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Abstract
As means of improving the ability of the computer to respond in a way that facilitates a
productive and enjoyable learning experience, this thesis proposes a system for the automated
recognition and dynamical analysis of natural occurring postures when a child is working in a
learning-computer situation.
Specifically, an experiment was conducted with 10 children between 8 and 11 years old to elicit
natural occurring behaviors during a learning-computer task. Two studies were carried out; the
first study reveals that 9 natural occurring postures are frequently repeated during the children's
experiment; the second one shows that three teachers could reliably recognize 5 affective states
(high interest, interest, low interest, taking a break and boredom).
Hence, a static posture recognition system that distinguishes the set of 9 postures was built. This
system senses the postures using two matrices of pressure sensors mounted on the seat and back
of a chair. The matrices capture the pressure body distribution of a person sitting on the chair.
Using Gaussian Mixtures and feed-forward Neural Network algorithms, the system classifies the
postures in real time. It achieves an overall accuracy of 87.6% when it is tested with children's
postures that were not included in the training set.
Also, the children's posture sequences were dynamically analyzed using a Hidden Markov Model
for representing each of the 5 affective states found by the teachers. As a result, only the affective
states of high interest, low interest, and taking a break were recognized with an overall accuracy
of 87% when tested with new postures sequences coming from children included in the training
set. In contrast, when the system was tested with posture sequences coming from two subjects
that were not included in the training set, it had an overall accuracy of 76%.
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Chapter 1

Introduction

In human-human communication, body language is an excellent source of information.

Its relevance roots from the assumption that it expresses implicit but true feelings.

Consequently it is commonly assumed that the information from the nonverbal sources is

more valid, more truthful and more revealing [1]. In the context of learning, non-verbal

behavior can give us valuable information about students' affective states ([2],[53]).

Psychological literature and empirical experiments made by experts in the field of non-

verbal language [10,11,16] present evidence that some postural behaviors are correlated

with the level of interest and the degree of agreement or disagreement to the topic.

Based on these evidences, in a learning scenario where the child is interacting with the

computer there are lots of interesting questions that we can ask. For example: Is the

postural behavior that occurs in a face-to-face conversation similar to that occurring in a

human computer interaction? Do children behave in the same manner when they are

learning while interacting with humans as compared to when they are learning while

interacting with a computer? How well can the theories that are based on studies made

with adults be applied to the children?



Bull [3] presents results about the correlation between the affective states of interest and

boredom with static postural behavior. Smith in her master thesis [4] correlates static

body position (forward vs. backward) with the level of attention or engagement during

human and human-like agent interaction. The study of Cassell, Nakano et al. ([18], [54])

did look at dynamic postural behavior, specifically they looked when people shift from

one posture to another, and how long posture shifts lasted, and correlated it to the

introduction of a new topic. Hence, the work developed in this thesis looks at the

correlations over time of the static body positions focusing at a learning situation. Also,

this work is looking at human-computer engagement and how postural behavior

correlates with affect.

Specifically, one of the applications for which this research has been motivated is the

Learning Companion Project (LC). This project aims to create an affective peer/tutor

system that assists young students during a learning task. A critical part of the Learning

Companion is, that it has, as one of its components, the interpretation and recognition of

postural behaviors, the component on which this thesis is focused. As a result, the

scenario of the recognition system is constrained to that of one child solving a

mathematical puzzle in front a computer and the range of affective states are restricted to

those that can be present in learning-computer situations [5]. It is important to highlight

this thesis is focusing on the same context that the LC, but it doesn't mean the Learning

Companion needs to use it, in special, because the ability to infer information about the

learning situation from postures is something that along this thesis will be investigated.

A detailed explanation of this project is showed in the applications section.



1.1 Thesis Objectives

The research questions in this thesis are as follows:

1. Do patterns of postural behaviors correlate with some of the affective states that

occur naturally when a child is working in front of the computer trying to solve a

puzzle ?

Further,

2. Can the computer -using two matrices of pressure sensors mounted on a chair-

recognize those patterns?

3. Can a Hidden Markov Model be used to detect those posture patterns?

4. Can the posture patterns be differentiated across different children?

As I mention before there are several studies that suggest that there are some correlation

between postures and states of the mind of speakers [3,4,18,54,15,16]. Hence, for the

reason that there are not a clear articulation between postures and learning, this thesis

tries to find experimental support about the relationship between postures and some of

the affective states occurring in learning. It explores whether a set of static postures exists

that can -trough their causal dependencies- detect in an automatic way dynamic postural

behaviors correlated with affective states associated to interest and boredom.

Another objective is the implementation of a system that can be able to classify in real

time the static postures made by a child during the learning-computer interaction. In

particular, two matrices of 42 x 48 pressure cells made by Tekscan [6] were chosen as the

posture-sensing device. These matrices are mounted on the seat and the back of a chair,

and once an individual is sitting, the pressure sensors capture the body pressure

distribution. Hence, the implementation of the static posture recognition system involves

developing a technique for extracting and classifying reliably the body pressure features.



Finally, the last objective is to analyze the static posture sequences using Hidden Markov

Models [7] and to examine if there are some patterns correlated with the investigated

affective states.

I should mention that in this thesis I am not focusing on the distinction between affective

states and cognitive states because even though, in the learning research community there

are an extensive discussion about the difference between these two concepts, the aim in

this thesis is to recognize behaviors that are highly correlated with the states themselves

(called cognitive or affective) and not the study of their conceptual interpretation.

1.2 Applications in Computer Human Interaction

1.2.1 Learning Companion

The learning companion aims to be a computerized system sensitive to the affective

aspects of learning which facilitates the child's own efforts at learning [8]. Learning the

complex ideas involved in science, math, engineering and technology and developing the

cognitive reasoning skills that these areas demand often involve failure and a host of

associated affective responses. These affective responses can range from feelings of

interest and excitement to feelings of frustration and boredom. The student might quit if

he is not able to recover from the 'feeling of getting stuck'.

Skilled humans can assess emotional signals with varying degrees of accuracy, and

researchers are beginning to make progress giving computers similar abilities at

recognizing affective expressions. Computer assessments of a learner's

emotional/cognitive state can be used to influence how and when an automated

computational agent chooses to intervene.

The Learning Companion aims to sense surface level behaviors that are highly correlated

with emotional and cognitive aspects during the learning-computer interaction in an



unobtrusive manner. Hence, a critical part of the system performance is to develop

mechanisms to sense the surface level behaviors without interfering with the natural

learning process.

On Task Off Task

Posture Leaning Forward, Slumping on the
Sitting Upright Chair, fidgeting

Eye-Gaze Looking towards Looking
the problem everywhere else

Facial Eyes Tightening, Lowering Eyebrow,
Expressions Widening, Raising Nose Wrinkling,

Eyebrows, Smile Depressing lower
lip corner

Head Nod/ Up-Down Head Sideways Head
Head Shake Nod Shake

Hand Typing, clicking Hands not on
Movement mouse mouse/keyboard

Table 1-1 A "common sense" list of Surface Level Behaviors

In general, teachers have told that cues like facial expression, eye gaze, hand gesture and

posture help expert them to recognize whether the learner is on-task or off-task. These

surface level behaviors and their mappings are loosely summarized in table 1. Whether

all of these are empirical important, and are the right ones remains to be evaluated, and it

will no doubt take many investigations. Such a set of behaviors may be culturally

different and will likely vary with developmental age as well. The point is that exist a

variety of surface level behaviors related to inferring the affective state of the user, while

he or she is engaged in natural learning situations. This work is only one part of the

learning companion system and focuses on analyzing the postural behaviors of a single-

child solving a mathematical puzzle in front a computer.



1.2.2 Other Applications

Automatic analysis and understanding of body postures associated with affective states

may potentially be used in designing virtual classrooms, in which machines can be aware

of the user's affective state and, therefore, try to respond to them in an appropriate

manner similar to human responses. Another possibility is one in which the machine can

inform a human in a remote location, perhaps in a distance learning situation, about the

affective state of the student or students. Software agents may also potentially use the

output of the system to decide on effective communication strategies, or even to

synthesize their own postural changes consistent with interest or boredom, since the

models we use for posture analysis can also be used for postural synthesis. Automatic

posture analysis will also have widespread application in psychological studies of non-

verbal communication. In automotive applications, the system can be used for inferring

information about the driver's behavior. It is also possible that the tools developed here

may be of use in analyzing behavior related to seating comfort.

1.3 Outline of the thesis

The system of body posture understanding is divided into two problems: human analysis

and machine posture analysis. The human analysis handles the problem of finding which

are some of the affective states that are correlated with the children's postural behavior

based on teachers' assessments. The machine posture analysis addresses the problem of

developing an automatic system that can analyze the children's posture patterns based on

the labels provided by the teachers in the human analysis part.

In summary, the organization of this thesis is as follows:

0 Chapter 2 reviews previous research in human postural behavior, emotions, and



learning. Also, this chapter gives an overview of related research in automatic posture

recognition and interpretation.

" Chapter 3 describes the experiment that was conducted with children for

collecting data from naturally elicited behaviors associated with interest and

boredom, as well as, the method for establishing the ground truth about the affective

states of the children during the computer interaction. Furthermore, it explains the

experiment carried out for establishing the appropriated set of static postures that best

describes the naturally gathered children's posture data.

* Chapter 4 explains the overall system for the automated recognition of posture

patters associated with the affective states found in the experiment.

" Chapter 5 summarizes the results and concludes the thesis with suggestions for

future work.



Chapter 2

Background

This chapter describes relevant theories of human postural behavior. Given that this

thesis work focuses on the dynamic modeling of postural behaviors that are highly

correlated with some of the affective states that a child is having during a learning-

computer interaction, this chapter emphasizes particularly those theories that deal with

the interpretation of non-verbal behavior, emotions, and learning. First, studies that

support that non-verbal cues can be used to infer a student's affective states during a

learning task are presented. Second, specific studies about posture interpretation are

addressed. Third, previous systems for automatic posture detection and/or interpretation

are described.

Essentially, the issues raised by this chapter are the most relevant ideas that form the

foundation of this thesis. However, more specific theories that are necessary for the

comprehension of some design issues of this thesis are addressed in the beginning of each

chapter.



2.1 Relevance of Non-Verbal Cues For Inferring Humans'
Affective States

Ekman and Friesen [9] introduced the conceptualization of non-verbal leakage that is

caused by differential controllability of the communication channels. In other words, it

means when people try to conceal negative affect and transmit positive affect instead,

their deceit might be more successful in controllable channels (speech content, face) and

unsuccessful in less controllable channels (body, filtered speech). According to Ekman

[1], this is based in the hypothesis that precisely because of the greater repertoire of facial

movement, people may be more careful to control their facial movements when trying to

deceive others and hence are more likely to give themselves away inadvertently through

the body movements.

Specifically, a study carried out by Allen and Atkinson [11], Goldin-Meadow, S., D.

Wein, et al. [62], and Goldin-Meadow, S., M. W. Alibali, et al. [63] show some empirical

evidences that non-verbal cues can be used to indicate whether a student is understanding

a lesson.

Ekman in his early work ([1], [12], [13]) argued that people make greater use of the face

than the body in judgments of emotion, that their judgments are more accurate when

made from the face and that they can reach greater agreement in judging the face. At one

stage, Ekman [14] proposed that the face is perceived as carrying information primarily

about what emotion is being experienced, whereas the body is perceived as conveying

information about intensity of emotion. Subsequently Ekman and Friesen [13] proposed

that stationary facial expressions and postures are more likely to convey gross affect

(such as liking), whereas movements of the face and body are more likely to convey

specific emotions. Nevertheless, Bull [15] based on several experiments, presented

results showing that both movements and positions convey information about four

distinctive emotions and attitudes (interest / boredom, agreement / disagreement), and



hence, contrasting with Ekman, he proposed that posture does constitute a significant

source of information about people emotions and attitudes.

2.2 Posture Behavior Interpretation

Mehrabian and Friar [16] conducted several experiments where American male and

female students were asked to think they were conversing with someone, and to adopt the

positions they would employ to convey different attitudes while seated. From these

studies, a number of postures have been the particular subject of investigation, namely,

trunk lean forward, backward and sideways, body orientation, arms akimbo and body

openness. Their findings revels that people believe that leaning forward or a decrease of

leaning backward indicates a positive attitude. While sideways lean was found to vary

according with the sex of both the message sender and the receiver. In the case of male

encoders, intense dislike of another male was indicated by lack of sideways lean, whereas

intense dislike of female encoders was indicated through greater sideways lean. In

relation to status, sideways lean was used more when addressing someone of lower

status. Mehrabian and Friar's studies didn't show clear results about body orientation.

Observations of the arms akimbo position suggest that it has a generally negative

meaning and it was used meanly by standing encoders. Observation of body openness

(absence of folded arms or crossed leg positions) suggested generally positive meaning.

More recently, Rich at al. [17] in Mitsubishi Labs have defined symbolic postures that

convey a specific meaning about the actions of a user sitting in an office which are:

interested, bored, thinking, seated, relaxed, defensive, or confident.

In the field of non-verbal cues for discourse structure, Cassell, Nakano, & Bickmore

([18], [54]) at the Media Laboratory have also been conducting a study in which they

provide empirical support for the relationship between postures shifts and discourse



structures. They have found that postural shifts may be signal boundaries of units of

information.

2.3. Systems For Automatic Posture Detection and/or
Interpretation

Smith in her master thesis [4] created an interactive story-eliciting system for

grandparents called GrandChair System. This system is based on a model of face-to-face

conversation; tellers sit in a rocking chair and tell stories with the assistance of a

conversational agent on a screen, who takes the form of a child, to help them tailor stories

to a child audience, and prompts them with stories, questions, and video clips from their

previous interactions. In particular, the system uses the combination of an accelerometer

and a cushion sensor -resistive based sensor that provides information about the overall

amount of pressure applied on it- for detecting grandparents' two major postures (forward

and backward) or between rocking and not rocking motion; they used these changes in

grandparents' postures to determine when a story was about to end. This system analyzes

static but not dynamic correlations between those postures and the state of mind of the

user. However, some of the disadvantages of this system are: First, before each session,

the system needs to have a cumbersome calibration process. Second, it doesn't detect

very reliably the postures when the user is moving constantly. And third, the couch

sensor signal becomes invalid after the user has been sitting for a while, due to the fact

that the resistive foam compresses.

Tan at all [19] proposed a system called the Sensing Chair. This system uses matrices of

pressure sensors (2 of 42 by 48) fabricated by Tekscan [6] placed on the seat and back of

a chair for detecting a set of predefined postures made by an user in an office

environment. In her first approach, Tan classified the set of static postures using PCA

(Principal Component Analysis). Specifically, Tan used a data set composed of 5 samples

of 10 different postures made under command by 30 adult subjects. Using training and



testing sets of different posture samples coming from the same subjects, she reported

results of around 96 percent of posture recognition accuracy.

Later, Slivovsky and Tan [20] extended the Sensing Chair classificatory system to

subjects that the system had not seen before (Multi-User recognition). In this work, the

training and testing data sets contained posture samples coming from different subjects.

However, using only PCA, they reported that the recognition rate of static postures went

down (around 79 per cent). As a consequence, in order to improve the posture recognition

rate, the original system was modified into a two-stage classification system, using either

a Bayesian Classifier or one that uses a pyramid representation. Hence, the overall

recognition rate increased to approximately 84 percent correct. Also, the Sensing Chair

system was extended to classify in real time between static and transitional postures.

The mean differences between the system developed by Slivovsky and Tan and the work

of this thesis are: First, In this work the system has been testing and trained on continuous

postures made by children in a natural situation, whereas, the Slivovsky at al.'s system

was trained with specific postures made under command by adult subjects. Second, the

algorithm for feature extraction proposed in this thesis (see section 4.2) is thought to

exploit the geometrical properties of the posture pressure maps, and it is different from

the PCA technique used by Slivovsky at al. Furthermore, testing with the children's data

base, the algorithm used in this thesis showed the advantage of modeling the pressure

posture data better than PCA, recognizing very well the new children's postures. Finally,

in this thesis, dynamic posture classification is developed to recognize postural behavior

that is highly correlated with some of the affective states presented in a child's learning-

computer interaction. In contrast, Slivovsky at al. are focused on distinguishing only

between static and transitional postures.



Chapter 3

Human Analysis: Data Collection
and Human Coding

Data collection for affective studies is a challenging task. We need to elicit affective

states, like interest and boredom, on demand, which is almost guaranteed not to genuinely

bring out the required emotional state. The subject needs to be exposed to the conditions

that can elicit the required emotional state in an authentic way.

There are several research methods that can be used for eliciting and studying emotions.

Particularly, in the learning and education literature, the issue of which is the appropriate

context that can be used as elicitors of natural responses has been long debated among

educational researchers representing different scientific disciplines (see [21]).

The educationalists (e.g. [22]) prefer to apply research methods in classroom settings. To

investigate the classroom phenomena, they advocate the use of various ecological

approaches that consider all relevant characteristics of the classroom ([23], [24]).

The psychologists follow a more rigorous experimental approach, which requires

isolation of variables and control of external noise. Thus, they would like to eliminate any

contextual variation and conduct their investigation under laboratory-like conditions, so

that empirical causality can confidently be attributed to particular variables.



The methodologies of evidence followed for each of these two approaches are

sufficiently contrasting to make evidence obtained under one perspective unacceptable to

followers of the other perspective.

In this study we conduct the experiment in an ecologically valid setting, but controlling

the external variables. This choice increases the confidence in the likelihood of obtaining

empirical causality between the variables.

Another challenge for this study is to get as much information as we can about the true

affective states that the child is experiencing. There are several ways to try to infer the

true emotional state. These can be by self-report, measurement of biological signals or

by observing verbal or nonverbal cues.

Self-report of emotions has the drawback that humans are notoriously bad at assessing

how they feel ([25]). As a consequence, self-report in the field of emotions has been long

known to be inaccurate in social science research (see [26] for a broad discussion of this

topic).

The measurement of biological signals has the advantage of accessing uncontrollable

changes that the body undergoes while experiencing the emotions. Nevertheless, in this

study we decided not to use biological sensors, since during the first few experiments, we

observed that the sensors tend to be uncomfortable for the children. As a result the

children are likely to modify their behaviors and experience distraction, and adding a

considerable amount of noise to the experiment. Also, I believe that biological sensors

are probably another way of correlating with true emotional state, but don't yet allow us

to infer it directly.



Instead of the methods mentioned above, we decided to focus on observation of non-

verbal behavior. Behavior, in particular, acquires its relevance from the assumption that it

expresses implicit but true feelings, that it taps the underlying affective layer and exposes

attitudes and emotions that are hidden or even intentionally cancelled ([2]). In particular,

studies made by LeDoux [27] and Damasio [28], show that important elements of human

emotion are non-cognitive and emotions can affect action in ways that the person often

cannot explain. Hence in this study, we analyze the non-verbal behaviors made by

children and their correlation with the judgment of teachers about the children's affective

states.

In this chapter, the first section describes the experiment with the children for eliciting

natural responses associated with interest and boredom. The second section explains why

the study needed a Structured Observation methodology [31] for establishing the ground

truth about the affective states of the children during the computer interaction. The third

section presents the details about the pilot study for getting the appropriated affective

states to be used. The fourth section presents the details about the coding study made with

teachers for assessing the children's affective states. Finally, the fourth section presents

the study for establishing the set of static postures to be used by the automated posture

system.

3.1 Data Collection: Children's Experiment

3.1.1 Apparatus

In order to elicit natural behaviors, the space where the experiment took place was a

naturalistic setting (a common area called "The Cube" located at the MIT Media Lab

building) and was arranged with the special chair (with the pressure sensors), a computer

with a 21" inch monitor, mouse and keyboard on a normal table. To this space we have

added three cameras, one pointing below the monitor directly upwards to the eyes (Blue



Eyes Camera), the other on top of the monitor capturing the facial expressions, and the

last one on a small tripod at the side recording the posture image. We made the cameras

less visible to encourage more natural responses. In total, we gathered 3 channels of

video, one through a Blue Eyes Camera [29], two through Sony EVI-D30 Pan/Tilt/Zoom

cameras.

We recorded five sets of data:

" The sensor chair pressure patterns

* Sony video-camera capturing the posture

* IBM Blue Eyes video of face

* Sony video-camera capturing the frontal face

* Computer Screen Activity

The data from the chair, the cameras and the computer program were synchronized.

As mentioned previously, a naturalistic setting was chosen to achieve ecological validity,

since the study intention was to examine complete natural behaviors as close as possible

to the way a child behaves in a computer-learning situation. Furthermore, this validity

plays an important role on the effectiveness of the Structured Observation (see section

3.3.3), given it will influence the human coders' affective states interpretation.

Sensor Chair Sony Video
Came'%

Monitor

IBM Blue Eyes Camera

Keyboard and Mouse

Figure 3-1 Experiment Space.

Sony Video Camera



The chosen method of recording employed in the experiment was aimed to be both

unobtrusive and to preserve as much as possible the original behavior. An unobtrusive

measure will minimize the effect of the observer on the subjects; there is little point in

having a perfect technical record of behavior that lacks ecological validity because the

participants have altered their behavior as a consequence of being observed. The type of

video cameras employed was small in size and the appearance is different from the

traditional video cameras. Also, the sensor chair is a non-obtrusive sensor that can

provide the best of both worlds; it helps to preserve the original behavior without

modifying the ecology of the environment of the participants.

3.1.2 Game Description

Fripple Place [30] is a constraint satisfaction game in which children try to match resident

creatures to their assigned rooms. It explores three activity areas: (1) deductive and

inductive reasoning, (2) synthesis and analysis of information to select options and form

conclusions, (3) interpretation of evidence and predicting outcomes.

H int/Check.............
It Button

NW6 w* *0-.. Room

Constraints
RoomsrP
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Level of
Difficulty

Stop-
Button

Figure 3-2 Fripple Place interface



This game was chosen because it is easy to learn - it can take from two to three games-

and at the lowest level each game takes about 5 minutes. In particular, with this game,

there is a high probability than it will soon elicit negative affective states like boredom or

fatigue. In other words, this game could elicit both interest and boredom during 20

minutes of interaction.

3.1.3 Subjects

Contacting the subjects

Subjects were recruited via fliers posted on 10 public Cambridge and a private Newton

(Montessori) Elementary School official boards with permission of each school principal.

The flier suggested "Win a fun tour to Media-Lab. "; followed by, "It's that simple. Come

to the MIT Media Lab and test a new educational computer game."

Subject's parents voluntarily responded to the flier by contacting the experimenters, via

contact information (phone and email) printed on rip-off stubs at the bottom of each flier.

Parents responding by email were then sent an email back, giving broad details of the

educational game and their child's participation in it (according to the flier), including the

information about the MIT Media Lab tour, along with a request for scheduling, and

suggested times for coming in. Parents responding by phone were given a verbal version

of the same material.

Parents were briefed about the game and the nature of the study. The children were told

that we wanted to know how fun, friendly and interesting the game is.



Subjects

In total, 25 subjects came to participate in the study. In addition, two were not considered

due to problems with the sensors, two more were not taken into consideration, as they

needed to go to the restroom in the middle of the interaction. Another subject was not

considered as she accidentally closed the game screen. One subject was already familiar

with the game and had been playing the game in the past. Also, there were three subjects

who played the Incredible Machine [61], which was very interesting for the children, and

during the time of the interaction, never could bore them. As a result, data gathered from

16 children ages 8 to 11 years old was considered to be in good condition and without

any problem.

To synchronize and manipulate five channels of data is a very complicated and time-

consuming task. Due to the time constraints and considering the enormous amount of

work the teachers would be doing while coding the data, we consider a subset of 10

children (5 male and 5 female) ages 8 to 11 years. As previously mentioned, every

subject came from either a Cambridge or a Newton school. In fact, they were probably

from relatively affluent areas of the state, although both schools integrate students from a

variety of cultural and economic backgrounds. The subjects took part in the experiment

one by one and none of them had played the game before.

3.1.4 Procedure

Before the structured interaction began, the experimenter introduced herself. The

experimenter asked, in an informal way, the subject's name, school grade and 3 general

questions regarding the participant interest in games or computers. After this, the

experimenter showed the Fripples Place game to the participant and gave to him general

instructions about how to play it (for more information about the game see appendix A).



The participant was asked to play the game once, ask any questions he had about the

game, and subsequently, he was instructed to play alone. The interactions with the

computer were videotaped and at the end of each session, subjects and their parents were

informed that the subject had been videotaped and permission was requested to use the

tapes for research. In no case this permission refused.

Each channel of information was synchronized. Every video frame from the face and the

posture, each pressure distribution matrix from the chair and the game status were labeled

with a time stamp. The computers and camera clocks were synchronized in order to

assign the same time stamp to different device data. The time window for the time stamps

was in the order of milliseconds.

3.2 Finding the Ground Truth: Assigning the children's Affective
States

In behavior interpretation models there is always the issue of defining the ground truth -

the true affective state of the learner. In the case of this experiment, to decide each child's

affective state, 3 expert teachers were asked to label the children's video sequences. The

three teachers were required to provide at least one label per minute of video and to

indicate whenever they noticed a behavior that made them think a specific affective state

was occurring (see section 3.4.2). This Structured Observation methodology [31] for

human labeling was applied because the experiment was conducted with children

between 8 and 11 years of age: for children this age, it is not reliable to give them

questionnaires or interviews after 10 minutes of interaction. Normally they are not able to

explain what happened regarding affective state changes during the session, particularly

because children at this age have little understanding of the emotional language. This

assumption was made in consultation with Dr. Jerome Kagan, an expert in such

experiments ([32]).



3.2.1 Method Specifications

Given that we cannot directly observe the student's internal thoughts and feelings, nor

can children of this age range reliably articulate their feelings, we choose instead to focus

on labeling behaviors that communicate affect outwardly to an adult observer.

The coders were asked to perform a systematic observation looking for the following

affective states: Interest, Neutral, Taking a Break, Other and I do not know. They were

asked to provide comments for every other label they found, in which they must specify

the name of the affective state, a brief description about the behavior that made them

think about that other label and why (for details see section 3.3.4).

Note also that these five labels were arrived at after several iterations with pilot coders, as

we tried to hone in on a set of relevant states that had reliably observable behaviors for

the data we collected.

3.2.2 Software for coding

In order to aid the process of coding the data, I implemented a coding system based on

the ISIS language (see [33]). The system is characterized by its ability to: (i) reproduce

and annotate video streams frame-by-frame or at 3 different speeds (slow, normal and

fast motion); (ii) go to a specific point in the video; (iii) save all the annotated data to a

text file; (iv) generate or read a file that contains annotated data; (v) visualize the

annotations on the screen, allowing an easy location of the areas of interest associated

with a specific label.

The program allows coders to view and browse the video containing a segment of

behavior several times. This way, the same behavior can be observed at a number of

different levels and it permits coders to concentrate, on different occasions, on different



aspects of the behavior. It also allows coding time stamps, as well as, durations of certain

behaviors. Another advantage is that the video can be played at different speeds so that a

behavior, which occurs for a very short duration, can be detected. The program also

allows the reliability of measures to be checked more easily.

Affective
States
Labels
Indicator

Bar Indicating
the Game
Status

Face Video
Screen

Posture Video
Screen

Current
Affective State
Label Indicator

Banner For
Browsing The
Entire Movie

Bar Indicating
The Video
Advance

Game Current

Status

Game Video

Screen

Game Level

of difficulty

Affective

Labels

Figure 3-3 Isis program screen with tags indicators.

Command Action
> _ Frame forward

< Frame Backwards

Space Bar Change between Slow (10 fps) and normal speed (30 fps)

Drag mouse on "Movie Bar" Goes forward over the whole movie locating it where the
vertical yellow bar indicates.

Click with the mouse on Goes to specific frame in the movie
"Movie Bar"

Click on Label Mark the start point of the label in the part of the video is
being played.

Table 3-1. Screen Video Controls.



3.3 Pilot Coding Study

This study was an empirical first approach for exploring if some affective states could be

reliably detected based only on a side angle video of a learner's posture, omitting game

status and direct facial views. Three coders (MIT graduate students, 2 women and 1

man), were asked to label the children's posture videos with one of the followings

categories: interested, thinking, taking a break, confused, neutral, other, bored, distracted,

tired, frustrated.

Figure 3-4 Coding screen presented to no-teacher coders in the pilot study

As previously mentioned, one of the main differences between this coding and the coding

performed by the teachers, is that the graduate students were watching the postural

behavior without the face and the game status information. In addition, these coders were

I



looking at a bigger set of affective states, 10 categories in total. Figure 3.4 shows the

coding screen presented to this set of observers.

The pilot study was done using 10 children videos; each video was split in three segments

of approximately 7 minutes long. As result, we had 30 different video segments that were

chosen randomly for forming three sets of samples that were used for coding different

rounds.

Figure 3.5 presents the total probability distribution that each coder assigned to each

affective state for the entire video: interested, thinking, taking a break, confused, neutral,

other, bored, tired, distracted, and frustrated. Table 3.2 shows the coders' Kappa results.
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From the results, it is evident that the level of agreement between coders was very low.

Therefore, in order to refine the coding for the main experiment, it was necessary that the

coders get together and discuss their differences. Appendix C gives an explanation of the

Cohen's Kappa formula and section 3.3.4 gives details about which is an acceptable level

of agreement.

Kappa Round 1 Value
Coderi and Coder 2 0.3926
Coder 1 and Coder 3 0.2995
Coder 2 and Coder 3 0.3115

Table 3-2 Cohen's Kappa calculation for measuring the level of
agreement between the non-expert coders in the first round.

In this first round of the pilot study, the coders pointed out they could not distinguish

between the interest and thinking classes. For example, if the child was interested, then

probably she was also thinking about the problem. Alternatively, if he was thinking about

something else besides the problem, then probably he was not only distracted, but also

daydreaming. As a consequence, the interest and thinking classes were combined into one

class. This new class was still called interest, but emphasizing the fact that the student is

interested only when the student is thinking about the problem.

Similarly the classes of bored and tired were confused during the first round. The coders

thought that when the child is getting tired, she tends to get bored as well. Similarly,

when the child gets bored he starts to get tired. We defined a new class called bored,

which occurred when the child was tired and stopped working on the task altogether. The

class did not include the case when the child was tired, but still putting a lot of effort in

trying to solve the puzzle.



After practicing with some examples, the coders coded for a second time. Figure 3.6

shows the final probability distribution for the different affective states for the second

round. The tables 3.3 to 3.6 show the Cohen's Kappa and confusion matrices for this

second round.

Kappa Round 2 Value
Coder1 and Coder 2 0.7136
Coder 1 and Coder 3 0.7715
Coder 2 and Coder 3 0.7283

Table 3-3. Cohen's Kappa calculation for measuring the
between the coders (no teachers) Round 2

level of agreement
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Frustrated Bored Distracted Other Neutral Confused Break Interested
Frustrated 0 0 0 0 0 0 0 0
Bored 0 186 0 0 12 0 4 11
Distracted 0 46 2 0 22 0 9 37
Other 0 0 0 0 0 0 0 0
Neutral 0 1 53 0 643 15 0 28
Confused 0 0 20 0 81 0 3 32
Break 0 0 0 0 3 0 200 8
Interested 0 1 26 0 28 59 2 968

Class
Agreement 0.0 0.7949 0.0198 0.0 0.8150 0.0 0.9174 0.8930

Table 3-4. Confusion matrix between coder 1 and coder 2, round 2.

Frustrated Bored Distracted Other Neutral Confused Break Interested
Frustrated 0 0 0 0 0 0 0 0
Bored 0 155 1 35 15 0 7 0
Distracted 0 1 88 4 0 0 0 23
Other 0 0 0 0 0 0 0 0
Neutral 0 2 58 15 654 0 6 5
Confused 0 76 25 0 3 12 0 20
Break 0 4 0 0 0 5 198 4
Interested 0 12 15 0 54 12 6 985

Class
Agreement 0.0 0.6200 0.4706 0.0 0.9008 0.4138 0.9124 0.9499

Table 3-5. Confusion matrix between coder 1 and coder 3, round 2.

Frustrated Bored Distracted Other Neutral Confused Break Interested
Frustrated 0 0 0 0 0 0 0 0
Bored 0 177 49 0 0 0 0 8
Distracted 0 70 22 9 0 0 0 0
Other 0 0 0 0 0 0 0 0
Neutral 0 1 76 1 633 27 10 41
Confused 0 1 22 0 51 0 0 0
Break 0 0 13 0 0 0 202 3
Interested 0 1 5 44 42 2 5 985

Class
Agreement 0.7080 0.1176 0.0 0.8719 0.0 0.9309 0.9499

Table 3-6 Confusion matrix between coder 2 and coder 3, round 2.



The results show that interested, taking a break, neutral and bored happened most often

and had the highest agreement.

The objective of this pilot study was to improve the internal validity of the experiment,

and find which affective state labels are valid and reliable. For validity, I wanted to

understand the relationship between a specific affective state and the postural behavior.

For getting a better reliability, I carefully defined the concept of each affective state. I

tried to consider affective states categories, which are mutually exclusive (see section

3.4.2 for details about the description of each category). Finally, because I am employing

a very subjective measure, I considered it necessary to be confident that the affective

state categories are both valid and reliable.

3.4 Teachers' Coding

3.4.1 Revising Teachers' agreement

Once I finished devising the affective states classificatory system, I prepared three video

examples for each category: interest, taking a break, neutral and bored; 12 examples in

total. Each instance was approximately 60 seconds long and included the video for the

face, posture and game status. Subsequently, three female expert teachers were trained in

its use, and using new episodes of behavior, they were prompted to code 80 new

instances, where each of them was approximately 60 seconds long. The instances were

extracted from each of the ten children videos with two segments of each of the four

categories per child. Each teacher was asked to assign only one label to every example.

The examples were presented to the teachers in a random order one by one.



Then, using the data gathered from the teachers' labels, the inter-rater-reliability -that is,

the degree to which raters, working separately, agree over their classification of the

affective states- was checked using Cohen's Kappa formula [34] (see Appendix C for

details of this formula). The results for the agreement between coders were the

followings:

Kappa Teachers Value
Teacher 1 and Teacher 2 0.7800
Teacher 1 and Teacher 3 0.8432
Teacher 2 and Teacher 3 0.7339

Table 3-7 Cohen's Kappa coefficients for the teachers' study

High Interested Neutral Taking A Bored Other I do not
Interest Break know

High Interest 13 2 0 0 0 0 0
Interested 0 14 1 6 1 0 0
Neutral 0 0 16 2 0 0 0
Taking Break 0 2 0 12 0 0 0
Bored 0 0 0 0 11 0 0
Other 0 0 0 0 0 0 0
I do not know 0 0 0 0 0 0 0

Table 3-8 Confusion matrix between teacher 1 and teacher 2

High Interested Neutral Taking A Bored Other I do not
Interest Break know

High Interest 14 1 0 0 0 0 0
Interested 0 17 2 2 0 1 0
Neutral 3 0 14 1 0 0 0
Taking Break 0 0 0 14 0 0 0
Bored 0 0 0 0 11 0 0
Other 0 0 0 0 0 0 0
I do not know 0 0 0 0 0 0 0

Table 3-9. Confusion matrix between teacher 1 and teacher 3



High Interested Neutral Taking A Bored Other I do not
Interest Break know

High Interest 12 1 0 0 0 0 0
Interested 2 13 0 3 0 0 0
Neutral 2 0 14 1 0 0 0
Taking Break 1 3 2 13 0 1 0
Bored 0 1 0 0 11 0 0
Other 0 0 0 0 0 0 0
I do not know 0 0 0 0 0 0 0

Table 3-10. Confusion matrix between teacher 2 and teacher 3

From the results presented above and according to Robson C. [48], who reports that

Kappa in the range 0.4 to 0.6 is fair, between 0.6 and 0.75 is good and above 0.75 is

excellent, I evaluated the level of agreement between teachers good enough for

continuing to code the complete set of data.

3.4.2 Coding the complete set of data

After the level of reliability was assessed and before teachers started coding, the

experimenter provided them with a written description of every affective state category:

interest, taking a break, neutral, bored, other and I don't know, (see table 3-11 for each

category description). As I mentioned before, the selection of each label was based on the

validity and reliability analysis presented in section 3.3. In the case that the teachers

assigned the category other, they were instructed to specify the affective state name, as

well as a description based on the behavior observed.

It is important to highlight that the teachers were not aware of the final purpose of the

experiment, which was to find the correlation between postural behavior and affective

states. However, they knew the purpose of the experiment was to correlate affective



states with behavior. That means they were also observing behaviors that do not

necessarily correspond to posture, for example face and arm gestures.

In total, 200 minutes of video were scored, around 20 minutes per child. Teachers scored

two children per session; each session was, on average, 2.5 hours long and was realized

over different days. The sequence of every child's video was chosen in a random way.

Class Definition
1. When the student is attending to or performing

Interested the task.
2. When the student is thinking about the problem.
3. Does not include the case when the student is

thinking about something else besides the
problem. Then, probably, the student is distracted
or daydreaming.

4. When the child has been attending but after some
time he or she starts to move around just

Taking A Break refreshing her or his body, but quickly the student
comes back to the task.

Neutral 5. When the student doesn't show any affective
state in specific, but is still involved in the
learning task.

Bored 6. When the kid is not interested in the task.
7. When the child was tired and stopped working on

the task altogether.
8. Does not include the case when the student is

tired, but she is still putting a lot of effort in the
learning task.

Other 9. When the affective state observed doesn't involve
any of the categories mentioned above and the
teacher can specifically identify the affective
state.

I Do Not Know 10. When the affective state observed doesn't involve
any of the categories mentioned above, but the
teacher cannot identify the affective state.

Table 3-11. Affective States Descriptions



3.4.3 Teachers 's Coding Results

The original categories chosen for the affective states were: Interest, neutral, taking a

break, bored, other, and I don't know. However, during the study with the teachers the

following two observations were made:

Observation 1: During the process of checking the coder's reliability of the affective

states, the class neutral was successfully differentiated from interest (see tables 3.8 to

3.10). However, when the teachers started coding the complete interaction data, they

consistently marked under the other category the distinction of different levels of interest.

Specifically, high interest, interest, and neutral were classified consistently as three

different levels of interest. Hence, these three classes are interpreted in the rest of this

thesis as high, medium, and low interest.

Observation 2: There were some affective states like distracted, confused, puzzled, and

satisfied, which were annotated consistently under the other category. These states were

not considered, as the notes made by the teachers suggested that the children's facial

expressions made them interpret the affective state they coded.

3.5 Establishing the Basic Set of Postures

3.5.1 Method

There are several criteria for classifying postures ([35], [36], [37]), but the main difficulty

in all these approaches is that they divide the body movements in terms of several units

(head, neck, legs upper, legs lower, shoulders, trunk upper, waist, etc.). In these systems,

it is not possible to describe leaning forward as a single behavioral unit; instead, the basic

postures are describe in terms of several positions (trunk, head, neck, shoulders upright,



legs upper and waist straight, legs down touching floor, and after, trunk forward, head

upper 20 degrees more than the previous one, upper legs straight, forward waist with

trunk with frontal view, down legs slightly behind the chair, etc. ) and hence the basic

unit of the movement is lost.

Peter E. Bull ([3], [38]), proposed a scoring system called Body Movement Scoring

System, for movements maintained for at least one second. In this system postures are

classified into four main types: head, trunk, arms/hands, and legs/feet, which occur in a

face-to-face conversation between two persons. It might seem to be a good system for

describing gestures, but it has not been widely used, as it is difficult to automate the

classification of the movements. Usually there are human coders that transcribe the

movement descriptions.

This thesis follows the philosophy proposed by Bull in his Body Scoring System, as it

uses movements rather than positions of the body parts as the basic unit of analysis;

hence it is possible to describe postures as a series of movements rather than as a series of

positions, capturing the natural structure of body movement.

3.5.2 Posture Coding Study

Two human coders (MIT graduate students) were trained to recognize the target postures

based on both the posture and frontal face children videos (we use both videos in order to

provide more information).

The coders' level of agreement was evaluating using two data sets. Each data set had 100

different video segments randomly extracted from the 10 children's posture videos. Each

segment was 10 seconds long.



Both coders labeled the first data set with the following categories: leaning forward,

leaning backward, sitting right, sitting left, sitting upright, slumping, and other. However,

the level of agreement was low, 69 percent. The experiment was then discussed with the

coders in order to determine how to improve reliability and accuracy.

Subsequently, the second data set was labeled as well, but adding the categories of sitting

forward right, or sitting forward left, sitting backward right, sitting backward left, and

sitting on the edge on the chair. And also, coders were asked to give a confidence level -

low, high, medium- for each label. With these new definitions, the coder's agreement

increased to 83 percent. Table 3.12 shows the second round posture categories.

Hence, only the children's posture samples with high and medium level of confidence

were used for training the algorithm for the static posture recognition.

Sitting on the Edge
Leaning forward

Leaning forward right
Leaning forward left

Sitting Upright
Leaning back

Leaning back right
Leaning back left

Slumping Back

Table 3-12 Set of static posture categories



3.6 Chapter Summary

1. Posture video, frontal video, game screen video and the observations from the sensor

chair were recorded for 10 children, while they interacted with the computer.

2. Three expert teachers coded the children's videos; for the affective state they thought

each child was having during the computer learning interaction.

3. From the teachers' coding, we found teachers distinguished reliably the following

affective states: high, medium, and low interest, taking a break, bored, and other. We did

not consider the category other as the teachers mentioned in their observations that the

other category correlated with the facial movements rather than the postures.

4. Two coders assessed the children's videos according with the postures they were

observing. Hence, it was found that nine postures were frequently repeated during the

experiment.

As a result, we have the following set of data: 200 minutes of video that have been

labeled with 5 affective categories, which are synchronized with their corresponding

body pressure distribution map, captured at a rate of 8 frames per second.



Chapter 4

Machine Analysis: System

In order to analyze postural behaviors, first it is necessary to specify the set of static

postures to be recognized (see section 3.5). Hence, once the set of postures has been

defined, the next step is to extract relevant features that best represent the posture data.

The posture data is obtained using two matrices of pressure sensors made by Tekscan [6],

which are mounted on the seat and back of a chair, and once a person is sitting, the

matrices of sensors capture the body pressure distribution. Consecutively, the next task is

to classify the extracted features for recognizing the static set of postures. Finally, the

sequence of static postures over time is used for estimating the child's affective states

during the computer-learning interaction. The performance of the affective recognition

task depends not only how well the static postures are recognized, but also on how well

the temporal patterns of these postures represent the affective states, as labeled by the

human coders (see chapter 3 for details).

Most researchers have focused on the recognition of gestures made under command [39].

One of the algorithms used for recognizing postures using pressure sensors mounted on a

chair is Principal Component Analysis [19]. Some other different approaches [4,57,38]



have used accelerometers, or magnetic or light sensors for detecting some static postures

during a face-to-face conversation. All of them have oriented their systems to adults.

This chapter explains a system for children that can combine both the automated posture

recognition in real-time and the analysis of the postural behavior over time for estimating

the children's affective states. The system is divided in three parts. Figure 4-1 gives you

an overview of the system.

Classification Of Static Recognition of Dynamic
Modeling Using Clasfcin O Staic Posture Patterns Associated to

Gaussian-Mixtures Postures Using a 3-Layer some Affective States Using
Neural Network Hidden Markov Models

INPUT OUTPUT

MATRICES AFFECTIVE
OF STATE

PRESSURE
SENSORS

Figure 4-1. System Overview



The first part is concerned with the extraction of features that best represent the postures.

The second explains, after the features are extracted, how these features are used for

classifying the postures using a feed-forward neural network. Finally, the third part

explains how the postural behaviors (over time) associated with some affective states are

recognized using Hidden Markov Models.

It is relevant to keep in mind that the system has, as a basis, empirical results that were

found through the experiments explained in chapter 3, where the basic set of static

postures and the children's affective states to be recognized were established. This

chapter explains the architecture of the overall machine analysis system in detail.

4.1 Sensor Selection

One of the challenges is to select the appropriate sensor for recognizing the postures. The

sensor should be able to recognize postures across a wide variety of users and

environments. It is very difficult to use a camera with computer vision techniques for the

task as the variations in lighting, change in camera positions etc. can disrupt the posture

recognition processes. We use the sensing chair to sense the posture. The sensing chair

has pressure sensors mounted in a chair and was previously implemented by Hong Tan

(see [19], [20]). This sensor is able to identify the posture as a single movement, and at

the same time, is not obtrusive, which preserves the children's natural behaviors during

the interaction.



4.2 Static Posture Recognition

4.2.1 Algorithm highlights

In this thesis, from the results presented in section 3.5 of this thesis, children's postures

were classified in the following categories:

1. Sitting on the edge,

2. Leaning forward,

3. Leaning forward right,

4. Leaning forward left,

5. Sitting upright,

6. Leaning backwards,

7. Leaning back right,

8. Leaning back left,

9. Slumping back.

This set of postures doesn't include, for example, the category of crossing legs, as in our

set of approximately 200 minutes of data; the children never crossed the legs. In contrast,

the set includes sitting on the edge of the chair and leaning forward right and left, and

leaning backwards right and left, that describe when the children make fast movements

with legs, or move side to side on the chair.

For the reasons mentioned above, the algorithm has to have the following features:

1. It needs to be sensitive to translation, as it needs to distinguish between a leaning

forward posture and sitting on the edge of the chair.

2. It should be very robust to the subject size: The chair will be used by children

between 8 and 11 years old, and at this age the corporal size tends to have a big

variation.



3. It should be robust to low-resolution data. This is important because the long-term

goal is to develop a low cost posture sensor, and in order to do that, the resolution

of each pressure sensor and the number of them are variables that add to the cost.

4.2.2 Hardware

The postures are recognized using a pressure sensor made by Tekscan [6] mounted on a

chair. This sensor uses an array of force sensitive resistors and is similar to those used by

Tan [19] and later by Slivovsky & Tan [20]. It consists of two 0.10 mm- thick sensor

sheets, with an array of 42-by-48 sensing units with an overall area of 41 x 47 cm. Each

unit is a variable resistor and the normal force being applied to its superficial area

determines its resistance. This resistance is transformed to an 8-bit pressure reading.

Hence, the level of pressure can be interpreted as an 8-bit grayscale value. As result, the

pressure distribution maps can be visualized as a grayscale image. One of the sheets is

placed on the backrest and one on the seat. The pressure distribution maps (2 of 42x48

points), according to the specifications, could sense at a sampling frequency of 127Hz.

Figure 4-2 shows an example of the body pressure distribution matrices.

Another important point is to choose the type of chair appropriate for the task. In prior

research, the sensors were tested with adults using a Herman Miller Aeron Chair [55].

We put special attention into choosing the chair, as it could modify children's behaviors,

and as a result, we could have behaviors produced by the chair itself rather the underlying

affective state.
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Figure 4-2 Example of the body pressure distribution matrices
while a child is sitting upright on the chair; the figure below is
the seat and the figure above is the back.

We found that studies made by Helander [41] present evidence that the posture that

people express are a reflection of their feelings rather than the ergonomics of the chair for

itself. And the constraint for considering these results is that the chair must not break the

basic general requirements (relative size to the user and a seat-pan with comfortable

curvature). As a result, we chose a Leap SteelCase chair [56] because it could be fixed to

a wide range of sizes (seat pan and back rest altitude & openness) and it has a

comfortable and firm curve seat. Then, in each experiment, we fixed the chair according



to the subject size, by raising or lowering it. Figure 4-3 shows the chair with the two

matrices of pressure sensors.

Figure 4-3 Chair with sensors

4.2.3 Software For Static Posture Acquisition

The pressure maps for the posture database were obtained from the experiment presented

in chapter 3. The recording program was written in Microsoft Visual C++ 6.0 and it runs

under windows 98. It uses the API library supplied by Tekscan [6] that permits the direct

control and accesses to the pressure sensors interface board.

I



The program used in the experiment had a very simple interface. I recorded both pressure

distribution maps: seat and back, together with a time stamp obtained from the computer

clock that has been synchronized with the other devices used in the experiment (game

computer and cameras). The recording rate used on this program is significantly less than

the specifications claim is possible: 8 posture frames per second.

4.2.4 Posture Data Modeling

In our original problem of detecting different postures from the pressure distribution

maps, we can observe that the data have a geometrical structure, which changes when a

different posture is made.

Figure 4-4 Seat pressure distribution matrix modeled with 4
gaussians. Each circle represents the parameters (mean and
variance) of every gaussian.

I



This geometrical structure forms clouds of points in a 3-dimensional space. Suppose the

points that form each cloud came from a single normal distribution. Then, its mean and

covariance matrix gives the sufficient statistics of the data. In other words, these statistics

constitute a compact description of the data. The mean locates the center in 3-dimensions

of the cloud. It can be thought of as a single point that best represents all the data in the

sense of minimizing the sum of squared distances from this point to each sample from

each cloud. The covariance matrix gives a measurement of how well the mean describes

the data in terms of the amount of spread that exists in various directions.

From above, assuming the sampled points come from a mixture of 4 normal distributions,

(see figure 4-4) we can approximate the parameters of the mixture gaussians for

describing the pressure data. In essence, the different sizes and orientations of the hyper

ellipsoidal clouds can be used as features for classifying the different postures.

However, it is important to take into account that the problem of estimating the

parameters of a mixture of gaussians is not trivial. Specially, it depends on the a priori

knowledge of the data that determines which are the appropriate initialization points for

the model. Erroneous initial parameters may lead to meaningless results and, instead of

fitting the structure of the data; we would be imposing a structure on it.

4.4.5. Filtering the Raw Data: Noise Reduction

When the pressure sheets are located over the chair, they suffer small deformations on the

edges of the pressure maps. In addition, the sensor itself adds some noise to the raw data;

figure 4-5 presents a raw image of the pressure distribution map corresponding to a

leaning forward posture. In order to eliminate the noise coming from the sheets

deformation and the sensor, we applied two methods: a threshold function and a

morphological operator.



Figure 4-6 Seat Body Pressure Distribution Matrix after the

noise was removed
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Figure 4-5 Raw Seat Body Pressure Distribution Matrix while a
leaning forward posture is occurring



The threshold function was used mainly for masking out some pixels that belong to the

pressure points caused by the sheets deformation. The function was applied to the raw

data, taking as threshold value the ten percent of the maximum value of the pressure map.

Also, the morphological operation of erosion [42] was applied to the raw data. This

operation was used to delimit the shape and boundaries of the body pressure distribution

image and reduce the unwanted noise as well. Specifically, the erosion operation involves

moving a kernel across the image. The kernel used is a simple square element with an

anchor point of 3 (matrix 1-by-3). The operation is based in the condition in which a

white pixel will remain white in the resulting binary image if all of its neighbors are

white.

The mask resulting after applying the threshold and erosion functions cleans the raw data

from two sources of noise. Figure 4-6 shows the seat pressure matrix presented in figure

4-5 after the noise was removed.

4.4.6. Modeling With The Expectation-Maximization algorithm

The expectation-maximization (EM) [43] algorithm was used to obtain the estimation of

the four mixtures of gaussians that model the pressure sensor data. This algorithm is often

used in estimation problems where some of the data are missing. In the posture pressure

matrices, the missing data is knowledge of to which class each pressure point belongs.

In this application, the EM algorithm iteratively alternates between computing the lower

bound (E-Step) and maximizing the bound (M-Step), until the point of zero gradient is

reached. The E-Step and the M-Step appear in Equations 4-1 and 4-4 respectively.
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Equation 4-4

P(w) is the a priori probability of gaussian i , 0, is the parameter vector estimated for

gaussian i where i=1..4, vk is the 3-dimension pressure point where k = 1..N, and N

is the number total of pressure points being classified.

Particularly in this application, the EM algorithm tries to find the parameters for the four

gaussians that best represent the pressure data. It is trying to find the best natural

grouping of data, finding to which cluster each pressure point has the highest probability

to correspond. However, since EM only finds a local maximum, a good initialization is

crucial.



The EM algorithm was implemented with the following modifications:

1. The number of points for classifying is variable. After the data was cleaned, we took a

reduced number of sub-sampled data points that have their original 8-bit pressure value.

2. The maximum number of gaussians is fixed to four. This number was chosen, because

after testing with several numbers of clusters and looking for some evidence of which is

the best way to group the points in order to distinguish several postures, a distinctive

pattern using four gaussians was observed; using four clusters in a geometrical

representation, a posture is easily described and distinguished from others.

3. Another modification is that the algorithm is constrained to preserve the relative

positions between the gaussians. For example, with the normal gaussian mixtures

algorithm if you have just one leg on the chair, the four gaussians will be distributed on

its area, and the algorithm might not be able to discern that is just one leg. In contrast, the

modified algorithm can distinguish if just one leg is leaning on the chair. The side of the

leg could be distinguished as well, but our approach is based on real data from learning

experiments where children did not engage in a lot of unusual contact with the chair.

For the extraction of features we have been normalizing the data prior to applying the EM

algorithm. This normalization just involves invariance of scale, rather than translation or

rotation. Thus, all the features have unit variance, but not zero mean. This scaling has the

advantage that the algorithm can distinguish between patterns of different postures

(sitting transversally one side, leaning forward, and sitting on the edge) that for example a

normal principal components algorithm cannot do. Figure 4-7 shows seven cases where

the Gaussian Mixtures Algorithm has been applied.



(a) Sitting On the Edge (b) Sitting Upright with
knees raised

(c) Sitting on only right (d) Sitting
Leg Leg

on only left

(a) Sitting transversely (b) Sitting Upright (a) Sitting transversely
oriented to the right oriented to the left

Figure 4-7 Some of the features
circle represents the parameters

that the Gaussian Mixtures algorithm can identify. Each
(mean and variance) of every gaussian.



4.3. Static Posture Classification

After the data features were extracted by modeling each pressure matrix with the

Gaussian Mixture algorithm fixed with four gaussians, the parameters of each gaussian

(mean and variance) are used to feed a 3-layer feed-forward neural network [44] that

classifies the input data determining the static posture in real time.

In the next sections, I will give a short overview of neural networks, followed by the

network architecture used for the posture classification based on the gaussian parameters

estimated by the Expectation-Maximization algorithm (see previous section for more

details). After that, I will explain how my data set was collected, as well as the

specifications of the training parameters used. Finally, I will show the performance of the

algorithm for recognizing the postures.

4.3.1 Short Overview Of a Neural Network

A neural network is composed of single units called neuron that are interconnected each

to another. Figure 4-8 [44] shows the structure of a layer of neurons.

Layer of Neurons

W 
A

:1 X1

b
SX 1 S

S = number of
neurons in
1 ax/r

R = number of
elements in

a = f( Wp + b)

Figure 4-8 Structure of a Layer of Neurons
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The scalar input p is transmitted through a connection that multiplies its strength by the

scalar weight w, to form the product wp. Here the weighted input wp is the only

argument of the transfer function f, which produces the output a. If the neuron has a bias,

the net input is the sum of the weighted input wp and the bias b. This sum is the argument

of the transfer function f. The transfer function f, typically is a step function or a sigmoid

function, which takes the argument n and produces the output a. Note that the weight w

and the bias b are both adjustable scalar parameters of the neuron [44].

Several neurons can be combined into multiple layers that have great power and

flexibility, for example, feed-forward networks. The architecture of a multi-layer network

is constrained, in part, by the problem to be solved. For example: the number of inputs to

the network is constrained by the problem, and the number of neurons in the output layer

is constrained by the number of outputs required by the problem. However, the number of

layers between network inputs and the output layer and the sizes of the layers are up to

the designer.

The central idea of neural networks is that their parameters can be adjusted so that the

network exhibits some desired behavior. Thus, we can train the network to do a specific

task, for example classification, by adjusting the weight or bias parameters to achieve

some desired output.

4.3.2 Neural Network Architecture

Part of the architecture that was used in this application was partially imposed by the

problem; we have the parameters of eight gaussians (four for each pressure matrix), each

gaussian has in total 7 parameters formed by the x, y, and z values that locate the mean in

the 3-dimensional space, the diagonal values corresponding to the variance, and one



value corresponding to its prior probability. In total, for the eight gaussians we have 56

parameters that correspond to the neural network input vector. It should be noted that

these gaussian parameters are mapped always in the same order to the neural network

input vector.

As we want to classify a set of 9 postures based on the input vector, the size for the neural

network output is fixed to 9 as well.

The rest of the neural network parameters were chosen trying to reach the highest

performance in the recognition rate. Such parameters are presented as follow:

Type of Neural Network Feed-forward back propagation with fully interconnected

neurons in each layer

Size of Input Vector 56

Size of Output Vector 9

Training Function Bayesian regularization algorithm

Performance Function Mean Square Error

Table 4-1 Neural Network parameters

Layer 1 Layer 2 Layer 3

Number of Neurons 56 12 9

Transfer Functions Tan-Sigmoid Log-Sigmoid Linear

Table 4-2 Neural Network Layers



4.3.3. Data Set

Human coders were trained for coding the posture videos that were synchronized with the

pressure distribution matrices recorded during the experiment described in chapter 3 (see

section 3.5 for more details about the human posture classification). The classified

pressure matrices were used as source data for posture recognition.

As I mention before, I am going to use data from body pressure distribution matrices (two

matrices of 42 x 48 sensing points each) mounted on the chair. And I want to design a

classifier that determines which of 9 postures a child sitting on the chair has.

For training the neural network, first, the data features were extracted using the

Expectation Maximization algorithm, having as result a data set formed by vectors of

56x1 values, which are classified with one of the 9 postures that form the posture source

data set.

Posture Subject's Number

Class 1 2 3 4 5 6 7 8 9 10
SE 50 66 0 0 257 24 0 52 97 0
LF 731 500 151 98 411 111 204 62 57 350
LF L 264 663 18 21 415 399 471 142 18 231
LF R 357 109 53 198 218 109 254 158 0 177
SU 267 400 417 932 384 441 12 689 656 485
LB 140 118 399 133 38 254 51 122 53 191
LB L 120 143 150 54 14 47 318 15 39 162
LB R 62 48 259 652 21 290 68 463 12 264
SB 82 115 32 74 0 56 26 29 0 51

Table 4-3 Details of the static posture data set. Leaning Forward (LF), Leaning Forward Left
(LFL), Leaning Forward Left (LFR), Seating Upright (SU), Leaning Back (LB), Leaning Back
Left (LBL), Leaning Back Right (LBR), Seating on the Edge (SE), Slumping Back (SB).

The posture data coming from 5 children (from child 1 to 5) were used as a training set,

whereas the data coming from the other 5 (from child 6 to 10) were reserved for testing.



Particularly, I tried to balance between the training and testing sets cases in which

children didn't have any example of some specific posture. Table 4-3 gives the details

about the data set composition.

4.3.4. Neural Network Training Parameters

Postures coming from five different children in the database shown in table 4-3

contribute as the training set for the neural network. During training the weights and

biases of the network were iteratively adjusted to minimize the network performance

function. The performance function employed was the mean square error - the average

squared error between the network outputs and the target outputs.

The training algorithm utilized was the Bayesian Regularization Algorithm [45]; its

implementation was taken from the Matlab Neural Networks Toolbox [58]. This

algorithm is a modification of the Levenberg-Marquardt [46] training algorithm designed

to produce networks that generalize well and to reduce the difficulty of determining the

optimum network architecture.

One problem that can occur when training neural networks is that the network can over

fit on the training set and not generalize well to new data outside the training set. This

problem was prevented by training with the Bayesian regularization algorithm and also

testing several combinations of the number of neurons in the hidden layers according to

the results of this algorithm.

Another problem is that caused by the error surface minima [47]. This causes nonlinear

transfer functions in a multi-layer network to introduce many local minima in the error

surface and, as gradient descent is performed on the error surface, it is possible for the

network solution to become trapped in one of these local minima. As this may happen



depending on the initial starting conditions, the weights of the network were initialized

randomly several times to increase the chances that the neural network reached the best

solution. In this thesis case, the network was trained until 2000 epochs or the squared

error reach zero. Figure 4-9 summarizes the results of training the network using 2000

epochs.

Performance is 1.39556e-017, Goal is 0
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Figure 4-9 The convergence of the Neural Net during
training using the parameters for which we got the best
convergence
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4.3.5 Classification Results

The Neural Network classification was tested using posture data of five new subjects

from the database explained in section 4.3.3. Table 4-4 gives the confusion matrix

obtained.

Classification

Data Set LF LFL LFR SU LB LBL LBR SE SB % Recognition
LF 758 26 0 0 0 0 0 0 0 96.68%
LFL 168 1009 44 0 0 0 0 40 0 80.02%
LFR 117 0 535 0 0 0 0 46 0 76.65%
SU 0 0 0 2128 84 0 0 0 71 93.21%
LB 0 0 0 61 610 0 0 0 0 90.91%
LBL 0 0 0 42 75 464 0 0 0 79.86%
LBR 0 0 0 22 58 0 981 0 36 89.43%
SE 13 1 0 0 0 0 0 159 0 91.91%
SB 0 0 0 11 0 5 0 0 146 90.12%

Total 87.64%

Table 4-4 Confusion matrix and recognition rate of the Neural Network. Leaning Forward
(LF), Leaning Forward Left (LFL), Leaning Forward Left (LFR), Seating Upright (SU),
Leaning Back (LB), Leaning Back Left (LBL), Leaning Back Right (LBR), Seating on the
Edge (SE), Slumping Back (SB).

The results show that the neural network can classify the postures with an overall

accuracy of 87.64%. The classes of sitting on the edge of the chair, sitting upright,

leaning forward, leaning back, and slumping back are classified very robustly. In

contrast, the classification for the classes of leaning forward right and left and leaning

back right and left is not as robust as obtained for the other postures; however, the

recognition rates still range from 76.65% to 89.43% correct.



Notice that the data set employed has a considerable level of noise. We emphasize the

samples in our data were obtained from natural made postures, which we think makes the

problem harder than the detection from those postures made on command. Another

remark is that the testing and training sets were built with different children;

consequently, the neural network was classifying examples of postures that it had not

seen before. Finally, it is relevant to highlight that the outcome of this static posture

classification is used for feeding the inputs of different Hidden Markov Models (HMM)

that estimates patterns of behaviors correlated with some affective states. The architecture

of the Hidden Markov Models is explained in section 4.4.

Also, it should be notice that although the naturalness of the data, the algorithms, the age

of the subjects, and the posture classes were completely different in our case, these results

of an average 88% classification can be roughly compared to the results of Slivovsky and

Tan [20], who obtained an average of 84% classification of ten static postures using the

same matrices of pressure sensors.

Finally, it is relevant to emphasize that in this thesis a separate static classification stage

was needed for two main reasons: First, when the HMMs were tested using the 56

gaussian parameters as emission probabilities, they were more susceptible to the

variations of those parameters. Hence, even though it is not typically needed, a neural

network between the gaussians parameters and the HMM was added. This neural network

doesn't include any learning function, in other words, it is only used for giving to the

HMM a simplified information about the user's posture. Second, in terms of behavior

analysis, we also used the system as a tool to analyze how the dynamic patterns of

behavior look like and compare these patterns with the results obtained by previous

research in non-verbal behavior. Thus, the static classification stage allowed us to

interpret and assess the dynamic posture information that was obtained by the

experiment. It also permits synthesizing postural behaviors.



4.4 Dynamic Posture Classification

In this section I will present the third part of the system architecture and also, I will

explain how the postural behaviors correlated with the set of affective states can be

described as a dynamic model represented by Markov Chains. From this perspective I

have assumed that affective states are considered to have characteristic posture sequences

associated with them, each with its own interstate transition probabilities.

Specifically, this layer of the architecture uses a set of independent Hidden Markov

Models (HMMs) [7] for recognizing the posture sequences. Each HMM input takes a

sequence of classified postures; the classification of each posture is obtained from the

feed-forward neural network output that constitutes the previous layer of the system

architecture (See last section for details). The neural network output consists of an integer

that identifies how the static posture was classified.

As an example of how this part of the system works, suppose that we have a sequence of

classified postures made by a child sitting in front of the computer. We also have a

Hidden Markov Model that represents every affective state. Next, each model computes

the probability that the observed posture sequence was produced by it. Finally, the

observed posture sequence is determined to belong to the model that has the highest

probability.

Particularly, the set of affective states to be recognized are restricted to those that were

classified by the teachers in the experiment stage of this research; these affective states

are: high, medium, and low interest, taking a break, and bored. As I mention previously,

the other category was not taken into account for two main reasons: First, the teachers

indicated that most of the time they label with the other category the video data because

of some facial expressions made by the child. Second, an increased number of affective

states will require increased degrees of freedom -the number of models to be handled- by



the overall system to adequately represent the complete set of affective states, which in

turn may be too great to be meaningful and practical.

Finally, an overview of this section is as follows: Initially, I will present the notation and

the training method that were chosen for modeling the affective states based on postural

behavior. Afterwards, I will present the testing results followed by a discussion of them.

4.4.1. Notation

Let N represent the number of the hidden states in the model, H = {l ... N} denote the

individual hidden states, and lower case h, the hidden state at time t. Also, let

A = (h, = i I h,_ = j) be the hidden state transition probability matrix, which is the

probability of transitioning from hidden state j to hidden state i.

In this thesis I am assuming the models are Ergodic and Markovian. Ergodic [7] means

that every hidden state of the model could be reached from every other hidden state in the

model in a finite number of steps. Markovian [49] means that given a number of states

h, in the past, where 1 t N-I, only the most recent state hN-1 needs to be kept, as the

earlier states provide no additional information useful in predicting the future state hN '

K indicates the number of distinct posture symbols recognized by the model. These

symbols correspond to the classified postures made by the child during the learning-

computer interaction. Every posture symbol is represented by V = {v, }, where 1 s i K.

Whereas, 0, denotes an observation symbol from V in time t, where 1<t < T, and

T denotes the number of observed postures in the whole posture sequence.



Additionally, letB=P(O, =v, h, =j), where 1 i ! Kand 1 j iN, denote the

probability distribution of the observation symbol 0,, given the hidden state j (h, = j) at

time t. As well as, let iT = P[h = j] be the initial hidden state distribution, where

1 j N and t =1.

Summing up, the HMM for each affective state is fully determined through the set of

observed posture symbols V, that were determined based on the experiment explained in

section 3.5, along with the specification of the N and K parameters and the three

probability matrices A, B, and i , which are unknown.

4.4.2. Model Selection

In this thesis, we don't initially know, which is the best model to use for recognizing the

posture sequences associated with each affective state. For this reason, we will use the

observed data -postures gathered in the experiment- not only for parameter estimation

but also for model selection. This parameter estimation is related to the learning problem

[7], and there are several methods that could be used to solve it. Those methods range

from maximum-likelihood (ML), maximum-a-posteriori (MAP), or Bayesian methods, to

more conventional techniques such as gradient descent, expectation-maximization (EM)

[43], or the latest techniques such as maximum entropy discrimination [50]. In particular,

I focus on estimating the ML parameters for each affective state model using the Baum-

Welch algorithm [51] or E-step in the EM algorithm [43].

The training method of k-fold cross-validation ([59], [52]) was used for determining the

model parameters N and T by choosing one of the several models that has the smallest



generalization error. This method was implemented using Kevin Murphy's Matlab

Hidden Markov Model Toolbox [60]. Specifically, having k equal 10; all the children's

posture sequences were randomly divided in 10 sub-groups of approximately equal size.

The model parameters were estimated 10 times, each time leaving out one of the

subgroups from training, but using only the omitted subgroup to compute the chosen

error criterion. In this thesis, I use the log likelihood [7] as the evaluation function; its

equation is shown below.

T T

log P(O,, H,) = log P(H,) + L log P(O,| H,) + log P(H, | H ) Equation-5
t=1 t=1

The figure 4-10 shows each model's generalization error for different values of hidden

states (N). Hence, N's with the smallest generalization error and low variance were

considered (Appendix B shows the model variances graphs). This initial computation of

each model's generalization error used the sequences that were directly cut from the

fragments where the three teachers agreed in their assessment (see section 3.4 for details).

As a consequence, the sequences do not have a uniform length; they have T variable.

In a scenario were the computer needs to estimate the correlation between postural

behaviors and affective states in real time, it is necessary to figure out which is the

adequate sequence length the models will use to evaluate the observed postures.

Therefore, in this case, the appropriated length was determined computing the

generalization error for combinations of different values of T, T= {8,16,24,32,40,64,88},

and, for each of these cases, the model with the three best values of N. Similarly to the

computation of the generalization error for N, this calculation used the k-fold cross-

validation method, with k = 10. Table 4-5 summarizes these generalization error results.
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Table 4-5 Summarization of the generalization error results; using
different values of T and the best three values of N for each affective
state model

According to the results given in table 4-5, the HMM's are able to well classify

sequences that range from 24 to 88 posture observations; it means, the models start to

differentiate the sequences after accumulating posture observations for at least 3 seconds.

It suggests that with a sampling under 3 seconds it is not possible for the HMM to capture

the posture patterns correlated with the established affective states.

After testing several combinations of each set of model parameters, we found the optimal

combination is sampling with T = 64 and having a value of N=9 for the high interest,

N=11 for low interest, and N=1 1 for the taking a break models. In particular, for the

Affective State Best Parameter Values

N=8 & T=32,
High Interest N=9 & T=64,

N=10 & T=64

N=8 & T=32
Interest N=9 & T=24,88

N=10 & T=64

Low Interest N=9 & T=32,64,88
N=10 & T=24,32
N=11 & T=64

N=9 & T=32
Taking A Break N=10 & T=64

N=11 & T=32,64



interest model, although we tried several combinations of N and T, none of them had

good performance. Tables 4-6 to 4-9 give the confusion matrices of the 4 top performers.

Classification

Data Set HI I LI TAB % Recognition

HI 117 21 20 14 68.02%
I 399 406 255 313 29.57%

LI 30 43 105 59 44.30%
TAB 30 28 27 91 51.70%

Table 4-6 Confusion matrix and performance results for a model with
T=32 and N=8 for High Interest (HI), N=8 for Interest (I), N=9 for Low
Interest (LI), and N=9 for Taking a Break (TAB)

Classification

Data Set HI I LI TAB % Recognition
HI 74 10 10 7 73.27
I 196 268 149 120 36.56

LI 57 20 31 28 22.79
TAB 9 15 11 69 66.35

Table 4-7 Confusion matrix and performance results for a model with
T=64 and N=9 for High Interest (HI), N=10 for Interest (I), N=9 for Low
Interest (LI), and N=10 for Taking a Break (TAB)

Classification

Data Set HI I LI TAB % Recognition
HI 42 34 7 18 41.58%
I 150 162 292 129 22.10

LI 12 16 97 11 71.32
TAB 1 14 8 81 77.88%

Table 4-8 Confusion matrix and performance results for a model with
T=64 and N=10 for High Interest (HI), N=10 for Interest (I), N=11 for
Low Interest (LI), and N=1 1 for Taking a Break (TAB)



Classification

Data Set HI I LI TAB % Recognition
HI 77 15 5 4 76.24%
I 190 126 291 126 17.19%

LI 9 15 103 9 75.74%
TAB 2 12 8 82 78.85%

Table 4-9 Confusion matrix and performance results for a model with
T=64 and N=9 for High Interest (HI), N=10 for Interest (I), N=11 for
Low Interest (LI), and N=1 1 for Taking a Break (TAB)

Specifically, the sequences from the interest class were most of the time confused

between high interest and low interest classes. This result suggests the sequences coming

from the interest class are a mix of the other two; for this reason, we decided not include

interest class data for further analysis and only evaluate the sequences coming from the

classes of high interest, low interest and taking a break.

Using the model parameters described above, the log likelihood for an observed posture

sequence is computed using the forward-backward procedure [7] on each HMM. We

compare the log likelihood to label the sequence as one of the three classes.

4.4.2. Evaluation and Results

The system was evaluated as follows: First, taking all the posture sequences coming

from 8 subjects that were selected randomly, and then using k-fold cross-validation with

k equals 8, the system recognition accuracy was tested. Specifically, the data were

divided in 8 groups, and subsequently, the HMM's were trained using the data from 8

groups but reserving one group for testing. This was repeated for all the 8 groups in the



data set. Second, the classifiers were tested using posture sequences coming from two

subjects that were not in the training set (new subjects).

According to the first evaluation, the system could recognize the posture sequences

corresponding to the high interest class with an accuracy of 85.39%. For posture

sequences belonging to the low interest class the accuracy was 74.55%, whereas an

accuracy of 86.81% was obtained for posture sequences corresponding to the class of

taking a break. Table 4-10 presents details of the recognition results for this evaluation.

Classification

Data Set HI LI TAB % Recognition
HI 76 6 7 85.39%
LI 22 82 6 74.55%
TAB 8 4 79 86.81%

Total 82.25%

Table 4-10 Recognition results obtained from testing the system with data coming from 8
subjects using k-fold cross validation. High Interest (HI), Low Interest (LI), Taking a
Break (TAB)

Regarding the second evaluation, the posture sequences corresponding to the high interest

class were recognized with an accuracy of 83.33%, just 2.06% less than the first

evaluation result. For posture sequences belonging to the taking a break class the

recognition accuracy was 76.92%, whereas for posture sequences corresponding to the

low interest class the recognition dropped to 69.23%. Table 4-11 presents the recognition

results for the second evaluation. These results show the overall recognition accuracy was

76.49%; it dropped 5.76 % when the system was tested with the new two subjects.



Classification

Data Set HI LI TAB % Recognition
HI 10 1 1 83.33%
LI 5 18 3 69.23%

TAB 1 2 10 76.92%
| Total 76.49%

Table 4-11 Recognition results obtained from testing the system with two new subjects.
High Interest (HI), Low Interest (LI), Taking a Break (TAB)



4.6 Summary

This chapter has explained the system for the automated recognition of postures in real

time. Also, it has analyzed -over time- postural behaviors when a single child is working

on a math-based problem in front of the computer.

In particular, the overall system exposed in this chapter is divided in three main parts: (1)

the extraction of features coming from two matrices of pressure sensors mounted on the

seat and back of a chair; (2) the classification of static postures using a feed-forward

neural network; (3) the analysis over time of posture sequences associated with some of

the affective states found by the teachers in the study developed in chapter 3 of this

thesis. The results obtained for each of these parts are summarized as follow:

1. Data features were extracted by modeling each of the two-pressure matrices with

the Gaussian Mixture algorithm [43] fixed with four gaussians.

2. A recognizer based on a 3-layer feed-forward neural network [44] was build. This

recognizer takes as an input each of the four gaussian parameters (prior

probability, mean, and variance) extracted from the two matrices of pressure

sensors. It classifies the input data determining the static posture in real time, and

it achieves an overall recognition of 87.64% when it is tested on children that it

has not seen in the training data.

3. Using a Hidden Markov Model for representing each affective state, detectable

dynamic posture patterns were found for the classes of high interest, low interest

and taking a break. In specific, the dynamic system could recognize with an

overall accuracy of 82.25% new posture sequences coming from subjects with



who the system was trained. Whereas, an overall recognition accuracy of 76.49%

was obtained when it was tested with posture sequences coming from two new

children that were not included in the training set.

Finally, since the viewpoint of pattern recognition, this result is particularly relevant

because it is basis on a natural data set, which makes the problem much harder than only

using a data set without prompt and unexpected movements.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis has investigated the relationship between patterns of postural behaviors and

affective states, focusing on those behaviors associated with interest and boredom that

can be sensed by a chair when a child is in a computer-learning situation. The primary

contribution of this thesis is the finding of different patterns of behavior for high interest,

low interest, and taking-a-break, and the development of a new machine analysis

algorithm for the automated detection of these different posture patterns.

For eliciting natural occurring behaviors during a learning-computer task, an experiment

with children between 8 and 11 years old was conducted. In this experiment, 10 children

were engaged to play for approximately 20 minutes a constraint satisfaction computer

game, which we had previously determined had a high probability of eliciting the

affective states of interest and boredom. In particular, for preserving as much as possible



the original behavior, children were not aware until later that the purpose of the

experiment was the study of their postures. Each child's session was videotaped and the

postures were captured using two matrices of pressure sensors mounted on the seat and

back of the chair on which each child was sitting.

Using video data captured during the children's experiment, two studies were carried out;

one of them was for establishing the set of basic postures and the other one for

determining the affective states to be used by the system. Specifically, in the first study, 2

human subjects -without any particular background- labeled the children's postures. In

the second one, 3 expert teachers labeled the children's affective states during the

learning-computer interaction.

From the first study it was found that nine postures were frequently repeated during the

experiment. Hence, a posture recognition system that distinguishes this set of nine

postures was built. This system achieves an overall accuracy of 87.64% when tested with

children's postures that were not included in the training set. This result is significant

considering that it was obtained using a data set containing the natural occurring postures

gathered during the experiment, which we believe makes the problem more difficult than

using a data set without such fast and unexpected movements. This posture recognition

system runs in real-time, and it has been proved to work in a user-independent way. It is

currently trained on children and not on adults, but potentially the same algorithms could

be used to re-train the system for any population of interest.

In the second study, it was found that the three teachers could reliably recognize the

states of high interest, interest, low interest, taking a break and boredom. Even though the

affective state of boredom was reliable identified -every one agreed when a child was

bored-, teachers only labeled very few episodes of this state. In contrast, they consistently

identified an increased frequency of the taking a break state and longer periods of low



interest states around fragments where they said a child was bored. However, it is

important to highlight that it does not mean the taking a break state is always an indicator

of boredom. For example, when the game was finished and after the child had been

working hard for long time, teachers considered that it was necessary for him to take a

break. Thus, the results above suggest that the boredom state seems to be a meta-class of

the other two states.

This thesis has never assumed that postures can reliably reveal what a student is feeling

inside. Rather, the patterns observed in the dynamics between changes of the student's

postures were found to reveal significant information related to some affective states.

This thesis examined the dynamics of the ten students' posture sequences that were

captured during the experiment. Specifically, the posture sequences were analyzed using

a Hidden Markov Model (HMM) for representing each of the affective states identified

reliably by the teachers. From this analysis, it was found that the classes of high interest,

low interest, and taking a break were classified by the computer with high accuracy,

while the class of boredom could not be reliable identified (the labeled boredom

sequences were so few, which made it impossible to train the HMM adequately). Most

of the time when the child was attending to the task, the teachers labeled the child's state

not as high interest or as low interest, but just as "interest." For these segments, the

computer classification was also poor; in short, the computer performed best at finding

deviations from this typical state: recognizing behaviors indicating high interest, low

interest, and taking a break.

The recognition results for the dynamic system were 85% for high interest, 75% for low

interest, and 87% for taking a break - an overall of 87%, when the dynamic system was

tested with new posture sequences coming from students that were included in the

training set. The recognition results were 83% for high interest, 69% for low interest, and



77% for taking a break, - an overall of 76%, when the system was tested with posture

sequences coming from two subjects that were not included in the training set These

results can be compared with those from the experiment where teachers were assessing

the children's affective states with an overall agreement of 79%.

As result, it seems to be that the system had a reliable classification from posture patterns

of at least the states of high interest and taking a break. Thus, in contexts where children

are learning while using computers, this system can provide substantial information about

whether the computer is truly engaging the child or whether the frequency of taking a

break is increasing. These two states may be particularly relevant for determining when

not to interrupt, or when it is likely that the child might welcome an interruption. With

future work, we expect that the combination of these results with other modalities (face,

computer task behavior, and possible conversational input) will further disambiguate the

child's state, and improve the ability of the computer to respond in a way that facilitates a

productive and enjoyable learning experience for the child.

5.2 Future Work

The framework developed in this thesis open many questions as well as immediate

directions for future work.

Having proposed a new approach for extracting the features coming from the two

matrices of pressure sensors, the first future work direction is to benchmark this

algorithm with some other implementations. Although, it was found that the new

approach performed better recognizing new children's postures than just using PCA

algorithm, this new approach was not compared with the most recent algorithm proposed

by Slivosky and Tan [20] (see section 2.3).



In particular, in doing the comparison it is important to consider that the recognition

results reported from both approaches were by using databases that have several

differences. First, the matrices of pressure sensors were gathered using different kinds of

chairs, one using a Steelcase Leap chair [56] that has a firm seat-pan -this thesis- and the

other one using a Herman Miller Aero chair [55] that has a soft seat-pan. Second, as was

discussed before, this thesis used a database that contains naturally gathered children's

postures, whereas the other is based on adult postures made on command - and thus,

relatively posed.

A second future work goal is testing the algorithm when the number of sensing points

decreases. In particular, it can be useful for exploring the possibility of developing a less

expensive version of this sensor.

Another area for future explanation regards exploring potential improvements to the

classification algorithm. Since the system uses a neural network for classifying the

features coming from the feature extractor, it gives to the HMM just one final posture

class. Hence, it could be interesting to explore how the HMM performs when it takes the

probability distributions of the posture classes.

Regarding the study for coding the affective states, teachers were labeling with

considerable agreement fragments of video where all of them said a child had "other"

affective state. Hence, another suggestion for future work could be the analysis of the

"other" affective state classes that teachers found and investigating whether it is

correlated with measurable patterns of children's behaviors.

In addition, it may be possible to build a classifier for "boredom" by combining the

classifiers for low-interest and taking a break, both of which were detected with



significant rates by the machine analysis. The difficulty, however, is in obtaining

accurate labels of the true boredom state, especially since it is a state that seems to be

socially unacceptable to show, and one which teachers tend to be reticent to identify,

preferring to label multiple events of "taking a break" and "low interest" before

eventually using the label "boredom."

It is also worth noting that the Hidden Markov Models used in this thesis for analysis can

also be used to generate sequences of postures consistent with an affective state; thus,

they can also be used for the synthesis of postures that a synthetic agent might sequence

through when acting highly interested, etc. Exploring the results of this thesis for posture

synthesis is another area of possible future research.

Finally, this thesis presents an analysis and development of a system that can infer from

posture significant information about the child's affective states. It is relevant to

emphasize that this system was tested alone, without having a multi-sensor framework.

Hence, its performance when a computer agent uses it for making more complex

interpretations about a child's learning experience remains to be evaluated.
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Appendix A: Game

The measures from the game that were considered are described below. I use these

measures as they characterize the child's performance and the individual differences.

1. The Status Indicators (see table 3.12) were taken as the game independent

variables. Each of these variables were assigned with a constant integer for being

used to compute the overall game score. Tables A-1 to A-2 show the game

independent variables and their values.

Game Independent Value
Variables

Failure -3
Hint Error -2
Hint Help -1

New Game 0
Game Running 1

Level of Difficulty 2
Low

Level of Difficulty 4
Medium-Low

Level of Difficulty 6
Medium-High

Level of Difficulty 8
High

Success 10

Table A-1 Game Independent Variables and their Constant Values



STATUS DESCRIPTION
New Game When a new game starts, which could be either the

beginning of the interaction; start of a new game, or just
after a change in the level of the difficulty.

Game When the child is solving a game. This state excludes the
Running events when the child asks for hints or when the child is

checking its solution.
Failure When the child checks the solution by pressing the "Check

it" button and the solution is incorrect. The first time the
button is pressed and the solution is incorrect, then the
program simply tells that the solution is incorrect. If the
child makes some changes and checks the response for the
second time, and it is wrong again, then the program shows
all the mismatched Fripples.

Success When the child succeeds in solving the game.
Hint Help When in the middle of the game the "Hint/Check It" button

is pressed, the program tells the number of the mismatched
Fripples.

Hint Error When right after Hint Help state the "Hint/Check It" button
is pressed again, the program shows one of the mismatched
Fripples.

Level of When the level of difficulty is changed. There are four
Difficulty levels of difficulty: low, medium-low, medium-high, and

high. The level of difficulty can be changed through a
window that appears when the level of difficulty button is
pressed. Each time the level of difficulty is changed, the
old game is abandoned and a new game starts.

Table A-2 The Fripple Place game events description

2. The game score is considered a game-dependent variable and is calculated using the

status indicators that occur during the whole interaction. The aim of computing the score

is to have a measure of the child's game performance. Each child starts with a score equal

to zero and as the game evolves and the independent variables (status indicators) appear,



the score changes. Table A-3 shows the number of points assigned when each status

variable occurs.

Status Indicator Num. Of Points
Assigned to Score

New Game 0
Game Running 1

Success Successes * Level of
Difficulty

Hint Help -1
Hint Error -2

Failure -3

Table A-3 Number of points assigned when each
status variable emerges

3. Number of Games played during the whole interaction

4. Duration of each game.

5. Number of times the child asked for hint help or hint error.

6. Number of failures.

7. Number of successes.

8. Number of times that the level of difficulty was changed.

9. Level of difficulty sequence



Appendix B: Models Parameters
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Taking A Break
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Appendix C: Cohen's Kappa

Cohen's Kappa is a statistical method that assesses inter-judges agreement for nominally
coded data. It can be applied at both the global level (i.e. for the coding system as a
whole) and the local level (i.e. for individual categories). In either case, the formula is

kappa = (po - pc) Equation-6
(1 -pc)

where po is the proportion of units that the two judges coded the same, and pc is the
proportion expected by chance. An equivalent formula, using frequencies, is

kappa = (fo - fc) Equation-7
(N - fc)

where fo denotes the number (not proportion) of units coded similarly, fc represents
number of units that would be expected to be coded the same way by chance alone, and N
is the number of units coded by either coder (i.e., if they code 50 units each, N= 50, not
100). In this thesis the method based on frequencies was used.

102


