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Summary

Currently, games with rich environments allowing a wide range of possible interactions and

supporting a large number of physical simulations make use of a large number of scripts and

bespoke physical simulations, adapted to fit the needs of the game.

This thesis proposes a methodology that can be used to tie together various different physical

simulations, both off-the-shelf and bespoke, such as rigid body physics, electrical and magnetic

simulations to give something greater than the sum of the individual parts. We present a

notation for designing the overall physical simulation and a means for the different parts to

interact.

Experiments using an implementation of the methodology containing electricity, rigid body

simulation, magnetics (including electro-magnetics), buoyancy and sound show that it is pos-

sible to model everyday objects such an electric motor or a doorbell. These object work ‘as

expected’, without the need for special scripts and new, originally unexpected, interactions are

possible without further modification of the experiment setup.
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Chapter 1

Introduction

This dissertation will develop a methodology for a unified physics simulation intended for,

but not necessarily limited to, games. The contribution of this dissertation is a methodology

that provides a framework for integrating various existing physical simulations into a combined

simulation, focusing in particular on describing the interactions between the different physical

simulations. The hypothesis underlying this dissertation is:

For game scenarios where unexpected solutions to a problem by the player are both

encouraged and deemed to be a good thing and for simulations where a large num-

ber of physical simulations are necessary, using the methodology presented in this

dissertation reduces the number of scripts required to model such a rich environ-

ment.

This dissertation also introduces a notation that offers a concise way of describing, or indeed

specifying, each instance of each component of the methodology in an implementation.

1.1 Motivation

In computer games that involve physics beyond basic rigid body simulation and collision de-

tection, everything outside basic dynamics is usually solved by scripting. Most user to world

or world to world interactions are scripted special cases. For instance, a light switch turning

on the light in a particular room will require a script to do just that. The player shooting at a

light bulb and thus destroying it will require a script to correctly turn off the light in the 3D

engine. A motion sensor or light barrier will also require a script to work correctly. Opening a

tap to fill a glass of water will also require at least one script.

The objective is to do away with (most) of these scripts. Objects should behave in a

natural way; the level designer can focus on building a world that just works, mainly due to

emergent behaviour, as opposed to building a specific world around a particular solution the

game designer wishes the player to figure out.

9



For instance, imagine a laboratory door that is held shut with a magnetic lock. A simple

switch on the inside of the lab will allow the door to be opened.

The intended way to open it is to disengage the magnetic lock for a brief moment using the

switch. Currently, such a functionality would be implemented with a script on the switch, which

if activated, allows the door to be opened. This solution does prevent, or more specifically does

not explicitly implement, various other creative solutions to opening the door.

For example, the player might want to cooperate with another player to push open the

door; together they might be strong enough to overcome the force of the magnetic lock. Or the

player might be more clever and try and find a lever and use the basic principle of leverage to

pry open the door. Or the player might wish to remove the main fuse from the building and

thus disrupt the power supply to the electro-magnet holding the door shut.

Currently, the level designer would have to account for each of these solutions by writing

another script. The proposed methodology will allow the level designer to build the world in

as much detail as wished (most likely still envisioning one or two preferred solutions to the

problem) and then the player can either go along with the intended plot or they can find their

own individual and potentially unexpected solution to the problem. For instance, the player

might discover that blowing up the power plant for the city is also a valid, if extreme, solution

to open our laboratory door.

An idea fundamental to this is that this is how the reality works. A game world that behaves

mostly like the real world because it is constructed like it and adheres to most obvious physical

rules can inspire the player to pursue more interesting solutions as opposed to the obvious and

planned solution. Usually the player comes up with an idea based on their experience with the

real world and most games impose rather arbitrary limits on what can be achieved (usually

because no script anticipated the action); this disappointment is something a implementation

of the proposed methodology can help to avoid.

It is assumed that creating one whole unified solution would be not realistic; thus the

methodology is based on combining many specialised physical simulations and making them

work together in order to provide an overall more complete picture. This also has the advantage

that one part can be replaced by another depending on the needs of the application.

The potential freedom for the player, depending on how thoroughly the world is constructed,

is the key motivation for the development of the methodology.

1.2 Document overview

This section describes how the rest of this thesis is structured.

• Chapter 2, Physical simulations and games, highlights some of the current approaches to

physics simulation in games and virtual reality environments identifying the issues and

challenges faced.

• Chapter 3, Goals, assumptions and constraints, illustrates the motivations of this work in

the context of the previous chapter and formulate the main goals of the project.
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• Chapter 4, The methodology: concept and design, provides an informal introduction to

the methodology and outlines some design decisions.

• Chapter 5, The methodology: definition, then defines the four core components of the

methodology more formally.

• Chapter 6, The methodology: implementation, experiments and results, describes experi-

ments used to validate the hypothesis. It examines the implementation of the methodology

that was created during the development of the methodology.

The focus of this implementation is to be able to conduct a few experiments and demon-

strate that the overall concept is functional. The chapter contains a few notes on each

physics simulation implemented and illustrations of four experiments.

• Chapter 7, Discussions and future work, identifies work in three areas: future research

expanding on the concepts introduced here, future research concerning physics simulations

and notes on how a much better proof of concept implementation can be written.

• We conclude in Chapter 8.

• In Appendix A, Electricity, a graph theory based algorithm is developed that can be

used to model some aspects of electricity in a game context. An implementation of

this algorithm provides the electrical simulation that is used in most of the experiments

presented later in this dissertation.
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Chapter 2

Physical simulations and games

2.1 Overview of Game Types

The methodology introduced in this dissertation will be more useful for certain types of games.

It is unfortunately difficult to present a complete classification system for games, assign each

game a category and then state that for one set of these the methodology is more relevant.

The main problem is that the field of computer games is vast and a large number of computer

games have been created so far. Some of the broader categories, or genres, of games can be

listed as follows:

• Action – These are games where reaction speed of the player is important. As the genre

title suggests, fast paced action is more important than tactical or strategic thinking,

leading some to refer to these games as “twitch” games. Classic examples of this are the

original Pong [Ata72] game or a first-person shooter such as Quake3 [id99].

• Adventure/Puzzle – These games do not require fast reaction speeds, but instead focus

on solving problems. For adventure games this usually is navigating a character through

a world, applying various tools found earlier in the game to progress. Iconic examples of

this genre are the Indiana Jones [Luc89] games and Monkey Island [Luc90]. The precursor

to these graphical adventure games were the text-adventure games; one of which can even

be found in the GNU Emacs text editor [Sch83].

In more ‘pure’ puzzle games, the problem is more important than any story or plot, a

good example is the original Sokoban [Ima82] game. Many puzzle games do not include

any plot at all, such as the Sudoku game, which is originally a pen-and-paper game found

in newspapers, and The Incredible Machine [Sie92].

• Role-Playing Game (RPG) – The distinguishing feature of these games is a particular

game-play mechanic. The player controls one or more characters and during the course of

the game accumulates “experience points” (XP). Once a certain amount of XP has been

gained, the player character “levels up”, i.e. its capabilities in-game can be improved.
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Story and plot are usually a central aspect for these games and the player may have

considerable control over how the story progresses and ends. Notable examples of this

genre include Nethack [ea89], Planescape Torment [AB99] and World of Warcraft [Ent04].

• Simulation – A simulation game usually features two of the following: complex game

mechanics, detailed in-game economics and a high degree of realism. Flight simulators

are simulation games, but this genre covers a variety of styles and also includes games

such as SimCity [WM89].

• Strategy – Somewhat related to simulation games, these games emphasise strategic prob-

lem solving and planning. Strategy games can be roughly split into two styles, real-time

and turn-based. In Real-Time Strategy (RTS) games the action develops in real-time and

simultaneously (for all players) and decisions have to be made quickly. The RTS game

that defined the genre was Dune II [Wes92], but many more have been created since then

following the same basic formula.

The most popular format for turn-based strategy games are the 4X games. 4X stands

for explore, expand, exploit and exterminate. Players take turns and are generally not

restricted in the amount of time they can spend planning each move. These games are

similar to many board games, such as Risk. Two notable genre-defining examples are Sid

Meyer’s Civilisations [Mic91] and the Master of Orion [Sim93] series.

• Sport – Sports games are also related to simulation games, but they are usually action

driven and focus on the simulation of various sports. A good example is the golf game

series Tiger Woods PGA Tour [Ele98].

A recent development in the genre of sports games came with the Nintendo Wii console

which to some extent physically simulated the sport. The best known example today is

perhaps Wii Fit [Nin07].

The above six categories however are not mutually exclusive. Many games could equally fit

into more than one of them. In fact the combination of action games with puzzle solving already

forms its own sub-genre of Action-Adventure games. A good example of this sub-genre is the

Metroid [Nin86] series in which the exploration of the world is the main objective. Games such

as System Shock [Loo94] and DeusEx [Ion00] blend even more genres; both combine action,

puzzle and RPG elements.

The games for which the methodology will be the most useful are games that feature detailed

physical simulation and puzzle solving, as the variety of physical simulation and the ability use

unconventional but sensible solutions are core features that the methodology offers. For this

reason, primarily games that fall into these categories will be examined in this Chapter.

2.2 Introduction to physical simulation in games

Many computer games, in particular 3D action games, contain some element of physical simu-

lation. Often this is just means to an end; basic things like “you cannot walk through a wall”
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are necessary to support the game mechanics. Other games apply their physics simulation to

other game objects as well resulting in the ability of the player to (for example) push boxes

around or cause objects to fly away if an explosion is set off nearby.

The evolution of rigid body simulation in games can be observed when looking at the various

titles id Software released. Doom [id93] did not feature much more than collision detection.

Quake [id96] included vertical movement and basic effects such as an explosion pushing the

player around. Doom 3 [id04] finally applied this simulation to most smaller objects (such as

canned drinks or small crates) causing an explosion let off in a store room to knock over most

objects.

Other action games have also followed this trend. For example the title Half-Life 2 [Val04]

included a ‘gravity gun’ , which allowed the player to pick up and hurl objects around. The

important part was that the gravity gun worked within the physical rules of the rest of the

world.

A different genre of games making use of physics simulations are puzzle games. Perhaps the

most illustrative example of this is the Sierra classic ‘The Incredible Machine’ [Sie92] . This

game provided the player with various basic building blocks ranging from common objects like

bowling balls and conveyor belts to the more bizarre such as a jack-in-a-box or monkeys on

bicycles. Each object acted in a predictable fashion. For example the bowling ball followed

standard gravity and fell down, but it was heavier than a tennis ball which became relevant

if they were both placed on a see-saw. The player was then presented with a series of levels,

which had some objective, such as get all tennis balls into the bucket, and was given a small

number of items to place into the world. Once the items were placed the player started the

simulation. If the goal was eventually fulfilled, the game progressed to the next level. If not,

the world was reset and the player could adjust the positioning or combination of the placed

items and try again.

The Incredible Machine was revolutionary in that there were usually many ways to achieve

an objective and part of the charm of the game was to find unconventional ones.

Other physical simulations have also occasionally appeared in games. For example the

Thief [Loo98] series based an important aspect of its game-play on sound: certain types of floor

produced more sound when walked over, which in turn increased the chance that a guards would

notice the player. Items were included that could mitigate (moss to cover particularly noisy

ground such as metal) or take advantage of this (‘magic’ sound emitters attached to arrows

that could be shot into a useful location to draw the guards away to investigate allowing the

player to move past them unnoticed).

Another example of (non-rigid body) physical simulations used for game-play is System

Shock II [LI99] which featured very basic electricity: certain doors needed power to be opened

so the player had to obtain a ‘power cell’, find a suitable ‘recharge station’ before being able

to operate the door. Although the power cell was nothing more than a glorified ‘key-card’, the

basic idea was reasonable and once introduced into the game world it was intuitive to solve

similar problems within System Shock II that required portable power sources.

The game Portal [Val07] demonstrates, in a unique way, that unexpected emergent behaviour
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is a good property. The original “Source” game engine, also developed by Valve Corporation

originally for Half-Life 2 [Val04], was found to have such a flexible physics engine (Havok

[Hav00]) that, with only a small amount of effort, the concept of ‘portals’ could be implemented.

The player was given the ‘portal gun’, which could create blue and orange portals. They were

limited to creating a single blue and a single orange portal at a time; opening another would

close the old one. Entering one portal would cause one to emerge from the other, preserving

momentum. The game was based on presenting the player with various scenarios to escape from

and it was not always obvious where the portals had to be placed and there was often more

than one solution. This in turn gave rise to competitions on how to escape from each particular

level with the least number of portals. In the case of the game Portal, the flexible underlying

physics engine gave rise to an entirely new product. This innovative re-use of an existing system

to do something new and originally unexpected is precisely what the methodology proposed

addresses and encourages.

The remainder of this chapter will look at current solutions for the rigid body simulation prob-

lem (including collision detection), briefly discuss various available solutions, unified physics

engines (containing more than one distinct simulation), dynamic game environments (which

are necessary to support the more interesting physical simulations), level of detail concepts and

other physical simulations besides rigid body simulations. We conclude by identifying some of

the problems in the scenarios examined in the above introduction and some of the approaches

below that will provide the motivation for the proposed methodology.

2.3 Rigid body simulation in games

Rigid Body Simulation (RBS) and collision detection is a well understood problem and an ac-

tive area of research. As this work is not strictly focused on how the underlying rigid body

simulation works, but rather uses it as an important component, this review will provide an

overview of common approaches to rigid body simulation. The various implementations can

be split up into roughly three main groups, pointed out below and described in detail in Sec-

tion 2.3.1, 2.3.2 and 2.3.3.

• 2D rigid body simulations

• 3D rigid body simulations (which generally can also be constrained to act as a 2D simu-

lation)

• Dedicated collision detection

The term Dynamics simulation will be used throughout this thesis and refers to a combi-

nation of rigid body simulation and collision detection. Such a simulation can possess some

self-explanatory properties such as run-time performance or scalability. A particular quality

that is useful for both rigid body simulations and collision detection is stability. This does not

refer to the absence of run-time exceptions but to the simulation not ‘exploding’. Since floating
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point arithmetic is prone to introducing small errors that can accumulate quickly into some-

thing noticeable, good dynamics engines apply various dampening forces in order to eliminate

such errors making the simulation more stable.

2.3.1 2D rigid body simulation engines

Although the majority of dynamics simulations are geared towards 3D rigid body simulation,

there are a few dynamics projects that focus purely on a 2D simulation. As basic physics simula-

tions are becoming more and more a standard feature in computer games, these physics engines

are especially useful for games on platforms that do not support computationally expensive 3D

graphics such as flash games or games for mobile phones.

One such engine is Box2D [Cat]. It supports many features and bindings for many languages.

It is also available as a fixed point arithmetic version for platforms that do not support floating

point arithmetic or where floating point operations are exceedingly slow.

Chipmunk [Lem] is a similar engine loosely based on concepts found in Box2D. It has a

slightly different feature set but as it is newer has much less documentation available.

Both of these engines are available free of charge and under a free software license. Although

most 3D engines can be adapted and constrained to provide simulations in 2D the above engines

are attractive because they are much faster, more memory efficient and generally much more

stable than their 3D counterparts. For example modelling a suspended chain attached to two

poles is a common benchmark for the stability of rigid body simulation engines and many of

the 3D engines mentioned below struggle with this. However both Box2D and Chipmunk can

accurately model this scenario.

2.3.2 3D rigid body simulation engines

Perhaps the most widely used free software rigid body simulation is Open Dynamics Engine (ODE)

[StOCa]. It is a stable engine and it has already appeared in a few commercial titles as well.

It has a broad feature set, good documentation and an active community; for these reasons it

has been chosen as the main rigid body simulation engine to use throughout this work.

Another popular open source rigid body simulation engine is Bullet Physics [Cou]. It is

considered to be stable and generally has a larger feature set than ODE including support for

deformable soft bodies and cloth simulation. It has been used in a number of games but it is

perhaps most famous for being integrated as the physics simulator of Blender [TB98] an open

source 3D modelling and animation package.

Another library worth mentioning is Tokamak [Lam]. Its special feature is that it allows

the dynamic fragmentation of objects on collision.

Finally OpenTissue [oCSotUoC] from the University of Copenhagen is a understated physics

library with a vast number of features including two different approaches to fluid dynamics.
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2.3.3 Dedicated collision detection

All of the above rigid body simulation engines also feature a collision detection framework;

without collisions rigid body simulation is rather boring as objects would pass straight through

each other. However there also exist a small number of external collision detection engines. A

prominent open source example of such a library is GImpact [LtGC]. It is purely a collision

detection library and as such is used by a number of other projects; most notably by Bullet

Physics and ODE (as an optional replacement for the built-in engine).

The engines discussed so far always give an as accurate as possible solution in any given

time-step. However that is not always desirable and there is some work that explores the

concept of stochastic collision detection. For instance Gabriel Zachmann explores in his work

[KZ03a,KZ03b] a collision detection approach where quality of results can be traded against

the performance of collision queries. The idea is to give generally believable collision detection

results, which are not necessarily completely correct, but do appear to be correct enough. Of

particular note is that simulation accuracy can often be adjusted dynamically depending on

how much CPU time is available in any given frame.

2.4 Notable commercial physics engines

There are also a few commercial 3D physics simulations available. For the domain of games

there are two main products.

Havok [Hav00] is now distributed by Intel and it enjoys a large customer base and good

reputation. It supports a large number of features attractive for game development such as

cloth simulation and breakable objects. Recently a non-commercial free of charge version has

been released but only for the Windows platform and source code is not available.

Another interesting solution is PhysX [AN]. Formerly known as Novodex it was bought by

AGEIA who implemented it on top of a custom hardware solution. Due to a classic chicken and

egg problem the technology never took off, as it was impossible to see what you were missing

out on if you did not have access to the Peripheral Component Interconnect (PCI) extension

board, and thus there was little incentive for developers to support it or gamers to buy it.

Since then it has been bought by NVIDIA who are now aiming to implement it in top of their

Compute Unified Device Architecture (CUDA) [NVI07] technology. (CUDA is a framework for

performing computations on a Graphics Processing Unit (GPU). It is ideal for problems that

are easily solved in parallel.) This approach shows more promise as most people playing games

are likely to already have access to such hardware and the results can still be seen, albeit

much more slowly due to CPU emulation, if they do not have the required hardware. PhysX

supports a number of very interesting features most notably a liquid body simulation based

on particles, Smoothed Particle Hydrodynamics (SPH). An example of this has recently been

provided by NVIDIA [Cor08] which is based on techniques from the paper by Jos Stam on

stable fluids [Sta99].

More generally, CUDA and its ‘standard’ cousin OpenCL [AK08] are an interesting ap-
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proach that may be useful for other computationally expensive physical simulations apart from

dynamics. CUDA is tailored specifically to NVIDIA’s hardware, OpenCL intends to present a

more platform independent approach.

2.5 Unified physics engines

There have been a few attempts at a ‘meta’ physics engine; frameworks that abstract away the

implementation details of the various rigid body simulation and collision detection engines to

provide a uniform Application Programming Interface (API).

For example Open Physics Abstraction Layer (OPAL) [FRS] started as such a high level

interface to physics programming but at the time of writing it only supports ODE as a back-

end. However it does support some features on top of ODE such as per-shape material settings

and breakable joints. (The concept of a joint in rigid body simulation is defined in Section 2.7.1

below.)

An independent work with a similar name, PAL [Boe], also aims to provide a uniform

interface and some extra features on top of many different physics engines. Currently it supports

more than ten different underlying physics engines but unfortunately it is not available for any

platform other than Windows.

2.6 Other interesting physical simulations

This section will look at three areas: electricity, procedural sound and liquids. These are

physical simulations that do not commonly appear in games but could conceivably be useful

for game-play mechanics and puzzle solving. They could also be considered good ‘special

effects’, which contribute to the general immersiveness and predictability of the game world.

If they do appear they are usually scripted events or otherwise hard-coded and not the

‘real thing’. Each of these simulations are actively researched in engineering or special effects

contexts but the focus is usually not real-time simulation. Each subsection will describe how

they are traditionally approached in games and highlight interesting current approaches that

could enhance or substitute for how they are implemented in games; providing some idea what

could be possible and how more common scripts could be eliminated.

2.6.1 Sound

In games

Most games produce some kind of sound, usually both background music and some sound

effects, however this is all there is to it; both the music and the foreground sounds are basically

just studio recorded sound clips played at appropriate times. For example when a gun is fired

or a door is opened.

Usually games support stereo sound. Thus if a car is passing from left to right in front

of the observer the sound should also pan from the left to the right channel. A more general
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solution to this is full 3D sound, which can place a sound anywhere in 3D space and produce a

more realistic experience. This requires certain hardware such as a 5.1 speaker system and the

obvious downside of this is that such a setup is rather bulky and is certainly not portable. The

OpenAL [StOcb] library provides an easy to use and widely used approach to 3D positional

audio in games.

Some games have also featured some environmental audio effects. For example Unreal

[ED98] divided up its game world into ‘zones’, each of which could be assigned one of a number

of preset environmental audio effects such as echo and reverberation. It should be noted that

these effects were assigned by the game designer and not automatically determined.

Approaches to procedural audio

Sounds do not necessarily have to be sampled they can be generated and filtered on the fly. A

brief overview is given for three areas that can be of interest to games.

Positional audio with HRTF A Head Related Transfer Function (HRTF) is an approach

to provide 3D positional audio by just using ordinary headphones [Beg94]. They are unique

to every person and basically describe how sound transmits from a point on your skull to each

ear. Their main shortcomings are that they require some calibration to adjust for a particular

person and are expensive to derive and use.

There are effectively three methods to simplify the HRTF to make it suitable for use in

real-time audio [KMKK08,KM07]. Experiments seem to show that subjects can still locate a

sound in 3D space with these simplifications applied and in certain cases the simplified versions

seemed to provide better results than the original HRTF [Rav08].

Environment A different area of research is the procedural generation of environmental

sound effects from the world geometry. Thus, given a set of materials and some geometry, a

filter can be calculated that may provide an echo, hall or other such reverberation effects. To

use an analogy it is effectively radiosity but for sound.

A different example of procedural audio is the Doppler effect. An approaching sound source

will be perceived to be higher pitched than one that moves away from the observer. This effect

is common in games and OpenAL directly supports this.

An example of such work is the effort to provide a complete virtual reality simulation

of the Phillips Pavillion [LVF+09]. This work saw the the incredible acoustics from the

building simulated allowing the viewer to look around and re-experience the performance of

PoèmeÉlectronique. The reverberation of the building was calculated in an expensive pre-

processing step; several gigabytes of data was generated as even head movement was taken into

account.

Sounds from collisions Perhaps the most interesting aspect of sound synthesis for games

is to model the sounds resulting from object collisions. Given the collision data generated by
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rigid body simulation and some information about the materials of the objects it is possible to

create a variety of sounds.

A framework fast enough for use in real-time simulations has been described by Doel and

Pai [vdDP98]. A good demonstration of this is given by the same author in the form of a model

of a rock in a wok [vdDKP01]. When the wok is tilted the rock rolls across its surface and

produces a reasonably realistic sound. The impact sounds are pre-computed but procedural;

the simulation itself runs in real time.

This work has spawned a library called JASS [vdD], implemented in Java. Another library

working on the same principle is Phya [Men] but it is unfortunately only available for Windows.

A recent improvement to modelling sounds from collision data is proposed by Raghuvanshi

and Lin [RL06]. It runs fast enough for use in real-time simulations and can deal with many

objects simultaneously making the approach more attractive for games and the methodology

proposed in particular. What makes their approach particularly attractive from the point of

view of our methodology is that accuracy of the simulation is directly influenced by how much

time is available each frame. One of their optimisations is to perform the sound equivalent

of visibility culling: sounds of a frequency that would be mostly masked by another are not

generated in the first place.

2.6.2 Electricity

In games

Electricity (or its effects) often features in computer games but usually in a minor role. For

example a common use of electricity is a light that can be switched on and off by using a switch

- except that in games there is usually no concept at all of ‘electricity’ - the light switch is

simply connected to a script that in turn toggles an on/off flag on some light entity.

This use of ‘electricity’ appeared early in computer games; The Incredible Machine [Sie92]

included a couple of objects that consumed and produced electricity and the first person shooter

Duke Nuke’em 3D [3D 96] included light switches, which turned the lights in a room on or off,

although it should be noted that the game did not feature a light model as such: the level

designer had to create two versions of a room; one with surfaces lit and one with darker

surfaces, toggling the light switch caused the game to swap which one of them was currently

displayed.

System Shock II [LI99] featured a different set of electrical equipment: doors that required

power to operate and rechargeable laser guns.

The original Quake [id96] featured a ‘lightning gun’ that had the interesting side effect of

discharging all of its ammunition at once if used underwater, usually with fatal consequences

for the user and anybody unfortunate enough to be close by. Again, this special effect was hard

coded into the game logic.

More recently Half-Life 2 [Val04] featured some puzzles that were based around electricity,

similar to the ones System Shock II had already done. The interesting part was more subtle:

the game world included a few TVs that could be turned off by ‘using’ them (i.e. walking up
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to them and pressing a special ‘use’ key, usually the space bar). However the player could also

grab the TV with their gravity gun and move it away from its initial position causing the power

cord to be ripped from the wall. A third, more violent, approach was to simply shoot the TV

to turn it off. As above, all of these had to be anticipated by the game designers and scripts

had to be written to support all three approaches.

One interesting case of non-scripted electrical simulation can be seen in the game Minecraft

[Per10] and it illustrates one of the central points of this thesis well: a simple physical system,

as long as it is consistent, gives raise to a large number of unforeseen interactions. In Minecraft

it is possible to lay down “redstone” (which is effectively a wire) and electricity can pass down it

for 15 tiles at most. It is also possible to place “redstone torches”, these act as power generators

with a twist: if power is supplied to them from another source they toggle on/off. Although

the intention of the game designer was to allow players to wire up doors and set off TNT, some

clever people have devised a way to construct all useful logic gates (and, or, xor, nand, not)

and even clocks. Some have even constructed complex electronic circuitry, for example a 12x5

dot matrix display showing some scrolling text.

SPICE3: the traditional approach

Roughly speaking, there are two areas of electricity simulation: analogue circuit simulations

and logic circuit simulations. Although there is a good deal of overlap between the two, in the

context of this thesis the distinction is a useful one to make.

The traditional and definitive approach to electrical simulation is SPICE3 [otUoCaB] and its

variants. It is an iterative solver; given a description of a circuit in a specialised language it will

arrive at an answer after some time. The objective of SPICE3 is not speed but accuracy making

it an ideal tool for electronic engineers. SPICE3 can model more or less any circuit, including

logic circuits, although more specialised flavours of spice such as XSPICE [oEEotGIoT] and

NGSPICE [NtNd] contain solutions to tackle this particular problem more efficiently.

2.6.3 Computational fluid dynamics

In games

Many games have included water and other fluids in some way. Larger bodies of water the

player can swim or drown in are usually modelled as a static area (or volume in 3D games)

designated as such. These areas are essentially ‘flat’ although often the illusion of a real body

of water is created by applying a shader to it showing small waves or ripples in the surface.

(A shader is a program that can be used to change the default rendering pipeline on modern

graphics cards; they can be used to create special effects such as bump-maps or water ripples.)

This is the de facto method of creating large bodies of fluid in 3D games; the main improve-

ments over time have been to apply more sophisticated shaders to the surface. Other dynamics

based effects such as buoyancy have been added in more recent games.

Another common effect based on liquids are blood spatters. They are usually modelled

by either 2D decals (sprites), which are drawn onto walls, or some kind of particle system or
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both. Although a drop of blood and an ocean are fundamentally the same, two very different

approaches are used to model them. Scale and the desired player interaction dictates which

approach to use.

Current approaches

Computational Fluid Dynamics (CFD) is a very difficult and expensive problem. Research in

this area mirrors what is seen in games to some extent: different simulations exist for different

scales and scenarios of the problem. General solutions tend to be very slow, run-time is usually

measured in minutes or even hours per frame. This is perfectly acceptable for movies or in

engineering contexts, but not for games.

Originally 2D approaches were used (2D because they effectively create a simple height map,

which is then applied to a mesh) to simulate waves or splashes resulting from drops of liquid.

There are currently three popular approaches to model open fluids in 3D. Firstly, the original

approaches, which are based on solving the Navier-Stokes (NS) equations [KM90]. Secondly,

SPH [Sta99], which are methods based on modelling fluids with particle systems. Finally,

a more recent approach revolves around the Lattice-Boltzmann Method (LBM), which is an

approach based on cellular automaton.

Generally the NS and LBM approaches measure their run-time in minutes and are therefore

not suitable for real time applications such as games. There are also simplifications to the NS

equations for shallow water that have been implemented in hardware [HHL+05] and although

they achieved a performance increase of about a factor of 15 to 30 the run-time was still

measured in minutes.

These simulations are usually concerned with a body of liquid confined to some volume; it

is a different problem to interact with the body of water or to ‘direct’ it [FF01].

The SPH approach [Sta99] however can yield interactive frame rates in certain scenarios and

can easily be implemented partly in hardware thanks to modern graphics cards and the ability

to run almost arbitrary programs on them. As mentioned previously recent NVIDIA cards also

offer some capability of physical modelling and include facilities to run SPH simulations [Cor08].

The above simulations are general and yield good and accurate results in many scenarios;

their only issue with respect to games is their speed (or lack thereof).

There are however more special case simulations that either make some sort of assumption

about the problem or impose some limitations on what can be modelled. Thuerey has pro-

posed solutions to a number of interesting special cases such as bubbles and foam [TSS+07]

or modelling breaking waves in a 2D shallow water simulation [TMFSG07]. These special case

solutions are based on a 2D surface simulation but allow certain 3D open fluid effects whilst

being fast enough for real-time animation. This is discussed in more detail in Section 2.7.1.
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2.7 Dynamic worlds

Usually 3D game worlds are largely static; effectively a detailed 3D wallpaper. Only a few

designated objects in it can move and change. This is largely due to the efficient data structures

that can be used for rendering such static worlds; for example a Binary Space Partition (BSP)

and octrees. However these data structures are not intended for accommodating change to the

world and are even worse if this change happens every frame (for example as seen with a falling

box or a deformable object such as a table cloth).

The two main reasons these data structures are useful for quick rasterisation (or rendering)

of a scene are:

• Back to front sorting of triangles (making a depth buffer unnecessary).

• Fast visibility queries, allowing efficient culling. (Visibility queries are useful to avoid

rendering geometry that cannot be seen in the first place.)

Traditionally, a complex and mostly static data structure is necessary for this but Scott

Saulters demonstrates a GPU based approach to the problem [Sau04]. It is based on partitioning

the world into simple cubes and then querying the number of pixels potentially rendered by using

a particular (and now common) OpenGL extension. This in turn can be used to determine the

visibility of each world cell. This approach is shown to be more or less equivalent to Quake 3’s

[id99] own visibility algorithm with the advantage of allowing for a completely dynamic world.

(Quake 3’s visibility approach requires an expensive off-line pre-computation pass over a game

world, often lasting several minutes.)

Other games, in particular non-first person games, often use different data-structures for

rendering the current scene. For example in so-called 2.5D games where game-play is 2D (for

example a side-scroller), but the world is still rendered using a 3D graphics engine, a much

more dynamic world can be presented. A recent and very relevant (for more than just its

graphics) example is Little Big Planet [Mol08]. This game, in a way similar to The Incredible

Machine, allows the user to create complex levels and objects out of simple building blocks.

These components behave according to the materials they are made of. One of the main ideas

behind Little Big Planet is this freedom; sharing your creations with others is a central aspect

of the game and is further evidence that high replay-ability and ability to customise due to

consistent and powerful physical simulation can be a good thing for game.

Another interesting example of a game featuring a dynamic world is Minecraft [Per10],

already previously mentioned for its interesting electricity simulation. In Minecraft the entire

world can be de-constructed and re-arranged during game-play, in fact this forms the central

game-play element of Minecraft. The player can collect and mine various materials, for example

dirt and sand using shovels, stone and iron using pick-axes and wood using axes. These materials

can then be re-used to build traps, fortresses and any other object limited by only the players

creativity. While day-time is peaceful, at night monsters will spawn all over the level making.

Although difficult, it is possible to fight them directly; however it is much more efficient to
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build defensive structures during day to help survival at night. Although the graphics are

rather simplistic, this allows for a completely dynamic world.

2.7.1 Level of detail

The concept of Level of Detail (LOD) is widely used in computer graphics. It refers to the

technique of rendering a less accurate or less complex version of a model or a scene the further

away from it the viewer is; the reasoning is that the simpler model is faster to draw and it is

impossible to distinguish the difference at long distances. A simple everyday example would

be mipmaps in texture mapping (although they primarily serve to reduce aliasing artifacts) or

using a lower resolution mesh for a height-mapped terrain. There are some challenges involved,

mainly when to use LOD and how to shift from one type of rendering to another. Ideally

this transition is seamless but ‘popping’ artifacts (when switching from one representation to

another) are still commonplace.

The concept of LOD also applies to physical simulations, for which we shall use the term

Level of Simulation Detail (LOSD). It refers to the use of a different, more specialised, simula-

tion approach within a more general simulation. This different approach could have a number

of properties depending on the circumstance. It could be a more complex, faster or more stable

approach.

A common example of this is ‘joints’ in rigid body simulation engines. For instance, a

doorway could be modelled by connecting a door to the door frame with modelled hinges. This

would be a low-level model and it would be time consuming both to model in the first place

and to simulate, as collision detection is expensive. A common improvement in this case is to

still model the door, door frame and hinges but not perform any collision detection within the

hinge model. Instead a joint is added that describes a mathematical relationship between two

objects in the scene. Normally two objects in 3D have six degrees of freedom (translation in x,

y and z and rotation about the x, y and z axis). In the case of a joint modelling the behaviour

of a door hinge, the relative movement between the door and the door frame is restricted to

only one degree of freedom: rotation around the y axis.

Other common examples of such joints are ball bearing joints (position is fixed but rotation

is not) and slider joints (movement is constrained to a single axis).

Various physics engines also have other special purpose joints. For example Box2D [Cat]

provides gear joints and a special joint to model rope pulleys.

The concept of LOSD is by no means restricted to rigid body simulation but is also applicable

to other physical simulations such as CFD. As mentioned above, Thuerey explores this concept

in his work: for example he demonstrates a faster approach to model complex interactions with

a liquid by blending between a 2D surface model and a full 3D model of the fluid at a certain

boundary away from a point of interest [TRS06].

Thuerey also explores a real time model of bubbles in a body of liquid [TSS+07]. Although

the overall result could be achieved with a complex and computationally expensive 3D fluid

simulation, the approach achieves real time performance by using three separate and simple
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simulations and blending seamlessly from one into another. They are a shallow water simulation

for the (relatively) small waves the bubbles cause, an SPH based simulation for the foam and

a simulation for the upwards movement of the bubbles taking into account the vortices caused

by the bubbles.

As a third example, normal 2D based shallow water simulations cannot model wave breaking

but are a lot faster than full 3D models. It is possible to detect a breaking wave and by

adding particles and some extra geometry on the fly to give a convincing illusion of a breaking

wave [TMFSG07]. In this instance a normal simulation is augmented to give the appearance

of a more sophisticated simulation.

In the more general case the problem of determining when to switch from one simulation to

another or when to use a more restricted version of a simulation is a challenging problem. It is

further explored in Section 7.1.5.

2.8 Other related work and concepts

2.8.1 Virtual Manufacturing at Bath

The Virtual Manufacturing project [WBTB93,BTBW95] undertaken at the University of Bath

was an early and successful attempt to model a variety of interactions of a physical nature in a

virtual world. A virtual workshop was provided and could be used to cut and process metal in

a number of ways, with the ultimate aim of creating a more complex component. This required

dynamic updates to the model of the object from operating on it with virtual tools.

It should be noted that the initial inspiration for the LOSD approach came from follow-up

work of the above, which used a variety of standard parts to yield more than one new (but

physically plausible) behaviour [Wil04]. These parts consisted of cogs that could be arranged

in various ways and, when turned, the correct rotations resulted. The cogs were made from

one of two materials, only one of which was conductive. Thus, electrical paths could be created

with the cogs at the same time, with the correct mechanical and electrical behaviour emerging.

However the construction area was only a fixed grid and all gear wheels were of identical size.

2.8.2 Physics Sandbox

A project that is worth mentioning is Phun [Ern]. It is an interesting ‘2D physics sandbox’. It

consists of a custom rigid body simulation engine, a collision detection framework and a simple

SPH based fluid simulation. Its main focus is to make it easy to construct simple worlds and

experiment with physical simulation more or less in the spirit of the Incredible Machine but

with ‘more real’ physics. Like the proof of concept implementation presented in this thesis it

is restricted to 2D as this has a number of benefits: it is easier to interact with the world as a

user, easier mathematics and much easier visualisation.
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2.8.3 Pipelines

A completely separate concept that has inspired our design to some extent is that of UNIX

and in particular shell pipelines. The philosophy of ‘do one thing, but do it well’ is a good

one (which compares to the plug-in architecture). The ability to then combine these tools in

mostly any order via pipelines is what gives the shell its flexibility (which compares roughly to

the methodology’s model of interactions).

2.8.4 Presence and Engagement

The two terms, presence and engagement, are often used when describing a virtual reality

environment.

• Presence – will group the closely related terms “suspension of disbelief” or “absorp-

tion” [TA74]. This describes the illusion created by the game, the feeling of “being

there”. A break in presence (BIP) occurs whenever the player is reminded of the fact

that everything is just a game [SS00]. BIPs can occur in-game, i.e. “why can I not move

this box, but all the others”; or can be caused by outside factors, i.e. somebody asking

you to turn the volume down. The concept of presence is relevant to this dissertation.

• Engagement – can be defined as the players willingness to play and do well in a game. This

concept is often mentioned along with presence, but is not relevant to this dissertation.

Having a physics model that does not allow a variety of interactions between the player and

the world to take place with can cause BIPs. More generally, behaviour that is unexpected or

simply missing will cause BIPs as it reminds the player of the inadequacies and limitations of

the physical simulation used.

2.8.5 Notation

The notation introduced in Chapter 5 borrows some concepts and its general ‘look’ from the

formal specification language Z [Spi89].

2.9 Conclusion

Evidently there exist a large number of dynamics engines, both commercial and as free software.

Their availability and quality suggests that re-inventing this particular wheel is not really a

worthwhile endeavour. The modularity of the proposed methodology has been inspired by this

as the option to swap out different underlying simulations is a valuable one.

The areas of the other simulations in the context of computer games are not nearly as well

established as dynamics however, as mentioned earlier in this chapter, many new and exciting

approaches have appeared recently. This is true in particular for fluids and sound. The area

of electricity is not explored as well as it could be in the context of games. This motivated
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the development of an electricity (and simplified magnetics in order to model electromagnets)

simulation for this work.

Providing an arbitrary wrapper library that contains (usually) dynamics and one or two

other simulations (usually some variant on SPH for liquids and some specialised subset for

dynamics such as cloth simulation) is as such not a hard problem, which in turn perhaps

explains why there is little research on the topic. It should be noted that wrapper libraries and

more feature rich integrated solutions, such as Havok, can be of use to somebody using the

methodology as they can make implementing its components much easier.

It is also important to distinguish the proposed methodology from such a wrapper library;

the focus of the methodology is to provide an architecture in which different simulations can

work together and terminology to express and describe these interactions. It is not a mere

summation of its component parts. It is a consequence of this that an application of the

methodology will yield a framework which does fit under the banner of ‘wrapper library’ or

‘unified physics engine’, but it is not the primary objective. What sets this framework apart

from other meta libraries discussed earlier in this chapter is its concept of interactions.

Another common theme amongst the games mentioned earlier is that much of their physics

beyond rigid body simulation is scripted. A key motivation for this work was to reduce scripting

in particular the repetitive scripting, and also to reduce the amount of forethought required

allowing the designer to focus on building the world and not worry too much about ‘what if’

scenarios.

Games with more than one ending or more than one preset path are usually very enjoyable

and popular and are played well past their time as they offer something new every time. A key

benefit of successful use of the proposed methodology should help creating such a game partly

by allowing unconventional approaches from the player and partly by strongly encouraging the

game world to be constructed in a way that allows such unconventional thinking.

2.10 Addendum

After the submission of this dissertation, a paper composed of subsets of Chapters 5 (The

methodology: definition) and 6 (The methodology: implementation, experiments and results)

has been published in the Workshop on Virtual Reality Interaction and Physical Simulation

VRIPHYS (2010) [SW10].
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Chapter 3

Goals, assumptions and

constraints

This chapter will describe a hypothetical game scenario in Section 3.1 that will be used as an

example in the subsequent sections. The high level goals of the methodology will be described

in Section 3.2. The list of assumptions is given in Section 3.3. We conclude in Section 3.4 with

some challenges to be faced and a number of desirable properties for the methodology.

3.1 An example scenario

The scenario used throughout this chapter is as follows: the objective is to gain access to a

secure facility behind a fence. The obvious path is to open a gate set into the fence, however a

power failure prevents using any of the gate-moving machinery.

Intended solution The solution as set out by the game designers is to identify the cause

of the power failure, restore power and then operate the machinery to open the gate. The

problem causing the power failure is a section of damaged wiring from the main generator,

which is located nearby, to the gate. A suitable wire to replace the damaged part may be

obtained by searching nearby houses.

Consequences Restoring power to the gate also has secondary consequences; some of the

outer security systems of the facility are also powered from this generator. Restoring power to

the gate will also activate parts of the security system.

Alternative solutions Here is a small selection of alternative solutions, assuming the world

is built in such a way as to support them:

• Find a different metal object (a piece of the chain-link fence or a metal rod) in order to

patch over the damaged part of the wire.
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• Find a portable power generator and restore power using that.

• Find a large truck and drive it through the gate, braking it open.

• Find enough debris and build a ladder in order to scale the fence.

3.2 Goals of the methodology

The two primary goals of the methodology should be identified first; they are closely related to

one another. All other goals either ensure the primary goals are met or are a direct consequence

of this. The primary goals are:

1. An implementation of the methodology should both encourage the design of and make it

easier to create games that can be solved in more than one way and allow unconventional

approaches by the player.

2. The methodology should provide a generic way of describing interactions between different

physics simulations.

The overall approach should be flexible enough to allow most of what was discussed in the

previous chapter to be potentially integrated. The methodology must be general enough and

make few assumptions about what kind of physics can be used. This includes physics that are

not based on reality such as ‘magical’ or ‘sci-fi’ effects. A good example of this would be the

previously mentioned gravity gun.

The methodology should also not be tied to any particular implementation, allowing more

than one physics engine to be used to solve a particular problem. When implemented cor-

rectly this means that the different underlying physics simulations can be potentially swapped

out. Furthermore the methodology should not imply a particular implementation. Using the

methodology must not dictate how a simulation operates and should not prevent problem-

specific shortcuts and optimisations to be used.

The methodology should also be a good sandbox for writing new, original physics simu-

lations. In particular simulations that are dependent on other physics simulations (such as

procedural sound generation) would benefit from this.

3.3 Assumptions for the methodology

The motivation and justification of the methodology depends on three key assumptions, which

are described in this section.

3.3.1 Number of solutions and script complexity

Interactions with objects within the game world are generally limited to simple dynamics sim-

ulation and whatever the world creator anticipated and hard-coded with custom scripts. The
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number of possible interactions with the game world scales roughly linearly with the number

of scripts written.

Going back to the previous example from Section 3.1, most of the alternative solutions

require both some forethought and a specific script (or scripts) written to support them. Of

particular note is the ‘solution’ of driving a truck through the gate: when this is chosen it is

likely that the player has not bothered to restore the power; this means the security system is

not on-line. In a conventional game restoring the power is a prerequisite of encountering the

security system; so from a game designer’s view the security system would always be ‘on’ as it

deemed to be impossible to walk to it without restoring the power.

The player could of course make use of this even if the power was restored as intended. Once

the gate is opened it could be jammed preventing it from being shut again; the player could

then back track and undo the repair, leaving the gate open and the exterior security system

disabled. This is another solution that would have to be anticipated and catered for with a

script. If the game world ‘just works’ as proposed then this solution also ‘just works’ without

any extra effort from the world designer.

Generally, it assumed that having a large number of solutions to a problem is a desirable

property for a game, as it has a positive impact on game-play. In particular, players will be

encouraged to re-visit and re-play the game multiple times in order to try out different solutions.

This in turn will keep the game ‘alive’ longer. (Although not related to this thesis, one could

further argue that this is allows the commercial exploitation of game to go on for longer, be it

via ad-support or extra add-on content, which can be released over time - with the game being

actively played, the interest in it remains high for longer.)

A large number of solutions in turn conventionally requires a large number of scripts. Fur-

thermore, the more these possible solutions have inter-dependencies, the more complex these

scripts become. This is not unlike standard combinatoric explosions where having one more

variable will double the effort required.

The key assumption is that catering for many solutions with scripts quickly becomes expen-

sive and relies heavily on the wisdom of the world designer to effectively prune and simplify.

3.3.2 Different world building

Another assumption related to the previous one is that constructing worlds for use with the

methodology will not cost more time than writing a multitude of scripts required for the same

amount of interactions. The more attention the level designer pays to creating a physically

plausible world, the more interactions with the game world will be possible.

This is also the primary trade-off of using the methodology: creating a physically plausible

world that is detailed enough will likely require more time than creating a conventional static

world and adding a few scripts. The idea is however that as one adds more and more scripts

to make the world more ‘alive’ the point will be reached where building the world differently

will be less effort.

In essence the world building assumption states that after a certain point it will be easier
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to create the world ‘correctly’ using the proposed methodology rather than making everything a

special case.

As an aside, creating a good world creation tool-set that allows efficient construction of

worlds in this ways will be an interesting challenge.

3.3.3 No conflicting assumptions

This is not an assumption related to the hypothesis or methodology, rather it is an assump-

tion placed on different physical simulations used in it. In other words, it is an issue of the

implementer of an instance of the methodology to be aware of.

If any one simulation makes an assumption about something outside (but related to) its

problem domain then special care will have to be taken to avoid conflicting assumptions.

Imagine a generic rigid body simulation with a constant acceleration due to gravity of

9.81ms−2 and a simulation for buoyancy that also assumes a value of 9.81ms−2. This is an

example of a potentially conflicting assumption. It becomes an actual problem once the game

environment moves to Mars or the Earth’s moon and (by mistake) only one of the values is

adjusted. Another possibility is that one of the simulations does not allow this value to be

changed easily (it could be a hard-coded constant).

Thus one requirement of the methodology on its parts is that any simulation used should

be free of assumptions outside its problem domain or if they exist, they must be configurable.

This assumption is that most physics engines are general enough to operate independently

from one another and have a sensible API.

3.4 Challenges and desirable properties

3.4.1 Static worlds

In conventional 3D games the world around the player is more or less a 3D wallpaper. It is

usually very rich in detail and ‘aesthetically pleasing’. It can be viewed from different angles and

positions (depending on player movement). However it is static and be cannot easily changed.

Such a static world does have some advantages. Most importantly for games, a static world

can take advantage of clever data structures that allow the game engine to rasterise polygons

more quickly and efficiently. Two popular data structures for this purpose are a BSP and

octrees. Both of them have the advantage of allowing quick, back-to-front rendering of the

scene. However both of them have a hard time dealing with changes to the world. In most

cases a BSP has to be completely rebuilt while octrees suffer somewhat less.

Thus games generally divide the game world into two parts: a static world, also sometimes

called a ‘level’, and a few dynamic actors, which represent everything non-static in the game

world. Players, bullets, explosions, smoke and bottles are examples of objects that are usually

not part of the static game world.

A world built with the methodology in mind should take the opposite approach. Most

objects should be first class objects and not static scenery. Objects that traditionally would
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have been scripted such as the gate from Section 3.1 should be ‘built’ so that they work as

expected.

3.4.2 Predictability and consistency

Physics should be predictable, meaning that reasonable interactions should be possible and

work as expected. In our example scenario the wire to obtain to operate the gates would

conventionally be hard-coded into the system. It can be frustrating for the player when other

plausible conductors that happen to be lying around (for example a metal rod or a piece of

wire mesh fence) do not work; this invariably causes BIPs and can have an effect on player

engagement as well.

A concrete example of a lack of predictability is Doom3 [id04] where it is possible to move

boxes by either pushing them around or otherwise applying a force to them, for example by

shooting at them. Thus it is reasonable to expect that shooting a desk lamp would also move

it. However as this object was not special cased it cannot be moved by any means. Any such

omission on the part of the world designer quickly destroys the player’s suspension of disbelief

particularly if the omission is inconsistent with others. A game world would appear more

consistent if no small objects could be moved as opposed to a select few.

In summary a believable game world is one consistent within itself. It is also important that

any plausible interaction is possible.

3.4.3 Identifying special cases

Certain physical simulations are special cases of a more general simulation or, more commonly,

can be expressed in terms of another simulation. Buoyancy and explosions are two examples of

physics that are usually integrated into the base dynamics simulation and would benefit from

being abstracted away.

In this case both buoyancy and explosions manifest themselves as an extra force acting

upon an object in the rigid body simulation. In the methodology these would be modelled as

separate simulations and they use interactions to influence the other simulations. The challenge

is to recognise such special cases and to efficiently encapsulate them; the benefit of doing so is

that they are available even if a different dynamics simulation is used.

3.5 Constraints

The methodology proposed is intended to fill a particular niche, but it will not replace all

scripting in games. Scripting due to plot and to carry the game’s narrative forwards will

remain in place, it is not clear to the author what, if anything, could ever replace this. An

example of this could be the demolition of a building: the structure, fuses and charges could

all be modelled using the methodology, but the decision of the bad guy to press the detonator

at a most inconvenient time will be script driven.
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The niche this methodology aims to fill is to make games that have a rich environment

easier to write as these games currently require a large number of scripts and foresight of their

designers. Games without such a detailed environment will derive much less use from this

methodology since the assumption about script complexity (see 3.3.1) will not hold.

3.6 Summary

To summarise, the overall goal of allowing multiple solutions to a problem will be achieved by

a combination of:

• A new approach to constructing the game world.

• Making more objects first class objects and generally allowing a more dynamic world.

• A large set of physics/physics interactions.

The overall goal of consistency will be achieved by reducing the number of special-case scripts.

If everything follows the same set of rules the game world will be more predictable.

The next chapter will describe an approach to simulating simplified electricity for games.

The motivations, goals and assumptions relevant to this approach are all contained within

that chapter and are separate from the goals of the methodology. The reason for describing

the electricity simulation in detail before describing the methodology is that the electricity

simulation is often used as an example and many experiments discussed later are based on it.

The methodology itself is then developed in Chapters 4 to 6, drawing upon what was

discussed in this chapter and Chapter 2.
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Chapter 4

The methodology: concept and

design

This chapter serves as an overview of the final design of the methodology given in Chapter 5;

it describes both intended use cases and motivations for the particular of each component of

the methodology.

4.1 Outline

The proposed methodology will partition the entirety of physical simulation into four parts.

Properties are independent and passive components that simply store data used by the other

parts. The other three components are the resolvers, derived property sets and interactions,

all of which will be described in greater detail in the next few sections. Overall, the design has

been heavily influenced by the following two desired aspects.

• Modular Any solution should support the implementation of various different kinds of

physics simulations in a modular way, so that it is possible to write ‘plug-ins’ for various

common simulations and build a library of commonly used parts. Dynamics simulation

(rigid body simulation and collision detection) is a problem set for that many solutions

exist, all with individual strengths and weaknesses. Three well known examples are: ODE

[StOCa] (a free software package, originally developed by Russel Smith), Havok [Hav00]

(a commercial solution, originally provided by Havok and now by Intel) and PhysX [AN]

(a hardware based solution, originally provided by AGEIA and now by NVIDIA). The

modularity intended to make it possible to write interchangeable plug-ins using such

existing solutions.

• Generic interactions Tying separate simulations together in a generic way is very

important and useful; it works towards the overall goal of having an environment that

‘just works’. This particular idea motivated the creation of the vital ‘interaction’ part of

the methodology.
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Before going into further detail, two physics simulations, which will be used as the main

examples when developing and describing the parts of the methodology, will be examined.

The most common and useful simulation for many games is dynamics. A dynamics sim-

ulation usually considers a number of objects and simulates the movement of these objects

under an arbitrary set of forces. The shape of an object is modelled by either a mathematical

expression (such as the equation for a sphere) or by a triangular mesh. Dynamics also involves

collision detection, so that objects do not intersect with each other. Unless the scene is set in

free space, gravity is also required so that objects will fall to the floor, rest on a table, etc.

Some other forces that may be relevant for games are wind or the shock wave of an explosion.

The second simulation will be a simplified electricity simulation, the specifics of which are

detailed in Appendix A.

In the spirit of modularity, these two simulations, dynamics and electricity, can be split into

a number of separate components. This will not only highlight some similarities and shared

characteristics between the two, but also illustrates some of the reasons why the methodology

was split into four parts.

4.1.1 Splitting up dynamics

Some aspects of a comprehensive dynamics simulation as outlined above can be cleanly sepa-

rated into independent physics simulations. For example most dynamics simulations provide a

simplified gravity model: a force proportional to an object’s mass is applied to every object in

the scene. This gravity model can be implemented separately to the core dynamics simulation,

as it is simply an application of the same kind of force to all objects in the game world. This

abstraction of gravity carries with it a number of benefits:

• The same gravity simulation can be used for different dynamics back-ends.

• The simple gravity simulation can be easily replaced by a more complex gravity simula-

tion, possibly one with different goals and assumptions.

For instance, a game set in outer space would have no use for a constant gravity vector, but

could require a more involved gravity model for stellar objects. Other phenomena like the

shock wave of an explosion and wind can also be abstracted away into dedicated self-contained

simulations. Like gravity, they are only an application of certain forces to objects and perform

most of their work by interacting with the rigid body simulation.

Once these are abstracted away, the problem becomes a much purer one as it is only con-

cerned with objects in a free space and a set of forces acting on these objects. Where these

forces come from and what they represent is completely irrelevant.

The next step is to separate object collisions from the rest of dynamics. When two solid

objects move towards each other they should clearly not intersect. At its core, rigid body

simulation is only concerned with point masses and has no concept of the material or shape of

an object. Depending on the dynamics package used, object intersections and points of contact

are either calculated in a separate step or integrated in a single opaque simulation step. When
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abstracted into a separate step, collision detection provides a list of contact forces (sometimes

also known as contact joints). When applied, these forces will move all objects apart just

enough to be touching instead of intersecting on the next simulation frame. This concept is

generally known as ‘reactive collision detection’ and will cause objects to appear to collide, but

not intersect.

Recognising that collision detection is ultimately just a set of forces and that calculating

this set of forces can be done independently from the rest of dynamics simulation allows the two

to be separated in an identical fashion to that seen above with explosions, gravity and wind.

To summarise, the big problem of dynamics can be split up into the following smaller

problems:

• Rigid body simulation: the point mass simulation and resolution of forces.

• Collision detection: generation of contact forces.

• Simulation of gravity: generation of forces to be applied to each object.

• Simulation of wind, explosions, etc.: generation of forces to be applied to the relevant

objects.

4.1.2 Re-factoring of the electricity simulation

It now considered how an electricity simulation can be split into parts. An electricity simulation

for games would be designed to model obvious electrical circuits. For example connecting a live

wire and a return lead to a light bulb should cause a functioning electrical circuit to be formed

and result in a lit light bulb. Such a simulation requires two parts: the (abstract) electricity

simulation itself and basic collision detection in order to recognise when a connection between

two conductors occurs.

In the initial prototyping the collision detection library of ODE [StOCa] was used and the

call-back function responsible for collision detection was extended to send ‘Connected’ and

‘Disconnected’ messages at the appropriate events. This arrangement took advantage of the

already existing collision detection component and reused some of its output. However the code

was also tightly integrated with that particular collision detection library. Thus if the dynamics

simulation were to be replaced by a different one, the electrical connection code would either

have to be adapted to the new library or two separate collision detection functions would have

to be used at the same time.

The ideal solution for this is to define a more abstract interface of what a collision detection

component should provide; in this instance both contact forces and a list of new and previous

colliders (for connections and disconnections respectively). The electricity simulation can then

function independently from the underlying collision detection, and is also easier to implement

as it can be written in a purely abstract way. This in turn allows the system to be extended

beyond the original scope of the electricity simulation, for example lightning arcs could be

implemented by a separate simulation and the ‘connection’ (a lightning arc as opposed to a

wire) would be handled in exactly the same way as any other connection.

36



4.2 The four components

In this section the four core parts (properties, resolvers, derived property sets and interactions)

of the methodology are developed with reference to the above. Finally, the main loop of the

entire simulation will be described, demonstrating how to combine all four parts.

Given a simulation (any kind) in some environment (such as a computer game) there are

usually three distinct parts:

• A data structure that is used in the simulation associated with each object (data store).

• Either a stepping function (for clock driven simulations) or an update function (for event

driven simulations), i.e. the main simulation logic.

• Interface code to the rest of the system. This could either tie the simulation into another

simulation or even just to the user interface or network code (glue).

Three of the four components of the methodology will map closely onto these three concepts.

The property layer will serve as a data store, the resolver layer will host the simulations them-

selves and the interaction layer will contain all of the glue code. (The interaction layer will

contain more than just glue code, it is the integral part of the methodology.)

When given two separate simulations (such as dynamics and a SPH fluid simulation) there

can be substantial overlap in code and functionality. In this example both simulations require a

good collision detection system: the dynamics simulation requires collision detection so objects

do not intersect, and the SPH simulation requires collision detection so that its particles do

not fall through the objects in the game world (water should flow over a slope, not through the

slope).

So far, three layers have been mentioned: the property layer, the resolvers and the inter-

actions. The last part of the methodology aims to serve as a common ground for re-factoring

and code reuse. The layer of derived property sets contains parts of the individual simula-

tions, which can be abstracted out of the resolver layer, and are useful to other simulations, or

for which there exist alternative approaches and implementations, for example: soft collisions

vs. hard collisions. (The interaction layer will also provide the glue code between the derived

property sets and the resolvers.)

4.2.1 Part 1: properties (data store)

Every object in a game world has a number of properties associated with it. They will define the

behaviour and appearance of the object in the simulation. Properties do not necessarily have

to serve a purpose in any simulation, such as the name of an object. Any number of properties

can be defined for the purpose of convenience. Although there is no difference between one

property and another they can be roughly categorised as follows:

• Real properties, for example: mass or position.

• Abstract properties, for example: a pointer to a data-structure.
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• Convenience properties, for example: the name of an object.

Properties that model a tangible property such as the position or colour of an object will be

referred to as ‘real’ properties. All other things that might be useful for the simulation but have

no ‘real-world’ equivalent, such as a pointer to a data-structure, are called ‘abstract’ properties.

In the methodology, properties are referred to by their type. For instance, the position property

of an object could be implemented in any number of ways (for example either as a vector of

floating point values or as a vector of fixed point values), however the rest of the system only

cares about it being a ‘position’ property.

It should be noted that, realistically, an implementation of the methodology will pick one

representation but the methodology itself does not concern itself with data types, representation

or implementation language.

Each resolver in the system accesses a subset of all properties. For example the rigid body

simulation resolver would be interested in position, rotation, velocity, angular velocity and mass

of an object, whereas a simplified electricity model would only consider conductivity, electrical

state (‘on’ or ‘off’) and a list of connections to other objects.

Certain properties are shared by many different simulations, such as the position or shape

of an object. Some properties are unique to certain simulations and possibly even unique to a

particular implementation of a simulation. Conductivity would be an example for the former,

and a pointer to a data structure an example of the latter.

Properties should also be independent of one another. If the value of a certain property

could be calculated (or derived) using different properties as an input, it should be part of a

derived property set as outlined below in Section 4.2.3.

4.2.2 Part 2: resolvers (simulation)

A resolver is usually the core part of any given simulation. For instance in a dynamics simulation

the rigid body resolver will calculate the effect of any forces that have accumulated for each

point mass object during the last frame and move them to their new positions.

For an electricity simulation the corresponding resolver would update the electrical state

of any given object, reacting to changes to the electricity graph (such as new connections and

removed connections).

The purpose of a resolver is to represent and perform the core work of any given simulation.

The effect of this work is that in the resolver updates certain object properties. To give a

resolver work to perform (for example influencing the simulation by applying a certain force to

an object) a group of functions called ‘interaction functions’ are used. Calling the interaction

functions themselves does not modify any object properties, it merely queues up work to be

performed on the next simulation step where all work is performed in a single self-contained

step. A resolver has the following characteristics:

• Properties used (for both reading and writing).

• Resolver properties (properties unique to the resolver or simulation itself).
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• Interaction functions.

• An algorithm (the work performed in a simulation step).

Properties used The list of properties used lists all properties the resolver will read from

and write to. For instance a simple rigid body resolver would list the position, velocity, angular

velocity, rotation and mass. If desired, a distinction can be made between properties read from

and properties written to in order to aid multi-threading and scheduling.

Resolver Properties These properties are properties that are global and unique to a specific

simulation. An example of such a property could be the amount of ambient lighting in the world.

Interaction functions These functions are used to accumulate work for a resolver to do in

the next simulation step. Using the example of the rigid body resolver, there is an interaction

function for adding an arbitrary force to an object. Interaction functions are not only essential

for most simulations to work (such as in the case of dynamics, where the forces preventing

objects from intersecting are supplied by calling the relevant interaction functions), but also

provide a way of influencing and directing the simulation due to user input. They also provide

a clean interface for different physics simulations to influence (or interact with) each other.

The Algorithm Each resolver implements some kind of simulation; the algorithm refers to

the specific method used.

4.2.3 Part 3: derived property sets (re-factoring and abstraction)

The purpose of derived property sets is to provide a common place for re-factoring and ab-

stracting common problems. Some functions over object properties are required by more than

one simulation and thus it would be a waste to implement or perform them more than once.

One example of this is collision information: the dynamics simulation needs it to prevent the

rigid body resolver from moving objects into positions where they would intersect with one

another and the electricity simulation needs it to determine which conducting objects are in

contact with each other.

A ‘derived’ property can be viewed as a mathematical function. It has a number of argu-

ments and performs some kind of calculation over those arguments and only those arguments,

i.e. no global state is used and no side effects occur. The result of the calculation is a property

that is dependent upon only the function’s arguments.

Any number of such functions can be grouped together (if it makes sense for the implemen-

tation) to form a derived property set. For instance it would make sense to group all collision

related functions into a single derived property set. This set will provide a number of derived

properties such as:

• A list of contact forces.
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• A list of objects that are currently colliding.

• A list of objects that have just started to touch in this frame.

• A list of objects that have collided in the previous frame but no longer touch in this frame.

A very different example of a derived property set is the creation of shadow volumes for dynamic

lighting. Figure 4-1 below illustrates the concept of a shadow volume; the left image shows

the original object and its four vertices and the right image shows the vertices of the resulting

shadow volume. A shadow volume is at its base a copy of a polygonal object, but each vertex

exists twice. The normal for each vertex is taken from the edge it is on. For example the

vertex b in the left diagram of Figure 4-1 yields two vertices b and b’ in the object’s shadow

volume. Vertex b remains at its current location as its normal is derived from edge a-b that

points towards the light, vertex b’ is projected away from the light source towards infinity as

its normal (which is derived from edge b-c) points away from the light source.

Figure 4-1: Illustration of a shadow volume. The image on the left shows the original object
with each vertex labelled. The image on the right shows the ‘doubled-up’ vertices and their
locations after projecting them away from the light source.

Each vertex that has a normal pointing away from the light source is then projected away

from the light source to infinity. This new object can then be used to render shadows by

rendering the scene in two passes: the first pass with only ambient lighting, and the second

pass with lighting. For the second pass the shadow volume is rendered to the stencil buffer and

texels that fail the stencil test (i.e. are inside the shadow volume) are then not rendered.

This shadow volume creation can be represented by a derived property set that is calculated

from four properties: object geometry, position, rotation and the position of a light source.

Generally shadow volumes are intended for rendering real time shadows, but they could also

be used for occlusion queries. For example it is possible to model a light barrier for an alarm

system by making use of the shadow volume property, the light sensor of the light barrier is

‘on’ if it is not contained within a shadow volume and ‘off’ otherwise.

In theory, rendering the game world itself can also be considered a derived property: its

input would be all properties of objects relevant for visualisation such as shape, texture, etc.

and the output is a rendered image.
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In general, a derived property set has the following characteristics:

• A set of the object properties it uses.

• A set of the resolver properties it uses.

• A set of functions used to calculate the derived properties.

• A set of the derived properties it provides.

Derived property sets can be arbitrarily complex in what work they do, sometimes even more

complex than a resolver. Most of them update at each time step (also known as the ‘world

step’) however if none of the properties the derived property set depends on change, there is

no need to update.

The difference between a derived property set and a resolver is that a derived property set

will never change any object properties. It is simply a function over already existing properties

and does not directly influence object properties. A resolver on the other hand specifically

exists to change properties.

4.2.4 Part 4: interactions (glue)

The purpose of an interaction is simple: it allows one simulation to influence (or interact with)

another. For example if a new electrical connection is made that causes a certain object such

as a light bulb to change its state to ‘on’, the mechanism that instructs the light simulation to

cause the light bulb to emit light is an interaction between the electricity simulation and the

light simulation.

Sometimes interactions are also required to make certain simulations work in the first place

as they consist of more than one component in the methodology. A good example of this is

dynamics: in order to feed the contact forces calculated by the collisions derived property set

back into the rigid body resolver an interaction is required.

The main purpose of interactions however is to connect different physics simulations to-

gether. For instance if two metal objects touch, an interaction calls the relevant interaction

function in the electricity resolver to create an electrical connection and a different interaction

could create the appropriate sound (or rather instruct the appropriate resolver to do so), which

goes along with such a collision. Another example is an interaction that applies the forces

generated in a magnetics simulation to the rigid body simulation so that there is a visible

effect.

More formally, an interaction takes data from any of properties, resolver properties or

derived property sets and calls interaction functions in a particular resolver. An interaction

has the following characteristics:

• A set of properties, global properties and derived properties it reads from.

• A single resolver (on which interaction functions will be called).
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Similar to a derived property set, interactions only read from properties and never modify them

directly. The interactions are the only layer in the methodology that can use the interaction

functions of resolvers.

4.3 Concluding remarks

This chapter introduced the four parts of the methodology and some context in that they apply.

If there is one point worth repeating, it would be that the methodology is a collection of

ideas and approaches: it is not tied to a particular language or game or physics simulation.

The next chapter will provide a more formal definition of each of the four parts based on the

above and will introduce a notation to describe an instance of them, along with some discussion

of properties, advantages and limitations of the overall system. Chapter 6 will provide four

concrete examples on how an implementation of the methodology works.

42



Chapter 5

The methodology: definition

This chapter will define the four components of the methodology: properties, resolvers, derived

property sets (generally abbreviated to ‘DPS’) and interactions.

It is recognised that sometimes application-specific shortcuts are necessary for improved

run-time performance of the system; this chapter discusses one such shortcut in detail.

5.1 Introduction

In the next Section, Section 5.2, the main loop of a program based on the methodology is

given. The main loop is executed once per timestep. A timestep refers to a small fraction of

time between one update and the next. It usually represents one frame and is thus in the order

of 1

20
th of a second to 1

60
th of a second.

In the following four sections the four core parts of the methodology are then defined. The

three main active layers of the system (resolvers, derived property sets and interactions) each

contain one ‘do-work’ function called by the loop. These functions are named advance, update

and apply for resolvers, derived property sets and interactions respectively and are referenced

in the next section describing the main loop.

5.2 Main Loop

The main loop of a program based on the methodology is executed once per frame and usually

represents one time-step. Depending on the individual requirements of the application, these

time-steps are either constant or variable (in which case they depend on the average time it

took to compute a number of previous frames). The main loop, in terms of the methodology,

will consist of the following steps:

1. For each resolver, call advance.

Some optimisations are possible at this point: certain resolvers may only be advanced

every n frames, other resolvers can be advanced in parallel.
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2. For each derived property set in the system, update its derived properties.

The same optimisations as above apply, with the exception that all derived property sets

can be updated in parallel.

3. Finally, apply each interaction defined in the system.

All interactions can be applied in parallel, but unlike the above two items all interactions

are applied in every frame (but there may no work to do for any given interaction).

For most programs there is, of course, more to it. Event handling, rendering, networking,

etc. are also part of such a main loop but omitted here as they do not strictly related to the

methodology. A different view is to run the above three steps in place of the usual “run physics

engine” step of a game engine.

It should be noted that the main loop only deals directly with three out of the four parts of

the methodology. The properties layer is manipulated directly by the resolver layer; all other

layers have read-only access to it. There is no logic in the property layer, it is simply ‘dumb’

data storage.

The generic main loop given above is not very interesting in itself, it simply provides the

necessary glue to make the four parts, described in the next four sections, work together to

provide the overall physical simulation.

5.3 Layer 1: properties

The first layer of the methodology is a passive layer It is used only to store data associated with

objects in the game world. This ‘per-object’ data can represent both ‘real’ properties (such

as the mass, shape or position of an object) and ‘abstract’ properties (such as a pointer to an

internal data-structure).

Most real properties are designed to be shared by various different physics simulations,

for example the position property is useful for both dynamics and magnetism. Some real

properties on the other hand are used by only one physics simulation, for example conductivity

(or resistance) is only relevant to electricity. However there is nothing inherently different

between unique and shared object properties.

Abstract properties are generally tied to only one particular implementation of a physics

simulation, and are used to store per-object data directly with the object. It should be noted

that it is also possible to store this kind of data within a hash-table (or some other collection),

mapping objects to some arbitrary data directly within the resolver. This approach is useful

if data is sparse, i.e. it does not apply to most objects in the game world. Conversely, using

abstract properties is desirable if the data applies to most objects within the game world. As

with shared and unique properties, there is nothing distinguishing real and abstract properties

from each other, it is merely a matter of how they are used.

An object can have any number of real, abstract, shared and unique properties. The exact

set of properties used at any time is implementation dependent and could potentially change

as components are added to and removed from the system.
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Definition oProp() is the set of all possible object properties within any given implementation

of the methodology.

Definition An object property can be described using the following notation:

NAME Property

INFORMAL DESCRIPTION OF THE PROPERTY.

5.4 Layer 2: resolvers

The resolvers represent the core part of each physics simulation. Each physics simulation,

which affects the game world, must provide one, as a resolver is the only component that can

manipulate object properties.

Each resolver provides two sets of object properties: one containing properties that will be

read from, and one containing properties that will be modified. In the majority of cases these

two sets are either the same or the write set is a subset of the read set, but this is not necessarily

true in all cases.

A resolver might also provide resolver properties that are properties unique to the resolver

and not related to any particular object. An example of a resolver property would be the global

gravity vector of a linear gravity physics resolver (a simplified gravity model where gravity acts

as a constant force on all objects in the game world).

The main part of a resolver is its resolver algorithm. It is unique to each resolver; this

is where the simulation happens. In each time-step (also see Section 5.2) this algorithm is

executed at most once. This process is called to ‘advance’ a resolver. During this simulation

step the resolver updates object properties as per its object property write set.

For example if the rigid body simulation resolver is advanced, it will resolve all forces on

each point mass in the system and update the position, rotation and velocity properties of each

object.

Depending on the simulation it is not strictly necessary to advance the resolver on every

time-step, for example a buoyancy resolver will still yield believable results if it is only executed

every 5th time-step; also see Section 6.12.5 (page 97) for a more detailed analysis of this.

Finally, a resolver provides interaction functions. They are the interface between the resolver

and the rest of the system. The interaction layer of the methodology is the only part of the

system that may call these interaction functions in order to feed new data to the resolvers.

All interaction functions require a thread-safe implementation in order to allow more than one

interaction to be called on the same resolver at the same time. Even if thread-safety is achieved

by simply blocking until another call has finished, this is an essential property of interaction

functions.

Each interaction function should execute in near constant time, and the order of calls should

not matter. Each call to an interaction function will usually record its arguments in a queue

within the resolver and upon the next time-step this stored workload is completed or resolved

(hence the name).
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Unfortunately, for certain simulations, order independence of the interaction functions can-

not be guaranteed and in that case it would be the duty of the individual interactions to avoid

calls in the wrong order. However, as it will be shown in Section 5.7.2, order independence can

be guaranteed even for problematic resolvers (such as the electricity resolver) by modelling the

game world in a particular way.

Resolvers in summary

• Set of properties read

The properties that are required to run the simulation.

• Set of properties written

The properties that are modified (but not necessarily read) by the simulation.

• Set of resolver properties

Simulation and resolver-specific global variables.

• Resolver algorithm

Implements a specific physics simulation, such as rigid body simulation or electricity. It

is called at most once every time-step from the main loop. Takes data from the read set

and modifies properties in the write set. Can both read from and write to the resolver’s

own properties. Most importantly, guarantees to resolve all interaction functions that

have been called since the last time-step.

• Interaction functions

Interface to the physics simulation, can be called by interactions. They have the following

required properties:

– Thread-safe.

They have the following desirable properties:

– O(1) complexity.

– Order independence within the same function: f(x); f(y) should yield the same

result as f(y); f(x).

– Order independence over different functions: f(x); g(x) should yield the same result

as g(x); f(x).

Definition prop(Resolver R) is the set of resolver properties.

Definition rProp() is the set of all resolver properties within any given implementation of

the methodology.

Definition read(Resolver R) returns a subset of oProp() containing the properties read

during the resolver advance.
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Definition write(Resolver R) returns a subset of oProp() containing the properties written

to during the resolver advance.

Definition A resolver can be written using the following notation:

NAME Resolver

Resolver properties: prop(NAME Resolver)

Properties read: read(NAME Resolver)

Properties written: write(NAME Resolver)

Work on advance(): Algorithm description.

Interaction functions:

function(arguments, ...) - Description.

The three property sets can be either given as above if they are identical to a previously

defined set, or can be given literally.

5.4.1 Related concepts

Resolvers are related to rewrite rule systems. A resolver can be seen as a system that changes,

upon each invocation, certain properties of the object in the world according to its rules. The

union of all resolvers implement the mechanics and rules of the world and correspond to a more

generic rewrite system.

The StanfordResearch InstituteProblem Solver (STRIPS) [FN71] is a well-known planning

system in artificial intelligence. Given a world state and a set of operations that transform (i.e.

rewrite) the world state into another, the task of the STRIPS solver is to find a sequence of

operations to arrive at a given goal state. (A full STRIPS system will also contain some theorem

prover as the world state is expressed in first order logic predicates, although implementations

of STRIPS for games such as F.E.A.R. [Mon05] usually skip this step and choose a simpler

representation.)

In STRIPS based system there exist a number of rules, each with preconditions (what must

be true for the rule to apply) and postconditions (what will be true once the rule is applied).

One could conceivably express a resolver or the union of all resolvers as a STRIPS instance,

however due to the number of rules and predicates required this would be highly impractical.

The important property however is that such a mapping is possible.

Conventionally, as STRIPS are used for AI problems that appear often in games; viewing

the underlying physics also as a rewrite system is an interesting exercise in unification. More

practically is the converse: it is also possible to embed the AI of a game in another resolver.

5.5 Layer 3: derived property sets

Derived property sets (abbreviated to DPS) provide a set of one or more related properties called

derived properties. These properties are usually per-object properties but are not restricted to
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a simple one-to-one mapping. For instance object properties could be per-pair (for penetration

depth for two intersecting objects) or for a set of objects.

These derived properties are calculated by using object properties (and sometimes resolver

properties). They are named derived properties because they are derived from a set of prop-

erties and are solely dependent on them, they change if the properties they are derived from

change. Derived property sets are so named because they are simply a collection of such de-

rived properties. Other ways to view a derived property are as an effect filter as found in image

manipulation programs, or a function with no side-effects or a ‘view’.

A typical example of a DPS is the Collisions DPS : it uses the position, shape and rotation

of each object and computes collision information. It contains a number of derived properties:

• SC , the set of objects that currently collide.

• The set of objects that have been added to SC in the last update step.

• The set of objects that have been removed from SC in the last update step.

• The set of contact joints intended to be used by the rigid body resolver.

A derived property set is prompted to update on most time-steps by the main loop. Like

resolvers, derived property sets do not necessarily have to update on every time step.

Derived property sets can read from object properties but not write to them. They can

also read data from resolvers, should they provide any. Derived property sets cannot read from

other derived property sets, and thus all derived property sets can update in parallel.

Derived property sets in summary

• Derived properties

A set of all derived properties provided by the DPS. These mappings can be of any

conceivable type, such as:

– all visible objects→ texture or image (this would model the rasterisation of a scene)

– one object → shadow volume

– two objects → collision information

• Update algorithm

Computes all derived properties.

Definition prop(DPS X) returns the set of derived properties.

Definition A derived property set can be written using the following notation:

NAME DPS

Properties read: SET OF OBJECT AND RESOLVER PROPER-

TIES READ

Derived properties: prop(NAME DPS)

Work on advance(): Algorithm description.
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5.6 Layer 4: interactions

The purpose of interactions is to provide the feedback loop for the simulation. Interactions may

read from all of the previous three layers; data can be taken directly from object properties,

resolvers or (most commonly) derived property sets. An interaction will, with no or minimal

processing, feed data from various sources back into the system. Each interaction operates

on exactly one resolver, but it is possible for more than one interaction to operate on any one

given resolver. The interaction provides data to this resolver by calling its interaction functions.

As mentioned in Section 5.4, the order in that they are called should not matter, hence it is

possible to run all interactions simultaneously, even if they operate on the same resolver.

Interactions are perhaps the most important parts of the methodology. Without them

nothing interesting will happen, none of the physics simulations could communicate with each

other in a meaningful way.

Interactions most commonly take data from the derived property set layer.

Interactions in summary

• Resolver

The resolver used by the interaction. Only interaction functions from this resolver may

be called.

• Interaction algorithm

If an interaction is applied it will generally iterate over its input data and feed it back

into the resolver with minimal processing.

Definition prop(Interaction I) returns the set of object properties, resolver properties and

DPS properties read by the interaction.

Definition An interaction can be written using the following notation:

(RESOLV ER ← SET OF DPS or SET OF PROPERTIES) Interaction

Properties read: SET OF OBJECT AND RESOLVER AND DPS

PROPERTIES READ

Work on apply(): Algorithm description.

5.7 Additional notes

The above fully defines the methodology; it is all that is necessary to construct the architec-

ture of a program. In this section three incidental further points are discussed: how to take

advantage of the different parts of the methodology and run them in parallel, some notes on

order dependence of interaction functions and one shortcut that is relevant in particular to a

dynamics simulation.
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5.7.1 Scheduling and parallelism

The conditions under that a set of programs can be run in parallel safely is a well understood

concept in computer science, and many solutions and mechanisms such as locking [Dij74,Lam67,

Dij65,Knu66] and message passing [Sor73] have existed for a long time. In summary, any two

programs may run in parallel safely as long as:

1. One program does not try to write to data that the other program tries to read from or

write to at the same time (i.e. a race condition).

2. The order of execution of each statement within two programs running in parallel does

not matter.

It is possible to run a number of components of the system in parallel by simply avoiding to

violate the two conditions above.

Condition 1 can be fulfilled if read and write operations are atomic. This can be accom-

plished by two resolver components never writing to a property that is read by another.

Condition 2 seeks to avoid a particular kind of race condition. For example, it is broken if

for a value x = 1 one program tries to add one to x and another tries to multiply x by three.

If the first program runs first, x = (1 + 1) ∗ 3 = 6 holds true; if the second program runs first

then x = (1∗3)+1 = 4 holds true. The only way to resolve this problem is to always run these

operations in the same order. Naturally, condition 2 is also trivially met if, for example, one

program performs x = x+ 1 and another performs y = 3 ∗ y.

Resolvers in parallel

Given two resolvers R1 and R2, the set of read-properties read(R1) and read(R2), and the set

of write-properties write(R1) and write(R2). Resolvers R1, R2 can be executed in parallel if

and only if the following three properties hold:

• write(R1) ∩ write(R2) ≡ ∅

• write(R1) ∩ read(R2) ≡ ∅

• write(R2) ∩ read(R1) ≡ ∅

If the properties hold, it is guaranteed that both conditions 1 and 2 are met.

DPS in parallel

All derived property sets can be updated in parallel as they are only allowed to read from object

and resolver properties. The output they produce is stored within the DPS itself and hence

this cannot not conflict with any other DPS.

It is impossible for condition 1 to fail, as object properties and resolver properties are the

only common data between DPS and they are only read from. It is also impossible for condition

2 to fail as all derived properties are computed independently with respect to other DPS in the

framework and DPS may not read data from each other.
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Interactions in parallel

All interactions can be applied simultaneously if they are well formed. There are four sets of

shared data: object properties, resolver properties, DPS and interaction functions. These can

be separated into two distinct groups: read-only data (object properties, resolver properties

and derived properties) and interaction functions.

The first group does not matter with respect to the two conditions, as the data is only read.

It is thus impossible for condition 1 to fail as all data is read-only and interaction functions are

thread-safe.

The second group should not matter, as interaction functions must be thread-safe and should

be order independent, as their definition states in Section 5.4. Assuming that all resolvers

concerned are order independent, then it is also impossible for condition 2 to fail.

If the interaction functions of resolvers are not order independent then the problem can

usually be solved easily. For example the electricity resolver is not order independent: first

trying to create a connection between A and B and then removing it has a different effect from

first trying to remove the connection and then recreating it. In this case, a simple solution

would be to adapt the electricity graph so that edges can be created more than once (a simple

reference count should suffice) and only if all edges have been removed is the connection severed.

5.7.2 Order dependence within resolvers

During the proof of concept implementation work, which included rigid body simulation, elec-

tricity, magnetism and gravity, it was found that only the electricity and magnetics resolver

provide interaction functions that are potentially order dependent. The two main interaction

functions provided by the electricity resolver are addConnection(Object o1, Object o2) and

removeConnection(Object o1, Object o2); see the electricity implementation notes in Sec-

tion 6.5 for more information.

For two given objects A and B, it matters whether addConnection(A, B) is called before or

after removeConnection(A, B). The result is either no connection or a connection. However,

with some care in how the implementation is designed, this situation can be made to never

occur: for a connection to be made or removed, there must be some physical occurrence that

the connection is intended to reflect. For example two metal objects colliding would form a

connection and it is the act of them colliding that triggers the (Electricity ← Collision) Inter-

action. With only this interaction acting on the electricity resolver it is impossible to both add

and remove a connection as it is impossible for any two objects to both collide and not collide

at any the same time.

However, if the implementation provides two or more independent ways for an electrical

connection to be formed between two objects then it is possible for a connection to be both

formed and removed in the same frame. For example, two alternative ways to provide an

electrical connection between two objects are:

• An interaction that forms a connection between objects A and B if the air between them

is sufficiently humid.
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• An interaction that forms a connection between objects A and B if the air between them

is extremely hot.

Then, if in the same frame the two objects A and B stop touching, but the air between them

also reaches a certain threshold temperature, the (Electricity ← AirTemp) Interaction calls

addConnection(A, B) before the (Electricity← Collision) Interaction calls removeConnection(A,

B) would lead to the wrong result.

There are two simple ways to approach the problem: inserting extra vertices into the electric-

ity graph to represent each type of connection independently, or implementing ‘edge counting’

in the resolver.

Extra vertices

Each object will have more than one vertex in the electricity graph associated with it, these

groups of vertices are connected inside them. In the above example, one vertex in a group would

represent physical contact, another one current due to high humidity and another current due

to high air temperature. Each interaction only connects its two relevant vertices in each vertex

group, and thus the correct result is achieved as the same connection can not both be added

and removed in the same frame anymore.

1

2

3

4

→

1

2a

3a

2b

4

3b

Figure 5-1: Solving order dependence of connections. The two nodes (2 and 3) from the left
graph can ‘doubled-up’ and connected so that two different connections can be formed between
the two nodes: one in the ‘a-world’ between 2a and 3a and one in the ‘b-world’ between 2b and
3b.

Figure 5-1 demonstrates this concept using the example mentioned above. Vertices 2 and 3

represent two objects that can form a connection by either touching each other or due to very

hot air between them. Vertices 1 and 4 represent ‘the rest’ of the electricity graph. The

left image illustrates the problem; the right image shows two additional vertices (2b and 3b).

This method solves the problem of two different interactions calling addConnection(2, 3) and

removeConnection(2, 3) in the same frame. The object is now represented by two vertices

(2a, 2b) and (3a, 3b). For physical contacts the edge 2a− 3a is manipulated, and for ‘hot-air’

52



contacts the edge 2b − 3b is manipulated instead. The electrical connection between the two

objects is only broken if both 2a− 3a and 2b− 3b are removed.

Edge counting

This simple addition to the electricity graph counts how often a particular edge has been

created. Only if this count reaches zero is the connection between two vertices destroyed.

This solution is better than the above in most cases as the resulting electricity graph will

be much smaller and reference counting for each edge is not expensive. It will certainly not

have a negative impact on the complexity of the algorithm operating on the electricity graph.

Its one downside would be that it is impossible to know how two objects are connected by

just looking at the electricity graph.

5.7.3 A useful shortcut

Sometimes a back-end implementation of a physics simulation can be used to drive more than

one component within an implementation. For instance the ODE plug-in provides both a rigid

body simulation resolver and a collision detection derived property set. These two components

can be tightly integrated with each other so that the collisions DPS makes use of a special ODE

function, which can be used to pass all collision information to it at once, significantly reducing

function call overhead.

The two components (rigid body resolver and collisions DPS) are separate and communicate

via an interaction. Speed (a large number of function calls are eliminated) and simplicity of

implementation (at least in terms of code size, as an entire interaction can be avoided) can

be improved if the ODE collisions DPS can operate on the ODE rigid body resolver directly.

ODE is used in this example, but this shortcut is relevant to any dynamics simulation with

integrated collision detection.

A derived property set calling an interaction function on a resolver during its update step

does not follow the definition of a derived property set (Section 5.5). The main ideas behind the

definition of the methodology above are clarity, modularity and the ability to make statements

about which components of the system can be executed in parallel. However, if speed is of

significant importance in the user’s requirements, it is possible to slightly relax the definition

of the methodology and allow certain derived property sets to call the interaction functions of

a resolver during their update step.

Interactions inside a DPS Any Interaction I can be applied out of order with other inter-

actions (inside an update of a DPS X) if the Interaction I reads from only object properties,

resolver properties and DPS properties provided by DPS X. I.e Interaction I can be executed

directly after DPS X (or interleaved with it if the specific DPS update algorithm allows) if and

only if prop(I) ⊂ ( oProp() ∪ rProp() ∪ prop(X) ).

All interactions can be executed in parallel. When applying Interaction I out of order

(earlier than usual in this case) the only thing that changes is the time at which it is applied.
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The only setup that can lead to inconsistent behaviour is Interaction I violating either

conditions 1 or 2. Since all interactions can be run at the same time, and interaction functions

are by definition order independent, condition 2 does not apply.

The only way to violate condition 1 is if Interaction I reads data from a DPS that has not

been updated yet or is currently updating. Hence if Interaction I only depends on one DPS

(DPS X), it is valid to apply the Interaction I out of order directly after DPS X has updated.

5.8 Concluding remarks

This chapter provided the essential properties of each of the four components of the methodol-

ogy. It also introduced a notation to describe an instance of one of those components.

The next chapter will describe an implementation of a number of instances of methodology

components in the terms of this chapter. It will be demonstrated how they can work together

with the aid of four experiments.
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Chapter 6

The methodology:

implementation, experiments and

results

The previous chapter described each of the four components of the methodology. This chapter

will discuss the implementation created during this work. Two very different implementations

have been attempted. The first was not an implementation of the methodology as such, it was

however what inspired and drove its initial conception.

For the purpose of this dissertation, the second implementation is more important. The

second is an implementation for the methodology, it was used both to further develop and

refine the methodology and to form the environment in which to conduct the experiments

presented in this Chapter. The second implementation is illustrated and discussed in detail

from three perspectives:

• The general architecture and how the physics simulations have been integrated into the

implementation.

• Four experiments are presented in the form of scenarios with screen-shots and commen-

tary, demonstrating how everything fits together.

• Finally, a discussion of how the physics simulations implemented should have been im-

plemented, in retrospect, and why.

A brief discussion of the limitations of this second implementation is then presented. As

the implementation grew with the concept of the methodology, some of the engineering choices

made were not the best. Recommendations for a more ‘pure’ implementation are made in

Chapter 7, “Discussions and future work”.
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6.1 Introduction

The very first experimentation work was exploratory, to try to reveal the problems needing

attention. The program contained a basic 3D rendering engine, a lighting model, and the

dynamics simulation package ODE. Most of the experimental work on electricity, up to, but

excluding, the final two-wire approach given in Appendix A), was performed in it.

As it became more and more convoluted, it became apparent that to integrate a lot of

physics simulations in a clean way it is necessary to have a clear concept of how they all fit

together. This eventually gave rise to the development of the actual methodology.

The main visible difference between the second implementation and the first is that it only

models 2D worlds. This decision was made for two reasons:

• Firstly, it became harder to create useful worlds in the first implementation because a lot

of effort was spent on laying them out. It was also much harder to see what was going on,

and interaction with the world was awkward at best. A 2D based approach was simpler

to manipulate (simple, obvious drag and drop worked well), simpler to lay out and easier

to visualise, both in terms of clarity and rendering. (This became more important as the

main work had to be carried out on a low-powered computer.)

• Secondly, as the concept of the methodology was ironed out, it became clear that a new

implementation would be better than trying to modify the original. The methodology

was defined from the lessons learnt from both the first implementation and throughout

the second implementation. In retrospect, a number of implementation decisions made

should have been made differently and these form the basis of the recommendations in

Chapter 7.

The remainder of this Chapter will exclusively discuss the second implementation.

6.2 Architecture Overview

This section presents a brief overview of the architecture of the implementation.

6.2.1 Implementation language and build system

The implementation language chosen for the second implementation was C++, for three main

reasons:

• It is a language that has native bindings to nearly every physical simulation library and

graphics API, as these are usually either written in C or C++. In fact, all physics engines

mentioned in this dissertation are written in either C or C++.

• A powerful cross-platform GUI framework exists in the form of Qt [Tro94]. Although

normally not a consideration for a game, the availability of an easy to use yet powerful

GUI framework is important for an experimental implementation.
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• The author was already familiar in it; furthermore most contemporary games involving

3D graphics are written in either C or C++.

A plug-in based architecture was chosen in order to be closer to the spirit of the methodology.

This required a large number of shared libraries to be generated that in turn required a build

system capable of dealing with this in a cross-platform way. The CMake [Kit00] build system

was chosen as it can do this easily. In particular, it was chosen over the canonical GNU

Autoconf [Mac91] based system as it appeared to be much easier learn and understand.

Although no effort was made to compile and run any of the experiments on any platform

other than GNU/Linux running X11, each external library used (Qt, ODE, OpenGL, OpenAL,

Boost Graph Library (BGL)) has been deliberately chosen due to their cross-platform nature

and availability of source code under a Free Software license, such as the BSD license or the

GNU General Public License (GPL) license. Hence the entire system depends on only Free

Software and should be portable with minimal effort.

There are two reasons none of the readily available free-software graphics engines were used

(such as id Tech 3 (the Quake3 engine) [id99], OGRE [StOCc] or Cube2 [dot]):

• The focus of the work is the methodology and not good graphics.

• Working with an existing engine could have constrained the work down a particular line

due to arbitrary limitations with any chosen engine.

6.2.2 Architecture

Figure 6-1 shows an informal diagram of the architecture of the system and how the various

libraries used fit together.

6.2.3 Design patterns

Since the focus of the work was to try out ideas, the overall design of the implementation could

be more rigorous. As it stands, the only classic design decisions was to base everything on

plug-ins and sub-classing often in order to bring some structure to everything. This also made

it easy write new components and integrate them into existing framework.

In particular the main loop benefited from this, as all it did was iterate over the list of resolver

components, DPS components and interaction components, and call the resolve, update and

apply methods respectively on each. When adding new components to the system, it was not

necessary to touch the main loop.
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World, Objects and Properties

Resolvers
ODE

RBS

BGL

Electricity Magnetics

OpenAL

Sound

...

DPS
ODE

Collisions Magnetics

...

Interactions

RBS ← Collisions Magnetics ← Electricity

Electricity ← Collisions Sound ← Collisions

...

Graphics OpenGL

GUI Qt

Figure 6-1: Architecture diagram of the implementation presented in this Chapter. This dia-
gram is layered with the lowest level on top. Beige boxes represent other, third party, libraries
used to help implement the functionality of a particular component. In the layer dedicated to
the main functionality of the methodology the diagram tries to be generic as an implementation
of the methodology is not limited to just these resolvers, DPS and interactions; this is what
the ellipsis (...) at the end of each row represents. The specific examples of resolvers, DPS and
interactions given represent a large subset of this implementation; absent are the components
related to buoyancy and gravity due to space constraints.

In terms of implementation each box representing a resolver, DPS or interaction is implemented
as a shared C++ class, sub-classed from each row. (Thus the Electricity resolver is sub-classed
from a resolver class.) These three in turn are sub-classed from a generic physics component
class.

Each property (not illustrated) is a separate class representing that type, thus there is a class
for the position property, a class for the conductivity property, etc. Each is sub-classed from a
generic property class.

The graphics layer is implemented as a separate class, and so is the GUI layer.
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6.2.4 User interface

In the remainder of this Chapter many screen-shots are shown, but they only show the rendered

scene and not the overall system for the sake of conciseness. Figure 6-2 shows the entire system.

Figure 6-2: A screen-shot of the overall system. The labelled components are the following:

(1) The widget rendering the current experiment. Clicking and drag & drop will have dif-
ferent effects, depending on the current mode. A few keyboard shortcuts are also available,
documented below.

(2) The mode selection box changes the behaviour of the system when interacting with the
scene. Only two modes have been implemented so far: direct interaction (currently selected)
allows objects to be dragged around in the scene. Information mode will dump statistics about
the clicked object to standard output.

(3) This button produces a sequentially numbered screen-shot in the current directory. During
the development it was found that screen-shot programs cannot necessarily grab the current
OpenGL context, so this button was implemented as a workaround.

(4) The scene selector. Clicking ‘Load’ will either reset the current scene or load the specified
scene.

(5) A simple menu system. The only option exported in the system menu so far is to quit and
the information menu can be used to obtain information about the version of Qt and OpenGL
used.

The following key-bindings are also available:

space Starts or stops the current simulation.

f Advances the current simulation by a single frame.

r Toggles recording. During recording a sequentially numbered screen-shot is produced at

the end of every time-step.
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6.2.5 Order of implementation

The rough order of implementation of the various components was:

1. The overall outside GUI was implemented first including a mechanism to render to a

widget within the GUI.

2. The general skeleton of the methodology was implemented next, including a provisional

main loop.

3. The first physical simulation implemented on top of this was dynamics using ODE, along

with the simple object model (boxes and spheres) and a simple renderer.

The rest of the implementation was carried out in a less ordered fashion, as the above formed

a simple but effective framework to carry out experiments in.

6.3 Implementing dynamics

Dynamics is a problem for that many self contained solutions already exist, all with different

goals and benefits. For this section an existing solution, Open Dynamics Engine (ODE), will

be examined and the process of integrating it into the proof-of-concept implementation will be

described. Although this part of the implementation will be specific to ODE, many parts of

this section will still apply to other dynamics engines.

Overall ODE consists of two tightly linked elements: a point mass rigid body simulator and

a simple collision detection engine. Internally they operate on two different data structures

that share some information and, if both the rigid body simulator and the collision detection

engine are used, they also contain pointers to each other.

The integration of ODE is not as clean compared to the electricity simulation; this was

necessary in order to achieve good run-time performance. One of the shortcuts taken was

discussed in Section 5.7.3: this implementation for collisions effectively bypasses the interac-

tion layer and communicates with the resolver directly. Another technique used was to use

sub-classed properties to provide ODE-specific implementations of the position, rotation and

velocity properties. However it should be stressed that the system could be adapted to use the

generic properties that this implementation also provides. (All other simulations talk to the

base-class, only the ODE-specific components know about the ODE-specific features.)

6.3.1 Properties

ODE itself keeps track of the position, rotation, velocity and angular velocity of each object.

It was chosen to implement some of the basic properties using base classes (which other com-

ponents will use) and provide ODE-specific implementations of them.

ODE also stores some ODE-specific properties, for instance whether an object is ‘enabled’

(i.e. to be considered during simulation). This state is exported in an abstract property, and

is intended to be used by the other ODE driven components.
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The following properties are provided and used:

Position Property

This is the position of an object. It is also assumed to be the centre of mass

and the origin of the model representing the object.

Rotation Property

The rotation of the object.

Velocity Property

The velocity of the object.

Angular Velocity Property

The angular velocity of the object.

Shape Property

The shape of the object. (In this example implementation only two different

shapes are supported: spheres and boxes).

ODE Properties Property

This abstract object property keeps track of two pointers to objects used by

ODE: the dBody and dGeom objects.

Note that all the ‘real’ properties will be useful and relevant no matter which particular physics

is used and that the abstract property is only relevant if ODE is used. (The dBody and dGeom

data-structures are ODE-specific classes.)

This list is by no means exhaustive, the exact properties will depend on the base assumptions

for the game world. For instance, if a more realistic dynamics simulation were required, prop-

erties like the coefficient of friction or (non-uniform) density and mass distribution of objects

would also be useful.

6.3.2 Resolvers

The previous section has described the properties; this section will look at what the simulation

does and which parts of it can be represented by a resolver. As previously indicated, there are

two main parts to ODE: the rigid body simulator and a collision detection engine.

There are two possible options here: to treat the entire simulation as one unit and implement

everything ODE offers in one resolver, or to split them up and handle them separately. The

main advantage of the former would be a slightly simpler implementation. The advantage of

the latter is modularity. For example, with this the collision detection engine can potentially

be replaced with a different one or swapped out the rigid body simulation back-end. The

second approach was chosen for this proof-of-concept implementation for the sake of simplicity

of implementation.
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The rigid body simulation in ODE operates on point objects, i.e. it does not care about

geometry. The collision detection engine supplies the correct contact forces in the form of

contact joints, which ensure that objects collide properly and do not intersect. At every frame

in the simulation a certain function must be called that advances the state of the world by a

specified time interval. This is known as the ‘world step’.

Note that any contact joints and other forces added to the world are only valid for the

current world step. If a force needs to be applied over time, it must be applied every frame.

The stepping function (dWorldStep inside ODE) will be the main part of the resolver and will

form its ‘algorithm’.

Thus resolver now mostly wraps the dWorldStep function in ODE. The next feature to add

are the interaction functions. There are two types: normal ones and an ODE-specific one. The

functions that can add arbitrary forces to any object in the world are an example of the former

and addContacts is the latter.

Note: this implementation assumes that ODE is responsible for both the collisions DPS and

the rigid body resolver.

This resolver will use all the properties listed in the previous section, resulting in the fol-

lowing resolver for ODE RBS:

RBS [ODE] Resolver

Properties read: {Position, Rotation, Velocity, Angular Velocity,

ODE Properties}

Properties written: ≡ read(RBS Resolver)

Work on advance(): Resolve all accumulated forces and joints in the sys-

tem in one step. (In other words, perform rigid body

simulation by calling dWorldStep.)

Interaction functions:

addForce(object, force) - Add an arbitrary force to the system acting on the

centre of mass of a given object.
addForceToPoint(object, point, force) - Add an arbitrary force to the system

acting at the specified point on a given object.
setLinearGravity(V ) - Sets (or disables) the global gravity vector.

addContacts(ODE contact joints) - Add all contact joints from the collision

detection to the system.

Most of the above resolver is implementation independent. Any dynamics simulation would

need some kind of method for the user to add an arbitrary force to the system. Adding contact

joints in bulk on the other hand is something that is specific to ODE. The overall work done

would be the same for each resolver, but how it is achieved is of course particular to the

implementation: using the ODE dWorldStep function, using a custom implementation or using

special dedicated hardware all have the same purpose but function in radically different ways.
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6.3.3 Derived property sets

The other main part of ODE is the collision detection engine. This could also theoretically

be implemented as a separate resolver. However certain properties of a setup like this make it

undesirable:

• There is no work to accumulate over a frame; collision detection has clearly defined goals

and little room for interaction. Either objects collide or they do not.

• Which objects touch and how they touch is relevant for other simulations and can in fact

completely drive other simulations, such as electricity. Thus, which objects touch and

how they touch should be stored somewhere as a property. However, this information

can be calculated using the position, rotation and shape properties; therefore collision

information is derived from other properties.

Thus, it makes sense to implement collision detection as a derived property set. The only

properties collision detection will need are the position, rotation and shape of an object. From

these, it will derive a number of properties for each object and make them available to other

simulations.

Collisions [ODE] DPS

Properties read: {Position, rotation, shape, ODE properties}

Derived properties: {Contact joints, CC (current colliders), CN (new col-

liders), CP (previous colliders).}

Work on update(): Run dSpaceCollide to compute contact joints. Up-

date the current colliders set with objects currently

touching. Set new colliders to any new additions to

that set and previous colliders to any removals from

that set. CN ∩ CP ≡ ∅ always holds.

6.3.4 Interactions

The two main areas of ODE have now been covered; what is left to do is to tie the two together

again. For this an interaction will be required.

This interaction would conceptually take all contact joints generated in the collisions derived

property set and apply them to the rigid body resolver; although as indicated in the introduction

of this section, this particular interaction will be interleaved with the ODE collisions DPS.

6.3.5 Remarks on dynamics

The implementations of the RBS Resolver and Collisions DPS in the proof-of-concept im-

plementation are by far the messiest, one of the reasons being that they ‘evolved’ with the

methodology. Dynamics was the first simulation to be implemented and it was never revisited.

In a re-implementation many improvements could be made.
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Although it would potentially lose some modularity, an implementation could gain a lot of

clarity if it just provided a dynamics resolver, combining both RBS and collisions. What the

collisions DPS would traditionally export would be provided as resolver properties.

Some modularity can still be accomplished by providing more than one version of this

dynamics resolver, for example one named ODE+ODE and another ODE+GImpact.

Finally, the setLinearGravity interaction function was added to RBS resolvers as it is such a

common scenario that the overhead of the interaction calling a function per object is not worth

it. Other gravity resolvers will simply set this to zero and provide their own model.

6.4 Implementing linear gravity

Although the dynamics simulation described above has an interaction function to set a global

gravity vector, this is really intended as a shortcut for the linear gravity resolver. A separate

linear gravity resolver has been created because this is conceptually cleaner as the gravity

model can then be changed by replacing the resolver. The linear gravity resolver has been

implemented as follows:

Linear Gravity Resolver

Resolver properties: {the linear gravity vector Vg}

Properties read: ∅

Properties written: {Vg}

Work on advance(): Change the gravity vector if requested.

Interaction functions:

setGravity(V ) - Sets the direction of gravity.

The resolver for this solution is not much more than a neutral place to store the global gravity

vector. An interaction is also required to tie dynamics and linear gravity together:

(RBS ← Linear Gravity) Interaction

Properties read: {Vg (Linear Gravity Resolver)}

Work on apply(): Simply call setLinearGravity with the value of Vg, if

the value has changed. An alternative implementa-

tion (if setLinearGravity is not available) is to simply

call addForce for every object.

If a more complete gravity model is desired (which could, for example, be capable of numerically

solving the three body problem) it is likely that the following steps would be taken: remove

the simple gravity resolver and replace it with one that calculates the gravity forces for each

object, then exchange the interaction with one that uses the forces calculated and applies them

to each object.
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6.5 Implementing simplified electricity

This subsection describes how the two-wire electricity approach from Chapter A is integrated

into this proof-of-concept implementation.

The BGL [Sie00] was chosen to search for block graphs, as it contains an algorithm of linear

complexity for static graphs.

6.5.1 Properties

The simulation itself needs only two pieces of information: the electrical state of an object

and the connectivity graph. Both of them map easily to properties in the methodology. Some

additional properties will be essential for a useful simulation, for instance if an object is a

conductor or not. For the simulation itself this is irrelevant, since it will assume the connections

and disconnections to the electrical graph ‘make sense’, but for the interactions manipulating

the electricity resolver this property is vital.

Conductivity Property

This object property indicates if the object can be a member of the electricity

graph. It is used by the (Electricity ← Collisions) Interaction to avoid adding

non-conductors to the electricity graph.

Electrical state Property

This object property can be ‘on’ or ‘off’; it should be set only by the

Electricity Resolver.

GE (Electricity graph) Property

This object property is a simple set of other objects this object is connected

to. Together these properties form the electricity graph.

6.5.2 Resolvers and derived property sets

As with most simulations, this one requires a resolver. Its interaction functions are easily

defined: adding and removing a connection in the electricity graph.

It is however not entirely clear cut where the main ‘work’ of the simulation should happen.

Depending on the implementation of the simulation there exist two distinct options:

• Implementation in the resolver. With this approach the electricity graph and electrical

state of objects get updated directly as a result of the electricity graph changing.

• Implementation as a derived property set. Which nodes are ‘on’ or ‘off’ depends only

on the connection graph. The resolver updates the connection graph and the derived

property set provides on/off information for every node.

This is a similar dilemma to the one seen with dynamics, although in this instance there is not

much difference between the two approaches in terms of the methodology. In practise, the first
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approach was much easier to implement in this proof-of-concept work. This gave the following

resolver:

Electricity Resolver

Properties read: {Conductivity, GE (Electricity graph)}

Properties written: {Electrical state, GE}

Work on advance(): Add and remove connections from the connectivity

graph, updating the electrical state of nodes to reflect

these changes.

Interaction functions:

addConnection(object, object) - Link two objects in the electricity graph.

removeConnection(object, object) - Remove an existing link between two

objects from the electricity graph.

6.5.3 Interactions

So far, the electricity simulation will not do anything - it will have to be driven by some other

means. Perhaps the most obvious way to interact with it is to make use of dynamics and add

an edge in the electricity graph between two colliding conductors and remove it once they stop

touching.

(Electricity ← Collisions) Interaction

Properties read: {Conductivity, CN , CP }

Work on apply(): For each new collision between two conductors, add a

connection between them. For each separation of two

conductors, remove the connection between them.

6.6 Implementing simplified magnetism

Full magnetics simulation is a difficult problem, and most of the details of it will likely be

irrelevant for games. This subsection describes an extremely simple approximation of magnetics.

The examples contained in this chapter only model simple and intuitive behaviours like the

attraction and repulsion of two magnets, a magnet attracting metal objects and electromagnets.

The simulation will be restricted to the simple cases outlined; a complete simulation of magnetic

fields is not attempted.

Many game scenarios involving magnets will not require the notion of magnetic poles, for

instance using an electromagnet to lift a heavy metal object or using a magnet to move an

otherwise unreachable metal object behind a solid surface such as a glass pane. This can be

simulated simply by applying a certain amount of force between the ‘magnet’ and the metal

object, pulling them towards each other. Since properly simulating magnetic fields is not the

main priority, this force will be simplified down to a force proportional to the inverse square

of the distance between the objects. In particular, this approach will not take into account

the shape of a magnet; each object that is a magnet will have one or two points defined that
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represent the magnetic poles. Incidentally this allows the use mono-poles if required as they

are less expensive to simulate.

The case where a magnet will both attract and repel another will probably be less useful

for games, but might still be interesting for clever puzzles. An application of this could be a

compass, which is influenced by nearby strong magnetic fields.

6.6.1 Properties

Since all the properties of a real magnetic field are not important in this simulation, a single

number will represent how ‘magnetic’ a magnet is. It will indicate both the strength of the

magnetic field of the magnet and how much an object (such as a metal sphere) will be influenced

by magnetism. This property will be called ‘magnetic strength’:

Magnetic strength Property

This property records two things: whether the object is a magnet and the

strength of the magnet. If the object is not a magnet but susceptible to

magnetic forces it states how strongly it is affected.

The position of the two magnetic poles can be specified and whether they are relevant for the

simulation. Usually, a simple electromagnet used for lifting heavy metal objects can adequately

be modelled by just defining one of them: since the objective is simply the lifting of a heavy

metal object, only concern is the magnet attracting the metal object not exactly how it is

attracted.

Magnetic poles Property

This property defines how many active magnetic poles an object has and their

location relative to the object’s position property. An object may have zero or

one north poles and zero or one south poles.

Finally, a flag to enable or disable a magnet will be useful, in particular for electromagnets:

Magnetic on/off flag Property

If this is ‘on’ the object is a magnet and will exert force on other magnets. If

this is ‘off’ the object can be influenced by other magnets but will itself not

attract or repel other objects.

It should be noted that such a flag is different from setting the magnet’s strength to zero;

this would have the effect of the magnet completely losing all its magnetic properties resulting

in it no longer being attracted to other magnets.

6.6.2 Resolvers

The resolver for this simulation will be very simple, most of the real work will be done in a

derived property set. The main purpose of the magnetics simulation is to create a number of

forces for each object, which will be fed into the dynamics simulation.
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The resolver itself will provide some interaction functions, which will cause simple changes

to the properties used in the world step. The magnetics resolver can be summarised as:

Magnetics Resolver

Properties read: ∅

Properties written: {Magnetic on/off flag}

Work on advance(): Simply change the properties as requested by the in-

teraction functions.

Interaction functions:

enableMagnet(object) - Sets the on/off flag to ‘on’ for the specified object.

disableMagnet(object) - Sets the on/off flag to ‘off’ for the specified object.

6.6.3 Derived property sets

The main work (the generation of forces for each object) is similar to the collisions derived

property set. From the position, rotation and the magnetic properties of an object the resulting

magnetic forces can be derived. Note that this would still be applicable even if implemented in

a much more complicated and thorough magnetics simulation.

Magnetic Forces DPS

Properties read: {Position, Rotation, Magnetic poles, Magnetic

strength, Magnetic on/off flag}

Derived properties: {FM (Magnetic forces for each object)}

Work on update(): For each pair of objects, calculate the attracting and

repelling forces and export the accumulated value.

6.6.4 Interactions

The key interaction to make the entire simulation work feeds the forces calculated in the derived

property set into the dynamics simulation. The interaction is implemented as follows:

(RBS ← Magnetic Forces) Interaction

Properties read: {FM}

Work on apply(): Simply add all the forces calculated in the Magnetic

Forces DPS to the RBS Resolver.

In order to support electromagnets, another interaction and an addition to our magnetic prop-

erties is required:

Electromagnet Property

This property records whether a particular magnet is an electromagnet or not.

The following simple interaction is used to implement electromagnets:
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(Magnetics ← Electricity) Interaction

Properties read: {Electrical state, Electromagnet}

Work on apply(): Simply set the on/off flag equal to the electrical state

on any electromagnet object.

6.7 Notes on the format of the experiments

The layout of each subsection dealing with an example is roughly the same.

• First, the experiment, why it was chosen and how it differs from the others is described.

• The implementation is then described, including an annotated screen-shot. It should be

noted that all images are actual screen-shots; if they are manually modified for clarity

then this is explicitly mentioned. This illustration is then followed by a table listing all

significant objects in the scene and their properties; and a list of all resolvers, derived

property sets and interactions used in this scene.

• This is then followed by a description of each important point in the simulation to il-

lustrate what happens as each experiment is run. The format of this section is a frame-

by-frame account of each simulation step, omitting any duplicate step or description (i.e.

each subsequent step only describes new events).

The frame-by-frame descriptions all share the same format. The frame numbers used are

arbitrary, however their number with regards to the previous frame is meaningful: an

increment of 1 over the previous frame indicates that this frame immediately follows the

previous frame; any jump in numbering (such as a jump from frame 5 to 100) simply

indicates that “more of the same” happens for a while, i.e. the scenario is fast-forwarded

to the next interesting event that occurs.

Each frame description is split into four sections, each of which is optional and is only

included if something new and interesting happens. The four sections are: a general note

and a section each on what happens with respect to resolvers, derived property sets and

interactions.

• Finally, each experiment is compared to what would be a similar setup in a fictional,

conventional script-driven game engine. In particular, the number of scripts required to

achieve a similar setup is examined.

6.8 Experiment I: a switched electromagnet

6.8.1 Introduction

The first experiment is designed to demonstrate all the physics simulations discussed above

working together. Two simple objects are modelled, both using electricity: a switch and an
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electromagnet. In order to observe the electromagnet in action, a metal object is also intro-

duced, which is intended to be lifted by the electromagnet.

The switch will need dynamics to work, the electromagnet will need magnetism, forces in

the dynamics simulation and electricity to work and the object lifted by the electromagnet will

need magnetism and dynamics to behave correctly.

The main goal of this experiment is to demonstrate how each of these separate simulations

work together, via interactions, to form interesting emergent behaviour.

6.8.2 Implementation

This example will demonstrate all the physics simulations, including every single resolver, de-

rived property set and interaction from the previous sections. Figure 6-3 shows an annotated

screen-shot of how the scene has been set up.

Figure 6-3: A screen-shot of the initial setup of the scene. The figure has been manually
annotated, in purple, labelling each object with its name and to show the otherwise invisible
connections in the electricity graph and the otherwise invisible source and earth objects.

Objects labelled 1, 2, 3 and 4 are electrical conductors. In the following ‘Electrical Source’

will be shortened to SOURCE and ‘Electrical Earth’ to EARTH. ‘Electromagnet’ will be ab-

breviated to EM. The purple lines have been drawn onto the image in order to visualise the

otherwise invisible electricity graph between the different objects. Although these ‘invisible’

wires could be modelled by actual wire objects they would add nothing fundamentally different

to this experiment.

Objects 3 and 4 are connected to the actual electromagnet itself and model its ‘plug’.

Applying a current between the two will cause the electromagnet to work. For the sake of

simplicity the metal object is the only object in the scene that is affected by magnetism. The
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‘switch’ object is a conductor that will be used to form a connection between objects 1 and 2.

The following table shows the all objects involved in the physics simulation:

Object Dynamics Electricity Elec-Graph Magnetics
Floor/Ceiling Yes; Fixed - - -
Electrical Source - Yes; Source 1 -
Electrical Earth - Yes; Earth 4 -
Object 1 Yes; Fixed Yes Source -
Object 2 Yes; Fixed Yes 3 -
Object 3 Yes; Fixed Yes 2, EM -
Object 4 Yes; Fixed Yes EM, Earth -
Electromagnet Yes; Fixed Yes; Device 3, 4 Electromagnet
Switch Yes Yes - -
Metal Object Yes - - Yes

Table 6.1: Object behaviour summary

Fixed objects always maintain their position (are a static part of the world) but can influence

other objects, for example via collisions.

As indicated above, this simulation will use all of the resolvers introduced in the previous

sections, which are:

• Rigid Body Simulation

• Gravity

• Electricity

• Magnetics

The following two derived property sets will be used:

• Collisions

• Magnetic Forces

Finally, the interactions the system will use are:

• Rigid Body Simulation ← Collisions

• Rigid Body Simulation ← Gravity

• Rigid Body Simulation ← Magnetic Forces

• Electricity ← Collisions

• Magnetics ← Electricity
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6.8.3 Important simulation steps

Frame 0 - Setup

Before the first world step, all the initial properties of the objects are set, such as their position

and initial electrical connections. Global properties, such as the gravity vector in the gravity

resolver, will also be set. The initial electricity graph will be as follows:

S 1 SW 2 3 EM 4 T

Figure 6-4: Initial electricity graph. The electromagnet is shown is red as it is a ‘user’ of
electricity. The electricity graph is also visualised in the annotated scene setup figure above.

The switch starts out some distance above objects 1 and 2. Once the simulation starts, it

begins to fall down because of gravity and eventually closes the electrical contact.

As a reminder, the general sequence of simulation is to first do any work for the resolvers,

then update the derived property sets and finally perform the interactions.

Frame 1 - Gravity starts to act

Gravity has yet to be introduced; the force defined by the Linear Gravity Resolver must first

be applied to every object in the scene, which will happen in the interaction layer. This effect

will be resolved in the subsequent frame.

Work for Resolvers Since no forces are acting on any of the objects yet, the rigid body

resolver has no work to do at this stage. None of the other resolvers have any work to do either.

Work for Derived Property Sets Currently there is only one collision (fixed objects do

not generate collisions between each other as they cannot move) in the scene: the metal object

is touching the floor. An entry is made into the new and current collisions lists, recording this

collision.

Since there are no active magnets in the scene, there is no work for the magnetic forces

derived property set.

Work for Interactions Since the only collision is a simple touching collision and the objects

do not intersect, no contact forces (pushing the two objects apart again) have to be taken care

of, thus there is no work for the RBS ← Collisions interaction to do.
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The global gravity vector is non-zero and therefore the RBS← Gravity interaction will add

this constant force to any non-fixed object (i.e. the switch and the metal object) in the scene.

This will be done for every frame from now on and will not be mentioned again.

Frame 2 - Metal object does not move

Work for Resolvers The rigid body resolver has two forces to resolve: the gravitational

force for both the switch and the metal object. Resolving these will move both objects slightly

downwards, the metal object will intersect with the floor by a small distance. (This will get

‘fixed’ in the next frame via the contact forces generated in the collisions DPS; hence reactive

collision detection.)

Work for Derived Property Sets Since the metal object is now intersecting slightly with

the floor, the appropriate (non-zero) contact forces will be generated in the collisions derived

property set. The collision of the floor and the metal object will be removed from the new

collisions list, but will remain in the current colliders list.

Work for Interactions The RBS ← Collisions interaction will feed back all the contact

forces generated into the rigid body resolver, forcing the metal object away from the floor in

the next frame.

Frame 50 - Switch closes contact

Up until now the gravitational force on the metal sphere and the contact forces have kept it

lying still on the floor, and the switch object has been falling (and accelerating) downwards.

In this frame the switch will have just been moved into contact with objects 1 and 2. For

simplicity’s sake, it is assumed this collision will absorb all of the energy and the switch does

not bounce, although the methodology would also cope with this.

Work for Resolvers The rigid body resolver has just moved the switch into a position that

makes it intersect slightly with both objects 1 and 2.

Work for Derived Property Sets Two new collisions are entered into the new and current

colliders lists: the switch colliding with object 1 and switch colliding with object 2.

Work for Interactions As usual the (RBS ← Collisions) Interaction will feed back the

contact forces into the RBS Resolver.

Since all of object 1, object 2 and the switch are flagged as conductors in their properties,

the (Electricity ← Collisions) Interaction now has work to do. Since object 1 and the switch

create a new collision and both are conductors, the appropriate interaction function is called

in the Electricity Resolver to add this connection to the electricity graph. Similarly for the

collision between object 2 and the switch. The electricity graph is not modified at this point.
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Frame 51 - The electromagnet almost activates

Work for Resolvers The rigid body resolver deals with the usual work, now also handling

the two new collisions.

The electricity resolver has two pieces of work to do: add a connection between object 1 and

the switch and a connection between object 2 and the switch. Doing so will cause the device

node that represents the electromagnet to change to ‘on’.

Work for Derived Property Sets The collisions derived property set will again clear the

new colliders list, but the current colliders list will remain as it is, containing three collisions.

Work for Interactions Since the electrical state of the device node representing the elec-

tromagnet has changed from ‘off’ to ‘on’, and the object is flagged as an electromagnet, the

appropriate interaction function is called in the magnetics resolver to activate the magnet.

Frame 52 - The electromagnet activates

By now the switch has already reached a stable state and is resting on objects 1 and 2. The

electromagnet will be turned on in this frame and the resulting force acting on the metal object

will be applied in the next frame.

Work for Resolvers The magnetics resolver has one magnet to activate because of the

interaction function called in the last frame. Doing this is a simple operation, the main work

is performed in the magnetic forces DPS.

Work for Derived Property Sets There now exists an active magnet in the scene and an

object that can be influenced by magnetism is close enough to it to be affected. The magnetic

forces derived property set will determine the strength of the force pulling the metal object

upwards towards the electromagnet. The scene is set up so that this force is stronger than the

gravitational force acting on the metal object.

Work for Interactions The RBS ← Magnetics interaction will apply the magnetic force

calculated in the magnetics DPS to the metal object by calling the appropriate interaction

function in the rigid body resolver. This force, similar to the gravity force, will be applied

every frame (although its direction and magnitude will change frame by frame), until the

electromagnet is turned ‘off’ again.

Frame 53 - The metal object is lifted

Work for Resolvers The rigid body resolver will incorporate this new force acting on the

metal object. As this force overpowers the gravitational force also acting on the metal object,

the RBS Resolver will start to slowly move is upwards.
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Figure 6-5: This figure shows the closed switch and thus active electromagnet pulling the metal
object upwards.

Work for Derived Property Sets Since the metal object and the floor are no longer

colliding, the corresponding collision is removed from the current colliders list; this change is

also indicated on the previous colliders list. (This previous colliders list is cleared in the next

frame, similarly to the new colliders list.)

Since the position of the metal object has changed, the magnetic force acting on it will be

recalculated in the magnetic forces derived property set. This will happen every frame from

now on, until the metal object no longer moves (i.e. is completely stuck to the electromagnet

in this case).

Frame 100 - The metal object collides with the electromagnet

By now the metal object has moved upwards enough to intersect with the electromagnet. Again,

it is assumed that the collision absorbs all of the energy and the metal object does not bounce

off the surface of the electromagnet (Figure 6-6).

Work for Resolvers The rigid body resolver has just changed the position of the metal

object so that it intersects with the electromagnet.

Work for Derived Property Sets This new collision is handled in the usual way; contact

forces are generated and the collision is added to both the new colliders list (for a single frame)

and the current colliders list.
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Figure 6-6: This figure shows the final, stable state at which the simulation will arrive in if
nothing else changes. The electromagnet continues to exert a force on the metal object holding
it in place.

6.8.4 Results and discussion

The previous section demonstrates that the basic setup and simulation framework works. Given

the requirement from above “make a switch that turns on an electromagnet that lifts an ob-

ject”, this section examines the effort required to set this up in a more conventional scripted

environment.

The modelling effort would be less, as most of the special properties such as ‘conductivity’

would not have to be assigned to each object. However a script is required to make the

electromagnet work. Since the electromagnet is triggered by collision, it would make sense to

attach a script to an ‘onCollision’ event of the switch object. For example:

event onCo l l i s i o n ( se l f , other):

i f other not in (world.objects[’1’], world.objects[’2’]):

return

i f (world.objects[’1’] in world.colliders[ s e l f ] and

world.objects[’2’] in world.colliders[ s e l f ]):

world.dynamics.addConstantProportionalForce

(world.objects[’EM’],

world.objects[’METAL OBJECT ’],

DISTANCE_INVERSE_SQUARE ,

newton ( -500.0))

Such a script is typical. Each such switch object will require a similar script, which has
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encoded into it the logic, the relevant objects and their scripted behaviour. The script is also

rather inflexible and hard to maintain. However, it is trivial (and thus quick) to implement.

Furthermore, the game in this instance does not require a magnetics simulation as that be-

haviour is also encoded in the script.

However, its biggest problem is exactly what the methodology intends to resolve. The user

could interact with the scene in a few ways that were not necessarily part of the specification

of the original scene:

• The electromagnet can be turned off again by lifting the switch object. This would require

another script in our example, attached to an onSeparation event; or a modification to the

current script assuming the game engine provides that if the collision event was a ‘touch’

or ‘separation’ event.

• The switch could be disconnected from the electromagnet, causing the electromagnet to

stop functioning, irrespective of the switch state. This would require both a modification

to the original q script(s) in order to do ‘nothing’ if a special designated wire object has

been damaged or removed. It also requires another script connected to an onDestroy event

of the wire to turn off the electromagnet.

• The switch could be removed and a different conductor in the scene could be used to close

the contact instead. Perhaps the easiest solution in a conventional setup is to attach the

switch script to every single viable switch. However this requires the level designer to

manually identify each object that could be used as a switch. Thus no new scripting effort

is required, but the process of manually working out which objects could be switches is

tedious at best and the level designer is likely to miss some.

• The electromagnet could be used to attract another metal object on the scene. This

requires the above script to be extended to list every object that can be attracted by the

magnet.

Using the methodology, all four of these will work without further effort in the scene as set

up in this experiment as the overall behaviour is not scripted but emergent. It should be noted

that the world must of course be designed to ‘work’.

6.9 Experiment II: a doorbell

6.9.1 Introduction

The second experiment is based on the same simulations already used in the previous experi-

ment, however this time the focus is to model a more complex compound ‘object’. A doorbell

was chosen for this, as it is a non-trivial object with complex overall behaviour made from more

than one part. This overall behaviour - the bell rings if electricity is supplied - is not scripted

but is purely an emergent behaviour.
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6.9.2 Implementation

The scene as set up can be divided into two main parts: a switch, modelled as in the previous

example by three objects, and the doorbell itself, modelled by four objects.

The doorbell consists of a bell and striker. The striker closes the electrical circuit if it is

in its resting position. An electromagnet will pull the striker towards the bell causing them

to collide and generating some noise. This action breaks the contact between the object the

striker rests on (referred to as the ‘contact’ object) and the striker itself. This deactivates the

electromagnet, reducing the force it exerts on the striker to zero (although not instantaneously;

this time period is referred to as the ‘cool-down’). Due to the way the striker is hinged, gravity

will cause it to fall back into its resting position, closing the contact once again. The process

of striking the bell will be repeated indefinitely. Figure 6-7 shows the initial setup of the scene.

Figure 6-7: A screen-shot of the initial setup of the scene. The figure has been manually
annotated, in purple, labelling each object with its name and to show the otherwise invisible
connections in the electricity graph and the otherwise invisible source and earth objects.
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The following table shows all objects involved in the physics simulation:

Object Dynamics Electricity Elec-Graph Magnetics
Electrical Source - Yes; Source 1 -
Electrical Earth - Yes; Earth EM -
Object 1 Yes; Fixed Yes Source -
Object 2 Yes; Fixed Yes Contact -
Switch Yes Yes - -
Contact Yes; Fixed Yes 2, Striker -
Striker Yes; Hinged Yes Contact, EM Yes
Electromagnet Yes; Fixed Yes Striker, Earth EM
Bell Yes; Fixed - - -

Table 6.2: Object summary

As in the previous example, fixed objects always maintain their position but can influence

other objects, for example via collisions. This example will use the same set of resolvers,

derived property sets and interactions as the previous example, plus the following interaction:

• Sound ← Collisions

This (Sound ← Collisions) Interaction is a trivial interaction (created for this example) that

will play a pre-recorded ringing sample whenever an object collides with the bell.

6.9.3 Important simulation steps

These descriptions will not detail the basic dynamics, as they are fundamentally the same as

in the previous example.

Frame 0 - Setup

As in the previous example, before the first world step all the initial properties of the objects

are set as are global properties such as the gravity vector.

Since the main focus of this example is the operation of the doorbell and the initial closing

of the switch will be identical to that in the previous example, these frames will be skipped.

The first frame examined will be the one after the switch has been closed.

Frame 100 - The switch is closed

The switch made contact with both objects 1 and 2 in the previous frame and the (Elec-

tricity ← Collisions) Interaction has called the relevant interaction functions in the electricity

resolver. The consequences of this will be resolved in the current frame.

Work for Resolvers The electricity resolver has two new connections to deal with: one

between object 1 and the switch and the other one between the switch and object 2. Resolving

them leads to the electricity graph shown in Figure 6-8.
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Figure 6-8: The electricity graph just after the switch has been closed and thus activating the
electromagnet. Again, the electromagnet is shown in red as it is a ‘user’ of electricity.

Work for Interactions Since the electromagnet is now in a closed electrical circuit, the

(Magnetics← Electricity) Interaction will make this object a magnet by calling the appropriate

interaction function within the magnetics resolver.

Frame 101 - The EM starts to work

This step is identical to when the electromagnet was activated in the previous example.

Frame 102 - The striker starts to move

The current state of the scene is shown in Figure 6-9.

Work for Resolvers The rigid body simulation will apply the supplied force to the striker,

which will cause it to move towards the electromagnet (and ultimately the bell).

Work for Derived Property Sets Since the striker has moved away from the contact

object, the collisions DPS will recognise that the striker is no longer colliding with the contact,

remove this collision from the current colliders list and place it on the previous colliders list.

Since the electromagnet has not been deactivated yet and the position of the striker has

changed, a new force between them is calculated.

Work for Interactions As in the previous frame, the (RBS ← Magnetics) Interaction will

apply the force calculated in the magnetic forces DPS to the striker.

Since the contact and the striker are no longer colliding, the (Electricity ← Collisions) In-

teraction will call the disconnect interaction function within the electricity resolver to remove

this connection.

Frame 103 - The connection is severed

Work for Resolvers The electricity resolver has been instructed to remove the connection

between the contact and the striker from the electricity graph. Doing so will break the circuit

and set the state of the electromagnet to ‘off’ once again. Figure 6-10 shows the electricity

graph at this stage.
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Figure 6-9: This annotated screen-shot shows the state of the simulation just after the elec-
tromagnet has been activated by closing the switch. The figure has been manually annotated
with an arrow to visualise the force exerted on the striker by the electromagnet.

S 1 SW 2 Cnt Stk EM T

Figure 6-10: This figure shows the electricity graph of the simulation just after the striker has
started to move away from the contact. The connection between the striker and the contact is
broken as there is no more physical contact between the two.

Work for Interactions Since the electrical state of the electromagnet has changed, the

(Magnetics ← Electricity) Interaction will instruct the Magnetics Resolver to rapidly (but not

instantly) reduce the strength of the electromagnet to zero. This gradual ‘cool-down’ is both

to make the simulation more stable and also to more accurately model real-life magnets, which

also exhibit this behaviour.
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Frame 110 - The striker collides with the bell

The force applied to the striker from the electromagnet during the first few frames was large

enough for the striker to build up sufficient momentum to collide with the bell at a high velocity.

Figure 6-11 shows the current state of the scene.

Figure 6-11: The state of the simulation just as the striker hits the bell. Since sound cannot
be drawn, the reader is asked to imagine a ‘ding’ noise at this point.

Work for Derived Property Sets The collisions DPS will record the new collision between

the bell and the striker and, as usual, will generate the appropriate contact forces.

Work for Interactions Since an object has collided with the bell, the (Sound ← Colli-

sions) Interaction will cause a pre-recorded bell sample to play.
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6.9.4 Results and discussion

As with the previous experiment, the scripting effort required to replicate the behaviour is

now examined. If the original requirement is “pressing a switch will cause a bell to ring” then

the simplest solution is a script such as this, attached to the ‘activate’ event of a switch; this

activation is usually accomplished by the player facing the object and pressing a special key:

event onAc t i va t e ( s e l f ):

world.sound.emit(’snd/doorbell.ogg’,

world.object[’BELL’]. getPosition ())

This would cause the ‘doorbell’ sample to be played at the position of the bell object.

Because the script is written in the way it is, you cannot, for example, keep pressing the bell

button and have continuous ringing. Should this be necessary then a pair of scripts is required,

one to turn on the sound and one to turn it off.

As with the previous experiment, there are some interactions that may lie outside the initial

set of requirements but are still possible with the scene as set up.

• Hitting the bell with the switch, which will also produce a ringing noise. In the scripted

equivalent, another onCollision script can be added to implement this.

• Turning the doorbell on and then wedging an object between the bell and the striker.

This will cause the striker to hit the other object instead, effectively silencing the bell. To

make this work reliably the bell would have to be scripted to operate in a similar manner

as set up in this experiment. Instead of emitting a noise, the onActivate script will cause

the striker object to undergo a periodic motion. A separate onCollision script will cause

the bell to ring if struck.

• As above, but placing a non-conducting object between the striker and the contact. This

will also silence the bell by not allowing the electrical circuit to be closed. To make this

work reliable the entire setup needs to me made even closer into what the methodology

naturally provides. The script activating the bell would toggle a flag on the striker object.

If the striker is currently touching the contact a strong impulse is applied to it, causing

it to hit the bell. A onCollision script would apply the same impulse every time time the

striker touches the contact, as long as the above mentioned flag is set.

As more and more features are added, the scripted example begins to emulate what happens

in the methodology. However, in the latter as long as the world is constructed to be functional

in the first place everything else will work due to emergent behaviour.

83



If most of the setup as described above were to be replicated in scripts, the following would be

the result.

# Attached to the switch

event onAc t i va t e ( s e l f ):

# Set flag

world.objects[’STRIKER ’]. setUserFlag(’active ’, True)

# Get the striker moving

i f (world.objects[’STRIKER ’] in

world.colliders[world.object[’CONTACT ’]]):

world.dynamics.addDirectedImpulse

(world.objects[’STRIKER ’],

world.objects[’STRIKER ’]. anchor(’tip’). getPosition (),

world.objects[’BELL’]. getPosition (),

newton (100.0) ,

seconds (0.2))

# Attached to the switch

event onDeac t i va t e ( s e l f ):

# Clear flag

world.objects[’STRIKER ’]. setUserFlag(’active ’, Fa l se )

# Attached to the striker

event onCo l l i s i o n ( se l f , other):

i f (other i s world.objects[’CONTACT ’] and

s e l f .getUserFlag(’active ’)):

world.dynamics.addDirectedImpulse

(world.objects[’STRIKER ’],

world.objects[’STRIKER ’]. anchor(’tip’). getPosition (),

world.objects[’BELL’]. getPosition (),

newton (100.0) ,

seconds (0.2))

# Attached to the bell

event onCo l l i s i o n ( se l f , other):

i f (world.dynamics.getCollision( se l f , other). getForce () >= 20.0):

world.sound.emit(’snd/doorbell.ogg’,

s e l f .getPosition ())
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6.10 Experiment III: an electric motor

6.10.1 Introduction

The third experiment will also focus on a ‘compound’ object, similar to the previous experiment.

The object chosen is an electric motor; another everyday object, which uses electricity and

magnetism to operate. The setup in this experiment is different from the previous experiment

in the following ways:

• The motion exhibited by an electric motor is more involved than that of the doorbell, as

the goal is continuous smooth motion.

• The electrical wiring in an electric motor is more involved than the wiring present in the

doorbell, as at least two alternating circuits have to be provided.

• The distinction between ‘north’ and ‘south’ poles of magnets is important. In the doorbell

experiment either a mono-pole magnet of either polarity or a dipole magnet oriented in any

way could have been used. In this experiment the polarity of the magnets is important.

6.10.2 Implementation

The electric motor will be modelled using the same basic ideas and physics used in the previous

two examples. Due to the much more complex nature of this experiment, the scene setup is

more involved as well since it has to work around some limitations in the physics model:

• It is not trivial to create good sliding contacts with ODE, thus a simple approximation

of one is used.

• The electricity model does not handle AC or distinguish between positive and negative

poles (as per its assumptions). This makes it impossible to create an electromagnet that

changes polarity. Instead, two mono-pole electromagnets of opposite polarity are used

and power is supplied to them in turn.

Figure 6-12 shows the initial setup of the scene. The sliding contact is hinged directly above

the main motor and will rotate clockwise and fall into a vertical position once the simulation

is started. It is connected directly to the electrical source.

The design of the motor used here differs somewhat from a conventional Direct Current (DC)

motor. This illustrates that, even with a “non-obvious” solution, correct behaviour can emerge.

The design is a sound one that would not necessarily have been anticipated by a game designer.

Around the main axis there are eight objects (called ‘spokes’ for the purpose of this simu-

lation) that serve as both contacts and static (mono-pole) magnets. The spokes are joined to

the main axis so that they rotate along with it. The main axis has a dampening force acting

on it so that, should the main electrical circuit be broken, the rotation of the motor will slow

down and eventually stop.

To the right of the motor there are two mono-pole electromagnets that model a single

electromagnet of changing polarity. Depending on which of the spokes the sliding contact is

85



Figure 6-12: A screen-shot of the initial setup of the scene. The figure has been manually
annotated, in purple, labelling each object with its name and to show the otherwise invisible
connections in the electricity graph and the otherwise invisible source and earth objects.

touching, one of the two electrical circuits is closed, activating the electromagnet that in turn

repels the spoke nearest to it and attracts the one below it.

Below the main motor a static magnet has been placed, called the ‘base magnet’. The base

magnet ensures that the motor will never enter a stable position, one from which it would never

start turning. Figure 6-13 illustrates such a configuration.

Figure 6-13: Illustration of a stable position arising from the lack of a ‘base magnet’. This
setup assumes all objects are at rest. The electric motor will never recover from this position
unless there is some external stimulus as the sliding contact will never touch one of the spokes
again.

In the absence of outside forces, the base magnet always turns the main motor into a position

where one of the spokes will collide with the sliding contact and thus close one of the electrical
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circuits containing one of the electromagnets at the side.

The following table shows all objects involved in the physics simulation:

Object Dynamics Electricity Elec-Graph Magnetics
Electrical Source - Y; SRC Sliding Contact -
Electrical Earth - Y; ETH EM-North, EM-South -
Main Axis Yes - - -
Spokes 1 to 4 Yes Y EM-North N
Spokes 5 to 8 Yes Y EM-South S
Sliding Contact Yes Y Source -
EM-North - Y; Dev Spokes 1 to 4, Earth EM, N
EM-South - Y; Dev Spokes 5 to 8, Earth EM, S

Table 6.3: Object summary

The main axis is also fixed to the static world with a joint allowing free rotation (but no other

movement). As mentioned above, this rotation has dampening forces applied to it every frame,

both causing the motor to come to a gradual stop should electricity no longer be supplied and

also ensuring that the simulation is stable and the rate of rotation remains stable.

The sliding contact is also hinged to the static world at its left end directly above the main

axis of the motor.

This example will use the same set of resolvers, derived property sets and interactions as

the first example; the full list can be found in Section 6.8.2 (page 71).

6.10.3 Important simulation steps

Once electricity is connected to the motor (which it is by default in this setup) two distinct

simulation phases can be identified: the ‘start up’, in which the motor begins to turn, and

‘operation’, in which the main axis rotates in a regular and smooth fashion.

Since the basic process of simulation is similar to the two previous examples, a much more

high-level description is given in this example.

Frames 0 to 29

Initially the sliding contact will rotate around its hinged point due to gravity and will come

into contact with the top spoke of the motor.

Once the contact collides with the top spoke the electrical circuit is closed and this activates

the top electromagnet. Figure 6-15 shows the corresponding electricity graph.

Frames 30 to 59

Since there is some force transmitted from the collision of the sliding contact with the top

spoke, the axis will turn slightly anticlockwise anyway. However since the ‘north magnet’ is

now active, it will further push any ‘north spokes’ away from it, in particular the one closest

to it, amplifying the anticlockwise rotation of the main axis.
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Figure 6-14: The left screen-shot shows the initial movement of the sliding contact due to
gravity. It has been manually annotated with an arrow to show the movement exhibited by
the sliding contact. The right screen-shot shows the moment the sliding contact collides with
a spoke for the first time.
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Figure 6-15: The slightly simplified electricity graph of the scene. Spokes 1 to 4 are all repre-
sented by an individual node, spokes 5 to 8 have been summarised into a single large node for
layout reasons - in the actual graph each will have its own node. As with the previous example
scenarios the ‘users’ of electricity are shown in red.

As the axis turns, the ‘south spoke’ below the one that was initially closest to the magnets

at the right in Figure 6-14 will be the closest south pole to the active north pole of the elec-

tromagnet and thus there will be a large attracting force between them, again re-enforcing the

anticlockwise motion. Figure 6-16 illustrates these forces. Although magnetic forces act on all

the other spokes, due to the inverse square law (under which magnetic forces fall), they are not

significant in comparison to the two main forces.
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Figure 6-16: Illustration of the two main magnetic forces occurring in frames 30 to 59. Red
dots represent active ‘north’ poles and green dots represent active ‘south’ poles. Previously
the slider has been in contact with the ‘north’ spoke just to the left of it, causing the ‘north’
electromagnet to push the ‘north’ spoke above it away from itself and attract the ‘south’ spoke
below it. This causes the entire construct to turn counter-clockwise. This figure has been
manually annotated with two arrows visualising the two most important force vectors caused
by the electromagnet.

Frames 60 to 89

This rotation will continue until the next spoke (this time a ‘south’ spoke) collides with the

sliding contact, activating the other electromagnet (effectively reversing the polarity). This will

causing the main axis to continue to turn anticlockwise.

Figure 6-17: These two screen-shots capture what happens between frames 60 and 89. In the
left image a spoke of the counter-clockwise rotating motor has just hit the sliding contact,
pushing it out of the way. The state after a short time can be seen in the right image.

This basic process will repeat for a while (and the initial motion will be a bit jagged) until the

simulation settles into a smooth rotation.
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Frame 200 onwards

The simulation has now reached a state of constant and steady anticlockwise motion. Fig-

ure 6-18 shows snapshots of approximately one eighth of a full rotation of the main axis.

Figure 6-18: Further illustration of the stable rotation of the motor. In the left the sliding
contact has just made contact causing the relevant electromagnet to activate, in the middle the
rotation has advanced a bit and in the right the sliding contact has hit the next spoke.

6.10.4 Results and discussion

It is also possible to model the electric motor with just four spokes. However, the start up

phase in such a configuration is a bit longer and the motion during the operation phase is far

less smooth, since the impulse of the sliding contact colliding with the spokes is greater as the

sliding contact has more space to build up momentum.

The implementation of this electric motor is more a proof of concept than anything else. In

a simulation that required many robust electric motors (for instance a futuristic car racing game

which exclusively used environmentally friendly electric cars) it would be far more beneficial

to ‘cheat’ and give specific objects an ‘electric motor’ property. This property would, via an

interaction between electricity and rigid body simulation, cause an object to rotate with a given

torque around a specific axis if the object is part of a closed electrical circuit.

This would be much closer to the traditional scripted solution, with the same advantages

and disadvantages. In particular it would not necessarily be possible to stop the electric motor

by jamming a non-conductor between the sliding contacts. It would however still be possible

to stop the motor by jamming the axis itself; as both a script and an interaction would apply a

constant force each time-step and if a sufficiently large force opposes it, it would stop to rotate.

Even so, the methodology would allow more complex objects to be built from motors and

other objects; or for more complex objects to be broken down and their components used in

novel situations without additional scripts.

For scenarios where the inside workings of a motor are important or relevant to problem

solving within the game, with some thought it is, as demonstrated, possible to design and model
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a working electric motor. It follows that it is also possible to for the world designer to set out a

puzzle that has the player searching for components for an electric motor and then assembling

or repairing it, as opposed to just encountering assembled electric motors.

It should also be noted that due to the way electricity and magnetics are simulated in this

example, the electric motor modelled in this experiment cannot be used as a generator as it

is the case for normal electric motors. This is because there is no concept of ‘induction’ in

the simulations implemented. The easiest way to model a generator with the set of physics

simulations as described in this chapter is to create a special interaction that will make a

particular object a conductor if it rotates at a certain velocity and then link it directly to the

electrical source, causing it to ‘emit’ power for all intents and purposes.

Finally, during implementation, it was found that if an electromagnet is rapidly turned on

and off a much smoother and more realistic simulation is achieved if its strength is quickly

reduced to zero over a few frames, as opposed to instantly. This mimics the self induction in

real coils causing the field to collapse more slowly. Applying this technique to the previous

doorbell example also resulted in an overall smoother simulation. For the first experiment, the

electro-magnet, there is, as expected, no visible difference as the electromagnet is not turned

rapidly on and off.

6.11 Implementing simplified buoyancy

The last experiment presented in this chapter requires a buoyancy model to be added to the

implementation. The generic requirements for the buoyancy model are:

• An ability to mark an object as a volume of liquid.

• The provision of a single force attached at a certain point (the centre of buoyancy) for

each object suspended or submerged in the liquid representing the overall buoyancy force.

There are other useful features that take into account more properties, such as calculating

the drag exerted on the immersed objects, but the overall output of a buoyancy simulation is

always the same: a single force vector for each object partially or fully submersed.

The buoyancy force (FB) for an object is directly proportional to the volume of liquid (VL)

it displaces. dL is the density of the liquid and g the acceleration due to gravity.

FB = VL ∗ dL ∗ g (6.1)

An object is suspended in a liquid if it displaces exactly its own weight in liquid, as in that

case the buoyancy force is identical to the gravitational force.

The buoyancy model chosen is a simple approximation that works well for any 3D (or 2D)

model. It is based on a particle system that approximates the volume of any object with a

number of small spheres [Fag]. It is easy to calculate the volume and centre of buoyancy of a

sphere intersecting with a plane; the buoyancy force on the object itself is simply the sum of
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all the buoyancy forces of each of the particles. Its centre of buoyancy is the mean of all the

particles’ centre of buoyancy, which again is easy to calculate for a sphere.

The main disadvantage of this approach is that it is not completely accurate and it requires

a pre-processing step (and thus would not be ideal for soft bodies). It is however somewhat

easier to implement than other solutions and works well with most static shapes.

There are slightly better approaches, for example using tetrahedrons to approximate the

volume of the object which usually yields more accurate and stable results [Cat06].

Within this implementation, buoyancy has been implemented using a few properties, a

resolver, an extension to the Collisions DPS and two interactions (one of which is implicit and

implemented via a shortcut).

6.11.1 Properties

The implementation of this simulation requires three properties:

Buoyancy particles Property

This property models the volume of the object using a number of spherical

particles. They can be fully submerged, fully out of the water or any fraction

in between.

Centre of buoyancy Property

This is the centre of buoyancy, i.e. the centre of mass of the submerged

volume. (For example if a box is exactly halfway submerged, then the centre

of buoyancy is in the middle of that submerged half.)

FB (Buoyancy force) Property

This is the buoyancy force acting on each object. This force is intended to be

applied to the centre of buoyancy of an object.

6.11.2 Resolvers

The following resolver (with a fixed assumption of g = 9.81ms−2 and dL = 1.0) was imple-

mented:

Buoyancy Resolver

Properties read: {Buoyancy particles}

Properties written: {Buoyancy particles, Centre of buoyancy, FB}

Work on advance(): Calculate buoyancy force as described in 6.1. In-

teraction functions are used to modify the buoyancy

property indicating how many of the particles are

submerged. This resolver also calculates the centre

of buoyancy.

Interaction functions:

setBuoyancyParticles(object, data) - Updates the Buoyancy particles prop-

erty indicating which particles are submerged.
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6.11.3 Derived property sets

The Collisions DPS was augmented to also provide a per-object buoyancy property that records

how many of the particles are suspended.

6.11.4 Interactions

The following interaction is used to communicate with the RBS Resolver:

(RBS ← Buoyancy) Interaction

Properties read: {FB , Centre of buoyancy}

Work on apply(): Apply the forces at the centre of buoyancy using

addForceToPoint.

6.12 Experiment IV: a raft

6.12.1 Introduction

The fourth and last experiment presented in this dissertation was chosen for two reasons: to

show that it is not difficult to add an entirely new simulation to the existing ones and to explore

the concept of out-of-order updates.

This experiment makes use of two physical simulations: dynamics and the buoyancy simu-

lation introduced in the previous section.

Conventionally, adding a feature such as buoyancy requires deep changes to an existing

dynamics simulation; however using the framework provided by the methodology reduces the

changes required.

6.12.2 Implementation

The following experiment will model a simple raft floating on a body of water. Figure 6-19

shows the initial setup of the scene. Two flotation devices will keep the raft floating and there

are also a number of dense objects, which do not float, that can be used as cargo.

In Figure 6-19, the long rectangular box represents the raft. It is attached by one fixed joint

each to the two flotation devices. The long horizontal line represents the water level. All other

boxes represent ‘cargo boxes’. Each of them is very heavy, compared to their displacement

volume, and thus the buoyancy forces acting on each of them are negligible.

As in the previous experiments, the user will be able to interact with this scenario. In

particular, it is possible to pick up some of the cargo boxes, which are initially submerged, and

place them on the raft, allowing the user to observe the effect on the raft’s buoyancy. (This

approach was chosen for simplicity, a more complete model could have provided a crane with

an electro-magnet, which could be used to lift the cargo boxes and deposit them on the raft.)

The following table shows all objects involved in the physics simulation:
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Figure 6-19: A screen-shot of the initial setup of the scene. Unlike the other initial setup
screen-shots this has not been annotated as there is no electricity graph to visualise. The raft
is modelled by composite object consisting out of a long rectangle with no special properties
attached to two flotation devices. The other boxes represent ‘cargo’. The dots inside the spheres
represent the centres of buoyancy, although it should be noted that as this is the initial frame
they have not been set to the correct position yet.

Object Dynamics Buoyancy
Water Body - Fluid
Raft Body Y negligible
Flotation Device A and B Y, fixed to Raft Y
Cargo Objects 1 to 13 Y negligible

Table 6.4: Object summary

6.12.3 Important simulation steps

Since the basic process of simulation is identical to the previous experiment above, this section

only includes a high-level description of the simulation.

Frame 0

In the starting position seen in 6-19 the centre of buoyancy for the two flotation devices is in

the wrong position; it should be in the centre of the submerged volume. This is because the

resolver initialises them to the same position as the object’s centre of mass.

All cargo objects start in a random position, in this instance three start above the raft

and the rest underwater. Once the simulation starts, all cargo objects should fall (or sink)

downwards; the ones above the raft will impact with it and cause the raft to be submerged

further.
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Frame 1

After the first simulation pass the collision detection has identified all submerged buoyancy

particles. This information is made available to the buoyancy resolver in the next frame via an

interaction.

The cargo boxes begin to fall and sink.

Frame 2

The buoyancy resolver calculates the buoyancy force for each flotation device and updates the

centre of buoyancy for each.

This is fed into the rigid body simulation via an interaction, causing the raft to float.

Frames up to 200

In this time the simulation stabilises. Initially the raft bobs up and down but eventually the

simulation will find an equilibrium and the raft floats suspended in the water as shown in Figure

6-20.

Figure 6-20: Screen-shot of the stable state that occurs after a short time. The centre of
buoyancy is now set correctly for both flotation devices and they are buoyant enough to keep
the raft and three cargo boxes afloat.

Note that if the buoyancy simulation uses asynchronous execution then this stabilisation

phase generally takes a little longer; see Section 7.2.1 and the the end of this section for more

information.
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Applying a new force

This simulation can also cope with new forces added to the raft (no matter the source) in a

generic way. Figure 6-21 shows the effect of moving some of the previously underwater cargo

boxes and dropping them onto the left side of the raft, unbalancing it. If this is sufficient to

cause the cargo to slide off, then the cargo sinks and the raft bounces up and eventually settles

in a new stable position.

Figure 6-21: This image shows the effect after applying a force to the left side of the raft by
means of stacking some extra cargo boxes on top. Since a grater downwards force is acting on
the left flotation device the left side of the raft is more submerged than the right one. Were
one to continue to stack boxes onto the raft, it would eventually sink or topple, depending on
the placement of the cargo boxes.

6.12.4 Results and discussion

The implementation of buoyancy could be improved in the following ways:

• Using a more general implementation of buoyancy using tetrahedrons.

• Accounting for drag and convection properly without resorting to dampening.

• Supporting non-horizontal water surfaces.

• Moving intersection of volumes with the body of water into the buoyancy resolver itself.

The last point is an especially good idea because the information important to calculating

buoyancy forces is independent of other collision detection. This would also make the imple-

mentation itself more independent and flexible. Collision detection is interested in keeping

objects from intersecting with each other. Buoyancy only becomes interesting once objects

partially or fully intersect with one another.
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Conventional collision detection engines do not lend themselves easily to calculate this data.

Another good consequence of moving the volume intersection into the buoyancy resolver is that

the one frame lag, as shown in Section 6.12.3, is eliminated. However, with the implementation

presented above, the behaviour is still plausible and responds appropriately to arbitrary user

interaction.

6.12.5 Out of order execution

Buoyancy lends itself well to out-of-order execution as the approximation of buoyancy forces

can be comparatively expensive. In practise, it does not matter at all if the forces are only

updated every second frame. The movement will still appear to be smooth: forces are still

applied every frame, however their magnitude changes only every second frame.

The number of frames skipped has then been increased systematically in order to find the

points at which it is easy to observe that the simulation behaves differently and at which point

the simulation is obviously wrong. A discernible difference first appears if it is executed every

6th frame. Below that it makes little difference. Above 6 frames the simulation still looks

mostly believable but the difference in behaviour can be clearly seen. At around 10 frames the

simulation has a hard time stabilising and thus appears ‘wrong’.

Given how easy and cheap it is to implement out-of-order execution it is definitely something

worth doing, in particular if the simulation itself is expensive. Unfortunately it was difficult

to measure any difference in this setup, as the buoyancy simulation itself was too fast in this

experiment for there to be any statistically significant impact on frame-time.

6.13 A better apportionment

As mentioned before, the proof-of-concept implementation is not optimal with respect to fol-

lowing all the ideas of the methodology. It does adhere to the rules, but it could be a lot

cleaner. This section proposes a cleaner apportionment of dynamics, electricity, magnetism

and buoyancy. It is completely implementation neutral, although it does assume a 2D world.

6.13.1 Properties

First, the properties that are primarily used by the dynamics simulation:

Position Property

The X and Y coordinates of the object.

Velocity Property

A vector indicating the current velocity of the object.

Angular Velocity Property

A single number describing the angular velocity of the object.
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Rotation Property

An angle describing the rotation of the object.

Mass Property

The mass of the object.

Shape Property

The shape of the object.

The properties that are primarily used by the electricity simulation:

Conductor Property

True if the object can conduct electricity, false otherwise.

GE (Electricity graph) Property

The electricity graph.

The properties that are primarily used by the magnetics simulation:

Magnetic strength Property

The magnetic strength of the object and its susceptibility to magnetic forces.

Magnetic poles Property

The location of the magnetic poles. Any of the north or south definitions can

be undefined. Zero defined poles means the object is simply an object that can

be influenced by magnets. One pole models a mono-pole magnet. Two poles

model a conventional magnet.

Magnet on/off Property

If this is false, then the magnet will not exert any force. This is useful for

turning electromagnets ‘on’ and ‘off’.

Is an electromagnet Property

This property indicates if an object should behave like an electromagnet.

Finally, the properties that are relevant to the buoyancy simulation:

Density Property

The density of the object.

Liquid Property

This will flag the object to be a body of liquid.
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6.13.2 Resolvers

This apportionment combines rigid body simulation and collision detection into a single resolver:

Dynamics Resolver

Properties read: {Position, Velocity, Angular Velocity, Rotation,

Shape, Mass, Liquid}

Properties written: {Position, Velocity, Angular Velocity, Rotation}

Resolver properties: {CC (Currently colliding objects), CN (Objects

added to CC this step), CP (Objects removed from

CC this step)}

Work on advance(): Performs both collision detection and rigid body sim-

ulation. The ‘Liquid’ property is read so that colli-

sion detection is not performed between liquid and

solid objects.

Interaction functions:

addForceToPoint(object, point, force) - Adds the specified force to the object

at the specified point.

No gravity related resolvers are required as both gravity implementations are moved to a derived

property set.

The electricity resolver is light-weight as the main work has also been moved to a derived

property set:

Electricity Resolver

Properties read: {GE}

Properties written: ≡ read(Electricity Resolver)

Work on advance(): Manipulate the electricity graph as instructed.

Interaction functions:

addConnection(object, object) - Adds a connection between two conductors

in the electricity graph.
removeConnection(object, object) - Removes a connection between two con-

nected conductors in the electricity graph.

Magnetics simulation is identical to the current proof-of-concept implementation, consisting of

a resolver, a derived property set (and an interaction, defined later):

Magnetics Resolver

Properties read: ∅

Properties written: {Magnet on/off}

Work on advance(): Change the properties as requested by the interac-

tion functions.

Interaction functions:

enableMagnet(object) - Sets the on/off flag to ‘on’ for the specified object.

disableMagnet(object) - Sets the on/off flag to ‘off’ for the specified object.
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Finally, buoyancy is implemented as a resolver. This implementation will only work with the

linear gravity model and requires an interaction feeding it the current global gravity vector.

property.

Buoyancy Resolver

Properties read: {Position, Rotation, Shape, Density, Liquid}

Properties written: ∅

Resolver properties: {Linear gravity vector, FB (per object buoyancy

force), (Centre of Buoyancy (COB))}

Work on advance(): Calculate the centre of buoyancy and FB and exports

them as per-object properties. The linear gravity

vector (which the model requires) is set via an inter-

action function.

Interaction functions:

setLinearGravity(vector) - Defines the linear gravity vector.

6.13.3 Derived property sets

Whether a node is on or off can be derived only from the electricity graph:

Electricity DPS

Properties read: {GE}

Derived properties: {Electrical state (per object)}

Work on update(): This can either be single-wire or two-wire as detailed

in Chapter A. The electrical state of an object can

be ‘on’ or ‘off’.

Again, magnetics is identical to the current implementation:

Magnetic Forces DPS

Properties read: {Position, Rotation, Magnetic poles, Magnetic

strength, Magnet on/off}

Derived properties: {FM (Magnetic forces for each object)}

Work on update(): For each pair of magnets, calculates the attracting

and repelling forces and exports the accumulated

value.

Gravity (both linear and real) is implemented in a derived property set. Both DPS are pre-

sented:

Linear Gravity DPS

Properties read: ∅

Derived properties: {FG (Force due to gravity)}

Work on update(): Exports a force due to gravity for each object. The

gravity vector is implementation defined and cannot

be changed by the physical simulation itself.
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Note that the Real Gravity DPS exports exactly the same set of properties:

Real Gravity DPS

Properties read: {Position, Mass}

Derived properties: {FG (Force due to gravity)}

Work on update(): Exports a force due to gravity derived from the po-

sition and mass of each object.

6.13.4 Interactions

A RBS← Collisions interaction is not required, as everything relating to dynamics is handled in

the Dynamics Resolver. Both linear and real gravity are implemented with a single interaction:

(Dynamics ← Gravity) Interaction

Properties read: {Position, FG}

Work on apply(): Applies the force due to gravity to each object at its

centre of mass.

Electricity and dynamics are tied together in the standard way:

(Electricity ← Dynamics) Interaction

Properties read: {CN , CP , Conductor}

Work on apply(): Connects any new colliding objects (if both are con-

ductors) and disconnects any previous colliding ob-

jects (if both are conductors).

The final two interactions are virtually identical to the ones defined in the proof-of-concept

implementation. This interaction will apply the magnetic forces calculated to the dynamics

simulation:

(Dynamics ← Magnetic Forces) Interaction

Properties read: {Position, Magnetic poles, FM}

Work on apply(): Adds all the forces calculated in the Magnetic

Forces DPS at the magnetic poles (or the centre of

mass if none are specified).

Finally, this interaction is required to make electromagnets work:

(Magnetics ← Electricity DPS) Interaction

Properties read: {Electrical state, Is an electromagnet}

Work on apply(): Set the Magnet on/off property equal to the electrical

state of any electromagnet object.

101



6.13.5 Scheduling and parallelism

A number of components in the apportionment proposed above can be run in parallel. All DPS

and Interactions can be run in parallel by definition.

The Electricity Resolver and Magnetics Resolver are independent, both from one another

and the other resolvers as no other resolver reads or writes any of the properties they write to

or read from. The Dynamics Resolver and Buoyancy Resolver cannot be run in parallel because

the latter reads a few object properties that the Dynamics Resolver writes to:

rProp(Dynamics) ∩ rProp(Buoyancy) ≡ {Position,Rotation, Shape} (6.2)

6.14 Concluding remarks

This chapter documented three distinct but closely related items:

• An implementation of the methodology.

• Experiments conducted in the implementation.

• Results showing that a wide range of non-scripted and non-trivial interactions is possible,

using nothing but object properties and how the world is constructed.

There was never any question if an implementation of the methodology could be created,

rather the question was how well it could be done. One important observation from the imple-

mentation presented here is that the correct design decisions are not obvious from the start,

both on implementation details and how to structure physics within the methodology itself. A

better apportionment has already been documented in Section 6.13 above. Although the “best”

method of implementation is dependent upon the final goals of any given project; in the context

of the work carried out for this dissertation a more ‘true’ implementation, i.e. one where any

component can be swapped at run-time and that follows the definition of the methodology to

the letter, could have been more useful. Section 7.2.1 contains some notes on how this could

be accomplished in Python.

Each of the experiments shows that different kinds of physics can be brought to bear on

a model, with no need for each kind to know how the others are simulated. The combined

effects of the physical forces emerge naturally and in an intuitively obvious way. The work

in this Chapter shows that our original aspirations have been achieved; complex objects can

be assembled from smaller basic parts and their union gives rise to emergent, non-scripted

behaviour.

Each of the experiments includes a comparison to how the initially observed behaviour can

be implemented in a more classical, scripted environment along with a list of other potential

interactions that are possible in the scenario modelled but not in the obvious scripted imple-

mentation. Although each of the items from these lists can be implemented by extending an

existing script or adding yet another script; structuring the physic simulation according to the

methodology will achieve everything in one step.
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Chapter 7

Discussions and future work

This Chapter outlines possible future research and implementation work in three areas:

• Work related to the methodology itself and its limitations.

• Implementation work related to the methodology.

• Physical simulations.

This chapter draws primarily from the related work on physical simulations surveyed in Chap-

ter 2 and the implementation described in Chapter 6.

7.1 The methodology

This Section will identify areas of the methodology that can be improved upon. This work

would be independent of any implementation and may have significant impact on how the

methodology works.

7.1.1 Scripts

Although one of the primary objectives was to abolish scripts, they still remain useful when

applied at the interaction level. This scripting in the interaction layer is different to conventional

scripts which hard-code a specific event, i.e. “this light switch activates that light”.

Fundamentally, scripting an interaction is not that different from a ‘normal’ interaction. It

is an implementation of an interaction except that it is interpreted and not machine code. For

certain implementations, such as the Python implementation discussed in Section 7.2.1 below,

this would not even be different from a standard interaction. Scripting within the methodology

will require the following:

• A notation to express a scripted interaction.
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• A way of attaching scripts to objects, either by special flags or by assigning the scripts

themselves. This could be achieved by a ‘Scripts’ property that would be a set of inter-

action scripts that act on this object.

• Some analysis on which interactions it would be useful to implement as scripts.

It is assumed that scripting in the resolver or DPS layer would not be useful, but this

assumption should also be explored.

7.1.2 Difficult object types

In theory, the methodology is not constrained to any type of object. However many simulations

make assumptions as to the nature of objects, the most notable one being rigid body simulations

such as ODE. Generally in such a simulation other types of objects are not accounted for at

all. An example of this, which can be found in the implementation discussed in the previous

chapter, is a static body of water; it never moves and its only purpose is to apply buoyancy

forces to submerged bodies.

It would be useful if the methodology supported the following types of objects, but some

thought is needed to seamlessly integrate them with the methodology:

• Open bodies of fluids and other deformable objects. Examples of fluids would be water

in a glass, an ocean, a river or a blood splatter. Examples of other deformable objects

include a bouncy and deforming rubber ball or a table cloth. These are traditionally hard

problems and expensive to simulate.

• Particle systems. Although they could be modelled by one particle corresponding to one

‘object’, this would quickly become prohibitively expensive as particle systems gener-

ally consist of thousands of particles. They are all related however and usually share a

substantial amount of data.

7.1.3 Object creation and removal

Certain physical simulations would benefit from the ability to create or destroy objects. For

example imagine a simulation of a tap and an empty glass. The user can open the tap to fill

the glass. At this point the ‘Water in Pipes’ simulation would ideally create a particle system

representing the water. These particles then gather in the glass.

Currently there is no way to describe the creation or destruction of objects, however the

best place to do this would probably be in the interaction layer; either expose the ‘world’ as

a resolver or making available some global interaction functions which are not associated with

any particular resolver.

7.1.4 Shortcuts

One shortcut has already been outlined and justified in Section 5.7.3; it potentially allows an

implementation to interleave the work of an interaction with that of a DPS. Some physical
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simulations (packages) are tightly integrated (for example ODE and ODE’s collision detection

library) and an efficient implementation should take advantage of this. Alternatively a physics

simulation could provide a quick and convenient method to implement something related (for

example ODE provides a simple shortcut to apply a gravity force to every object in the world).

Again, an efficient implementation should ideally be able to use this without breaking the

overall structure of the methodology.

It is worthwhile to investigate further possible optimisations and create a formal framework

for them. Potential optimisations can be classified as being ‘internal’ or ‘external’.

Internal In the instance where one simulation is the back-end for two or more components of

the methodology, these components can know about each other and use shortcuts if possible.

For example imagine an implementation where the RBS Resolver is backed by ODE, and the

system also provides two components for the Collisions DPS: one backed by ODE and the other

backed by GImpact. Each one of them should be written so that they can work independently

of each other, but the ODE Collisions component could detect the presence of an ODE driven

RBS Resolver and take advantage of the fact that they both are backed by the same library

and use implementation-specific shortcuts.

This approach is internal to the components and takes advantage of a single library being

able to provide more than one piece of functionality.

External Another approach is to apply some pattern matching and select the best suited

component for each specific requirement or the best suited component for a specific system.

For example, the user could specify that rigid body simulation and simple linear gravity is

required. To fulfil the requirements of the rigid body simulation the implementation then

examines the host system and detects the presence of a hardware based solution. The system

selects the PhysX component to provide the RBS Resolver and Collisions DPS. On a different

host system that lacks the PhysX hardware, ODE might be chosen by the system as a suitable

fall-back.

A related example is if the system then tries to select an (RBS← Linear Gravity) Interaction.

The general fall-back interaction, which cycles through all objects in the game world and applies

a force to each, is always available. However for the specific instance where the rigid body

simulation is provided by ODE, a special shortcut interaction which knows about the ODE

function dWorldGetGravity() is selected instead.

These patterns could either be encoded into all component implementations so that compo-

nents “select themselves”, or could be encoded into a separate priority list part of that particular

implementation of the methodology.

7.1.5 LOSD

LOD is a very useful technique for reducing the complexity of a scene. Traditionally it is applied

to rendered objects, most notably terrain. However, the concept of LOD is also applicable to
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the methodology. Individual simulations may make use of LOD techniques anyway, but with

respect to the methodology a different approach is interesting: the transition of one physical

simulation to another, which can be more or less general. This concept will be called LOSD.

The methodology should try to formalise this. The following explores this idea with two

examples, in order to show what would be useful to achieve.

The effect of rain drops hitting the surface of a largely static body of liquid such as a river or

lake is seen frequently in games. A shader is applied to the surface and the illusion of ripples on

the surface is created. This is usually fast, as it can be done entirely in the GPU; the geometry

of the body of liquid is not actually deformed.

However, this model cannot handle larger objects, such as a heavy rock, hitting the surface

of the liquid. A valid use of LOSD would be to fall back on a 2D or 3D fluid dynamics model

in the case of larger objects hitting the surface and to only use the shader solution for small

objects.

LOSD can also apply to rigid body simulation. For example, imagine a gear box containing

three gears in the ratio of 10 to 8 to 15. To simulate this gearbox ‘properly’ three models

of gears, the three axis and the gearbox are required and collision detection and rigid body

simulation will take care of the rest. Modelling the gear box this way is the accurate thing to

do, as collisions and forces are what make it work in the real world.

However it is equally valid to calculate the ratios of the gears and conclude that the third

gear should turn at a ratio of 2/3 of the first gear. Using this calculation in place of rigid body

simulation is a good example of LOSD; a more specific model is used to achieve a particular

instance of physical simulation. Two non-trivial challenges derive from this:

• How to automatically determine when to fall back to the ‘default’ (general) simulation.

• How to automatically determine when to use a more specific simulation.

A simple first approach would be to construct larger objects and ‘build in’ the faster physics

simulation and fall back to ‘real’ physics if necessary. This could be achieved by dropping to

the more general solution if any of the individual objects are tampered with in an unexpected

way. This only implements a solution to one of the two challenges, but it is a step in the right

direction.

The other challenge, determining when to use a simpler physics simulation, is a lot harder

and may not be feasible or possible in the general case. However, it may be possible to ‘undo’

the above if we can detect that the source of interference is gone.

Related to this is the task of working out how to represent both the challenges and their

solutions in the methodology. It may be necessary to create a new component that describes

the transition of one resolver to another.

7.1.6 An additional layer

All physical simulations considered during this work have fitted into the four layers provided

by the methodology. It is worth considering whether an additional layer between the properties
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and the resolver layer could be introduced. This layer would be identical to the DPS layer,

except that resolvers can read from the properties derived in it as well.

This approach may make some implementations easier by potentially eliminating some inter-

actions, but it will not achieve anything that was not already accomplished by this methodology.

7.2 Implementations of the methodology

This section will discuss two pieces of implementation work: a better implementation (for

research) that will be as close as possible to the specification of the methodology as laid out in

Chapter 5 and an implementation in the form of an example game.

7.2.1 An implementation in Python

The current implementation, as presented in Chapter 6, is not an unreasonable implementation

of the methodology but it is closer to what would be done in a game. An implementation

without shortcuts which follows the exact definition of the methodology could be useful when

testing concepts that apply to the methodology itself.

I believe that the choice of implementation language is an important one in this case, and

a sufficiently flexible and true implementation will require a flexible language. Python [vRF] is

such a language and it has many features that would make it a good choice:

• It is already a scripting language, which would make it easy to experiment with ‘scripted’

interactions as outlined in the previous section.

• It is easy to write bindings to C or C++ libraries (such as ODE) using Cython [BBSC],

allowing a variety of physical simulations to be integrated. This also indirectly encourages

a clearer separation between the implementation of the methodology and the simulations.

• Its dynamic nature and features, such as reflection and introspection, make it easy to

have objects to which properties can be added and removed at run-time. Resolvers,

DPS, Interactions and all object properties (as defined in Chapter 5) can be implemented

precisely.

• Python is a good language to develop prototypes in and the resulting programs are usually

highly maintainable and adaptable.

However, since Python is usually interpreted, its speed cannot be favourably compared to

that of a compiled machine language, such as C++ or C; hence such an implementation will

not be useful for writing a real game.

Scheduling and parallelism

Although Python itself is not multi-threaded as such, external operations (conventionally block-

ing I/O) can be concurrent [vRF08]. Thus, any resolver or DPS that is implemented externally
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can potentially be run in parallel, allowing some limited exploration in that direction. How-

ever, the implementation in the form of a game proposed below is better suited to this kind of

experimentation.

This proposed implementation can focus on exploring a different kind of optimisation: re-

solvers and DPS do not necessarily have to be executed every frame. If the results of a physical

simulation are generally not required straight after an event has occurred, execution of the

component can be scheduled to happen only every Nth frame. Some initial experiments have

been conducted with the buoyancy implementation as described in Section 6.12.5 (page 97);

performing the adjustment of forces only every 5 frames still produces a believable simulation.

A variant on this is to make execution dependent on available CPU time (including a

constraint so that the simulation is guaranteed to be executed periodically). In a 3D action

game, this approach would see a resolver such as the Buoyancy Resolver only run when the rest

of the game world is reasonably quiet as rendering large explosions and effects usually requires

a substantial amount of CPU time. Furthermore, if large explosions do happen, the player

won’t be able to tell if the boat it not at rest because of the explosions or because the buoyancy

simulation has been given low priority.

Out-of-order execution and on-demand execution may not be useful to every application and

every physical simulation, but a strict framework would allow a detailed investigation of useful

upper bounds, which in turn can be applied to specific implementations of the methodology as

would be found in a complete game.

7.2.2 A complete game

A rather different implementation should be an application with a specific goal and a number

of assumptions, comparable to those made when writing a real game.

Already mentioned in Chapter 2, in 1992 Sierra Entertainment released an innovative game

called The Incredible Machine [Sie92], of which a screen-shot is show in Figure 7-1.

The game featured a simple deterministic rigid body simulation and objects such as ropes

and pulleys, along with more esoteric items such as cats, goldfish and monkeys on bicycles.

The objective for each level was stated and the user was provided with a number of additional

objects that could be placed anywhere in the game world in order to achieve the objective.

A reimplementation of such a game would be an ideal scenario for the methodology. It would

allow the overhead of a good from-scratch implementation of the methodology to be measured,

and different approaches to implementing the methodology could be compared. Given the

number of different physics simulations that would likely be involved, it also provides an ideal

test environment to experiment with the various multi-threading approaches.

Another challenge this game in particular would pose is that the simulation must be com-

pletely repeatable; multiple runs of a scenario with identically placed objects must result in the

same outcome. Note that physical accuracy is not necessary, but repeatability of the simulation

is.
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Figure 7-1: A screen-shot from “The Incredible Machine”, c© 1992, Sierra Entertainment. The
objective of the level shown is to somehow move the bucket in the top left. The solution is left
as an exercise to the reader.

7.3 Physical simulations

This final section will look at various physical simulations, with respect to how they could

fit into an implementation of the methodology. Some of these simulations have already been

implemented separately and it is only a matter of integrating them into the methodology, others

are still rather experimental or not fast enough for interactive applications.

7.3.1 New components for existing simulations

As discussed in Chapter 2, there are many rigid body simulators and collision detection libraries

available under various licenses, some free and others proprietary.

The basic idea of writing a common interface for a number of physics simulation libraries

has been attempted before, for example with libraries such as Gangsta [Tea], PAL [Boe] and

OPAL [FRS]. However, an implementation under the methodology would be attacking the

problem from a slightly different angle since there are different concerns than just providing a

generic API.
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Rigid Body Simulation

The final goal would be to have a component for most rigid body physics simulations, however

in the immediate future there are two particular engines that deserve special attention.

PhysX A start up company called AGEIA has implemented part of the Novodex physics

simulation package on hardware. NVIDIA bought AGEIA in 2008 and is offering PhysX through

their CUDA technology, which is available with all their modern graphics cards.

Writing a methodology component based on PhysX is interesting mainly because it is cur-

rently the only hardware based approach to physical simulation and promises to offload a

significant chunk of processing time, leaving more compute time for other parts of the frame-

work.

Havok Havok enjoys a good reputation among commercial physics engines and is used in a

number of games. Writing a component based on Havok is interesting as it is a known good

and robust solution for games and will provide a useful yardstick to compare other similar

components to.

Collision Detection

There also exist a number of collision detection libraries that are independent from rigid body

simulation libraries. In particular, GImpact [LtGC] is a popular open source collision detection

engine with many useful features for games.

An implementation of the methodology also provides an ideal environment to test new and

interesting collision detection algorithms. Of particular interest to larger game worlds are the

stochastic collision detection methods mentioned in Chapter 2. They also fit in well with the

rest of the methodology as they provide believable data, fast and in a fixed time frame, but not

necessarily completely accurate.

7.3.2 Future work related to our electricity simulation

This section will examine future work related to the simplified electricity simulation as described

in Appendix A.

Electrical discharges

Electrical discharges could be modelled with a new interaction. Two conductors placed close

to each other will ‘connect’, producing an arc of lightning. In turn this could create a graphical

effect visualising the arcs, light illuminating objects nearby and also some sound.

Moving the objects further apart would maintain the ‘connection’ until a cut-off point is

reached. The electrical connection could also be toggled in some kind of pattern in order to

produce a flicker effect for nodes that rely on this connection for power. An implementation

would most likely require a simple interaction and some way to produce the visual effect:
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(Electricity ← Proximity) Interaction

Properties read: {Position, Rotation, Shape, Conductivity}

Work on apply(): If the shape and proximity of the objects allow it,

create a connection and a suitable special effect be-

tween the two conductors. A flag such as ‘possible

lightning emitter’ would stop every random conduc-

tor producing such discharges.

Induction

Induction is phenomenon of magnetics. This property can also be implemented with an inter-

action; concerned with generating electricity from induction. An interesting application of this

would be the ability to model a metal detector or to construct a model of a generator.

(Electricity ← Magnetic Forces) Interaction

Properties read: {Position, Velocity, Conductivity, ‘Inductivity’,

Magnetic Properties}

Work on apply(): Objects flagged as inductors will be connected to the

electrical source if they move through a magnetic

field. They will be disconnected if they stop moving.

Network-flow based approach

A possible third model for simplified electricity is one based on network flow. Although compu-

tationally more expensive, a good implementation could provide a model that can account for

some potential difference and some short circuits. It should not be hard to create a prototype,

as BGL includes an implementation for static graphs with O(ve2) complexity [EK72]. Solu-

tions for dynamic graphs also exist, which can be significantly cheaper with O(ve log(v2/e))

complexity [GT88].

A good implementation of this model would have other applications as well. Given an

implementation for the network flow electricity model an accurate model for water in pipes can

be constructed. A simplification would be to use the single cable approach that should give

similar results, is easier to implement and easier for the level designer to use, but is slightly

more expressive.

7.3.3 Other simulations

There are a number of physical simulations that have either been treated as a special case in

an existing simulation or have not been attempted in game scenarios before. Roughly grouped

by simplicity, both in terms of complexity and implementation, these are listed below.
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Easy

The following simulations should be easy to implement and generally are small variations on

existing simulations or could be built on top of existing simulations with interactions.

Simple applications of forces A number of physical simulations can be represented by

simple forces fed into the RBS Resolver. Examples of such small simulations are:

• Explosions, simulated by large forces acting from a point outwards for a short time. The

implementation would likely consist out of a Explosions Resolver and an (RBS ← Explo-

sions) Interaction.

• Simple airflow and wind, simulated by a constant force inside a volume (such as a cone).

For wind, turbulence can be added to cause objects to tumble. A wind simulation could

also make use of shadow volumes in order to determine if an object is affected by wind

(which could be done in hardware, reusing existing shadow volumes), or fast hardware

visibility algorithms.1

• Another application somewhat similar to a wind simulation would be a local anti-gravity

field inside a volume, modelling an area without gravity (or even reversed gravity). This

could be used to create a futuristic lift in a science fiction setting.

Real gravity A gravity simulator for use in space, calculating gravitational forces between

large objects. This should not be challenging implement; the DPS and interactions required

for this have been detailed in Section 6.13 (page 97).

Buoyancy A simple proof of concept model for buoyancy has been implemented, but there is

some room for improvement, which has already been briefly outlined in Section 6.12.4 (page 96).

The model implemented is based on particles and also assumes a level surface of the liquid and

does not cater for other interesting properties such as drag, convection or the compression of

objects at high pressures.

There is scope for development work to produce a more general buoyancy simulation, and

to make it independent from the Collisions DPS.

Initial experiments suggest that buoyancy is a resolver that is well suited to not being up-

dated every frame. The result from the previous frames (the location of the centre of buoyancy

and a force) can be easily reused for a number of frames without noticeable loss in quality.

The time gained from periodic execution means that the simulation can potentially be more

involved and thus more accurate or complete.

1As an aside, shadow volumes could be used for many other things: for example rain in contemporary games
appears everywhere, even if you are standing under a porch. A shadow volume, projected from somewhere
above the player, could be used to work out which areas near to the player are affected by rain.
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Hard

The problems below are generally not attempted in game scenarios due to the complexity

involved. There is ongoing research to develop real-time models for them; these simulations as

they are now would be interesting to implement for the sake of completeness or for the sake of

stress-testing the system.

Open bodies of fluids Simulation of fluids is a difficult problem and there exist several

approaches. Initially 2D approaches have been used to simulate waves or splashes resulting

from drops of liquid. They effectively create a simple height map, which is then applied to a

mesh, but their main limitation the impossibility of modelling ‘overhangs’ such as the crest of

a breaking wave or water pouring into a cup, as illustrated in Figure 7-2.

Figure 7-2: Six images from a short movie, modelled and rendered in Blender in approximately
three hours, showing a simple LBM fluid simulation. From a ‘water generator’, shown as the
sphere in the top of each image, water is poured into the cup. As it fills the cup, it overflows
and splashes out into the environment. For simplicity and clarity an invisible box constrains
the entire simulation, its dimensions can be clearly seen in the last three images.

For games a good compromise is 2D simulation; this can accurately model some waves

and some splashes but can only be used in shallow water scenarios and cannot handle ‘open’

fluids. For example Figure 7-2 is impossible to model using only a 2D simulation, but a hybrid

approach could give a good approximation: a particle system with a suitable fragment shader

can easily represent water ‘falling down’, and if the particles collide with the inside of the glass,

the volume of the liquid contained in the glass is increased. Should the particles miss the glass

the liquid would disperse quickly and not leave any residues other than perhaps a decal.

This hybrid approach is inspired by the work already outlined in Section 2.6.3 (page 22).

There are other special cases for water related simulation, for example Thuerey details a real-

time model for modelling realistic bubbles and the formation of foam for liquids in a shallow

water scenario [TSS+07]. This work also uses a LOSD approach and has separate models for
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the movement of the bubbles and the vortexes they create and the resulting waves which form

on the surface of the liquid.

Another example of such an approximation by the same author models waves using a con-

ventional and efficient 2D method, but detects wave fronts in the resulting mesh and adds extra

geometry and particles to visualise breaking and overturning waves [TMFSG07]. The objective

of the work was to capture the key visual characteristics in an efficient manner and not to

provide an accurate model.

Creating good 3D models of fluids that are fast enough to run in real time remains a hard

problem. As a work-around, good approximations of various phenomena should be considered,

but in the long term a general real-time simulation of liquids is desirable.

Sound synthesis The procedural generation of sounds based on physical properties of objects

and interaction with these objects (such as hitting them, plucking a string, rolling a ball over

a surface, etc...) is also an ongoing research topic. Broadly speaking there are two areas of

interest with regards to the methodology:

• The procedural generation of sounds ‘from nothing’, i.e. generating believable sounds

without pre-recording anything. Usually sounds are pre-recorded and the sample is played

back when a specific event occurs.

• The procedural generation of the acoustic properties of an environment. For example

an echo is usually generated by sampling an impulse (such as popping a balloon) in an

acoustically lively environment (such as a church) and then convolving the sound with

this environment sound.

As discussed in Chapter 2, there exists work to synthesise both of the above. However, only

the former has really been synthesised in real-time. The potential to enrich a virtual environ-

ment with either is huge, especially if everything can be synthesised from object properties.

This would save both storage space and money in game development, as fewer sounds would

have to be recorded in a studio.
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Chapter 8

Conclusion

8.1 Summary

This document laid out the overall goals of the methodology in Chapter 3. The first goal is

to provide an environment that encourages different solutions by the player. The second, but

equally important, goal was to find a way to describe otherwise disjoint physical simulations

and how they can work together to become something greater than the sum of their parts.

The methodology was defined in Chapters 4 and 5. It was emphasised that the methodology

is not a physical simulation as such; instead it is concerned with providing the programmer

with a framework to approach the first goal.

The methodology draws upon the many and diverse physical simulations that are currently

available and provides a way to describe each of these simulations with respect to how they in-

teract with the rest of the system. Chapter 6 describes an implementation combining dynamics,

electricity, magnetism, buoyancy and sound. In that Chapter the notation from Chapter 5 was

successfully used to describe both the actual implementation used to carry out the experiments

and how a refined, idealised implementation might be structured.

The experiments, which are described in Chapter 6, provide evidence of how the first goal

can be achieved. Each of the experiments was put together using very simple parts; the overall

behaviour of complex systems, such as the electric motor, emerged naturally. There was also

scope in each of the experiment for the user to perform more than just the obvious interactions,

for example silencing the doorbell by jamming an object between the bell and the striker.

The dynamics simulation used throughout this work was based on ODE, showing how ex-

isting physics simulations can be taken advantage of and integrated into an implementation

of the methodology. Appendix A developed two models for simulating simplified electricity in

the context of games. Furthermore, two simple simulations, magnetism and buoyancy, were

added on top of this to provide more scope for interesting experiments and to demonstrate

that the methodology can be used to describe something not originally included in either sim-

ulation: neither the electricity simulation nor the magnetics simulation dealt with the concept

of electromagnets, this feature was implemented transparently using an interaction from the
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methodology.

Many more interesting physical simulations exist and it would be exciting to see them appear

in games, Chapter 2 and Chapter 7 provide a modest pool of ideas. In the latter, some areas

in which the methodology itself can be improved upon are also outlined.

8.2 Conclusion

In conclusion, two important findings established during this endeavour must be highlighted.

The first of these is that producing a correct and well formed implementation of the method-

ology is not trivial. If one proceeds without a sound plan it is easy to come up with a framework

that works for the original assumptions, but this can be difficult to change later. With a good

plan and the important components of the methodology written down as to how they should

appear (an example of this is the idealised implementation detailed in Section 6.13 (page 97)),

it will be a lot easier. Of course this is obvious software engineering wisdom, but an implemen-

tation of the methodology especially will benefit from a good initial plan.

The second, and more important, item to highlight is that when considering whether to use

the methodology for an application, it is vital to examine if the assumption from Section 3.3.1

(page 29) will hold. This assumption states that for some number of possible ways to interact

with the game world, a roughly equal number of scripts are conventionally required and using

the methodology and its interactions requires less overall effort after some point.

It is important to recognise that for some applications this assumption will not hold. Con-

sider a game that only needs dynamics and contains only a couple of light switches. In this

case the effort to lay out the world so that ‘it works’ will be greater than the effort to write the

scripts. However, as the number of physical simulations emulated via scripts increases, there

will come a point when it is easier to just provide a ‘correct’ world, although when precisely

this point occurs can be difficult to measure.

Once the methodology is applied successfully, the number of possible interactions with the

game world can be much greater. With every new physics simulation and interaction compo-

nent added, this benefit is further amplified. Even if exposing a vast number of possible user

interactions and allowing unconventional solutions to problems was not one of the program-

mer’s initial goals, using the methodology will provide that ‘for free’, which can only be a good

thing.
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Appendix A

Electricity

This appendix proposes two approaches to model simplified electricity that are suitable for

computer games and in particular for our methodology. As both approaches use parts of graph

theory, the terms used are defined in Section A.2. The first approach is rather basic and was

the core feature of the first experiments performed in the course of this work. This approach

is described in Section A.4. A second, slightly more general, approach is then outlined; some

of the approaches considered to get there in Section A.5 are first discussed and then a working

algorithm is given in Section A.6. Finally, the theoretical complexity of both approaches is

stated in Section A.7.

The implementation related to this appendix is discussed further in Section 6.5 (page 65)

and some future work pertaining to this is outlined in Section 7.3.2 (page 110).

A.1 Introduction

The work described in this appendix is self-contained with respect to the rest of this document;

it was originally driven by the need for a simple physical simulation that is very different from

dynamics.

Since the problem space will be a game, not every aspect of electricity is important, for

example what the exact voltages are in a parallel circuit probably does not make for a dramatic

set piece in a story.

In the initial phase of prototyping, physics simulations were essentially split into two basic

types: simulations that would run frame-by-frame (such as dynamics) and simulations that

are event driven and would only run when something changed, such as simplified electricity as

discussed in this appendix. These event driven physics simulations were intended to be unified

into a framework consisting of one or more connection graphs. Changes were propagated along

it using generic messages. Electricity was chosen to be implemented as could be expressed

naturally in terms of an event driven simulation. The very first implementation was message

based, but subsequent implementations were based on graph theory.

The simplification of electricity involves looking at the overall behaviour of electricity and
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expressing only a subset; one that only concerns itself with well known and obvious properties.

These behaviours should be immediately intuitive to a potential user and should conceivably

be useful in the context of a computer game.

The most basic property of electricity is that of an electrical circuit delivering power to a

device. If the circuit is broken, the device can no longer function.

Other properties, such as voltages and the potential difference, will be ignored. Although

to power one device, such as an Light Emitting Diode (LED), will require a different voltage to

powering a washing machine, in the context of a game both of these circuits would function in

the same way, but they would never need to interact with each other. Thus ignoring the entire

problem set of voltages and potential difference is an example of a good simplification.

A.1.1 Motivation for a new solution

The simulation of complex electrical circuits is a difficult problem, which generally involves

numerical integration or similar iterative processes. A consequence of this is that run-time

may not always be predictable or constant. As described in Section 2.6.2 the most widely used

electrical circuit simulation SPICE3 [otUoCaB] and its descendants are all based on an iterative

approach.

These iterative solutions are generally slower than event-driven simulations, at least in the

context of action games where processor time is rather scarce.

Existing solutions also have a different aim: to simulate electrical circuits as accurately as

possible. In such a simulation the user is usually interested in, and can query for, potential

differences, resistances, voltages, feedback and minimal power consumption; none of which are

relevant for games. The query “is any given device or component of a circuit ‘on’ or ‘off”’, is

so basic that it is usually not worth running such a complex simulation in the first place.

Digital logic circuit simulations, on the other hand, are interested primarily in the ‘on’

or ‘off’ state of devices and are thus generally event based. The traditional digital circuit

simulators XSPICE [oEEotGIoT] and NGSPICE [NtNd] are built on top of SPICE and are

thus still backed by an iterative system. (XSPICE is built directly on SPICE; NGSPICE is

a combination of XSPICE and two other SPICE modifications plus some additional features.)

However their focus is the modelling of logic circuits, i.e. and gates, not gates, adders – all of

which are far too complex for our purposes.

A.1.2 Assumptions

This list of assumption applies to all approaches detailed below.

1. The circuit/electricity graph is a dynamic graph which is not necessarily fully connected1.

A vertex in it usually represents an object in the game world that can be affected by

electricity. For example: a wire, a light bulb, a socket or a TV. An edge in the graph

1All graph theory terms are defined in the next section.
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represents a connection between two objects. For example an edge between the socket

and the TV plug would indicate that the latter is plugged into the former.

2. An electrical circuit requires both a connection to a source and a return (or sink).

3. It is not necessary to identify or model short circuits.

4. There is no concept of potential difference or resistance.

5. There is no concept of positive or negative poles.

6. There is only one global power source and return per electricity graph. Other power

sources are simply connected with an invisible, virtual connection to the source node;

likewise other returns have such a connection to the return node.

A.1.3 New approaches for games

In what follows two graph theory based approaches for simplified electricity will be detailed.

They are of varying detail (in terms of how expressive the simulation is) and complexity and

provide a model for simplified electricity for games. Neither of them is intended to be full

circuit simulation such as SPICE3, but rather an approximation that still give useful results in

the context of games.

Single Cable This approach models complete power cords2 with both a positive and neg-

ative/neutral lead. This is sufficient to implement simple scenarios such as light switches or

plugged-in devices that can be deactivated by unplugging them.

The single cable approach will represent both source and return leads in the same connection

and thus does not require a return node as it is the same as the source node.

Two-wire This approach models individual wires and can be used to model more complicated

problems. In this approach, the positive wire and the negative wire will each be modelled

explicitly.

A.2 Background graph theory terminology

This section will introduce and define various graph theory related terms which apply to all

the methods outlined in this appendix. Terms related only to specific approaches are described

alongside the individual approaches. The graph in Figure A-1 will serve as an illustration for

each term defined in this section.

A circle with a number (or some other text label) represents a vertex in the graph. A line

between two vertices represents an edge . It should be noted that the terminology in graph

theory is unfortunately not completely consistent and a few concepts are known under more

than one term. For instance, the term vertex is used interchangeably with node. Sometimes

2Such as standard International Electrotechnical Commission (IEC) cables
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Figure A-1: Example graph which will be used to illustrate the import graph theory concepts.

one term can be more intuitive than another, equivalent, term depending on the context in

which they are being used. For instance, if the graph theory aspect of a particular method is

examined, the term edge is used. However when talking about an electrical network, the term

connection is more useful.

A.2.1 Dynamic graph

Conventional graph theory is usually only interested in static graphs: given a particular graph,

certain statements can be made about it and its properties. Algorithms give a particular answer

to a particular problem and assume the graph will not change.

A dynamic graph is a graph where vertices and edges can be added or removed at any

point in time. A dynamic graph algorithm operates on such a graph and generally maintains

some property of the graph (such as connectivity or minimal spanning tree [HdLT01] or tran-

sitivity [PL88]), updating it as edges and vertices are added and removed from the graph. A

good dynamic graph algorithm can maintain such a property (for example connectivity) over a

number of arbitrary graph updates without the need to fully calculate it from scratch on each

modification.

Under the broad heading of dynamic graph theory there are roughly two different classes of

algorithms:

• Can deal with additional edges and vertices (constructive updates), but cannot deal with

the removal of edges or vertices (destructive updates). These are also known as incre-

mental algorithms and a number of conventional graph theory algorithms can be adapted

to be incremental.

• Can deal with both constructive and destructive updates to the graph.
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A.2.2 Subgraph

Informally a subgraph, or sometimes component, of a graph is a small part of it. A subgraph of

graph G is defined by the vertices it contains which must be a subset of the vertices of G. It

also contains all edges between any of the vertices in the subgraph. For example, a subgraph

of the graph in Figure A-1 is (2, 3, 4, 5), this is illustrated in Figure A-2.
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7

Figure A-2: The example graph with the subgraph (2, 3, 4, 5) highlighted.

Every individual vertex of G is also a trivial subgraph of G. A graph (or subgraph) is

connected if there exists a route between any two vertices v1 and v2 that are part of the graph

(or subgraph). The graph in Figure A-1 is a connected graph.

A subgraph does not necessarily have to be connected, for example (1, 8) is also a valid

subgraph of the graph in Figure A-1.

A.2.3 Articulation vertex

Also called a cut-vertex. An articulation vertex of a graph is a vertex that, if removed, will

disconnect the graph. The graph in Figure A-3 contains exactly two articulation vertices:

2 and 4.

A.2.4 2-Connectivity

Also called bi-connectivity. A 2-connected graph or subgraph contains no articulation vertices,

i.e. it cannot be disconnected by the removal of any one vertex.

The graph in Figure A-1 is not 2-connected; however the following subgraphs are examples

of 2-connected subgraphs: (1, 2, 3), (6, 7, 8), (4, 6, 8) and (4, 6, 7, 8). Technically the trivial

subgraph (5) is also 2-connected. Note that this list of 2-connected subgraphs is not exhaustive

and the example graph in Figure A-1 contains 22 2-connected subgraphs in total:

• Eight in trivial subgraphs (vertices 1 through 8).
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Figure A-3: The example graph with its two articulation vertices, 2 and 4, highlighted. If one
were to remove any one of them, the resulting graph would be disconnected. In particular 5 is
not an articulation vertex, because if it were to be removed the rest of the graph will still be
fully connected.

• Ten in trivial subgraphs (all subgraphs containing only 2 vertices connected by a single

edge).

• One in the subgraph (1, 2, 3).

• Three in the subgraph (4, 6, 7, 8). (One of them is shown in Figure A-4.)
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Figure A-4: The example graph with one of its 22 2-connected subgraphs highlighted: (6, 7, 8).
Note that this is not a block graph as vertex 4 can be added to it and the result is still
2-connected. The subgraph (4, 6, 7, 8) is a block graph however.

A.2.5 Block

A block of a graph is a maximal 2-connected subgraph. The graph in Figure A-1 has four

different blocks, they are (1, 2, 3), (2, 4), (4, 5) and (4, 6, 7, 8).
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In particular the subgraphs (4, 6, 8) and (6, 7, 8) are not blocks; although they are 2-

connected they are not maximally 2-connected: to the subgraph (4, 6, 8) one can add vertex

(7) and the resulting subgraph is still 2-connected. However (4, 6, 7, 8) is maximal as neither

vertex (2), nor (5), or any other vertex or subgraph can be added without making vertex (4)

an articulation vertex.

A.2.6 Other terms

The degree of a vertex is equal to the number of edges it is a part of. The degree of vertex 1 in

Figure A-1 is two, the degree of vertex 4 is four.

A graph is cyclic if it contains one or more cycles, i.e. a path from one vertex through

any number of vertices and back again without using any edge more than once. A 2-connected

graph is always cyclic, but the converse is not true. The subgraph (1, 2, 3, 4) in Figure A-1 is

an example of a cyclic graph, but it is not 2-connected.

In this appendix only undirected graphs are of concern. An undirected graph contains edges

that can always be traversed in both directions.

A tree is a connected graph containing no cycles. Trees also contain a root vertex.

A spanning tree of graph G is a tree containing every vertex of G. Since only unweighted

edges are important with the work in this appendix, any such spanning tree is also the minimum

spanning tree.

A disconnected graph can have a spanning forest.

A.2.7 Source node and return node

Unrelated to standard graph theory but used in this work: the source and return nodes are two

vertices labelled as such. They have no other special properties.

A.3 Basic model for both approaches

For the two electricity models in this appendix, the following basic properties hold true:

• Objects in a scene can be conductors or non-conductors. Some objects might do special

things if they are ‘on’, these effects are handled by other physics simulations via interac-

tions. For example, if turned on, a lamp might emit light or an electromagnet will begin

to exert a magnetic field.

• Objects are represented by vertices in a graph called the electricity graph. This graph

can be disconnected. An edge between two vertices symbolises that they are connected

in some way - but this does not necessarily mirror the ‘real’ world and implies a tangible

physical link. For instance, two conductors physically touching would be represented

by a connection in the electricity graph, but an electrical arc between two non-touching

conductors would also be represented by a connection in the electricity graph.
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Another example of a non-tangible connection could be shortcuts on the game world

designer’s part, for example if it is found that a certain wire will never be accessible to

the player since it is embedded in an indestructible wall, it will not have to be modelled

at all and can be represented by simply adding an edge between the relevant vertices in

the electricity graph.

• The simulation is event driven. The information stored within the electricity graph (for

example if any particular object is ‘on’ or ‘off’) is only updated when necessary, i.e. when

the electricity graph is modified.

A.4 Approach I: single-cable

Our first attempt at modelling electricity for games modelled complete power cords (containing

both a live and a neutral lead) between vertices in the electricity graph. Essentially a device

was considered to be ‘on’ if a connectivity query between the power source (designated by the

source node) and the vertex representing the device in question returned true.

A.4.1 Motivation

For the first experiments this single-cable model was devised as it was exceptionally simple in

both concept and implementation. As it was largely proof of concept experimental work, the

main goal at the time was simply to be able to observe the on/off state of devices; simplicity

of the algorithm and implementation were the primary considerations.

A.4.2 Algorithm

The single-cable electricity model is very simple in terms of its expressiveness. It can be fully

defined as such:

• Any one vertex can be the ‘source node’.

• Any object in a connected subgraph containing the ‘source node’ is ‘on’.

• All other objects are ‘off’.

This approach, and all others outlined in this section, distinguishes between two events:

connection and disconnection.

Connection

For this particular approach the connection case is trivial. All vertices in any connected sub-

graph are always in the same state: ‘on’ or ‘off’. If two ‘off’ or two ‘on’ subgraphs are connected,

no work needs to be done. If an ‘off’ subgraph is connected to an ‘on’ subgraph then the result-

ing subgraph is ‘on’. Adding a new vertex is the trivial case of connecting a trivial subgraph

(that vertex) to another subgraph.
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Figure A-5: A simple graph illustrating the single-wire approach. Objects 1-4 are on as they
are connected to the source; objects 5-7 are off as they are not.

For example if a connection between objects 2 and 3 in Figure A-5 is made, no work would

need to be done. This is also the case for a connection between objects 5 and 7. However if

objects 2 and 5 were to be connected, the entire subgraph containing object 5 (i.e. objects

5 and 6) would now be in state ‘on’. (Complexity is at worst O(v + e) where v is the number

of vertices in the graph and e is the number of edges in the graph.)

Disconnection

The disconnection case is more complicated. There are two näıve approaches to it: either

rebuild the graph from scratch or issue a connectivity query from both vertices concerned

to the source node. If a query does not succeed, change the state of all the vertices in the

relevant subgraph to ‘off’. If a minimum spanning tree is maintained, this can be improved:

disconnecting any edge is trivial unless it is part of the minimum spanning tree.

Complexity would be the same as for connection for the first approach. It can vary for

the second approach depending on the connectivity algorithm used. For example [Tho00]

gives an O(log n/ log log log n) solution to the dynamic connectivity problem (updates are

O(log n(log log n)3)), and [HdLT01] gives a more general O(log n/ log log n) solution (updates

are O(log2 n)).

A.4.3 Discussion

Generality

Some physics simulations share a lot of properties. Electricity and water in pipes are an example

of this. For instance, consider the graph shown in Figure A-6.

The source node represents the main source of water, for example a water tank. Vertex 1
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Figure A-6: Example of a water network, using the single-wire approach. If object 5 is a tap
and objects 3 and 4 together represent a valve then the tap would only be able to emit water
if the valve is ‘open’, i.e. a connection exists between 3 and 4.

represents a pipe with a T-junction, routing water to both objects 2 and 3. Vertex 2 could

represent a simple dead-end pipe. Vertices 3 and 4 could represent a simple valve (i.e. a switch).

Vertex 5 could be a tap that, if ‘on’, causes water to flow into a sink. Single-cable electricity is

flexible enough to model such a network and is a sensible simplification for part of the water

problem. For open water (i.e. oceans, coffee in a mug or the water flowing from a tap) a

different model is required and also some means of interfacing or ‘converting’ between them.

(Also see Section 7.1.5 (page 105) for more discussion on such hybrid simulations.)

If the sole use of pipes is to transport water to some destination, then this single-cable

approach is sufficient to model all scenarios. If on the other hand ‘devices’ such as a turbine are

driven by water then the method outlined above is not enough and a more powerful approach

is necessary (such as the two-wire approach outlined below).

Limitations

While this approach adequately models most simple things (such as a light switch set into a wall

or perhaps forcibly turning off a TV by unplugging it) it does exhibit some obvious limitations,

the first two of which are addressed directly by the two-wire approach:

1. By definition, there is no separate source and return. Sometimes it might make for a

more interesting scenario if both the live, or positive lead and the neutral, or negative,

lead of an object have to be connected properly to make it work. Simply adding a return

node and also testing for a connection to it is not sufficient: for example, in the graph in

Figure A-8 (page 128) nodes 4, 5 and 6 would also be ‘on’.

For some scenarios it might be better to allow the disruption of an electrical circuit in

two ways, severing either the live wire (to the ‘source’) or severing the neutral wire (to

the ‘sink’).

2. It is impossible to break chains of devices. When connecting a number of devices in a

simple chain with sequential wiring, breaking any link should disrupt the entire circuit,

not just all devices after the broken link.
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Figure A-7: Example of a sequential device chain. T is a return node.

In Figure A-7, using the single-cable approach, removing the connection between vertices

2 and 3 will only turn off the object represented by vertex 3. If however both the live and

neutral lead are modelled separately as shown in the graph, then disconnecting 2 and 3

should result in breaking the entire circuit. Such a behaviour is not possible with just

one wire and will require a different model.

3. As per our assumptions, there is simply no way to express the concept of a short circuit

within this model. Since not only does it lack the concept of an earth or neutral lead, it

also does not consider potential difference or resistances.

A.5 Towards a usable two-wire approach

Developing a working two-wire approach was significantly more complicated than creating a

good single-cable solution. This section is included for the purpose of recording the approaches

considered. It will describe the original steps made that were eventually replaced by the working

solution as described in Section A.6.

A.5.1 Initial two-wire approach

This approach uses both a source and a return node; depending on what kind of electrical

circuit is being modelled this can represent the + and - poles, or alternatively, a live and a

neutral lead. A connection to both the source and return nodes is required to form a working

electrical circuit. The aim of this approach is to allow the modelling and expression of more

complicated problems, whilst still being at least as powerful as the single-cable approach.

Motivation

This approach was considered because many potentially interesting game scenarios can easily

be imagined that are based on problem 1 or 2 listed above for the single-cable approach.

For example, offering more than one ‘natural’ way to disable a device and accurately mod-

elling a chain of light bulbs where the game allows the destruction or removal of wires are not

possible to model by using the single-cable approach.
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Overview of approach

The new concept in this model is the introduction of a return node. To form an electrical circuit

a device needs both a connection to the source node and the return node. The connection to

the source node and the connection to the return node must not overlap. Hence in Figure A-8

nodes 4, 5 and 6 are ‘off’. Although each of them have both a connection to the source node and

the return node, every single route to either source or return node must pass through node 2.
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Figure A-8: Goal of a working two-wire approach. Objects 1-3 should be ‘on’ as they form a
circuit between S and T; object 4-8 should be ‘off’ as they are either in ‘dead-ends’ or connected
to only one of S or T.

Examples of routes from S to T are: (S − 7 − S − 1 − 2 − 3 − T ) or (S − 1 − 2 − 4 − 6 −

5 − 4 − 2 − 3− T ). However there is - in this case - only a single route that does not use any

traversed node more than once: (S − 1− 2− 3− T ). The set of ‘on’ nodes is all nodes used by

all such routes; in this case {S, 1, 2, 3, T}.

Problems highlighted and other notes

Although dealing with incremental connections is still easy (with the exception of recognising

constructs such as (4, 5, 6) in Figure A-8), incremental disconnect is a lot harder. This, and

the fact that the final solution to this problem as described in Section A.6 (page 132) was not

discovered until much later, led to various refinements and abstractions of the approach in order

to reduce complexity. Although most of them will be outdone by the final approach, some of

them could still be useful in niche scenarios.

A.5.2 Initial tree based approach

Motivation

Since the difficulties in finding a simple solution for the disconnect case persisted throughout

the search for an efficient simplified electricity algorithm, the classic method of divide and
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conquer was considered. It was recognised that electricity networks tend to be hierarchical in

nature, on both the source and the return side. For example, consider the following model of

a city:

• A power plant delivers power to various main transformers inside city sectors.

• Each main transformer powers a block of buildings.

• Each building has its own distribution network, distributing power to each floor.

• Each floor distributes power to each room.

• Each room contains power sockets, providing electricity for a number of devices.

Similarly, on the return side of the graph:

• Each room has power sockets with returns and possibly other earthed objects such as

metal radiators.

• Each building is earthed.

The main motivation behind this approach is to automatically recognise such a structure and

split the electricity graph into easier to handle smaller parts. Given the city scenario above, the

electricity graph would be large, but the parts the user is likely to interact with will be small.

A lot of time spent to figure out if a particular node is on or off will be wasted on performing

the same searches many times. The resulting computational cost can be reduced by structuring

the problem, so that not everything will have to be solved every time.

Overview of approach

The main idea behind the tree based approach is to take advantage of the hierarchical nature

of electricity graphs such as the one outlined above. This should significantly reduce the size

and complexity of the graphs which are examined to determine if the state of any one vertex

is ‘on’ or ‘off’. This is achieved by partitioning the entire electricity graph into three types of

subgraphs:

• A source tree - this acyclic subgraph is a tree and is rooted at the source node.

• A return tree - as above but rooted in the return node.

• Zero or more device graphs.

Since the source tree subgraph and return tree subgraph are both trees, any connectivity query

on them is trivial and fully dynamic. Device graphs are what is left over ‘in-between’ the two;

these are potentially cyclic graphs that have at most one connection to the source tree and at

most one connection to the return tree.

In the example shown in Figure A-9 the source tree is formed by vertices 1 to 5 and the return

tree by vertices 11 to 14. These trees are rooted in vertex S and vertex T respectively. Vertices 6

to 10 form a smaller electricity graph, a device graph, connected to the main electricity network.

This subgraph is connected to both the source (via vertex 3) and the return (via vertex 11).
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Figure A-9: Example electricity graph with source and return trees shown in red and blue
respectively. Nodes 6 to 10 are part of neither.

Problem highlighted

Unfortunately it is not necessarily as clear cut as it is in the above example where the source

tree stops and the return tree begins. For example consider the previous example with the edge

between vertices 8 and 9 removed, as shown in both graphs in Figure A-10. All vertices being

equal, there exist many possible divisions between the source and return tree. Both graphs

show a perfectly valid division of source tree, device graphs and return tree.
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Figure A-10: Two graphs illustrating two of many more possible divisions between the source
and return trees. Having more than possible valid representation of a problem is clearly not
ideal.
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A.5.3 Device node and device graph refinement

Motivation

In order to tackle the problem of not having a unique division between source and return graphs

the concept of a device node (each represented by a single vertex in the electricity graph) and

a device graph can be introduced. This addition no longer assumes that all vertices are equal:

device nodes are vertices that represent objects that draw or use power in some observable

fashion, such as a light bulb. A wire would only serve to get power from one point to another,

but in itself does not ‘consume’ power (ignoring resistance); such a wire is not a device node.

Overview of approach

Any vertex in the graph can be declared to be a device node. A device node indicates that

electricity is used in some fashion at the object represented by that vertex; for instance the

filament of a light bulb would be a device node, its winding would not be. A device node’s

degree is at most two.

A graph is a device graph if it has at least one of the following two properties: it is cyclic

or it contain at least one device node. The device graph can have up to one edge connecting

it to the source tree and up to one edge connecting it to the return tree. The definition of a

device graph is as follows:

• A device node is always part of a (potentially trivial) device graph.

• A vertex contained in a cycle is always part of a device graph.

• It is not possible to create a connection between two different device graphs; instead

adding such an edge will merge the two device graphs into a larger one.

• Source and return trees must always be maximal. If any given vertex could be part of

either a device graph or a tree, it should be part of a tree. For example, vertex 2 in

Figure A-11 could, without this criterion, be part of both a device graph and the source

tree; thus it is part of the source tree.

Figure A-11 gives an example of an electricity graph containing four device graphs. They

are (4, 5, 6, 7), (8), (11), (12, 13, 14).

Problems highlighted and other notes

As with the previous approach, the state of each individual vertex (although only device nodes

are relevant) inside a device graph must be solved by a separate algorithm. The expensive

brute force method is to calculate all possible routes, eliminate overlapping routes and turn all

vertices in one or more of the remaining routes on.

The main motivation for attempting to decompose the original problem into three parts

was that a more efficient method to determine which nodes are ‘on’ and ‘off’ had not been
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Figure A-11: Example of four different device graphs. Vertices shown as a box are device nodes.
The source and return trees are shown in red and blue as usual. The four device graphs are:
(4, 5, 6, 7), (8), (9) and (12, 13, 14).

found yet. It was hoped that this approach would reduce the problem space to something more

manageable where brute force was a valid solution.

Despite the efforts to simplify the algorithm by finding a unique partitioning of the electricity

graph, the benefits of this are easily outweighed by the effort it takes to find device graphs.

Furthermore it is easy to inadvertently collapse the entire tree/graph structure into a single

device graph, making partitioning impossible due to one unfortunate connection. For example,

should the user form a short circuit connection between vertices 1 and 10 in the graph shown

in Figure A-11, the entire graph (other than vertices S and T) will collapse to become a single

device graph.

A.6 Approach II: two-wire

This section will describe a working and efficient solution to the two-wire model as initially

outlined in Section A.5.1 (page 128). This approach could also be used to solve the device

graph problem of the previous section, but there is little point in most cases as this method is

much simpler and more efficient.

A.6.1 Algorithm

In the following example the only two valid non-intersecting paths from S to T are: (S−1−2−3−

4−5−T ) and (S−1−6−3−4−5−T ). In particular a path such as (S−1−10−1−2−3−4−5−T )

is not valid, as the vertex 1 is used twice.
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Figure A-12: An example circuit demonstrating the result after applying the two-wire algo-
rithm. The shaded vertices (1 to 6) are ‘on’.

Unfortunately there is no simple graph theoretical construct that describes the set of ‘on’ (or

‘off’) nodes3. However, if a simple ‘virtual’ edge between the source and return node is added

to the electricity graph (as shown in Figure A-13), the set of ‘on’ vertices becomes identical to

the block of the electricity graph that contains both the source node and the return node.

The following Figure A-14 shows the same example with edge 3 − 4 removed. Note that

the block containing the source and return node has become very small indeed, containing just

(S, T ). The list of all block graphs in Figure A-14 is: (S, T ), (S, 1), (1, 10), (1, 2, 3, 6), (T, 5),

(4, 5), (5, 7) and (7, 8, 9).

Holm and Lichtenberg [HdLT01] give an O(log5v) (where v is the number of vertices) algo-

rithm to identify articulation vertices for dynamic graphs. An implementation for static graphs

with complexity O(v + e) (where v is the number of vertices and e the number of edges) can

be found in BGL [Sie00], which is based on Tarjan’s work [Tar72].

It should be pointed out that for smaller graphs (containing less than 219 elements), the

static methods operating in O(v + e) are faster.

A.6.2 Drawbacks

Aside from the obvious drawbacks of not being able to model short circuits (which could be

interesting for certain games; bypass a security device by causing a short circuit around it) or

3There is however an algorithm: find all cycles in the graph and collapse them into single nodes. Then find
the single remaining path from S to T; all nodes in it are ‘on’. However, this approach is more expensive than
the solution described in this section.
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Figure A-13: The same circuit with the virtual edge S − T shown; vertices 1 to 6 are ‘on’,
vertices 7 to 10 are ‘off’. Box shaped vertices indicate articulation vertices; shaded vertices are
in the source/return block.
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Figure A-14: The previous example with the edge from 3 to 4 removed, showing the state of
the graph after breaking the connection. As before, boxes represent articulation vertices.
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potential differences and resistances, the drawback of being restricted to only a single global

power source is much more subtle.

An easy way to get around this restriction is to create several power nodes and link them

all to the main source node. This approach works if all power nodes represent roughly equal

power sources, but will fail in some corner cases.

For instance, assume the goal is to model both a nuclear power plant (which will power a

gigantic laser) and a small AA battery (which will power a flashlight).

In Figure A-15 vertex 1 represents the nuclear power plant, vertex 2 the battery, vertex 3

the laser and vertex 4 the flashlight. This scenario is believable as long as there is no interaction

between the subgraphs (S, 1, 3, T ) and (S, 2, 4, T ).

S

1

2

T

�

�

Figure A-15: A simple graph showing how different power sources can be modelled näıvely. To
make objects 1 and 2 power sources, they are connected directly to the source node. Objects
3 and 4 consume power, they are each connected to their relevant power source.

If the user now disconnects the laser from the power grid by removing edge 1 − 3 from the

graph, vertex 3 is ‘off’ as expected. However it is still possible to reactivate our laser simply

by forming a connection between one pole of the flashlight battery and the power socket of the

laser as shown in Figure A-16.

S

1

2

T

�

�

Figure A-16: Same as the previous image, but demonstrating the problems of ‘unrealistic’
connections. Object 3 is meant to draw power from the power source represented by object 1,
but clearly a valid connection can be formed by just connecting it to object 2 instead.

This does not make much sense, so it is advisable to only group power sources of similar
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output into any electricity graph. Creating two graphs, low (batteries) and normal (standard

national grid), will likely be enough for most scenarios. The amount of time taken to update

the entire simulation increases with the number of separate electricity graphs present since the

block graph discovery algorithm will have to be run over every single one of them if any vertices

or edges are inserted or deleted (unless the graphs are kept completely separate).

A.6.3 Proof

The original requirement from Section A.5.1 (page 128) states “a device needs both a connection

to the source node s and the return node t [and they] must not overlap”. This requirement

will be known as R. The electricity graph will be known as G. There exists at least one block

graph G′ for that {s, t} ⊂ G′. To summarise, R states two things:

1. An ‘on’ device requires both a connection to the source and the return node.

2. These two routes combined do not use the same vertex more than once (other than the

starting point of course).

This subsection outlines an informal proof (due to the use of some English, in particular when

describing R) that R being true for a vertex v in G is equivalent to the vertex v being contained

in the block graph G′. The proof justifies the use of 2-connectivity and proves equivalence by

proving implication in both directions:

1. It shows that ∀v such that v ∈ G′ then R must hold for v.

2. It shows that if R holds for a vertex v ∈ G then v ∈ G′.

Hence R holds for v if and only if v ∈ G′.

Part 1 Assume v ∈ G′. The block graph G′ contains by definition both the source and return

node so this part of R is trivially true as v ∈ G′ and G′ (a 2-connected graph) is by definition

also a connected graph.

For the second part of R, proof by contradiction is used. Assume the second part of R does

not hold and a vertex must be used more than once. The only way a single vertex must be

traversed by both the route to the source node s and the route to the return node t is if there

is simply no other possible route. If all routes from v to s and t must pass through that vertex,

than removing that vertex would disconnect v from both s and t. This means that vertex v is

an articulation point.

However as G′ is a 2-connected graph and v ∈ G′, removing a single vertex must still leave

a fully connected graph, which in turn means there must be another route; this contradicts our

assumption.

Part 2 Assume R is true for v, that v ∈ G, v and s are connected, v and t are connected and

these routes are simple (i.e. do not need to use one vertex more than once). The route from

v towards s (but excluding the part of the route that is ⊂ G′) shall be known as rs and rt is
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the equivalent for t. It is known that v must be connected to s and s ∈ G′ and v also must be

connected to t and t ∈ G′. Thus {v} ∪ rs ∪ rt ∪G′ is at least connected.

v ∈ G′ is proven by contradiction: assume that v 6∈ G′. From R it is known that it is

possible to reach s and t without using the same edge twice. Thus rs and rt must be entirely

different as per definition of R (i.e. rs ∩ rt ≡ {v}). In particular, their endpoints where they

lead in to G′ are different. These endpoints must be connected, as they are both part of G′.

As {v} ∪ rs ∪ rt is a ‘line’, having a connection at the endpoints of rs and rt in the form

of G′ will form a circle, which per definition, is 2-connected. Hence {v} ∪ rs ∪ rt ∪G′ must be

2-connected. As G′ is a block graph, v ∈ G′, which is a contradiction.

A.7 Complexity Overview

Approach Static Graphs Theoretical Complexity for Dynamic Graphs

Single Cable O(v + e) (BGL) O(log2 v) [HdLT01,Tho00]

Two Wires O(v + e) (BGL, [Tar72]) O(log5 v) [HdLT01]

The static graph implementations used in the proof of concept implementation described in

Section 6.5 (page 65) use the BGL [Sie00]. Boost also supports incremental graph algorithms

for single connectivity, which can give performance gains in certain scenarios, but they do not

support edge or vertex removal from the graph and hence are not full dynamic graph algorithms.
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