1,585 research outputs found

    Probabilistic reconstruction of the tumor progression process in gene regulatory networks in the presence of uncertainty

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accumulation of gene mutations in cells is known to be responsible for tumor progression, driving it from benign states to malignant states. However, previous studies have shown that the detailed sequence of gene mutations, or the steps in tumor progression, may vary from tumor to tumor, making it difficult to infer the exact path that a given type of tumor may have taken.</p> <p>Results</p> <p>In this paper, we propose an effective probabilistic algorithm for reconstructing the tumor progression process based on partial knowledge of the underlying gene regulatory network and the steady state distribution of the gene expression values in a given tumor. We take the BNp (Boolean networks with pertubation) framework to model the gene regulatory networks. We assume that the true network is not exactly known but we are given an uncertainty class of networks that contains the true network. This network uncertainty class arises from our partial knowledge of the true network, typically represented as a set of local pathways that are embedded in the global network. Given the SSD of the cancerous network, we aim to simultaneously identify the true normal (healthy) network and the set of gene mutations that drove the network into the cancerous state. This is achieved by analyzing the effect of gene mutation on the SSD of a gene regulatory network. At each step, the proposed algorithm reduces the uncertainty class by keeping only those networks whose SSDs get close enough to the cancerous SSD as a result of additional gene mutation. These steps are repeated until we can find the best candidate for the true network and the most probable path of tumor progression.</p> <p>Conclusions</p> <p>Simulation results based on both synthetic networks and networks constructed from actual pathway knowledge show that the proposed algorithm can identify the normal network and the actual path of tumor progression with high probability. The algorithm is also robust to model mismatch and allows us to control the trade-off between efficiency and accuracy.</p

    Inference of the genetic network regulating lateral root initiation in Arabidopsis thaliana

    Get PDF
    Regulation of gene expression is crucial for organism growth, and it is one of the challenges in Systems Biology to reconstruct the underlying regulatory biological networks from transcriptomic data. The formation of lateral roots in Arabidopsis thaliana is stimulated by a cascade of regulators of which only the interactions of its initial elements have been identified. Using simulated gene expression data with known network topology, we compare the performance of inference algorithms, based on different approaches, for which ready-to-use software is available. We show that their performance improves with the network size and the inclusion of mutants. We then analyse two sets of genes, whose activity is likely to be relevant to lateral root initiation in Arabidopsis, by integrating sequence analysis with the intersection of the results of the best performing methods on time series and mutants to infer their regulatory network. The methods applied capture known interactions between genes that are candidate regulators at early stages of development. The network inferred from genes significantly expressed during lateral root formation exhibits distinct scale-free, small world and hierarchical properties and the nodes with a high out-degree may warrant further investigation

    Systems Biology of Cancer: A Challenging Expedition for Clinical and Quantitative Biologists

    Get PDF
    A systems-biology approach to complex disease (such as cancer) is now complementing traditional experience-based approaches, which have typically been invasive and expensive. The rapid progress in biomedical knowledge is enabling the targeting of disease with therapies that are precise, proactive, preventive, and personalized. In this paper, we summarize and classify models of systems biology and model checking tools, which have been used to great success in computational biology and related fields. We demonstrate how these models and tools have been used to study some of the twelve biochemical pathways implicated in but not unique to pancreatic cancer, and conclude that the resulting mechanistic models will need to be further enhanced by various abstraction techniques to interpret phenomenological models of cancer progression
    corecore