes if they 

referred to the values of the numerals (either read or written) in explaining how they 

decided what to do. In this study, students are credited with using semantic processes if 

statements refer to the manipulative for symbols, description of quantities, or choice of 

procedural technique.

Direct and transfer measures were used to model this approach. Direct measures 

are tasks that had been discussed and practiced during instruction. They assessed 

students’ use of the processes in familiar context. Specifically, these were tasks that 

involved finding the product of two binomial expressions or factoring a trinomial 

expression. Such problems discriminate most clearly between students who use semantic 

analyses and those who recall and execute syntactic rules. Transfer measures involved 

problems that were not taught in the lesson and would be difficult to solve using syntactic
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procedures. For example, interviewed students were asked to factor the polynomial 

expression xy + y 2 + y  + x  + y  + 1. A complete list of interview questions is in 

Appendix H.

Every student selected for an interview was asked to solve problems using two 

techniques of strategy. The two assumed techniques would be a procedural approach 

towards problem solution using paper and pencil or solving the problem with the use of ' 

the manipulative. The student was provided with the manipulative that was used in the 

activity of the treatment they received. This manipulative was placed on the desk in front 

o f the student. If the student used the computer manipulative, the computer was turned 

on prior to the interview logged into the appropriate website.

Each problem was presented to the student on a clean sheet of paper. The student 

began by solving the problem with their own preference on the method of solution. The 

student was asked to say their thoughts out loud as they were working on each problem. 

After the student completed the problem with their chosen method, the student was asked 

to repeat the problem using the unselected solution strategy.

Interviews took place in the computer lab. This was an isolated room that 

extended from the library and was reserved for the interview sessions. It is also the room 

where the student received treatments. Although distractions did occur, they were 

relatively rare and infrequent.
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Chapter 4 

Quantitative Research Findings

Quantitative results are generated using comparisons among the 14 classes 

involved in this study. The overall treatment effect is measured with the use of class 

averages and proportions of students who responded in a specific manner to Likert scale 

attitude questions. A class level analysis was performed because the teaching method 

treatments were applied to entire classes instead of individual students and hence classes 

were the experimental units. Each class had a respective mean pretest score, mean 

posttest score, class level, manipulative type, topic, and teacher. The mean pretest and 

mean posttest scores were proportions of correct responses. This minimized the effect of 

having a different number of questions on tests in the two topics. Unless stated 

otherwise, inferential analysis is two-tailed at a n a  = 0.05 significance level.

Analysis of Covariance

Analysis o f covariance (ANCOVA) was performed to compare manipulative 

treatments between classes. The response, variable is the mean posttest score for each 

class. Covariates were the mean pretest score, class level, and teacher. The selection of 

the mean pretest score as a covariate was based on the belief that students who performed 

well on the pretest will likely perform well on the posttest. The class level was also 

considered as a covariate because students at higher class levels are more likely to have 

higher pretest and posttest scores. The teacher is also included as a potential covariate to 

account for any pre-existing differences in student ability due to teacher differences.

90
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The design employed was a two factor 4 x 2  ANCOVA. The first factor was the 

manipulative sequence at four levels: symbolic-computer, symbolic-concrete, computer- 

symbolic, and concrete-symbolic. Each level represents a sequence of instruction for a 

particular manipulative type. The second factor was the topic at two levels: solving two- 

step linear equations and multiplying and factoring polynomial expressions. All 

ANCOVA assumptions were met as indicated by Levene’s test of equality of error 

variance and approximate normality o f the errors.

Results of ANCOVA indicate that class mean post-test scores are not significantly 

different among teachers, topics, class level, and treatments, but are significantly 

associated with mean pretest scores. ANCOVA results are provided in Table 4.1.

There was a statistically significant improvement from mean pretest scores to 

mean posttest scores among all treatments (p  = 0.021). Classes of students who received 

treatments beginning with symbolic instruction tended to have mean pretest scores that 

were slightly higher than classes who received treatments that began with the use of a 

concrete or virtual manipulative. For example, the class mean pretest score for 

treatments that began with symbolic instruction and ended with instruction including the 

virtual computer manipulative was 3.823. This means, on average, students in this 

treatment group correctly answered approximately 4 out of 10 questions on the pretest.

On the other hand, the class mean pretest score for treatments that began with instruction 

using the concrete manipulative was 1.538. This result is expected since higher level 

math classes were selected for treatments that began with symbolic instruction.
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Table 4.1

Analysis of Covariance for Treatment Effect on Mean Posttest Score

Source d f 1 F P

Treatment 3 .346 0.625 .624

Teacher 3 .011 0.019 .895

Topics 1 .044 0.080 .787

Mean Pretest Score 1 5.395 9.745 .021

Class Level 1 .563 1.016 .352

Error 6 .554

Figure 4.1 illustrates the change in mean pretest score to mean posttest score 

among the four treatments. In each case, the mean score increased by approximately 3 to 

4 points. The slope of each line represents the change in class mean test scores from 

pretest to posttest. The slopes are approximately equal in that they do not differ by an 

amount that is statistically significant. Hence, all treatments were effective in that they 

significantly improved the overall class mean scores, but did not differ from one another.

Manipulative use for students of differing mathematical abilities

This analysis will focus on achievement measures within the predefined pretest 

categories: No Knowledge, Some Knowledge, and Mastery. This division is justified in 

that most secondary classrooms contain a mixture of students that bring a variety of
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Figure 4.1. Comparison of class mean pretest and mean posttest scores among 
treatments.

background experiences. Among the two manipulative types, concrete and virtual 

computer, it is of interest to know if there are any differences in the increased accuracy of 

pretest to posttest responses for classes of students that have different mathematical 

abilities.

The mean pretest and posttest scores were recalculated within each category for 

each class. Classes that contained zero students in a category were omitted from analysis. 

This omission is because without any students in any one category, the opportunity for 

mean improvement does not exist. The separation of classes by knowledge category 

created 35 class groups of students: 13 classes of students in the No Knowledge category, 

13 in the Some Knowledge category, and 9 in the Mastery category. Comparisons are
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based on the difference in the means of the proportion of correct responses. This 

difference reflects the mean proportional increase in test score from pretest to posttest 

and is referred to herein as the mean improvement proportion. Table 4.2 depicts the 

student per class breakdown and mean improvement proportion when classes are 

separated according to knowledge categories.

Table 4.2
Number of Students in Each Knowledge Category 
and Mean Improvement Proportion (N=304)

Class
Number

Treatment No Knowledge 
N M

Some Knowledge 
N ML

Mastery 
N M

1 4 18 .305 (0) (0)
2 1 11 .897 3 .286 8 .000
3 2 10 .700 2 .071 2 .143
4 3 13 .423 12 .383 (0) —

5 2 5 .540 15 .353 1 .100
6 1 13 .462 11 .300 1 -.100
7 4 17 .576 2 .300 (0) —

8 4 9 .937 5 .571 9 .048
9 3 12 .750 1 -.143 6 .000

10 2 18 .533 8 .462 (0) —

11 3 12 .726 5 .229 7 -.061
12 2 (0) — 23 .382 2 .150
13 1 3 .700 11 .236 6 .033
14 4 17 .541 6 .083 (0) —

Note. Values enclosed in parentheses represent groups of zero students that are omitted 
from analysis. Treatments are: (1) Symbolic-Computer Manipulative, (2) Symbolic- 
Concrete Manipulative, (3) Computer Manipulative-Symbolic, and (4) Concrete Object 
Manipulative- Symbolic.

Each of the mean improvement proportions were weighted according to class size. 

The design employed was a two factor 2 x 3  ANOVA. The first factor was the
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manipulative at two levels: concrete or virtual computer. The second factor was the 

knowledge category at three levels: No Knowledge, Some Knowledge, or Mastery.

Results indicate no significant differences in mean improvement scores between 

manipulative types in the No Knowledge, Some Knowledge, and Mastery 

categories (F  = 0.030,d f  = 1 ,p  = 0.863).

There were significant differences (p  < .0001) in mean improvement proportions 

among knowledge categories. This result is not surprising due to the fixed number of 

questions on the pretest and posttest, classes of students in the Mastery category did not 

have as much potential for improvement as classes of students in the No Knowledge 

category. For example, a student who scored 8 out of 10 correct problems on the pretest 

would be placed in a class of students in the Mastery category. The highest possible 

score this student could achieve on the posttest would be 10 out of 10 correct problems 

for an overall improvement of 2 problems. A student placed in a class in the No 

Knowledge category could improve as many as 9 or 10 problems. Figure 4.2 illustrates 

the mean improvement proportion of each manipulative within each knowledge category.

Bonferroni pairwise comparisons indicate statistically significant differences 

between knowledge categories and the weighted mean improvement proportions: No 

Knowledge versus Mastery (p  < 0.001), Some Knowledge versus Mastery{p = 0.003), 

and No Knowledge verses Some Knowledge (p < 0.001). Classes in the No Knowledge 

category had greater opportunity to improve their scores than classes in the Some 

Knowledge category.
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I
•  CONCRETE

I
■  Virtual

N -  7 6 7 6 4 5

No Knowledge Some Knowledge Mastery 

K n o w l e d g e  C a t e g o r i e s

Figure 4.2. Ninety-five percent confidence intervals for weighted mean improvement 
proportions among different knowledge categories.

Student attitudes and manipulative use

There were 3 posttest opinion questions. Questions were the same for all 

treatments. Posttest opinion questions asked students to rank their experience on a Likert 

scale. A Likert scale measures the extent to which a person agrees or disagrees with the 

question. Responses were ranked on a scale from 1 to 5. Numerical values were 

assigned to responses as follows; l=strongly disagree, 2-disagree, 3-neutral, 4=agree, 

and 5=strongly agree. Students who did not answer were considered to be neutral in their 

opinion of the lesson. Figure 4.3 shows the three opinion questions that appeared on each 

posttest.
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A. You have experienced a math lesson that uses a computer or physical
manipulative. Did you enjoy learning mathematics this way?

O Strongly Disagree O Disagree O Agree O Strongly Agree

B. Do you feel it is practical for you to learn mathematical content using this type of
instruction?

O Strongly Disagree O Disagree O Agree O Strongly Agree

C. Do you feel it is practical for others to learn mathematical content using this type of
instruction?

O Strongly Disagree O Disagree O Agree O Strongly Agree

Figure 4.3. Posttest opinion questions A, B, and C.

Students were divided according to manipulative type to determine the exact 

count of students within each response category of opinion questions A, B, and C. 

Students who did not respond to any o f the 3 questions were omitted from analysis. The 

remaining data were recoded into two categories. This division was necessary for 

sufficient counts for each category. The first category included students whose response 

indicated that they Strongly Disagree or Disagree. The second category included 

students who selected the Agree or Strongly Agree options. Students were thus split 

according to whether they agreed or disagreed with posttest opinion questions A, B, or C. 

Contingency tables for each posttest question are given in Figure 4.4.

Chi-square tests o f independence in the contingency tables indicate no significant 

relationship between the manipulative type and the student response for posttest opinion 

questions B (x 2 = 2.726, d f  = \ ,p  = 0.099) and C (%2 = 0.267, d f  = 1 ,p  = 0.605). This
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Count
Manipulative Type

TotalConcrete Virtual
Posttest Opinion Disagree 33 11 44
Question A Agree 135 122 257
Total 168 133 301

Count
Manipulative Type

TotalConcrete Virtual
Posttest Opinion Disagree 35 18 53
Question B Agree 133 115 248
Total 168 133 301

Count
Manipulative Type

TotalConcrete Virtual
Posttest Opinion Disagree 25 17 42
Question C Agree 142 115 257
Total 167 132 299

Figure 4.4. Contingency tables for posttest opinion questions A, B, and C.

implies that student opinion on the issue of whether or not it was practical for them or 

others to learn mathematical content with a manipulative was not related to the type of 

manipulative that was used in instruction.

Results o f the chi-square analysis were statistically significant for posttest opinion 

question A ( j 2 = 7.692, d f  = 1 ,p  = 0.006). In this case, there was a relationship between 

the manipulative type and student response. In fact, a greater proportion of students 

agreed with the statement that they enjoyed learning mathematics this way when the 

manipulative was presented in the form of a virtual computer Java applet instead of a 

concrete manipulative (92% versus 83% respectively). Figure 4.5 illustrates the 95%
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Posttest 

Question A
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Question B

Posttest 

Question C

Concrete Virtual

M a n i p u l a t i v e  T y p e

Figure 4.5. Ninety-five percent confidence intervals for favorable responses to posttest 
opinion questions A, B, and C among manipulative types.

confidence intervals for the proportion of favorable responses within each manipulative 

type.

Relationship between achievement measures and manipulative type

This portion o f the analysis will provide investigation o f achievement measures 

for specific problem solving skills. In terms of accuracy, it may be that one type of 

manipulative was more beneficial than another for a specific problem solving skill. 

Examination of pairs of problems (pretest and posttest) indicate that some students 

correctly answered both the pretest and posttest question, some students incorrectly 

answered both the pretest and posttest question, some students correctly answered the
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pretest question but failed to correctly answer the posttest question, and some students 

incorrectly answered the pretest question but correctly answered the posttest question. 

These groups of students determine the overall accuracy of response and will henceforth 

be called achievement groups. The contingency table in Figure 4.6 provides the number 

o f entries in each achievement group by manipulative. There were 179 students included 

in treatments in the topic of multiplying and factoring polynomial expressions. Each 

student answered 10 questions.

M ultiplying and Factoring Polynom ial Expressions

A c h i e v e m e n t  G r o u p s  f o r  T e n  P r o b l e m s

C o r r e c t

P r e t e s t

I n c o r r e c t

P o s t t e s t

I n c o r r e c t

P r e t e s t

C o r r e c t

P o s t t e s t

C o r r e c t

P r e t e s t

C o r r e c t

P o s t t e s t

I n c o r r e c t

P r e t e s t

I n c o r r e c t

P o s t t e s t T o t a l

M a n i p u l a t i v e C o n c r e t e

N = 1 0 9

C o u n t

%

2 2

2 . 0 2 %

4 8 3

4 4 . 3 1 %

2 6 3

2 4 . 1 3 %

3 2 2

2 9 . 5 4 %

1 0 9 0

1 0 0 . 0 0 %

V i r t u a l

N = 7 0

C o u n t

%

3 1

4 . 4 3 %

2 6 5

3 7 . 8 6 %

2 2 9

3 2 . 7 1 %

1 7 5

2 5 . 0 0 %

7 0 0

1 0 0 . 0 0 %

T o t a l C o u n t 5 3 7 4 8 4 9 2 4 9 7 1 7 9 0

Figure 4.6. Contingency table of achievement groups for the topic o f multiplying and 
factoring polynomials.

The proportion of questions given to students who correctly answered a pretest 

question but incorrectly answered the same posttest question is considerably higher 

among students who received instruction with the virtual computer manipulative (4.43% 

versus 2.02% respectively). In addition, the proportion of questions given to students for 

which the response went from incorrect on the pretest to correct on the posttest is 

considerably higher among students who received instruction with the concrete 

manipulative (44.31% versus 37.86% respectively).
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A similar analysis of achievement groups was performed in the topic of solving 

two-step linear equations. There were 125 students included in treatments in the topic of 

solving two-step linear equations. Each student answered 7 questions. The contingency 

table in Figure 4.7 provides the number of entries in each achievement group by 

manipulative type.

Solving T w o-S tep L in e a r E quations

A c h i e v e m e n t  G r o u p s  f o r  S e v e n  P r o b l e m s

C o r r e c t

P r e t e s t

I n c o r r e c t

P o s t t e s t

I n c o r r e c t

P r e t e s t

C o r r e c t

P o s t t e s t

C o r r e c t

P r e t e s t

C o r r e c t

P o s t t e s t

I n c o r r e c t

P r e t e s t

I n c o r r e c t

P o s t t e s t T o t a l

M a n i p u l a t i v e C o n c r e t e C o u n t 5 2 4 3 1 2 1 5 1 4 2 0

N = 6 0 % 1 . 1 9 % 5 7 . 8 6 % 2 8 . 8 1 % 1 2 . 1 4 % 1 0 0 . 0 0 %

V i r t u a l

N = 6 5

C o u n t

%

1 5

3 . 3 0 %

2 1 5

4 7 . 2 5 %

1 6 5

3 6 . 2 6 %

6 0

1 3 . 1 9 %

4 5 5

1 0 0 . 0 0 %

T o t a l C o u n t 2 0 4 5 0 2 8 6 1 1 1 8 7 5

Figure 4.7. Contingency table of achievement groups for the topic of solving two-step 
linear equations.

Among questions given to students who received instruction with the virtual 

manipulative, 3.30% of the questions are in the achievement group that correctly 

answered the pretest question but did not correctly answer the same posttest question. 

The percentage of entries in this category is only 1.19% among questions given to 

students who received instruction with the concrete manipulative. The proportion of 

questions given to students whose response went from incorrect on the pretest to correct 

on the posttest is considerably higher among students who received instruction with the 

concrete manipulative (57.86% versus 47.25% respectively).
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In both topics, the percentage of questions given to students who went from an 

incorrect response to a correct response on the posttest is somewhat higher among 

treatments that included the concrete manipulative. Similarly, the percentage of 

questions given to students who went from a correct response to an incorrect response is 

higher among treatments that included the virtual manipulative.

Within the topic of solving two-step linear equations, the proportion o f students 

that incorrectly answered both the pretest and posttest questions is lower than the topic of 

multiplying and factoring polynomial expressions. This result makes sense because 

instruction and testing on the topic of solving two-step linear equations focused on one 

mathematical concept while the topic of multiplying and factoring polynomial 

expressions had a wider variety of problem levels.

Separating counts into achievement groups for the topic o f solving two-step linear 

equations is inappropriate because all problems were at the same difficulty level.

Problem solving skills necessary to solve any one problem were identical to those 

required to solve another. However, the varying difficulty levels of problems in the topic 

of multiplying and factoring polynomials prompted investigation into whether or not the 

concrete and virtual manipulative differ in their problem solving utility for the specific 

problem solving skills.

Each of these problems will be examined in pairs to analyze the same problem 

solving skills on the pretest and posttest. For example, analysis will explore whether 

students who factored a trinomial (problem seven) or multiplied two binomials (problem 

three) were more likely to answer correctly after receiving treatments that used either a 

concrete or virtual computer manipulative. Table 4.3 presents the counts of students
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within each achievement group for each of the ten problems for the topic o f multiplying 

and factoring polynomial expressions.

Table 4.3
Achievement Groups for each Problem Within Manipulative Types (N=179)

Correct Pretest Incorrect Pretest Correct Pretest Incorrect Pretest 
Incorrect Posttest Correct Posttest Correct Posttest Incorrect Posttest

Concrete Virtual Concrete Virtual Concrete Virtual Concrete Virtual

Problem

1 4 5 23 10 74 54 8 1
2 2 5 43 15 42 46 22 4
3 5 2 33 22 43 35 28 11
4 3 8 51 29 25 22 30 11
5 5 6 41 27 32 23 31 14
6 - 2 67 36 3 6 39 26
7 - - 47 28 28 26 34 15
8 1 1 67 40 8 9 33 20
9 2 2 54 33 8 7 45 28

10 - - 57 25 - - 52 45

A chi-square test could not be applied directly to contingency tables of each 

problem since all problems contain multiple cells with counts of less than five. Instead, 

the data were regrouped into two categories. The first category included students whose 

scores changed (either correct on the pretest and incorrect on the posttest or incorrect on 

the pretest and correct on the posttest). The second category included students whose 

scores did not change. After applying a Bonferroni correction, counts and proportions 

shown in Table 4.4, in the changed or unchanged achievement groups are essentially the 

same without regard to whether the manipulative is concrete or virtual.
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Table 4.4
Changed or Unchanged Achievement Group Counts and Percentages 
for each Problem Within Manipulative Types (N=T79)

Score Changed 

Concrete Virtual

Count/Percentage Count/Percentage
Problem

Score Did Not Change 

Concrete Virtual

Count/Percentage Count/Percentage

1 27 / 15.08% 15 / 8.38% 82 / 45.81% 55 / 30.73%
2 45 / 25.14% 20 / 11.17% 64 / 35.75% 50 / 27.93%
3 38 / 21.23% 24 / 13.41% 71 / 39.66% 46 / 25.70%
4 54 / 30.17% 37 / 20.67% 55 / 30.73% 33 / 18.44%
5 46 / 25.70% 33 / 18.34% 63 / 35.20% 37 / 20.67%
6 67 / 37.43% 38 / 21.23% 42 / 23.46% 32 / 17.88%
7 47 / 26.26% 28 / 15.64% 62 / 34.64% 41 / 22.91%
8 68 / 37.99% 41 / 22.91% 41 / 22.91% 29 / 16.20%
9 56 / 31.28% 35 / 19.55% 53 / 29.61% 35 / 19.55%
10 57 / 31.84% 25 / 13.97% 52 / 29.05% 45 / 25.14%

Note. Percentages are rounded to two decimal places.

Summary

The results suggest that the use of either the virtual computer or the concrete 

manipulative will significantly increase overall class mean scores. This result held true 

without regard to the class knowledge categories. That is, when students were grouped 

into knowledge category classes based on their pretest score, there were no significant 

differences in class mean improvement between the two manipulative types.

Next, achievement groups were examined to determine if students who received 

treatments with the virtual computer or concrete manipulative were more likely to change 

their pretest and posttest response from an incorrect answer to a correct answer. No 

significant differences between treatments were found. However, the proportion of
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students who moved from an incorrect answer on the pretest to a correct response on the 

posttest were greater among students who received treatments with the concrete 

manipulative than for those who received treatments with the virtual computer 

manipulative in both topics.

Finally, a chi-square test was performed on achievement groups for each problem 

within the topic of multiplying and factoring polynomial expressions. This test was 

performed to determine if students who received instruction with the virtual computer or 

concrete manipulative performed differently with respect to a particular type of problem. 

For example, it may be that the concrete manipulative was more beneficial to students in 

a problem that involved factoring a trinomial whereas the virtual manipulative is more 

suited for a problem that involves multiplying two binomials. However, results showed 

no difference in achievement groups between the concrete and virtual manipulative. That 

is, regardless of the type of problem given on the pretest or posttest, students who 

received instruction with the virtual computer manipulative were just as likely to improve 

test performance from an incorrect pretest to a correct posttest as students who received 

instruction with the concrete manipulative.
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Chapter 5 

Interviews

Five of the thirty-eight interviewed students gave incorrect answers. Henceforth, 

these students will be referred to as Ivan, Jan, Kay, Lynn, and Meely. All students 

attended the same high school. Complete transcripts o f interviews are located in 

Appendices I, J, K, L, and M respectively. Students not chosen for analysis correctly 

answered all interview questions using procedural methods and the manipulative. The 

goal of conducting the interviews is to gain insight into semantic processes for students 

with difference topic backgrounds and identify potential manipulative contributions.

Illustrations of theory

Cognitive processes “need to be developed in the context o f particular subject 

matters because specific subject matter knowledge, as well as specific task variables, can 

have a profound influence on the types of processes brought to bear on a task” (Weame 

& Hiebert, 1988, p. 371). Qualitative interviews in this study focus on cognitive 

processes involved in completing tasks in the topic o f multiplying and factoring 

polynomial expressions. Rather than providing static descriptions o f cognitive processes, 

interview methods are geared toward identifying cognitive change.

Interview analysis was approached from a perspective that views competence as 

“the cumulative and sequential mastery of four separate cognitive processes in working 

with written symbols: (a) connecting, (b) developing, (c) elaborating, and 

(d) abstracting” (Weame & Heibert, 1988, p. 371). The first two processes, connecting

106
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and developing, make up what is referred to as semantic analysis. It is theorized by 

Weame and Hiebert (1988) that any alternative sequence of acquisition is “cognitively 

difficult and may explain deficiencies students exhibit on decimal fraction tasks by 

suggesting that they have acquired later processes without the foundation provided by the 

earlier ones” (p. 372). Although these processes were described in Chapter 2, they are 

restated here within the context of their appearance in analyzed interviews and with 

respect to the specific subject matter of multiplying and factoring polynomial 

expressions.

The process of connecting is twofold because it involves both making an 

association between the referent and its corresponding symbolism and identifying actions 

on the referent that illustrate mathematical operations. For example, consider the work of 

Kay who wrote the expression j  + j  on paper after placing the x  and y  pieces together 

under and adjacent to the concrete Algebra Lab Gear frame. This student established a 

one-to-one correspondence between the concrete representation of x  and y  and the 

symbolic representation of x  and y . She identified the action of placing the objects 

together in a group as one that illustrates the operation of addition.

When asked to factor x 2 + 6x + 9 Kay correctly followed the procedure of 

initially forming the interior rectangle inside the concrete Algebra Lab Gear frame. 

However, it is unclear whether Kay viewed the area of this rectangle as a representation 

of a specific product. The choice of concrete factors and the corresponding answer of 

(lx + y )(\x  + y )  imply a misunderstanding. Kay seemed to understand the procedure as 

one of forming a rectangle with the wooden pieces and then finding the pieces that fit
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along the edges. In fact, the measure of the three unit pieces that would form a correct 

solution was less than one-tenth o f a centimeter in length different than the y  piece that 

Kay used. Kay did not seem to recognize that the pieces that fit along the edges are the 

specific factors o f the products held within. Thus, Kay provides an example of a student 

who is in the initial stages of the connecting process.

The process of developing involves the construction o f connections between key 

ideas of the referent world to their corresponding representations in a symbolic world. 

This differs from the process of connecting in that in the developing process a student 

uses the referent as a guide to understanding mathematical procedures. The best example 

of this stems from the work of Lynn who was asked to find the product of x + y  + 1 and 

2y + l .  She began by using procedural techniques to find an incorrect solution of 

2xy + x  + 6y + 1. Then she found the correct solution of 2xy + x + 2y 2 + 3y + 1 by 

placing the pieces in their appropriate positions around the concrete Algebra Lab Gear 

frame. When she realized the solutions were not identical, she insisted on going back 

over her procedural solution. By doing this, Lynn was able to identify her procedural 

error. In her words, “I messed up, because I was adding. See right here, I was adding it.

I was doing y  plus 2y  instead of thinking in my head, to multiply.” Thus, by using the 

referent in parallel with the procedures, Lynn was able to identify and correct her 

procedural mistakes.

Lynn was able to set up the Algebra Lab Gear frame for finding the correct 

solution of 2xy + x + 2y 1 + 3y +1. In doing so, she not only was able to identify the blue 

and red pieces as representations of variables, but also recognized the innermost squares
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and rectangles as representations of the operation of multiplication. This illustrates 

Lynn’s mastery of the connecting process. Her work shows that she was engaged in the 

developing process in that she was using her correct concrete display of the problem to 

discovery her procedural mistake.

The elaborating process involves extending syntactic procedures to other 

appropriate contexts. Extension problems in this research were problems that involved 

factoring polynomials with more than three unlike terms. The factorization of a 

polynomial with more than three unlike terms is an extension problem because students 

at this particular high school were not familiar with procedures or strategies for solving 

this type of problem. They had not been taught how to find the solution to this type of 

problem during any of the treatments. Without considerable mathematical background, 

the solution of this type of problem is difficult to form.

The elaborating process differs from the developing process in that the student 

must go beyond making corrections or adaptations to known procedures. Rather, in the 

elaborating process, the student is presented with unfamiliar content that requires their 

creative imagination to design new approaches to problem solving.

An example of the elaborating process stems from the work of Jan. Using 

procedural techniques this student found the product o f x + y  and 2x +1 to be 3x y . Jan 

was unfamiliar with the procedural process for multiplying two binomial expressions. 

When Jan was asked to verify her solution with the virtual Algebra Lab Gear, she found 

the correct answer. She recognized that her two solutions were different (3xy is not the
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same as (2 x2 + x + 2xy + y ) ). Her next step was not to simply identify procedural 

mistakes, but to derive the correct procedure for multiplying binomial expressions.

Concurrent with the elaborating process is the process of routinization. Weame 

and Hiebert (1988) grouped the processes of elaborating and routinization together 

because they both tend to produce mathematical efficiency. The routinization process 

occurs when memorized and practiced rules become automatic to the point that problems 

require “little cognitive effort” (Weame & Hiebert, 1988, p. 373). Meely appeared to be 

using a routinization process when she found the correct product of x  + y  and 2x +1.

She voiced some of the routine in words while in the process of performing a procedure 

as follows: ‘And then outside for FOIL. Which would be the x, inside, 2xy, and last.’ 

Meely was finished with the problem in less than a minute and confident of her answer.

It was clear that the problem was not cognitively demanding for her. This process of 

routinization is characterized by the adoption of symbolic procedures apart from and 

without reference to analogous concrete referents.

The final process is abstracting. Here, the symbols and rules become the 

referents. In other words, the symbols dr rules take on the role of the referent in the 

connecting process. An example of this process is found in the words of Meely when she 

was asked to factor the expression xy + y 2 + y  + x + y  + 1. In the following excerpt, 

Meely realizes that one factor may have three terms in it after struggling to find the 

factorization using reverse FOIL techniques. With this insight, Meely determines that 

reverse FOIL procedures would not be appropriate for this type o f problem. She 

speculates that the correct procedure would involve a new acronym. In this way, Meely
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is using a previously acquired rule to establish that a similar rule must exist for factoring 

the expression xy + y 2 + y  + x + y  + 1.

Sequencing of instruction

Quantitative results indicate that the sequencing of instruction, from manipulative 

to symbolic or symbolic to manipulative, does not alter learning outcomes. Qualitative 

interviews, although limited in scope, tend to contradict this finding. When compared to 

students with considerable background in procedural methods, students who had little or 

no background knowledge in the subject of multiplying and factoring polynomial 

expressions were more likely to adopt the manipulative as a resource to guide procedural 

methods. That is, students who received scores of below two out o f ten points on their 

pretest were more likely to engage in the developing processes.

Four of the five students selected for interview analysis had pretest scores of less 

than three out of ten points. Meely was the single student selected for analysis who 

demonstrated mastery of content on the pretest with a score o f 9 out of 10, but did not 

find a correct answer using the virtual computer manipulative during her interview. 

Meely indicated, on pretest Question C, that she had never received any previous 

instruction in how to multiply or factor polynomial expressions using a computer or 

physical object. However, her response to Questions A and B indicate that she had some 

background instruction in the topic. The following is a summary o f the work performed 

by Meely followed by a contrast to Ivan, Jan, Kay and Lynn.

Interview with Meely

Meely received instruction and was interviewed with the virtual computer 

Algebra Lab Gear. She is unique in that she freely uses words like coefficient, binomial,
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and acronym. She is, in the view of the researcher, a syntactic rule applier, reluctant to 

engage in activities with the virtual computer manipulative. She says very little while 

verifying her previously obtained procedural solutions.

Meely was chosen for analysis because of her incorrect answer to the question on 

factoring the expression 2x2 + 4xy + 2x -  xy + y 2 + y . She is given this problem after 

she has successfully solved the three previous problems using procedures and then 

verifying on the virtual computer manipulative. As she began to work on the problem, 

Meely quickly identified the like terms in the expression and wrote the equivalent 

expression. Unlike previous attempts, she decided to begin with the use of the virtual 

computer manipulative.

JW: ... Try this one. Let’s see you have to factor some huge thing. 2
x-squared plus 4xy plus 2x minus xy plus y-squared plus y  . You’re 
going after it with pencil 
and paper?

MEELY: Yeah. Just because then I can get rid of this and simplify them.
JW: Oh. Okay. You’re simplifying them.
MEELY: Now I have to go to the computer.
JW: Oh. Okay. It’s what I want to do. So, you’ve got 2 x-squares,

right. Then you got Jxy’s. I see those.
MEELY: I have 2 x-squares, Jxy’s, 2 x ’s, ay-squared, and ay.
JW: Okay.
JW : So you turned that y .
MEELY: I was thinking I would need a y  over here if that would be an x-

squared, but that would have to be ay  as well.
JW: Okay.
MEELY: They doesn’t fit.

At this point in the interview, Meely is attempting to form a rectangle within the frame of 

the virtual computer workspace. She tries several different arrangements, but does not 

form a rectangle in the provided virtual workspace.
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JW: You said it doesn’t fit?
MEELY: No, they  doesn’t fit.
JW: Any ideas?
MEELY: No, cause I ’m thinking I would need. Maybe if I get this out of 

the way, but I don’t think that would work. This is really hard.
JW: The day you had this in class, do you remember of them being 

really hard?
MEELY: Um, I remember having to play with the blocks a lot.
JW: The blocks?
MEELY: With the squares a lot.
JW: To get it to work?
MEELY: Yeah, but I don’t remember it being that hard.
JW: Okay.
MEELY: Like today, we’re learning the coefficients of both of the a ’s more 

than one.
MEELY: I have just no idea how to do with the computer.
JW: Okay, let me ask you this. Do you know any other way of doing 

this problem?
MEELY: No.
JW: No.
MEELY: I wouldn’t know how to, well.
JW: You wouldn’t want to use your FOIL?
MEELY: I could try my FOIL.

Meely has agreed to try the FOIL method to solve the problem. Using this method, she 

acquires factors o f 2x + y  and x +1 but does not attempt to represent this product on the 

computer. She does not use the manipulative as a resource for solving. There appears to 

be a no connected link between what is done on the computer and what is performed 

symbolically. In the following excerpt, Meely sticks to procedural methods without 

reflecting on her visual computer display. The final computer image and work of Meely 

on this problem appears in Figure 5.1.

JW: Okay, tell me what you’re thinking while you’re doing it.
MEELY: Um, I could start out with the brackets, then I would need, um, for

one reason or another, I’m guessing everything there is going to 
be positive.

JW: Okay.
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MEELY: Um.
JW: Any reason for that positive guess?
MEELY: Oh, just because everything’s positive.
JW: Okay.
MEELY: So, there’s a 2x, 2x-squared, the first. (Pause) Maybe ay. 

Skipping the outside and the in. xy yeah. Three of them.
JW: Did you say you have 3 of those?
MEELY: Well, I need 3 of the xy’s, so, I don’t know how I get those in.
JW: Then you kinda wrote a 2x in the middle of it all.
MEELY: Yeah, 2x, just cause I, da, guessed there’s a 1 here.
JW: Oh, okay.
MEELY: And turned that into 2x. It took care of that one.
JW: Okay, you took care of that one.
MEELY: That’s the inside, and then the last part, y.
JW: Cool.
MEELY: Then I need ay-squared and 2 more xy’s. Maybe if  I switched 

that. Don’t want erasing?
JW: No. I appreciate that.
MEELY: 2x-squared. I ’m going to leave this open for my outside.
JW: Okay.
MEELY: Oh, I am stuck.
JW: Want to go on?
MEELY: I think so.

Meely’s performance in another problem is very similar. This time Meely is 

asked to factor xy + y 2 + y  + x + y  + l .  Here again, the problem is one of transfer in that 

it is a difficult problem to perform without semantic processes. The problem is given in 

an effort to move Meely towards verbally demonstrating the connecting process. That is, 

Meely is being prompted to utilize the manipulative as a model for her symbolic solution. 

Meely begins the problem by simplifying the expression. Then she draws brackets 

indicating that she would begin with procedural methods. When asked if  she had lost 

faith in the computer, Meely acknowledges that she finds the computer to be ‘confusing
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Figure 5.1. Meely’s final solution of factor 2x2 + 4 xy + 2 x -  xy + y 2 + y  in (a) virtual 
and (b) written formats. National Library of Virtual Manipulatives, © 1999-2005 Utah 
State University.
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She forms the product x  + y  times y  +1 while uttering words such as ‘outside’ and 

‘inside’. It is apparent that she is attempting reverse FOIL methods.

JW: Okay, It’s alright. Let’s try this one.
MEELY: I ’m going to simplify it.
JW: Have you lost faith in the computer?
MEELY: Yeah.
JW: Okay. It’s second best.
MEELY: I think it’s pretty contusing.
JW: Okay.
MEELY: Cause you have to find, get them to fit right, and then, I just, I

don’t know. I ’m not much of a hands-on. As my second grade 
teacher, I prefer meat and potatoes, the basics.

JW: Okay. You called it hands-on.
MEELY: Yeah.
JW: But your hands are only on the mouse.
MEELY: Yeah, but you’re, like using manipulatives. Where, in my mind,

and I find them a little more confusing.
JW: Okay.
MEELY: If I didn’t have to deal with the shapes and get everything to fit

right.
JW: So, it’s like creating confusion where none doesn’t have to be.
MEELY: Yeah, in my mind it doesn’t, struggling with this a little bit as it is,

bu t... (Pause) Outside. My outside plus x. The inside was ay- 
squared, not a 2y.

JW: Okay.
MEELY: Oh, you don’t want me to erase it.

At this point, Meely verifies her solution of (x + y) (y  +1) is not correct by finding the 

product and writing xy + x  + y 2 . Then she asks the question about whether the solution 

is ‘just binomials ’. It is clear she has had considerable instruction in this subject.

JW: It’s okay, your thinking while you’re doing this, it’s difficult.
MEELY: All these problems, it’s just, um, with like just binomials?
JW: Oh, it could be.
MEELY: Or it could be more?
JW: Uh-huh.
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MEELY: Oh, bummer. I ’ve never been taught, like what to, like how to 
expand if there were like 3 things in, um, like in the bracket.

JW: Uh-huh.
MEELY: Cause all I ’ve ever worked with is like FOIL.
JW: Do you think it would be the same kind of technique or you think 

it would be something completely different?
MEELY: It might, but it might be more confusing with the inside.
JW: Outside, middle, stuff? (Laughs)
MEELY: Yeah.
JW: It’s not inside, outside. It’s like inside, last. I don’t know. I can’t 

remember. You know it better than I do.
MEELY: FOIL, the first, outside, inside, last. But then with the 3, what 

would be inside.
JW: Well if  it were 3, wouldn’t you have a first and a last still?
MEELY: Yeah, then what would you do with the middle? It wouldn’t be 

FOIL anymore.
JW: It wouldn’t be FOIL anymore?
MEELY: No, because it’d be a new um, acronym.
JW: Are you feeling frustrated with this one too?
MEELY: Yes.
JW: Why don’t you try this one on the computer?
MEELY: Okay.

At this point in the interview, Meely begins her work on the computer. She

quickly forms the appropriate rectangle, factors, and writes the correct solution on her 

paper. It is now apparent that she can connect the concrete depiction of the solution to its 

corresponding symbolic representation. She does not, however, use the concrete 

depiction of the solution to develop the acronym that she found to be lacking in her 

background. Rather, she expresses that she really hopes the solution obtained by the 

virtual computer manipulative is correct. It is not clear if  Meely believes the new answer 

found with the virtual manipulative is correct because she had previously affirmed that 

the solution included an expression with more than two terms or whether she believes the 

manipulative provides accurate results. Her final written solution is shown in 

Figure 5.2.
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Figure 5.2. Meely’s final solution of factor xy + y 2 + y  + x + y  + 1 in written format.

MEELY: xy
JW: Okay, you have an xy.
MEELY: A y-squared.
JW: Ay-squared.
MEELY: 2y’s, and x.
MEELY: I really haven’t given up hope yet, on the computer.
JW: Okay. You haven’t?
MEELY: No, just like, if  I were to get really get super confused, that’s why

this would be nice. It doesn’t seem very, uh, like I would want to
have to rely on it for class work.

JW: Uh-huh. Not trustworthy?
MEELY: It’s not convenient, as much, like in class, I wouldn’t have it, like

you know, sitting on my desk.
JW: Okay. So you wrote x + y + 1 times y + 1.
MEELY: Yeah
JW : How confident are you of that?
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MEELY: I really hope it’s the right answer, because that’s what I got up
there, but I’m not confident about how you write it, but I ’m pretty
sure that’s it.

JW: You sure?
MEELY: Yeah.

Meely was able to connect the virtual solution to the symbolic representation. 

However, she was not a semantic analyzer in that she did not use the manipulative as a 

resource for correcting procedural methods. Despite her exceptional background and 

evidence that the manipulative led her to the correct solution, Meely did not seem to view 

the manipulative as related to the procedural technique of solution. This is evident in that 

after performing a procedural technique she did not use the resource o f the Algebra Lab 

Gear to check her work even when she suspected her solution was incorrect. This 

interview suggests a theory that students who receive initial instruction with procedural 

methods are less likely to use a referent for developing procedural methods.

C ontrast of Meely to Ivan

Ivan, Lynn, Kay, and Jan were not familiar with procedural techniques for 

factoring polynomial expressions with more than four terms. Nevertheless, Ivan and 

Lynn quickly factored 2 x2 + 4xy + 2x -  xy + y 2 + y  using the concrete manipulative.

Jan factored xy + y 2 + y  + x  + y  + \ using the computer manipulative. Ivan checked his 

work by writing down the answer on paper. Then, with his pencil, he pointed to each 

term in the first expression and identified the term in the second expression that gave 

each product o f terms in the solution. Lynn and Jan did not check their solutions with 

procedural techniques. This is reasonable since Lynn and Jan’s work indicated little or
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no background education in the topic of how to multiply or factor polynomial expressions 

using symbolic procedural methods.

The fact that Ivan, Jan, Kay, and Lynn were able to obtain the correct answer to 

problems involving the elaboration process is similar to the work of Meely. While 

unable to find the correct answer to factoring 2x2 + 4xy + 2x - x y  + y 2 + y ,  Meely was 

able to obtained the correct answer to factoring xy + y 2 + y  + x  + y  + 1. What is 

strikingly different is the response to the solutions obtained with the manipulative. When 

Meely found the correct factorization of  xy + y 2 + y  + x + y  + \ , she was faced with two 

separate solutions that did not agree. It did not seem to occur to Meely that one method 

could be used to invalidate or validate the other or that the symbolic process could be 

guided by the actions on the manipulative. This represents a clear difference in attitude 

and approach when compared with the other analyzed interviewees. The interview with 

Ivan best illustrates this difference.

Ivan’s pretest score was one out of ten problems. He indicated that he had no 

instruction in factoring on the pretest question C, and he could not factor the problem 

designed to detect symbolic procedural understanding ( 4 x 2 - 2 x - 2 ) .  This provides 

evidence that Ivan, unlike Meely, had relatively little background in procedural methods 

for factoring polynomial expressions.

Ivan’s approach to problem solving began with the manipulative. Ivan was 

relentless in his efforts to use the manipulative to make sense of the procedural approach. 

His interview is unique in that it was conducted with concrete Algebra Lab Gear even 

though Ivan received instruction with the virtual computer Algebra Lab Gear. This
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occurred because the computers were unexpectedly down during the scheduled interview 

time.

Unlike Meely, Ivan did not verbally express any confusion between the two types 

o f manipulatives or preference for one over the other. Rather, Ivan used semantic 

processes to come up with the correct answers and develop his underlying understanding 

of syntactical procedures. For example, Ivan began the problem of factoring 

2xy + 4x + y  + 2 procedurally by writing (xy 1) (xy 1). When Ivan became unsure of 

this work, he quickly switched back to using the Algebra Lab Gear. In doing so, Ivan 

realized that 2xy is the product of factors 2, x, andy. His work can best be characterized 

as a back and forth process between the symbols on the paper and the actions with the 

concrete manipulative. Ivan tended to view the work with the manipulative as connected 

to procedural approaches while the existence of this connection between the manipulative 

and procedures was confusing to Meely.

Ivan conveyed mental connections of the symbols to their referents as well as 

actions on the symbols to the operation o f multiplication. He explaihed variables by 

pointing to the concrete piece of Algebra Lab Gear and pointing to the corresponding 

written expression. Ivan continually used semantic processes of connecting while 

explaining the solutions obtained via syntactic procedures with the concrete 

manipulative. Throughout the interview, it was not necessary to ask Ivan to use a pencil 

and paper procedural approach or to use the manipulative to solve a problem. Ivan 

always worked problems with a combination o f both strategies. His level of 

understanding is conveyed in the sporadic but detailed explanations o f procedurally 

obtained solutions with the manipulative.
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The problem that Ivan missed during his interview illustrates his willingness to 

understand the problem using the manipulative as a resource. The following is an 

example of Ivan’s approach to contradicting solutions. Ivan was asked to factor 

2xy + 4x + y  + 2 and began with an attempt to form a rectangle with the concrete 

Algebra Lab Gear.

IVAN: 2xy, so we’re going to have two of the purple ones. 4x.
Yep. Plus 2 . 1 think I ’ve assembled these before. There, 
modified, modifications. We must have one morey, don’t we. 
That’s not going to work. Why. We turn it this way. If we turn it 
that way, then these are going to be longer, so that’s not right. Put 
the two up there. We have one y  and two twos. Maybe these don’t 
go that same way. Never know till you try. It’s still plus 2, not 
plus 4. So if we put that there. Nah, it’s still going to be plus 
4. No, that’s still going to be plus 4. Ah no, how do 1.1 can’t 
remember how I normally factor it.

JW: Oh. Okay.
IVAN: It’s like, I know I tried that.
JW: You mean, what occurred to you then, what you’re saying is, you

thought maybe you’d just try to factor it, the normal, you know, 
some other way?

IVAN: Yeah.
JW: Okay.
IVAN: Visualize.

The struggle to form a rectangle tended to take considerable effort when the ratio 

of the length to width of the rectangle was large. In other words, rectangles that were 

almost square were typically easier for students to quickly form and identify. This 

struggle was not unlike the struggle Meely underwent when trying to form a rectangle 

with the pieces 2 x2, 3xy, 2 x , y 2, and y  . When Ivan was unsuccessful forming the 

appropriate rectangle, he began to compare his visual display to his procedural solution. 

He verified that the procedural solution was incorrect by finding an incorrect product and 

attempting to form the corresponding rectangle with the Algebra Lab Gear. In other
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words, he tried to verify his solution with procedural and concrete methods. Procedural 

work is shown in Figure 5.3.

®  Factor 2xy + 4x + y  + 2
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Figure 5.3. Ivan written solution of factor 2xy + 4x + y  + 2.

Ivan found the product of xy and xy to be 2xy while attempting procedural 

methods. This is evident by his statement implying that 2xy must have something to do 

with an xy and xy. His subsequent corresponding concrete display of x  and y  as 

factors on each side of the workspace frame is shown in Figure 5.4.

At this point, Ivan determines that xy and xy as front terms cannot be correct 

because it cannot be represented with the concrete Algebra Lab Gear. The researcher 

probes Ivan for an explanation in the following discussion.

IVAN: What about if  we do. No, no, maybe they don’t go the way I ’m
thinking. No, that doesn’t work. No. Fiddle faddle. No, that ones
not all the way. That might explain that.

JW: Okay.
IVAN: So it will be 2xy, you’re gonna have to have xy and xy. See, I got

to do these last year. 4x is in the middle, first, then outer. Uh-oh. 
Somewhere you have to get 2xy though. No, that doesn’t work.
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IVAN: You can’t have xy first cause then it doesn’t fit over here though.
So that can’t be it.

JW: So the first thing you wrote down is xy, xy?
IVAN: Yeah.
JW: Kind of like, uh, the front terms in FOIL?
IVAN: Yeah.
JW: I don’t know if that’s what you were thinking?
IVAN: That’s what I ’m thinking, but it doesn’t work.
JW: Why doesn’t it work?
IVAN: Cause it won’t fit on here.
IVAN: Yeah.
JW: Kind of like, uh, the front terms in FOIL?
IVAN: Yeah.
JW: I don’t know if that’s what you were thinking?
IVAN: That’s what I ’m thinking, but it doesn’t work.
JW: Why doesn’t it work?
IVAN: Cause it won’t fit on here.
JW: Okay.
IVAN: Remember the program wouldn’t let us do that. Cause I tried that

one.

Figure 5.4. Ivan’s concrete representation of the product of xy and xy.
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IVAN: What about if  we do. No, no, maybe they don’t go the way I’m
thinking. No, that doesn’t work. No. Fiddle faddle. No, that ones 
not all the way. That might explain that.

JW: Okay.
IVAN: So it will be 2xy, you’re gonna have to have xy and xy. See, I got

to do these last year. 4x is in the middle, first, then outer. Uh-oh. 
Somewhere you have to get 2xy though. No, that doesn’t work. 

IVAN: You can’t have xy first cause then it doesn’t fit over here though.
So that can’t be it.

JW: So the first thing you wrote down is xy, xy l
IVAN: Yeah.
JW: Kind of like, uh, the front terms in FOIL?
IVAN: Yeah.
JW: I don’t know if that’s what you were thinking?
IVAN: That’s what I ’m thinking, but it doesn’t work.
JW: Why doesn’t it work?
IVAN: Cause it won’t fit on here.
JW: Okay.
IVAN: Remember the program wouldn’t let us do that. Cause I tried that

one.

Ivan is referring to work completed during the activities o f the lesson. This 

highlights a difference between the concrete and virtual computer manipulative. The 

virtual computer manipulative will not allow the user to place the xy piece outside the 

workspace frame. If or when a student attempted to place the xy piece outside the virtual 

workspace frame, they would not be able to do so by dragging the xy  piece with the 

mouse. The xy piece would simply not follow the mouse movement. On the other had, 

this is physically possible with the concrete Algebra Lab Gear. Figure 5.5 illustrates this 

difference between the two manipulatives.

Realizing the previous strategy did not match what was allowed on the computer 

program, Ivan repeated his work with the concrete manipulative. That is, Ivan attempted 

to form a rectangle on the inside of the lab gear frame. Using the referent as a guide to 

symbolic procedures, Ivan is able to identify the incorrect procedural strategy and modify
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his result. In this way, Ivan is using the developing process. His actions in the referent 

world paralleled the symbolic world when he changed his solution to model the work 

performed with the Algebra Lab Gear. In the following excerpt, Ivan has successfully 

formed the appropriate rectangle with Algebra Lab Gear and begins to place the factors 

on the edges of the frame.

IVAN: There we go. I think I got it. I think I. Oh yeah. Look at that. Oh
yes. There we go.

JW: (Laughs) It’s the ah-ha syndrome.
IVAN: Finally. The only way to get what’s gonna to be, so we’re gonna

have x. Either way it’s going to work. I want this one. There we 
go. That will give us x  times y. Then were going to have to 
alternate it. Wait a sec. No, I ’m thinking wrong. That times that 
and that times that, so we need another red one. Then, this one 
would have to be one. That’s gonna make that. Yep. And those are 
going to be two more greens. So lets see how far off I truly was 
now. So now we got, we got 2x + ly  + 2.

It is apparent that Ivan had some previous experience with multiplying binomial 

expressions and factoring trinomials. Ivan’s final solution appears in Figure 5.6.

However, Ivan was less familiar with syntactical procedures than Meely. Not having a 

great deal of prior instruction in syntactical procedures may explain Ivan’s willingness to 

engage in semantic analysis while having a great deal of prior instruction may explain 

Meely’s unwillingness. This implies that the sequence of instruction from manipulative 

to symbolic or vice versa may influence student learning outcomes in that students who 

have initially learned symbolic approaches tend to adhere to these techniques in isolation 

o f other potentially helpful methods.
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(b)

Figure 5.5. Illustration of why it is not possible to place xy piece outside the virtual 
workspace frame. National Library of Virtual Manipulatives, © 1999-2005 Utah State 
University.
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©  Factor 2xy + 4 x  + y  + 2

(* \j 0

1 kU  '
*x»

8-. X y

I h

\ y y  T Wy

C. ^ ' x \j v 9% >

Figure 5.6. Ivan’s corrected written solution to factoring 2xy + 4x + y  + 2.

It is apparent that Ivan had some previous experience with multiplying binomial 

expressions and factoring trinomials. However, Ivan was less familiar with syntactical 

procedures than Meely. Not having a great deal of prior instruction in syntactical 

procedures may explain Ivan’s willingness to engage in semantic analysis while having a 

great deal of prior instruction may explain Meely’s unwillingness. This implies that the 

sequence of instruction from manipulative to symbolic or vice versa may influence 

student learning outcomes in that students who have initially learned symbolic
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approaches tend to adhere to these techniques instead of using other potentially helpful 

methods.

Differences in learning outcomes for the concrete and virtual manipulative

Qualitative results confirm differences between accuracy measures within the 

subject of multiplying and factoring polynomial expressions. The researcher observed 

that many students included a new variable in their posttest answer to a problem that 

involved factoring an expression in a single variable. The posttest question was problem 

seven and required the student to factor x 2 + 6 x + 9.  This error did not occur on any of 

the pretest answers to problem seven where the student was prompted to factor 

x 2 + 4x + 4 . The answer given to factoring x 2 +6x + 9 was (x + y)(x  + y ) for 10 out of 

109 students who received instruction with the concrete manipulative. One out of 70 

students who received instruction with the virtual computer manipulative gave an 

identical response. This result favors the virtual computer manipulative in that a smaller 

percentage of students who used the virtual manipulative gave an incorrect response that 

included an additional variable. Fortunately, the approach to finding the incorrect 

solution was witnessed during the interview with Kay.

Kay received instruction and was interviewed with the concrete manipulative. 

Although prompted to do so, she did not successfully solve any problems with procedural 

methods. During the first problem of the interview, Kay was asked to multiply x + y  

times 2x +1. She proceeded to place the appropriate factors along the edges o f the 

frame, fill in a rectangular region, and wrote the correct answer on her paper. What is
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unusual about her concrete display of the solution is that the pieces don’t line up, as 

shown in Figure 5.7.

Figure 5 .7. Kay’s concrete representation of multipling (x + y)(2x  +1).

This inconsistency would not be such a big deal if  it did not reappear in the next 

problem when Kay was asked to factor x 2 + 6 x + 6 + 3. This time Kay began with the 

appropriate rectangle, placed inappropriate factors along the edges, and wrote the 

corresponding solution as shown in Figure 5.8. Figure 5.8 illustrates that the y  piece 

was approximately equal in length to three unit pieces.
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(b)

Figure 5.8. Kay’s concrete representation and solution to factor x 2 + 6x + 6 + 3.

The researcher queried Kay as to whether a solution can have a y  term in it while 

beginning with only x  variable terms. When Kay did not see an issue with the 

inconsistent variables, the researcher asked Kay to repeat the problem using the blue 

piece as the x variable. The intent of the question was to determine if Kay could find the
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correct answer when the procedure o f creating a rectangle and subsequent factors would 

not lead to inaccurate solutions based on the size of the Algebra Lab Gear pieces.

JW: Times x, plus y. Um, is that your answer? Confident?
KAY: Yeah.
JW: Can I ask you, um, the question, it says factor x-squared, plus 6x,

plus 6, plus 3, um, doesn’t have any y ’s in it. Is it possible to get 
an answer w ithy’s in it without anyy’s in the original? I ’m just 
asking.

KAY: Um, sure.
JW: Sure. Okay, in this case, um, you know, if  you ask a little child

what does x  mean, they’d say, “It’s the first letter in x-ray.” Well, 
what does x  mean in this case?

KAY: Um, it’s like a block or zero.
JW: It means zero?
KAY: It’s, your try, you’re trying to find, like, the number.
JW: The number. The number, but x  isn’t a number. It’s an x. It’s a

letter of the alphabet. So what I ’m asking you to do is to try to 
make sense of why in the world a math teacher would give you 
something like, factor x-squared, plus 6x, plus, plus 6, plus 3?
And what in the world does that mean? Does it mean anything to 
you or just?

KAY: It means like, trying to find the value of it or.
JW: The value of what?
KAY: v
JW: The value of x. Okay.
KAY: Yeah.
JW: Okay, so they want you to try to find the value o f x.
KAY: Yeah.
JW: But, ah, here, ah, you have a value of x. It was that red thing. This

is what you were calling x. Is that right? This thing?
KAY: Yeah.
JW: But before you were calling x  this one? Is that okay? To call x

that one?
KAY: Uh. No, because this is only equal to one.
JW: Okay, it’s equal to one.
KAY: Yeah.
JW: So you can’t call x that?
KAY: No.
JW: How bout the blue one? What if  I wanted to say the blue one is x?

Is that okay?
KAY: The blue one would, well the blue one’s y  though.
JW: I know, but if  I just, one time I just want to call them. Let’s say I

want to do the problem calling the blue one x.
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KAY: Yeah, you could do that.
JW: Okay, go ahead. Will you do that for me? Pretend the blue one’s x.
KAY: So that’s like.
JW: You know. Just, just do the problem all over again.

At this point, Kay moves 6 x and 9 unit pieces away from the original red 

rectangle and begins to move blue pieces around the red square. She seems to have 

overlooked the fact that the red square would no longer represent x-squared. The 

researcher attempts to point this out in the following statements.

JW: If this one, if  the blue one is x, then which one would be x-
squared?

KAY: The red.

Kay points to the red x-squared piece inside the concrete Algebra Lab Gear frame. The x 

andy factors on the edges of the frame and the x-square piece in the center are never 

moved.

JW: The red ones still x-squared?
KAY: Yeah.

Kay was unable to make connections between the pieces despite their similarities 

in color and shape. When asked to perform the problem with y as a replacement for x, 

she was unable to see how this change would alter which pieces would subsequently 

represent x-squared and y-squared. Consequently, she was unable to form the appropriate 

rectangle and find a solution. A copy of the rectangle she was attempting to form when 

she decided it was not working is shown in Figure 5.9.

The next example indicates that Kay does not understand the concrete 

representation of a product. Here, Kay is asked to factor the expression 

2xy + 4x + y + 2. She begins by forming a shape that is somewhat less than a rectangle,
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places the x, y, and unit pieces below the frame, the x  piece adjacent and left of the frame, 

and writes the solution of \x  +1 xy + 1.

Figure 5.9. Kay’s concrete representation of factor x 2 + 6x + 6 + 3 using the blue pieces 
to represent x.________________________________________________________________

KAY: I think I got it.
JW: Huh?
KAY: I think I got it.
JW: What? You don’t sound very sure in your voice. Why are you

unsure in your voice?
KAY: Um.
JW: I sense that.
KAY: Two pieces missing.
JW: Okay, two pieces missing, so it would look more like a square? I

don’t know, if I put two pieces there, it might look more like a 
rectangle.

KAY: Yeah.

The work of Kay and her final solution to this problem are shown in Figure 5.10.
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(a)

©  Factor 2xy + 4x + v + 2
V a

(b)

Figure 5.10. Kay’s concrete representation and written solution of factor 
2xy + 4x + y  + 2.

According to Weame and Hiebert (1988), the connecting process involves a 

combination of establishing connections for both symbols and operations. Kay was 

unable to make the appropriate connections to the operation of multiplication even
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though she could connect symbols to their corresponding referent. Without this essential 

connection, she is unable to refine symbolic manipulations based on the referent and fails 

to enter the developing process.

The interview with Kay highlights a distinct difference in the two types of 

manipulatives. The virtual computer manipulative allows users to adjust the size of the 

variables. This is not possible with the concrete manipulative. It may be that the one 

student who made this mistake with the virtual computer manipulative on posttest 

problem seven, did so when the size adjustments of the x  and y  variables just happened to 

be similar to the size differences of the concrete manipulative. That is, it may be that 

virtual computer Algebra Lab Gear size adjustments were such that 3 unit pieces were 

approximately equal in length to one y  piece.

This example was provided as an illustration of a difference in student learning 

outcomes between the two types o f manipulatives. Students who received instruction 

with the concrete manipulative were more likely to include a new variable in posttest 

problem seven. The lab gear pieces that represent products were highlighted during the 

lesson presentation. That is, the researcher began each lesson with a verbal explanation 

o f the x 2, y 2, and xy pieces as being representative of products of x  and x, y  and y, and x  

and y  respectively.

This area of an Algebra Lab Gear piece is a physical representation of a product 

of the length and width. The connection of area as a physical representation of a product 

was viewed as somewhat elementary. Therefore, although addressed in the initial 

presentation, it was not directly addressed in any of the student activities o f any 

treatment. The observation of this error in posttest problem seven for about 10% of the
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population of students receiving instruction with the concrete manipulative indicates the 

topic was not so elementary.

If this oversight had not occurred, quantitative results for differences between the 

manipulatives would possibly produce results in favor of the concrete manipulative. The 

error of including an additional variable in the solution to a factoring problem may have 

been avoided among students using the concrete manipulative with some activities that 

had focused on the relationship between multiplication and the physical representation of 

a product. Assuming these activities were successful, the proportion of students who 

missed problems on the pretest but answered correctly on the posttest would increase 

among students using the concrete manipulative.

Nevertheless, the mistake of including an additional variable is an identified 

difference in the adopted solution strategies for the two types of manipulatives. It 

appears that students who use the concrete manipulative and do not have an 

understanding of the physical representation of a product are more likely to include an 

additional variable in their answer than students who received the same instruction with 

the virtual manipulative.

Improvement in accuracy with the concrete and virtual manipulative

Qualitative interviews affirm student ability to provide accurate solutions to 

problems that cannot easily be solved with procedural methods. For example, Lynn and 

Jan both struggled to find the product of x + y  and 2x +1. Nevertheless, they both could

find the correct factorizations of xy + y 2 + y  + x + y  + 1 and2 x 2 + 4xy + 2x -  xy + y 2 + y . 

Jan received instruction with the computer manipulative. Lynn received instruction with 

the concrete manipulative. Clearly, both manipulatives gave these students the
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opportunity to be successful at solving problems that they would not otherwise be able to 

solve. Here, qualitative results affirm quantitative results in that both manipulatives pave 

the way to correct answers even though one leads to occasional incorrect answers.
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Conclusions

This study focused on secondary mathematics student learning outcomes when 

topics are sequenced using a concrete manipulative or a similar virtual computer 

manipulative. Topics included solving two-step linear equations with a concrete or 

virtual balance beam and multiplying and factoring polynomial expressions using an 

alternative form of concrete or virtual Algebra Lab Gear.

Data was collected from a total o f 14 classes that were given one of four 

treatments: (a) symbolic, virtual computer, (b) symbolic, concrete object, (c) virtual 

computer, symbolic, and (d) concrete object, symbolic. A total o f 304 students 

participated. Students were recruited from the classrooms of 4 teachers. All participation 

was completely voluntary. All students were tested before and after treatments. Three 

randomly selected students were chosen from each class for a task-based interview for a 

total of 42 students. Interview questions from 5 students were analyzed in terms of 

semantic processes undergone when students were prompted to voice their thoughts and 

solve problems with and without the use of the concrete or virtual computer 

manipulative.

The first question was “Does the sequencing of mathematics instruction from 

manipulative to symbolic or symbolic to manipulative alter student learning outcomes at 

the secondary level?” The premise of this question relies on a theory of learning 

mathematics that suggests student understanding of mathematical content relies on 

having previously experienced semantic processes involving sensory-concrete referents.
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The second research question was “Do student learning outcomes differ when activity 

based instruction includes the use of a virtual computer or a concrete manipulative?” The 

objective was to identify potential differences in achievement measures and adopted 

solution strategies for problem solving.

Results

The sequencing of instruction did not influence the final class mean posttest 

score. This is indicated through analysis of covariance. To examine sequencing in detail, 

classes were split according to background knowledge of groups of students. That is, 

students who scored below 3 correct responses on the pretest were assumed to have little 

or no background knowledge in the topic of multiplying and factoring polynomial 

expressions. Students who got 3 or more problems right were placed into classes of 

students with some background knowledge. Finally, students who correctly answered at 

or over 80% of the pretest questions were assumed to have mastery of the topic. Analysis 

of covariance was repeated with these knowledge categories. There was no indication 

that background knowledge was an influential determinant of class mean posttest score. 

This implies that the sequence of instruction does not influence learning outcomes in 

terms of getting the correct answer.

Interview analysis indicates differences in student learning outcomes based on 

student background knowledge of procedural approaches. Students whose first exposure 

to multiplying and factoring polynomial expressions was in the form of a concrete or 

virtual manipulative tended to use the manipulative to develop, build, and correct 

symbolic procedures. Correcting of symbolic procedures was not observed with the 

single student who had demonstrated mastery of the topic on a pretest. This student did
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not work back and forth between the manipulative and the procedure. This seems to 

imply that among the students who were taught the topic of multiplying and factoring 

polynomials initially with procedural approaches, while being able to understand the 

manipulative, did not engage in the process o f combining the two methods of strategy to 

monitor their own problem solving techniques.

All treatments were significant in improving overall achievement from pretest to 

posttest. Thus, classes of students who received instruction with either a concrete or 

virtual manipulative showed significant mean improvement in test scores. Classes of 

students who received symbolic instruction before or after the treatment also showed 

significant mean improvement in test scores.

Analyzed interviews tend to confirm the conclusion that instruction with either 

the concrete or virtual manipulative may improve student ability to obtain the correct 

answer. Students were observed being unable to symbolically multiply x  + y  times

2x +1 while demonstrating the ability to factor xy + y 2 +y  + x  + y  + 1 with the use of the 

concrete or virtual manipulative. Both manipulatives allowed students to obtain correct 

answers that they could not get using procedural methods. Further study is needed to 

determine whether the ability to factor polynomial expressions will help students to learn 

symbolic procedures.

Counts were taken of the number o f times a student was able to change an 

incorrect answer on a pretest to a correct answer on a similar posttest question. A greater 

proportion of students who received instruction with the concrete manipulative were able 

to change their incorrect answers to correct answers. Likewise, similar counts indicated a 

smaller than expected proportion of students who received instruction with the concrete
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manipulative correctly answered the pretest question while incorrectly answering the 

posttest question. This result occurred in both topics and favors the concrete 

manipulative as the manipulative that provides the greatest probability for student 

posttest improvement.

There was also a clear incorrect solution strategy caused by one treatment. This 

strategy involved forming a rectangle for factoring x 2 + 6x + 9 . The solution given was 

(x + y)(x  + y ). The concrete Algebra Lab Gear pieces were fixed in length. The length 

of the y  piece was approximately equal to the length of 3 unit pieces. With this in mind, 

x 2 + 6x + 9 looks like x 2 + (2y )x  + y 2 = (x  + y){x  + y ) . Hence, this mistake makes 

sense and is likely due to the length of the y  Algebra Lab Gear piece.

Ten out of 109 students gave this answer after receiving instruction with the 

concrete manipulative. One student out of 70 made the same mistake with the virtual 

manipulative. No students made this error on a similar pretest problem. It is assumed 

that the students who made this mistake were using the y  Algebra Lab Gear piece as a 

replacement for 3 unit pieces.

Limitations Revisited

This study began with several limitations. There was a lack of precision in 

measuring student background knowledge, teacher effect, and control of treatments. It 

was not possible to precisely measure student educational background in each topic. 

Teacher participation or lack of participation was not carefully measured. Treatments 

were not controlled in that all students received instruction with the virtual computer 

manipulative. These problems added to the limitations of the study and will be discussed 

in greater detail in the following paragraphs.
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Student participants came from a wide span of educational backgrounds. 

Comparisons of results for the sequencing of instruction for classes and individual 

students are extremely broad. Nevertheless, these comparisons were made to contribute 

to a wide range of mathematical understanding of the complexities surrounding the issue 

of whether secondary instruction should begin with the use of manipulatives or with 

symbolic procedures.

The influence o f the current classroom teacher is a confounding variable to 

student learning outcomes. Teachers were all willing volunteers who had no objections 

to instruction with the use of a concrete or virtual manipulative. Teacher bias tended to 

favor the use of manipulatives in mathematics instruction. Predictions that these teachers 

were more likely to have already used alternative forms of instruction cannot be disputed.

Teacher participation in activities varied among treatments. Some teachers were 

actively walking around the room helping students during the planned activities, others 

graded papers during the activity, and still others were completely absent. This lack of 

treatment control contributed to potentially undetected differences in student learning 

outcomes.

Students volunteered to participate both as a part of treatments and for individual 

interviews. Students who were interviewed were typically those who also enjoyed 

learning with the use of a concrete or virtual manipulative. Therefore, the selection of 

students for analysis was not random. In this respect, student interview results cannot be 

applied to a general population.

All treatments were taught with the virtual computer manipulative in a single 

computer lab. Differences in the mechanics o f computer operations, however simple,
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were emphasized within treatments that utilized the virtual manipulative while these 

mechanics were not emphasized during treatments that involve the concrete 

manipulative. These differences were ignored in qualitative analysis o f students who 

received treatments in multiplying and factoring polynomial expressions. These 

differences clearly hindered qualitative analysis in both topics. It is not unreasonable to 

assume that instruction methods altered final results.

Another setback of this study was the lack of a control group. It would have been 

beneficial to have classrooms that received a traditional procedural approach to content at 

the same school. This additional data could possibly have provided a comparison group. 

The comparison group would have afforded the researcher the opportunity to distinguish 

group learning outcomes as unique from those experienced when another form of 

instruction was administered.

The results o f this study cannot be applied to all mathematics classrooms. This 

study was performed in a single location and is limited in scope. The sample size is not 

large enough to apply results to similar populations. The validity of conclusions drawn 

should not be used to make generalizations, but will hopefully prompt more research. 

Final Remarks

Some secondary mathematics classrooms begin topics with procedural techniques 

that assume the student has obtained a formal level o f thought necessary for 

understanding syntactic approaches. If  we adopt the theory that understanding 

mathematics begins with the use of a referent, then there may be a substantial percentage 

of students in secondary classrooms who would benefit from the use o f a manipulative 

prior to introduction of concepts in symbolic form.
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Students at the secondary level do not have trouble associating symbols with their 

concrete representations. For example, a group of 7 chips is easily represented by the 

number 7. Seven chips that are marked with an x can be expressed as I x . However, 

secondary students will struggle with the physical actions that represent operations in 

mathematics. Many secondary students do not typically approach mathematical 

procedures from a kinesthetic perspective o f physical actions on a manipulative. This 

may be due to underlying beliefs about mathematics as being isolated or separate from 

other actions or things a person does in life. Students who receive instruction with a 

concrete or virtual manipulative are given an alternative means for understanding 

mathematical procedures as an integral part of active play.

It is easy for a secondary mathematics instructor to assume students have the 

necessary background knowledge that eliminates the need for referents. Indeed, the 

researcher in this dissertation is guilty of assuming background knowledge that did not 

exist among students who received treatments involving the topic of solving two-step 

linear equations. In this case, the virtual manipulative differed from the concrete 

manipulative in a form that was too abstract to be intuitive. Students who used the virtual 

manipulative had to click on a button within the applet to divide each side of the virtual 

balance scale. For example, when solving 3x = 3, a student using the virtual 

manipulative would divide three x blocks on the left side and three unit blocks on the 

right side of the balance scale by clicking on the divide symbol icon and typing in 3. 

Instantly, the solution would be visually displayed both as an equation and as the balance 

scale appearing as one x block on the left and a single unit block on the right.
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The process o f solving the same equation, 3x = 3, was somewhat different with 

the concrete manipulative. The answer to division by three would be the number of unit 

chips that matched up with exactly one x  chip. In this way, students with the concrete 

manipulative were learning to connect the action of separating pieces into a given number 

of groups to perform the operation of division.

During the treatment activities, the researcher was asked to explain division to 

students who used the concrete manipulative, but did not have to do so when the same 

instruction was given with the virtual manipulative. Subsequent interviews indicated a 

considerable difference in student ability to connect the grouping process to the operation 

of division. Almost unanimously, interviewed students who received instruction with the 

concrete manipulative knew the physical representation of division while students who 

received instruction with the virtual manipulative did not.

These interviews were not considered for final analysis since the process of 

connecting the action of grouping was taught during the activities of treatments with the 

concrete manipulative, but not taught with treatments that utilized the virtual 

manipulative. Thus, when trying to determine if a virtual manipulative is comparable to a 

concrete manipulative in instruction, one would be advised to consider how the virtual 

manipulative models the actual physical movement o f objects.

Virtual manipulatives are capable o f performing actions that cannot be physically 

duplicated. This aspect seems advantageous in that it eliminates the burden on the 

instructor during activities that seem intuitively simple. However, this abstract ability 

can be detrimental to student understanding of underlying mathematical processes. This 

was observed when students who received instruction in solving two-step linear
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equations did not develop an understanding of what it meant to divide any number of 

concrete objects. On the other hand, the Algebra Lab Gear virtual manipulative drew a 

red rectangular boundary in the virtual workspace that could be adjusted for a student to 

check that they had correctly formed the appropriate solution. There is no indication that 

this additional feature prevented students from forming a connection between 

multiplication and the rectangular image of a product of length and width.

Current mathematics education theory indicates that the use of referents in 

building connections to mathematical operations and procedures is essential to 

meaningful understanding of mathematical content. In the opinion o f this researcher, the 

virtual manipulatives that are most likely to produce mathematical understandings similar 

to those produced by concrete manipulatives are precisely those virtual manipulatives 

that most closely model the actual concrete manipulatives.

The question of whether or not the computer is of assistance in mathematics 

education can be extended to the college level. Here, the comparison between concrete 

and virtual manipulative becomes increasingly difficult to administer as the objects 

increase in complexity. For example, three dimensional functions generated on a 

mathematical computer program are tough to duplicate with actual objects. However, the 

availability of quick complex three-dimensional images in college level mathematics may 

support student understanding of content. Thus, at this level, it makes sense to compare 

student learning outcomes with the virtual computer manipulative to student learning 

outcomes from a traditional lecture based class. This is the direction o f research I would 

like to pursue in the future.
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