442 research outputs found

    On Lattice-Free Orbit Polytopes

    Full text link
    Given a permutation group acting on coordinates of Rn\mathbb{R}^n, we consider lattice-free polytopes that are the convex hull of an orbit of one integral vector. The vertices of such polytopes are called \emph{core points} and they play a key role in a recent approach to exploit symmetry in integer convex optimization problems. Here, naturally the question arises, for which groups the number of core points is finite up to translations by vectors fixed by the group. In this paper we consider transitive permutation groups and prove this type of finiteness for the 22-homogeneous ones. We provide tools for practical computations of core points and obtain a complete list of representatives for all 22-homogeneous groups up to degree twelve. For transitive groups that are not 22-homogeneous we conjecture that there exist infinitely many core points up to translations by the all-ones-vector. We prove our conjecture for two large classes of groups: For imprimitive groups and groups that have an irrational invariant subspace.Comment: 27 pages, 2 figures; with minor adaptions according to referee comments; to appear in Discrete and Computational Geometr

    Online Contention Resolution Schemes

    Full text link
    We introduce a new rounding technique designed for online optimization problems, which is related to contention resolution schemes, a technique initially introduced in the context of submodular function maximization. Our rounding technique, which we call online contention resolution schemes (OCRSs), is applicable to many online selection problems, including Bayesian online selection, oblivious posted pricing mechanisms, and stochastic probing models. It allows for handling a wide set of constraints, and shares many strong properties of offline contention resolution schemes. In particular, OCRSs for different constraint families can be combined to obtain an OCRS for their intersection. Moreover, we can approximately maximize submodular functions in the online settings we consider. We, thus, get a broadly applicable framework for several online selection problems, which improves on previous approaches in terms of the types of constraints that can be handled, the objective functions that can be dealt with, and the assumptions on the strength of the adversary. Furthermore, we resolve two open problems from the literature; namely, we present the first constant-factor constrained oblivious posted price mechanism for matroid constraints, and the first constant-factor algorithm for weighted stochastic probing with deadlines.Comment: 33 pages. To appear in SODA 201

    Submodular Stochastic Probing on Matroids

    Get PDF
    In a stochastic probing problem we are given a universe EE, where each element eEe \in E is active independently with probability pep_e, and only a probe of e can tell us whether it is active or not. On this universe we execute a process that one by one probes elements --- if a probed element is active, then we have to include it in the solution, which we gradually construct. Throughout the process we need to obey inner constraints on the set of elements taken into the solution, and outer constraints on the set of all probed elements. This abstract model was presented by Gupta and Nagarajan (IPCO '13), and provides a unified view of a number of problems. Thus far, all the results falling under this general framework pertain mainly to the case in which we are maximizing a linear objective function of the successfully probed elements. In this paper we generalize the stochastic probing problem by considering a monotone submodular objective function. We give a (11/e)/(kin+kout+1)(1 - 1/e)/(k_{in} + k_{out}+1)-approximation algorithm for the case in which we are given kink_{in} matroids as inner constraints and koutk_{out} matroids as outer constraints. Additionally, we obtain an improved 1/(kin+kout)1/(k_{in} + k_{out})-approximation algorithm for linear objective functions

    Calabi-Yau Volumes and Reflexive Polytopes

    Get PDF
    We study various geometrical quantities for Calabi–Yau varieties realized as cones over Gorenstein Fano varieties, obtained as toric varieties from reflexive polytopes in various dimensions. Focus is made on reflexive polytopes up to dimension 4 and the minimized volumes of the Sasaki–Einstein base of the corresponding Calabi–Yau cone are calculated. By doing so, we conjecture new bounds for the Sasaki–Einstein volume with respect to various topological quantities of the corresponding toric varieties. We give interpretations about these volume bounds in the context of associated field theories via the AdS/CFT correspondence

    Practical and Optimal LSH for Angular Distance

    Get PDF
    We show the existence of a Locality-Sensitive Hashing (LSH) family for the angular distance that yields an approximate Near Neighbor Search algorithm with the asymptotically optimal running time exponent. Unlike earlier algorithms with this property (e.g., Spherical LSH [Andoni, Indyk, Nguyen, Razenshteyn 2014], [Andoni, Razenshteyn 2015]), our algorithm is also practical, improving upon the well-studied hyperplane LSH [Charikar, 2002] in practice. We also introduce a multiprobe version of this algorithm, and conduct experimental evaluation on real and synthetic data sets. We complement the above positive results with a fine-grained lower bound for the quality of any LSH family for angular distance. Our lower bound implies that the above LSH family exhibits a trade-off between evaluation time and quality that is close to optimal for a natural class of LSH functions.Comment: 22 pages, an extended abstract is to appear in the proceedings of the 29th Annual Conference on Neural Information Processing Systems (NIPS 2015

    Eulerian digraphs and toric Calabi-Yau varieties

    Full text link
    We investigate the structure of a simple class of affine toric Calabi-Yau varieties that are defined from quiver representations based on finite eulerian directed graphs (digraphs). The vanishing first Chern class of these varieties just follows from the characterisation of eulerian digraphs as being connected with all vertices balanced. Some structure theory is used to show how any eulerian digraph can be generated by iterating combinations of just a few canonical graph-theoretic moves. We describe the effect of each of these moves on the lattice polytopes which encode the toric Calabi-Yau varieties and illustrate the construction in several examples. We comment on physical applications of the construction in the context of moduli spaces for superconformal gauged linear sigma models.Comment: 27 pages, 8 figure
    corecore