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ABSTRACT

Bioinformatics applications in cancer research expanded rapidly over several years in
the past. Due to the fast development of high throughput technologies, it became
feasible to study the presence of hundreds of genes or proteins measured parallel in
one experiment. The challenge is to understand how the regulatory network alters
under different conditions or in disease. Their expression values can be used to learn
more about their interactions. To study their interplay under different conditions
network reconstruction methods were utilized.

This thesis demonstrates a general workflow for integrating data sets from different
data sources into a signaling network analysis for cancer cells. Exemplary, BCR
signaling in lymphomas and WNT11 signaling in breast cancer was analyzed utilizing
gene, proteinn and patient data to elucidate the changes of BCR signaling and WNT11
signaling after specific cell treatment.

The aim of the first study was to investigate proteomic data together with existing
gene expression data to predict how lymphomas translate signaling stimuli to expressed
phenotypes. BCR-related pathway interplays were reconstructed by analyzing several
gene and phospho-protein expression profiles. Therefore, the two network reconstruc-
tion techniques NEM and DDEPN were applied to transcriptomic and proteomic
measurements, followed by an integrative analysis to identify alterations in BCR
signaling after external stimulation.

In the second study, the WNT11 pathways were analyzed in relation to their interplay
to one of its receptors ROR2 in human breast cancer. It has been shown that WNT11
signaling highly depends on its receptors and ligands who determine downstream
signaling. In an integrative analysis pipeline, transcriptomic and proteo-mic data
sets were combined to estimate downstream signaling interplay. Subsequently, patient
data was included to associate the findings with clinical outcome.

In both studies, the analysis identified genes, proteins and pathways considered to
be biologically important along with potentially new results that can be used to
encourage ongoing research.
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ZUSAMMENFASSUNG

Die bioinformatischen Anwendungsmöglichkeiten in der Krebsforschung haben sich in
der letzten Zeit rasant verbreitet. Durch die schnelle Entwicklung von Hochdurchsatz-
technologien wurde es möglich, das Vorkommen von Hunderten von Genen oder
Proteinen parallel in einem Experiment zu messen. Die Herausforderung besteht
darin, zu verstehen, wie sich das regulatorische Netzwerk unter verschiedenen Beding-
ungen oder bei Krank-heiten verändert. Die gemessenen Expressionswerte können
verwendet werden, um mehr über die Interaktionen zwischen den Genen oder Proteinen
zu erfahren. Um ihr Zusammenspiel unter verschiedenen Bedingungen zu studieren,
bedient man sich Methoden zur Netzwerkrekonstruktion.

Diese Arbeit zeigt einen allgemeinen Workflow zur Integration von Datensätzen aus
verschiedenen Datenquellen in eine Signalnetzwerkanalyse von Krebszellen. Am Bei-
spiel des BCR Signalwegs in Lymphomen und des WNT11 Signalwegs in Brustkrebs-
zellen wurden Gen-, Protein- und Patientendaten analysiert, um die Veränderungen
des BCR-Signals und des WNT11-Signals nach einer gezielt durchgeführten Zell-
behandlung zu untersuchen.

Das Ziel der ersten Studie war es, Proteomdaten zusammen mit vorhandenen Gen-
expressionsdaten zu untersuchen, um vorherzusagen, wie Lymphome Signalreize in
Phänotypen transformieren. Die Netzwerkinteraktionen zwischen des BCR Signal-
weges wurden durch die Analyse von Gen- und Phospho-Protein-Expressionsprofile
erforscht. Hierzu wurden die beiden Netzwerk-Rekonstruktionstechniken NEM und
DDEPN für transkriptomische und proteomische Messungen eingesetzt, gefolgt von
einer integrativen Analyse, um Veränderungen im BCR-Signalweg nach externer
Stimulation zu identifizieren.

In der zweiten Studie wurden die WNT11-Signalwege in Bezug auf ihr Zusammenspiel
mit einem seiner Rezeptoren ROR2 beim menschlichen Brustkrebs analysiert. Es
konnte gezeigt werden, dass die WNT11-Signalübertragung stark von seinen Rezep-
toren und Liganden abhängt, die die nachgeschaltete Signalweitergabe bestimmen.
In einer integrativen Analyse-Pipeline wurden transkriptomische und proteomische
Datensätze miteinander kombiniert, um das Zusammenspiel des Downstream-Signal-
wegs zu unter-suchen. Anschließend wurden Patientendaten einbezogen, um die
Befunde mit dem klinischen Ergebnis zu verknüpfen.

In beiden Studien identifizierte die Auswertung Gene, Proteine und Signalwege, die
als biologisch wichtig angesehen werden können, sowie potentiell neue Ergebnisse, die
zur Weiterentwicklung der laufenden Forschung genutzt werden können.
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CHAPTER I

Introduction

1.1 Signaling Pathways

Signal transduction is the process whereby an extracellular stimulus activates a series
of signaling molecules inside the cell which finally results in cellular response to the
stimulus.
Receptor-mediated signal transduction is an elemental cellular process. The cell
membrane acts as a filter to the outside environment and transmits selected stimulatory
cues. When a ligand binds to a specific receptor on the cell surface, it alters the shape
and activity of the receptor, triggering a change inside of the cell, regulating even
changes of gene expression that occur in the nucleus. Or more precisely, the signal is
passed down to a special family of proteins, called transcription factors (TFs), which
then regulate the expression of genes. Accordingly, TFs are the biological connection
between the signaling pathway and the genes. [Alberts et al., 2007]

Errors in signaling interactions are the basis of diseases such as cancer. Therefore,
it is becoming increasingly important for future therapies to target disease-specific
alterations of cell-signaling mechanisms. [Wang et al., 2013; Teiten et al., 2007]

These intercellular signaling pathways are now among the most studied systems in
biology due to their predominant and divergent roles, and their general conservation
across species. At the molecular level, a lot of work was invested in identifying
their ligands, receptors, intracellular effectors, transcription factors, and modulators.
However, the connections between the different signal cascades and their activation
are insufficiently understood.

1.1.1 B Cell Receptor Signaling

The diverse B cell receptor (BCR) signaling has been studied extensively. Its com-
plexity leads to many different events, such as cell survival, apoptosis, proliferation,
and differentiation into antibody-producing cells or memory B cells. [Han et al.,
2003; Yamanashi et al., 1997; Engel et al., 1995] BCR is crucial for normal B cell
development and maturation. As the vast majority of B cell lymphomas express
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the receptor, BCR, and its downstream signaling pathway molecules are attractive
therapeutic targets.

The BCR is a connection between membrane immunoglobulin and the IG-Alpha and
IG-Beta heterodimer. Anytime an antigen binds to the BCR transmembrane receptor,
it initiates the intracellular signaling cascade. Immediately after antigen binding,
BCR triggers over phosphorylation of some members of the SRC-family kinases
leading to the activation of LYN and SYK. [Dal Porto et al., 2004; DeFranco, 1997;
Kurosaki and Kurosaki , 1997; Reth and Wienands , 1997] This activation initiates
the regulated aggregation of intracellular signaling molecules. Among them are
phosphoinositide 3-kinase (PI3K) and Bruton’s tyrosine kinase (BTK). SYK, BTK,
and PI3K are crucial members within the BCR signaling cascade that have been
investigated as important targets of novel agents. [Fowler and Davis , 2013]

Structurally homologous to SYK is ZAP70, which plays a central role in signal
transduction from the T cell receptor. [Chu et al., 1998] In B cells, most of the
phosphotyrosine activation cascade relies on SYK, but ZAP70 was identified in a
subset of normal B cells [Nolz et al., 2005]. More recently, Crespo et al. [2006] detected
the expression of ZAP70 in some B-cell lines and Burkitt lymphoma.

A result of phosphorylation by SYK and LYN at the Y551 site of the kinase domain,
BTK activation is augmented over autophosphorylation of the Y223 site in the SH3
domain. [Park et al., 1996] Additionally, BTK intensifies its activation by engaging
the phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks), [Saito et al., 2003] which
later ends in persist recruitment of BTK.

Moreover, following BCR ligation the MAPK pathway is activated by various pro-
cesses. [Hashimoto et al., 1998] The MAPK pathway regulates several transcription
factors, including c-Myc through ERK, c-JUN, JNK, p38 MAPK, and MAPK.[Johnson
and Lapadat , 2002] For instance, in the ERK/MAPK module, activated Raf phospho-
rylates MEK and the activated MEK subsequently phosphorylates than ERK1/2.
[Dhillon et al., 2007] The AKT pathway likewise contributes to BCR-induced survival.
AKT is activated when PIP3 is formed by PI3K. By that, AKT gets phosphorylated
and organized at the plasma membrane. [Bellacosa et al., 1998] AKT then promotes
cell survival by phosphorylating among others the proapoptotic proteins Bad and
by intensifying nuclear aggregation of NFAT through inhibition of glycogen synthase
kinase 3 (GSK-3). [Gold et al., 1999]

The canonical NF-κB pathway is also an essential contributor to BCR signaling. After
stimulation via BTK, PI3K, or AKT, the IκB kinase complex induces phosphorylation
of I-κB, promoting nuclear translocation of NF-κB and gene transcription. NF-κB
activates a broad collection of genes, which are liable for proliferation, and B-cell
survival. [Balaji et al., 2018]

Notably, the diverse relationships between the above described pathways emphasize
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the complex structure of BCR signaling. This indicates that there may be many
alternatives for possible targets for inhibition.
Another important aspect is the fact that recent biological studies implicate the
existence of several feedback regulatory circuits involved in the above mentioned
pathways. [Dougherty et al., 2005; Reth and Brummer , 2004] As these signaling
interplays and feedback mechanisms can block or attenuate treatment efficacy, com-
putational network simulation models can help to better predict alterations by environ-
mental changes including treatment responses.

1.1.2 WNT11 Signaling Pathways

The WNT11 (acronym for wingless-type MMTV integration site) signaling pathway
is an evolutionarily highly conserved pathway that orchestrates not only cell fate
determination, but also migration, and polarity, among many other functions. [Komiya
and Habas , 2008] It has an important role during embryogenesis as well as in adult
stem cell development and cancer.

Conventionally, WNT11 signals are distinguished by their capability to either stabilize
β-catenin in the nucleus (canonical/β-catenin-dependent) or evoke different lines of
intracellular signaling independent of β-catenin stabilization (non-canonical). Addi-
tionally, the current model is that co-receptors are required for the activation of
the different signaling cascades through scaffold proteins such as Disheveled (DVL).
[Komiya and Habas , 2008; Kikuchi et al., 2009]

In the canonical (β-catenin-dependent) WNT11 pathway, WNT11 signaling inhibits
the degradation of β-catenin, which can regulate transcription of a number of genes.
The Wnt/β-catenin pathway is initiated by evolutionarily conserved growth factors
of the WNT family. Canonical WNTs regulate β-catenin through phosphorylation by
the regulation of APC/Axin/GSK-3β - complex, which is also called the destruction
complex. In the existence of WNT ligand (On-state), the co-receptor LRP5/6 connects
with WNT-bound Frizzled (FZD). This leads to activation of DVL, which in turn
releases GSK-3β from APC/Axin. Phosphorylated β-catenin is then translocated into
the nucleus via other transcription factors. There it binds to LEF/TCF transcription
factors to regulate the function of WNT11 target genes. [Yang et al., 2016]

Non-canonical WNT11 signaling, in contrast, also is activated when a non-canonical
WNT ligand (e.g. WNT5a or WNT11) binds to a FZD receptor. The non-canonical
pathway is further divided into the Planar Cell Polarity (PCP) and the Wnt/Ca2+

pathway. FZD receptors act as the main receptor for WNT ligands and engage
other co-receptors to activate certain sub-pathways. In recent years, it is becoming
more and more evident that the combination of different WNT ligands and receptors
determines which intracellular pathway is activated. [Grumolato et al., 2010; van
Amerongen, 2012] However, it is still ill understood how different WNT ligands and
receptors, through their specific binding, control different signaling pathways.
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The co-receptors, like ROR2, aid in the binding of WNT11 proteins to the receptor
[Rosso and Inestrosa, 2013] and determine the downstream effect, initiating one of
the pathways. [Verkaar and Zaman, 2010]
In PCP signaling, FZD receptors initiate a cascade of downstream effectors such as
the small GTPases Rac1 and RhoA or c-Jun N-terminal kinase (JNK). [Simons and
Mlodzik , 2008]

In case of the Wnt/Ca2+ pathway, non-canonical WNT ligands activate heterotrimeric
G proteins, which in turn activate phospholipase C (PLC). This releases Ca2+from
intracellular stores. A higher concentration of Ca2+ trigger the phosphatase calcineurin
(CN), which dephosphorylates NF-AT and leads to its aggregation in the nucleus.
This pathway plays a role in controlling cell fate and cell migration. [De, 2011]

Previous research showed that irregular expression of certain WNT11 pathway mem-
bers was associated with various breast cancer subtypes. [Klemm et al., 2011; Henry
et al., 2015; Yang et al., 2011] For instance, receptor-tyrosine kinase ROR2 is an
orphan receptor, belonging to the Ror family of receptor tyrosine kinases. The
protein possesses an extracellular cysteine-rich domain (CRD) that resembles the
WNT-binding sites of the Frizzled (FZD) proteins and has been shown to bind Wnt5a.
[Oishi et al., 2003; Sato et al., 2010]

To summarize, WNT11 signaling pathways are complex interacting signaling networks
and their aberrant regulation is crucial for breast cancer developed. Accordingly,
learning how alternative WNT11 receptors such as ROR2 interact with known WNT11
signaling components and what intracellular signaling pathways get initiated will give
new insights in the research of drug targets.

1.2 Cancer and Cancer Research

Generally speaking, cancer is guided by (epi-)genetic modifications that allow cells
to overproliferate by switching off mechanisms that normally regulate survival and
migration. Many of the mutations accumulated in cancer cells influence and deregulate
signaling pathways that control cell-cycle, cell growth, division, differentiation, and
apoptosis. The development of cancerous cells arises from deregulation of all these
coordinated cellular pathways. Changes in the tumor micro-environment are also
crucial to cancer development as receptors on the surface of the cells engage intra-
cellular signaling pathways. [Shaw and Cantley , 2006; Sever and Brugge, 2015; Yuen
et al., 2012] Therefore it is essential to find promising drugs that target specific intra-
and extracellular signaling components.

This can be achieved by a systematic series of perturbations of cancer cell lines by
targeted drugs to model drug response or resistance. The response to perturbation
is characterized as a relative change in the expression levels for example of genes
and (phospho-)proteins. Drugs that target specific signaling proteins are promising
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agents in the field of cancer treatment. This approach is under ongoing exploration
and could have an impact on how future treatments can ba used. [Wilson, 2013; Lenz
and Staudt , 2010]

Mathematical modeling of the signaling network system is an additional approach to
the analysis of therapeutic interventions in silico. They can help to identify patient
groups, which could benefit from specific treatment options. Modeling approaches,
addressing dynamic functions of intracellular signaling networks, have received in-
creased attention in the last couple of years. [Klipp and Liebermeister , 2006; Janes
and Lauffenburger , 2013; Azeloglu and Iyengar , 2015] Network models are able to
predict the response of cells to perturbations and will be useful to create combinatorial
therapies against cancer.

1.2.1 Lymphoma

Lymphoma, or lymphatic cancer, is cancer that begins in lymphocytes (T cells or B
cells). According to the WHO classification [Swerdlow et al., 2008], the two principal
types of lymphomas are Hodgkin’s lymphomas (HL) and the non-Hodgkin lymphomas
(NHL). They involve different types of lymphocyte cells. One of the most common
subgroups of NHL in children and adolescents is Diffuse large B cell lymphomas
(DLBCL), accounting for 3040% of newly diagnosed non-HL. [Campo et al., 2011;
Hochberg et al., 2016] DLBCL is an aggressive (fast-growing) lymphoma that can
arise in lymph nodes or also outside of the lymphatic system, such as skin, breast,
bone, brain, or basically any organ of the body. Even though immunochemotherapies
have significantly improved the general curing prospects of patients with DLBCL, a
subset of patients with relapsed still suffer from poor outcomes. In times of huge data
sets in both omics profiling and systems biology modeling, there is still little impact
of the characterization of the individual tumor genome on the clinical management
of DLBCL patients to date. The communication of the cell micro-environment with
the tumor cells will be the target of novel therapeutic strategies that have to be
investigated.

Another aggressive B-cell lymphoma is Burkitt’s lymphoma (BL). BL is an extremely
aggressive B-cell non-Hodgkin lymphoma characterized by highly proliferative malig-
nant cells. [Burkitt , 1969] BL is uncommon in adults, but 30 − 50% of childhood
lymphoma are associated with BL. [Aldoss et al., 2008] In this study, the focus
lied on the BCR mediated pathway in Burkitt’s lymphoma cell line BL2, because
signals who are transmitted after BCR activation are key for the survival of B
lymphocytes. [Gauld et al., 2002] When BCR signaling is dysregulated, it leads
to tumor development by sustaining the cancer cell population. Along with the
upregulation of its various components, the BCR pathway is (highly) active in cancer
cells resulting in increased expression of the target genes. Normally, antigen binding
to B cell receptors accumulates BCR signaling complexes, which initiate downstream
signaling through the phosphorylation and ubiquitylation of cellular proteins.
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1.2.2 Breast Cancer

Breast cancer is the leading cancer among women and extremely frequent cause of
cancer mortality in most developed countries of the world. Ferlay et al. [2019]
Breast cancer is classified into three main immunohistochemical subtypes based on
the status of molecular markers for estrogen (ER) or progesterone receptors (PR)
and human epidermal growth factor 2 (HER2): hormone receptor positive/HER2
negative, HER2 positive, and triple-negative (tumors lacking all three standard molecu-
lar markers).
Recent validation of these molecular phenotypes associates them with treatment
respon-se and clinical outcome. [Perou et al., 2000; Sørlie et al., 2001] Triple-negative
breast cancer is more likely to recur with local relapse or with distant metastases than
the other two subtypes. [Foulkes et al., 2010; Haffty et al., 2006]

Gene expression analysis of various tumor samples via hierarchical clustering has
established an alternative subdivision into five (intrinsic) tumor subgroups: basal-
like, HER2-enriched, luminal A, luminal B, and normal-breast-like. [Sørlie, 2004]
Also, this signature is associated with different survival time and response to therapy.
[O’Brien et al., 2010]

Nowadays, treatment planning for each patient relies on several factors including
tumor morphology and tumor size, expression of ER, PR and HER2 and presence of
lymph node metastases. While these factors are used to guide prognosis and therapy,
more investigations are necessary to understand the tumor heterogeneity and identify
promising targets for cancer treatment.

Different breast cancer subtypes are characterized by different alterations of the
WNT11 pathway. While WNT11 signaling plays a central role in various cellular
and developmental processes in normal cells, aberrant expression levels of selected
WNT11 pathway players were identified to initiate aggressive breast carcinogenesis.
[Koval and Katanaev , 2018]
In particular RTK-like orphan receptor 2 (ROR2) functions as an alternative receptor
or co-receptor for WNT5A and is involved in WNT5A-induced migration of several
cell types during cell development. ROR2 is overexpressed in breast cancers and has
tumorigenic activity. [Ford et al., 2013] The physical and functional interaction of
ROR2 and WNT5A, have been reported in many studies using mice, cultured cells
and in vitro systems. [Henry et al., 2015] first studied the role of ROR2 in basal-
like breast cancer patients. They showed that ROR2 is expressed in 87% of primary
breast cancers and related to shorter survival. Another study from [Klemm et al.,
2011] displayed that β-catenin independent WNT11 signaling takes a crucial part in
breast cancers which metastasize into the brain.

The aforementioned findings indicate that WNT11 signaling is capable of initiating
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breast carcinogenesis. Therefore, key WNT ligands and receptors seem promising
targets for future drug discovery against breast cancer and the insight into their
precise interplay is of high clinical interest.

1.3 Introduction to omics data

1.3.1 The omics landscape

Cellular processes are strongly regulated in multiple layers, resulting in an organized
activity of genes and gene products including messenger RNA (mRNA), transcripts
and proteins. Each gene instructs the cell how to assemble the pieces for one specic
protein. The DNA, that contains the genetic information, lies inside the nucleus.
It is transcribed into a mRNA molecule. The mRNA is smaller and more compact
than DNA and is capable to move from the nucleus to the ribosomes. After leaving
thenucleus, mRNA undergoes some modifications, including removing unneeded sec-
tions. Subsequently, it binds to a specific site on a ribosome, where the information
is translated into a chain of amino acids to form a protein. The ribosome will
translate the mRNA molecule until it reaches a termination sequence, and the protein
is released. [Alberts et al., 2007] This sequence of processes (Figure 1.1) are known as
the Central Dogma of molecular biology. When a gene has a mutation, the resulting
protein is not properly produced, it is because of some mutation in the gene which
provides its instructions.

Figure 1.1: Central dogma of molecular biology.

Modern biology studies investigate the diverse molecular interactions looking at a wide
range of biomolecules and the effects they have. During the last decade, technical
improvement of measuring instruments as well as bioinformatics for data analysis has
enabled the development of research approaches that intend to discover and quantify
large numbers of biomolecules in parallel, drawing a more comprehensive picture
of a biological sample’s temporal state. This high-throughput analysis of biological
samples is commonly referred to as ’omics’ and relates to different disciplines in
biological sciences, such as genomics, transcriptomics, proteomics, or metabolomics.
Each field, or technique, generates plainly distinct information (Figure 1.2) in biological
research. In addition, many efforts are made to integrate the different types of data
in order to analyze them together.

More precisely, the genome represents the genetic material of an organism, including
the coding and the nonconding regions of the DNA. Genomics is the science that
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studies the structure, function, evolution, and aligning of genomes and addresses the
characterization and determination of genes, which direct the production of proteins
with the assistance of enzymes and messenger molecules.

The transcriptome defines the exome of a specified cell population. The exome,
particularly the protein-coding regions, is defined by the DNA which is transcribed
into mRNA. Altogether, these regions, the total exome forms approximately one
percent of the human genome. [Ng et al., 2009] Comparing transcriptomes enables
the identification of genes that are differentially expressed in different experimental
settings.

The proteome is characterized by all expressed proteins under specified conditions.
Proteomics is the science that studies proteins in relation to their biochemical proper-
ties and functional activities, and how their quantities, modifications, and structures
change throughout growth as well as in response to internal and external stimuli.

And finally, the metabolome, which is the terminal downstream product of the genome
and is defined as the overall analysis of metabolites in a biological sample. Metabolites
are small biomolecules that participate in general metabolic reactions. They are
required for the perpetuation and normal function of a cell. [Goodacre et al., 2004]

Altogether, the omics chain with genomics, transcriptomics, proteomics, and metabolo-
mics (Figure 1.2) consists of complex data sets that as an entity comprehensively
describe the reaction of biological systems to diseases, genetic variances, and environ-
mental perturbations.

Figure 1.2: The omics chain and its specific research questions. Adapted from
[Dettmer et al., 2007].

One of the advantages of high-throughput data is likewise a major drawback. The
large number of measured features might lead to significant findings just by chance.
To bypass the difficulties presented by high dimensionality, the data can be grouped
in biologically meaningful clusters. [Tukey , 1977] This clustering can be achieved
by using complementary, but nevertheless methodologically independent, dimension-
reduction methodologies or by integrating biological prior knowledge.

Despite many considerable advances in experimental methodologies, data emerging
from individual omics approaches are often insufficient to understand gene interactions
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and functions. Integrated analysis of high-throughput data has been understood as
a possible method that can overcome the restraints of individual omics methods and
helps in furthering our knowledge of biological systems in their entirety. [Joyce and
Palsson, 2006]

1.3.2 Omics Data Integration

The concept of ’omics’ is now very commonly used in life sciences research. In recent
years, the potential to study cellular and molecular systems has been revolutionized
as a result of the expansion of omics sciences. For instance, in 2012, the NCIs
The Cancer Genome Atlas (TCGA) integrated different data types and were able to
determine altered modules in three distinct pathways that influence the development
of glioblastoma multiform. [Ciriello et al., 2012] These candidate driver mutations
can be target to develop new therapeutic options. This study shows the benefit
of data integration as these oncogenic alterations were not discovered from data in
isolation (either from mutations, copy number changes, or other measurements).

In the same year, R. Chen and his colleagues also demonstrated the benefits of
combining different omics data sets in the context of risk detection of type 2 diabetes.
In this integrative analysis, the data revealed an increased insulin biosynthetic pathway
that spiked during states of viral infections. Their study indicates that viral inflam-
mation can trigger aberrant glucose metabolism and can, therefore, increase the risk
of type 2 diabetes. [Chen et al., 2012] Within the scope of their research, they
investigated how analysis of the genome, epigenome, transcriptome, proteome, and
metabolome can collectively provide advantageous information.

In the field of integrating genomic and proteomic data, there are two general assump-
tions. The majority of studies, in which both, genome and proteome measurements,
are combined, assume that there is an one-to-one relationship between transcript and
protein expression.
In an earlier project, Schwanhäusser and colleagues [Schwanhäusser et al., 2011] have
looked at RNA and protein separately. To achieve a more accurate observation, they
labeled proteins and RNA in mouse fibroblasts. With quantitative mass spectrometry
and RNA sequencing, they could calculate absolute mRNA and protein copy numbers
in the same samples. Their results suggest that mRNA levels can explain approxima-
tely 40% of protein level variation.
In the same direction, more recent studies could demonstrate that there is just a low
correlation between transcript levels and protein expression [Haider and Pal , 2013;
Zhang et al., 2014].

A second inherent assumption is that genome-scale technologies such as next generation
sequencing-based transcriptomics and mass spectrometry-based proteomics have equal
sensitivity to capture the expression of the gene products. [Schwartz et al., 2018]

Ghosh et al. [2011] performed a study in which they analyzed time-course trans-
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criptome and proteome measurements in order to identify subgroups that respond or
not to current anti-HER2 therapy. On the basis of two different omics data sets, they
classified distinctive transcriptional and signaling profiles for four patient subgroups
associated with response to trastuzumab. They showed that breast cancers driven
primarily by HER2 homodimerization are very sensitive to trastuzumab therapy.
Consequently, the inhibition of HER2 heterodimerization can increase clinical outcomes
(i.e. reduce treatment resistance and risk of disease relapse) in this particular subgroup.

Taken together these examples illustrate the potential of integrating diverse ’omics’
data and how it can help the research in biology and medicine. Different methods
that aim to integrate heterogeneous data sources have been developed in the last
years. The particular methods of focus in this thesis are introduced in section 2.2.3.

1.4 Measurement techniques for transcriptomics and
(phospho-)proteomics

The measurement tools comprise of a number of different high-throughput technologies,
including DNA microarrays, protein arrays, deep sequencing and mass spectrometry.
They allow system-wide unbiased molecular measurements, which can then be used
for drug discovery, target validation and the identification of genes or to reproduce
the events in an signaling response. This section provides an overview of some of the
common measurment techniques within the fields of transcriptomic and proteomic.

1.4.1 Transcriptomic

The analysis of mRNAs provides direct observations of cell- and tissue-specific gene
expression characteristics. This information is necessary to gain a better understanding
of the dynamics of cellular and tissue metabolism, and to apprehend whether and how
adjustments in the transcriptome profiles influence health and disease.
The first effort to study the whole transcriptome began in the beginning of the 1990s.
[Adams et al., 1991] Nowadays, the two main gene expression profiling technologies
are microarrays and deep sequencing of RNA (RNA-seq) allow the (reproducible)
quantification of the abundance of mRNA.

1.4.1.1 Microarrays

The basic principle of DNA microarrays builds on the principle that complementary
sequences will bind to each other. Typically, they comprise genomic DNA fragments
that are complementary to transcripts of interest. The DNA molecules are labeled
with fluorescent markers, which then react with probes of the DNA chip. Next, the
target DNA fragments ahead with complementary string attach to the DNA probes.
When the remaining DNA fragments are washed away, target DNA sections can be
identified by their fluorescence emission captured by a laser beam. The fluorescence
intensity at each location on the array indicates the transcript abundance for that
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specific sequence [Barbulovic-Nad et al., 2006].

Different technologies of DNA microarrays are produced using individual fabrication
methods. A frequently used technique to gather transcriptomic data is cDNA micro-
arrays as introduced by [Schena et al., 1995]. They are using polymerase chain
reaction (PCR) in the first step and a robot-controlled printer in the second step.
Some other similar methods utilize ink-jet like printers to spray chemically synthesized
oligonucleotide probes on the microarrays.

Another concept is to synthesize the probes directly on the surface of an array
using photo-activated chemistry. Affymetrix GeneChipTM is one of the most popular
microarray chips using this technique. It measures a single sample on one slide and
consists of thousands of short oligonucleotide probes spotted on a solid substrate. The
arrays consist of a highly ordered matrix of hundreds of thousands of oligonucleotides.
They contain more than 33000 genes with over one million oligonucleotides. The
approach leans on light-deprotection of the growing oligonucleotide. In each step,
the oligonucleotides are built one base after the other. The individual sites on the
array bind to the next nucleotide (A, T, C or G) and are marked using photo-activated
chemistry. One data set analyzed in this work is based on this technology (see section
2.5.1.1).

1.4.1.2 RNA-Sequencing

Studies utilizing RNA-Sequencing have already transformed our view of the amount
and complexity of transcriptomes. Contrary to microarrays, RNA-seq is not restricted
to the hybridized probes. Using deep-sequencing technologies, it allows measuring
genome-wide expression levels, independent of annotated regions.

In general, a library of cDNA is constructed from a sample’s RNA with adaptor
molecules attached to one or both ends. Each molecule is then sequenced to gather
short sequences from one end (single-end) or both ends (pair-end) by sequential
hybridization readout. The sequencing performs successive cycles of base incorporation,
washing, and imaging. The lengths of a readout is usually between 50 and 700 bp.
In the subsequent bioinformatic pipeline, the reads are quality checked and aligned
to a reference genome or transcripts. Alternatively, if a reference is not yet available,
the reads are assembled de novo without a genomic sequence.

Compared to microarrays, input RNA quantity is much lower for RNA-seq, which
allows better investigation of cellular structures, down to the single-cell level when
combined with linear amplification of cDNA. [Hashimshony et al., 2012] Furthermore,
in contrast to microarrays, RNA-seq is not limited to the hybridized probes but allows
to measure genome-wide expression levels, independent of annotated regions. A third
advantage is the possibility to detect isoforms. [Malone and Oliver , 2011]

The RNA-seq technology was used within the study of WNT11 signaling in breast
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cancer (see section 2.5.2.2.1).

1.4.2 (Phospho-)proteomic

The direct analysis of protein expression was commonly accomplished on a small
scale, using, for example, immuno- or two-hybrid assays. That limited the analysis
volume to just a few proteins. The latest measurement technologies have absolutely
pushed our knowledge of biochemistry and cell biology, including protein dynamics,
multiprotein complexes forward [Picotti and Aebersold , 2012] and found application
in cell signaling research [Collins et al., 2007].

Phosphorylation is one of the main mechanisms of post-translational regulation of
proteins and a large percentage of proteins are phosphorylated at some stage during
their life cycle. Phosphorylation causes the protein to become activated (or deactiva-
ted) and enables it in turn to initiate the phosphorylation of other proteins in the
cascade, finally causing cell-wide changes such as apoptosis, cell differentiation, and
growth.
Accordingly, studying the protein post-translational modifications, especially phospho-
rylation, empowers the discovery of signaling network alterations guided by genomic
changes. As a result, quantitative measurement of changes of phospho-protein plays a
growing role in studying signaling pathways in a cell. It also improves our understan-
ding of cellular responses to external and internal stimuli.

Over the last years, proteomics has experienced a huge development in methodologies
in the direction of large-scale study. Also, the field of phosphoproteomics has developed
to larger scale approaches. There are two main measurement methods in phospho-
proteomics: antibody- and mass spectrometry-based. A broad summary of these
methods can be found in [Terfve and Saez-Rodriguez , 2012]. In brief, antibody-
based methods are generally specific and depend on the quality of the antibody.
They are suitable to measure time courses of target proteins across many conditions.
[Lee et al., 2012] To date, most commonly used antibody-based technologies are
protein arrays, reverse-phase protein arrays, and the bead based xMAP technology
from Luminex. [Saez-Rodriguez et al., 2011] However, the number of targets that
can be measured is limited. In comparison, mass spectrometry techniques enable
the systematic identification and quantification of phosphorylated proteins. On the
downside, they require expensive equipment and expert knowledge for the often
elaborate protocols. [Steen et al., 2006] In the following, an introduction to the
two aforementioned antibody-based methods is given in more detail.

1.4.2.1 Luminex Bio-PlexR© Assays

The Bio-Plex assays use the Luminex xMAPR© technology, which means that they
use an antibody sandwich for detection. Immunoassays based on Luminex xMAP is
a high-throughput technology, which allows simultaneous quantification of multiple
secreted proteins. The Bio-Plex system used here is based on the principles of
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fluorescence imaging. This technique consists of 3 main steps.

In step one color-coded beads, labeled with analyte-specific capture antibody for the
protein of interest, are added to the assay. In a next step, the antibodies capture the
analyte of interest. Then biotinylated detection antibodies specific to the analyte are
added and compose an antibody-antigen sandwich. Additional Phycoerythrin (PE)-
conjugated Streptavidin (SE) is added as a signal for the measurements.
In the last step, beads are read with dual-laser flow-based detection. One laser
classifies the bead and determines the analyte based on bead color and the second
laser quantifies the signal through measuring the reporter molecule PE-SE. This signal
is proportional to the amount of bound analyte. [Bio-Plex , 1999; Houser , 2012]
The investigated Luminex Bio-Plex data set within this thesis is described in section
2.5.1.2.

1.4.2.2 Reverse Phase Protein Arrays

An established technique for the simultaneous analysis of different proteins is Reverse
Phase Protein Arrays (RPPA). RPPA measures levels of protein expression, as well
as protein modifications such as phosphorylation and therefore allows studying the
activation status of cell signaling pathways. It already has been used quantitative
analysis of protein expression in cancer cells, cell signaling analysis and clinical
prognosis or therapeutic prediction. [Nishizuka et al., 2003; Spurrier et al., 2008;
Ummanni et al., 2014]

RPPA was introduced by Paweletz et al. [2001] as a reproducible technology. Usually,
with microarrays, the samples are directly spotted on the slides. In contrast, the
RPPA technology is a type of protein microarray that comprises a reverse method.
The biological samples of interest are lysed, producing a homogeneous mixture (lysate),
and these lysates are printed onto an array according to a dilution series. These arrays
are typically glass plates. On one side they have a nitrocellulose membrane and the
lysates are printed on the nitrocellulose. In order to measure the protein of interest,
the array is first interrogated with an antibody specific to the protein of interest (the
primary antibody). After binding is completed, loose material is washed away. In
the second step of incubation, the array is interrogated with a fluorescently labeled
antibody (a secondary antibody) which recognizes the primary antibody. Afterward,
the slides are scanned and a microarray image analysis software is performed. By
comparing the relative level of fluorescence, differential protein expression across all
the samples on one slide can then be evaluated simultaneously.

Even though RPPA data is restricted to the selected antibodies and profiles a smaller,
predefined set of proteins, antibody microarrays are currently seen as a worthwhile
method in view of their small required quantities, affordability, multiplexed detection
power, rapidness, and automatization. [Alvarez-Chaver et al., 2014] The details for
the RPPA data set used in this thesis are specified in section 2.5.2.2.2
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1.5 Statistical methods for the analysis of omics data

Statistical analysis can help to extract information, that is not directly observable.
Various models are available of which some will be described in this section. Methods
from statistics, including differential expression analysis, and machine learning, such
as clustering, are more ”descriptive” approaches in the sense that they help to charac-
terize the data. ”Predictive” concepts are used to estimate the behavior of a system
under specified conditions.Methods for this are regression approaches such as linear
and logistic regression. More complex models can be built that include mechanistic or
causal relationships between members of the system, that can be described by a graph
(”network diagram”). Such models involve differential equations, logic-based, and
Bayesian network models. Here, the methods relevant for this thesis are introduced.

1.5.1 Differential Expression Analysis

Differential expression analysis (DEA) consists of two main tasks: First, estimate
the magnitude of differential expression between two or more conditions based on
expression levels from replicated samples, that means, calculate the (logarithmic) fold
change. Secondly, estimate the significance of the difference and correct for multiple
testing.

The methods were originally developed for microarray data, e.g., in limma. Limma
is a R package for DEA of data collected from microarray experiments. The main
concept is to fit a linear model to the expression data for each gene or protein. The
method uses empirical Bayes to obtain information across genes or proteins to make
the analyses more robust for experiments with a just small number of arrays. [Smyth,
2004]

There are different methods for RNA-seq data, (such as edgeR [Robinson et al., 2010]
and DESeq/DESeq2 [Anders and Huber , 2010; Love et al., 2014]) based on negative
binomial (NB) distributions or (baySeq [Hardcastle and Kelly , 2010] and EBSeq [Leng
et al., 2013]) which are Bayesian approaches based on a negative binomial model.
The best performing tools tend to be edgeR, DESeq/DESeq2, and limma-voom
[Ritchie et al., 2015] (for reviews of DGE tools see [Rapaport et al., 2013; Soneson
and Delorenzi , 2013; Schurch et al., 2016]). DESeq and limma-voom turn to be more
conservative than edgeR, because they better control of false positives. edgeR is
recommended for experiments with fewer than 12 replicates [Schurch et al., 2016].
These tools are implemented in the R language and realize various statistical methods
that have been developed during the past decades. The underlying approach in each
of them is the same: the gene expression difference for a given gene is estimated using
regression-based models. The statistical tests assume the null hypothesis of no effect
is true. In other words, it is tested against the hypothesis that the difference is close
to zero which means that there is no difference in the gene expression values that are
not observed randomly.
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High-throughput data sets have usually many more features (genes) than cases (pa-
tients or experiments), which results in a high risk of overfitting. To avoid overfitting
one might control the False Discovery Rate (FDR). FDR is defined as the expected
value of the proportion of false positive features among all of those significant features
Benjamini and Hochberg introduced the idea of a FDR to control for multiple hypoth-
esis testing. Controlling FDR increases the power of the method. [Mathur et al., 2011;
Benjamini and Hochberg , 1995]

1.5.2 Network Analysis

Biological processes can be modeled as a network of causal influences utilizing infor-
mation from different sources. Mathematical and computational methods are required
to organize the overwhelming quantity of data and to make interpretable. Network
reconstructions are effective strategies, to obtain a comprehensive interpretation of the
results of differential expression analysis. A lot of effort has been invested into learning
networks and pathways from gene or protein expression data and prior knowledge.
In this section, common network analysis approaches are introduced. Although, a
general introduction to networks, with special focus on Bayesian networks, is given.
In section 2.2, some specialized types of Bayesian networks that are relevant for this
thesis are provided.

1.5.2.1 Network Analysis Methods

In bioinformatics, network methods, have been used to study gene expression data
[Friedman et al., 2000; Yu et al., 2004], predict protein-protein interactions [Jansen
et al., 2003], infer protein signaling networks [Friedman, 2004; Sachs et al., 2005;
Bradford et al., 2006], cancer recurrence [Rouprêt et al., 2008] and to infer the
statistical dependency between perturbation experiments [Maathuis et al., 2009].
Network analysis consists of various deterministic and probabilistic methods to infer
regulatory dependencies from experiments with interferences in the cellular processes.

One common approach is Boolean networks. S. Kaufman [Kauffman, 1969] firstly
introduced Boolean networks for qualitative description of gene regulatory interactions.
Since then Boolean networks have become a versatile research field. They are directed
graph, where each node represents a gene and can be either 0 or 1. A Boolean function
models the parent states to its child state. Perturbation on distinct regulators allows
to infer the architecture of Boolean networks. [Ideker et al., 2000]

Network Component Analysis (NCA) is a network structure-driven framework for
inferring regulatory signal dynamics. Unlike classic statistical concepts like independ-
ent component analysis or principal component analysis, NCA employs the (connecti-
vity) structure from transcriptional regulatory networks to restrict the decomposition
to a unique solution. [Liao et al., 2003; Tran et al., 2005]

Correlation-based graphs assume that the correlation analyses reflect a coordinated
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interaction between genes (vertices) across the data set. [Rice et al., 2005; Batushansky
et al., 2016] Partial correlation coefficients have also been used to identify novel gene
networks through the minimization of redundant edges in the network. [de la Fuente
et al., 2004; Veiga et al., 2007]

Rather than correlating one relation with another, one may want to predict one
relation knowing the other. A way to answer this question is regression [Segal et al.,
2003; Huynh-Thu et al., 2010] and shrinkage techniques [van Someren et al., 2006].
However, their weakness can be observed when the number of variables is large. Then,
they mix direct and indirect associations. [Zuo et al., 2014] For instance, a strong
correlation for gene A with B and A with C will predict a less strong but probably
still statistically significant correlation for gene pair B and C. As a consequence, when
the number of genes increases, these networks are likely to over-estimate the network
with too many false positives.

Another widely used approach to model gene regulatory network are Bayesian Network
(BN) models. BNs and variations are today the focus of research that deals with
discovering novel interactions, information dependencies and regulatory relationships
from expression data. The advantage of using BNs is that by modeling conditional
dependence relationships, BNs only identify direct associations. Nevertheless, learning
the structure of Bayesian networks for data of high dimensions takes time and can
be statistically inaccurate. Additionally, BNs cannot model cyclic structures, such as
feedback loops, which occur frequently in biological networks. [Friedman et al., 2000]
In section 2.2.0.1 a more detailed description of this method, is provided.

In some biological frameworks, resulting measurements fail to precisely reconstruct
the underlying network. In such situations, it is beneficial to integrate prior knowledge
coming from literature about gene or protein interactions into the network model into
network reconstruction. [Werhli and Husmeier , 2008; Bender et al., 2011; Eduati
et al., 2012; McDermott et al., 2013] Such restraints cut down the computational
costs and assure that approved interactions are considered in the final model.

1.5.2.2 Using Network Databases as prior Biological Knowledge in Network
Reconstruction

In general, reconstructing networks from expression data is a challenging question
that has become crucial for the understanding of complex regulatory processes in
cells. In addition to data-driven network models, there is a growing number of
databases [Bader et al., 2006] that capture pathway information in high detail. From
publicly available databases such as STRING [Franceschini et al., 2013], KEGG
[Kanehisa and Goto, 2000], BioGRID [Stark et al., 2006], and ConsensusPathDB
[Kamburov et al., 2011], one can obtain numerous types of interactions including
protein-protein, signaling, and gene regulatory interactions. Biological networks
reconstructed from these databases were found to be valuable. For instance, Chuang
et al. [2007] reconstructed protein-protein interaction (PPI) network from multiple
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databases to help identify markers of metastasis for breast cancer studies using gene
expression data.

In high-throughput experiments, each sample is described by the expression levels of
thousands of genes, or proteins. The large amount of variables not only gives a great
opportunity to identify a broad range of biological processes, but also, rises serious
(statistical) challenges. Generally, classic statistical methods estimate connections
between variables based on mathematical criteria, such as correlation. By that,
they cannot differentiate between correlation that comes from a biological source and
random correlation caused by the high-dimensionality of the data and measurement
noise. Furthermore, variations in expression values can also arise from a biological
variation of the studied object. Therefore, a challenge in analyzing high-throughput
data is to consider the different variation sources. [Reshetova et al., 2014]

Recent approaches [Ghanbari et al., 2015; Li and Jackson, 2015; Stavrakas et al.,
2015; von der Heyde et al., 2016] apply prior biological knowledge. The intention of
these methods is to guide the statistical analysis to decrease the detection of spurious
relations. Additionally, prior knowledge may be used to test the compatibility of
experimental data and existing knowledge to compensate for potential gaps or include
extra information. The links between variables (genes or proteins) can be resolved,
for instance, from the aforementioned databases.

1.5.2.3 Visualization of Gene and Protein Networks

Since the graphical representation of gene and protein networks may highlight impor-
tant substructures, visualization is more and more used to study the underlying graph
structure of the biological networks, such as phylogenetic trees, protein-protein inter-
action networks, metabolic networks or genetic regulatory networks. [Junker and
Schreiber , 2008]

Given a specific graph, modern layouts algorithms are optimized for speed and aesthet-
ics. In particular, they seek to minimize overlaps and edge crossing, and design
symmetric substructures to facilitate the reading of a graph. Such algorithms are e.g.
layered graph drawing methods, also known as Sugiyama-Tagawa-Toda algorithm
[Sugiyama et al., 1981], which positions nodes on the levels of a hierarchical layout
and the group of algorithms based on the force-directed layout [Fruchterman and
Reingold , 1991]. In circular layout methods [Doğrusöz et al., 1997], the vertices of
the graph get arranged on the circumference of a circle in a way that reduces edge
crossings.

In the last years, many software tools for network visualization were developed. Three
of the most common tools are:

(i) Cytoscape [Shannon et al., 2003] is a software platform to visualize molecular
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interaction networks and allows to integrate for example gene expression profiles.

(ii) NetworkX [Hagberg et al., 2008] is a Python package, which allows studying the
structure, dynamics, and functions of networks.

(iii) There are multiple packages implemented in the functional programming lan-
guage R. The statnet set of packages [Handcock et al., 2003] provides functions
for the analysis of a wide range of network data coming from diverse areas.
Another popular R package is igraph [Csardi and Nepusz , 2006] which is a
library collection for creating and manipulating graphs and analyzing networks.
It is also available as Python package. A third R package is called Rgraphviz
[Hansen et al., 2019]. It provides a connection between R and the third-party
software graphviz [Ellson et al., 2002].

1.6 Aims and Motivation

Driven by the observations that cellular processes constantly result in multiple and
complex responses [Westerhoff and Palsson, 2004], and catalyzed by the flood of omics
data that were accessible, systems biology emerged in recent years. Systems biology
connects experimental, theoretical, and modeling techniques to study biological organ-
isms at all levels, from the molecular to the cellular level. [Kitano, 2002] It is applied
in a wide variety of fields from plant biology over inflammatory disease to biochemical
networks. [de Lorenzo, 2008; Park et al., 2008; Yuan et al., 2008; Young et al., 2008;
Zhu et al., 2008; Feist et al., 2009; Zak and Aderem, 2009].

With the increased usage of high-throughput technologies, the statistical analysis
requires appropriate bioinformatical workflows. The intention of applying several
bioinformatical approaches is to understand cancer as an integrated system of genes
and protein, networks, and interactions.

This work focuses on investigating cellular networks, which represent signaling path-
ways implicated in many cancers types. For that, two projects were investigated
within the scope of this thesis: the first study investigates signaling pathways in
lymphomas and the second, signaling pathways in breast cancer. Each project consists
of a coupled data set of gene and protein high-throughput measurements. Methods
for network reconstruction are applied to each data set and combined with existing
biological knowledge, e.g. signaling pathway (from databases KEGG, Reactome, NCI
and Biocarta).
Both projects address the same two main questions:

(i) Are our methods suitable to reconstruct existing knowledge?

(ii) Can new edges in the networks be identified that explain the interaction of key
pathway members?

18



The purpose of the lymphoma project was to widen the analyses of signaling in B cell
lymphoma by looking at different data sources: transcriptome (section 2.5.1.1) and
phospho-proteome data sets (section 2.5.1.2) using different network reconstruction
techniques. The results of this analyses are reported in the section 3.1.

The main focus of the second study lied on the role of ROR2 in WNT11 signaling
in breast cancer. Here again, different data sources (RNA-seq with RPPA) were
used. This time transcriptome (section 2.5.2.2.1) and (phospho-)proteome (section
2.5.2.2.2) time series data sets were examined to study pathways at gene and protein
level. The results of this analyses are presented in the section 3.2.

In the 4.1 Discussion chapter, challenges, which arose within the lymphoma cancer
study (section 4.1.1) were discussed. The final discussion section 4.1.2 discusses the
results of the WNT11 signaling network reconstruction in ROR2 overexpressing breast
cancer cells.
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CHAPTER II

Material and Methods

2.1 Methods for the statistical analysis of
transcriptome and (phospho-)proteome data

Biological data are sensitive to different noises and errors, consequently a number
of steps are necessary to pre-process raw measurements. Due to the presence of
various technical variability, it requires normalization of intensity measurements of
all platforms to remove systematic biases. The resulting pre-processed data consist
in corrected and normalized raw data that can be further statistically analyzed to
investigate expression levels in different sample groups. Approaches for pre-processing
rely on the type and structure of data. Methods for microarray data are, for example,
different from that for proteomic data.

As this is not the main focus of this thesis, a detailed description is provided. A
general and comprehensive explanation for microarray data can be found in [Yang
et al., 2002; Irizarry et al., 2003] and for RNA-seq data in [Zyprych-Walczak et al.,
2015] .

Analysis of Affymetrix microarray and Luminex xMAP data

The raw microarray dataset and Luminex xMAP phospho-proteome dataset were
normalized using quantile normalization to make the distributions the same across
samples. For this step, the normalizeQuantiles function implemented in the R/Biocon-
ductor package limma was used. [Smyth, 2005] Afterwards, the normalized values
were transformed into log2-scaled expressions. Within preprocessing, steps before
the main (differential) analysis, probes, that could not be mapped onto any Entrez
Gene ID, were removed. Then, differentially expression values were calculated using
a linear fit model and an empirical Bayes method in the limma package.

Analysis of RNA-seq data

RNA-seq data were first quality checked via FastQC [Babraham Bioinformatics,
Andrews [2010]] and then aligned to the transcriptome using STAR tool [Dobin et al.,
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2013]. Gene-level abundances were estimated using the RSEM algorithm [Li and
Dewey , 2011]. Further pre-processing steps were done using edgeR [Robinson et al.,
2010] R package. Within the pre-filtering, rows in which there are very few reads were
removed and genes that have at least 10 reads for some samples were kept as described
by Chen et al. [2016]. DEG tools provide a way to estimate the read count differences
between the conditions for every gene. Differentially expressed genes between different
conditions were analyzed by fitting linear regression models, which usually take the
following typical form: Y = b0 + b1x + e. Here, Y involves all read counts from all
conditions for a given gene. b0 is called intercept and x is the condition. In the context
of RNA-seq, it is very often a discrete factor, for example, treatment or control. e
is a term capturing the error or uncertainty, and b1 is the coefficient that captures
the difference. edgeR fits negative binomial generalized linear models to every single
gene. [Robinson and Smyth, 2008]

Analysis of RPPA data

The first step in the analysis of the RPPA data was to oversee the quality. The
quantile-quantile plots of the serial dilution [Zhang et al., 2009] were employed as
a visual instrument for each slide manually and sorted out measurements with a
controversial dilution curve.
To correct the foreground expression data to the dilution intercepts, the correctDilinterc()
function of the R package RPPanalyzer [Mannsperger et al., 2010] was used. This
function removes the local background intensity at one spot from its foreground
intensity.

In the second step, the background corrected data was normalized. This is a crucial
step in RPPA data analysis to ensure sample comparability. To perform a spot-
specific normalization of the signal intensities the normalizeRPPA() function of the
R package RPPanalyzer [von der Heyde et al., 2014] was applied. Hereby each array
is normalized through his corresponding array on the normalizer slide.

After the pre-processing differentially expressed proteins between different conditions
were also analyzed by fitting negative binomial generalized linear models. [Robinson
and Smyth, 2008]

The estimated p values from the analyses of all four platforms were adjusted for
multiple testing using the method of [Benjamini and Hochberg , 1995] resulting in
FDR.
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2.2 Methods for Reconstructing and Visualizing Network

I’m going to provide the reader an overview of the investigated network models.
At first, Bayesian models in general and two different kind of network approaches
which belong to the class of Bayesian network methods are presented. Afterwards,
a literature based integration method is introduced. In the end of this section the
utilized visualization techniques to create the learned networks are explained.

2.2.0.1 Bayesian Networks

Bayesian networks belong to the group of probabilistic graphical models (GM). They
are mathematically precise and instinctively understandable to combine network
analysis with Bayesian statistics. The graphical structures are used to represent
knowledge about an unclear field. For instance, each node in the graph represents a
gene or protein, while the edges between these nodes symbolize probabilistic dependen-
cies among the corresponding gene or protein. Principally, BNs are a special case of
the GM structure named directed acyclic graph (DAG). The structure of a DAG is
defined by two sets: the set of nodes (vertices) and the set of directed edges pointing
in the direction of influence. The advantage is that they enable a direct representation
of the joint probability distribution (JPD) over a set of variables. [Pearl , 1988] They
can be used to learn causal relationships and gain an understanding of the various
problem domains.

An edge from node Xi to node Xj symbolizes a statistical dependence between the
corresponding variables, roughly speaking that variable Xi ’influences’ Xj. For exam-
ple, a BN could represent the probabilistic relationships between a set of genes. Given
the activation or inhibition of a specific gene, the network can be used to estimate the
probabilities of activation or inhibition of a different gene and so represent a signaling
flow in a cell.
As pointed out by [David , 1999], this construction is optimal for incorporating prior
knowledge whenever available.

Most of the times the BN is unknown and needs to be learned from the data. This
question is referred as a learning problem, which can be described generally in this
way: Given a data set and prior information (e.g., expert knowledge and literature)
estimate network structure and the parameters of JPD in BN

P (X) =
n∏

i=1

= P (Xi = xi|pa(Xi)) (2.1)

with parent gene pa(Xi) as a regulator of the gene i, where the probability is condi-
tioned.
Bayesian networks fill the local Markov property, which states that a node is condition-
ally independent of its non-descendants given its parent nodes and thus JDP can be
written as a product of conditional probabilities.
A scoring metric is applied to assess the model. The objective here is to infer a
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network model that represents the data with high probability. One of the most
popular scores is the Bayesian Information Criterion (BIC) [Schwarz , 1978] which
also penalizes graph complexity to avoid overfitting.

2.2.1 Nested Effects Model

In this section, the idea and initial definition of Nested Effects Model (NEM), as
introduced in [Markowetz et al., 2005; Tresch and Markowetz , 2008], are briefly
explained.
The main idea of NEM is that perturbing genes at the beginning of a signaling
pathway will affect all targets of the transcription factors while perturbing a single
downstream TFs will only affect its direct targets. These direct targets represent just
a subset from the phenotypes observed after disturbing the entire pathway.
This leads to a nested structure of affected gene sets located downstream in the
pathway.

Following the NEM literature, NEM distinguishes between silenced genes (S-genes)
and genes showing a downstream effect (E-genes). That means genes with a high-
expression change are identified as E-genes. In each experiment, one S-gene is silenced
and the effects on E-genes are measured by microarrays. Each S-gene needs to be
silenced at least once and S-genes and E-genes can but do not have to overlap.

The original approach from [Markowetz et al., 2005] performs at first a discretization
step on a count matrix, which contains the counts of how often a specific gene shows
an effect. The discrete values 0 and 1 indicate if a disruption of signal flow was
detected or not.
Later, several extensions were published. Firstly, [Fröhlich et al., 2007] overcome to
discretize the data, they calculate the p value distribution of the differential gene
expressions. They also introduced the inference approach called module network,
which assembles the final network recursively from smaller subnetworks.
To allow the integration of prior assumptions another enhancement is provided by
Zeller et al. [2009], which brings the original approach in the Bayesian environment.

Next, a brief overview of how the signaling schemes are inferred is presented.
Given a set of E-genes E = {E1, . . . , Em}, and a set of S-genes S = {S1, . . . , Sn} a
pathway model, it is assumed as a directed graph T on vertex set S as a starting point.

The subset of S-genes is interpreted as ’influence region of S’. All influence regions
together form the ’silencing scheme Φ’, which is stored as an adjacency matrix
Φ ∈ {0, 1}n×n.
The concept is that intervention at a singular S-gene puts this its state to 1. The
silencing effect is propagated along the directed edges of T.
Then the extended graph to T ′ = S ∪E encodes the connection between each E-gene
to its S-gene. In general, every E-gene has a single parent in S, but if more than one
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S-gene regulates an E-gene, the average over the observed effects is taken. The state
of E-genes can be 0 or 1 and whether their parent S-gene is in the influence region or
not. This state is drawn from the microarray measurements.

After the discretization of input expression data, the algorithm scores through a list
of pathway hypotheses. Each hypothesis predicts downstream effects at E-genes.
According to the score, the algorithm sorts the silencing schemes how well potential
pathways fit experimental data. The predicted expected effects can be compared with
observed effects to choose the silencing scheme, which fits the data best.

In the following, the marginal likelihood introduced in Markowetz et al. [2005] is
described. The likelihood of the data is a product of the probabilities of observing
or missing an effect over all E-genes. Note that the ’true’ T’ of a candidate graph T
is unknown for two reasons: (i) the positions of E-genes are unknown and (ii) they
can be regulated by more than one S-gene. Also, only the graph T of S-genes is of
interest and not in the position to E-genes. To overcome these points they calculate
the marginal likelihood by average over the edges between S- and E-genes.

Fröhlich et al. [2007] extended the approach to a more general inference scheme.
Instead of counts, they deal with a matrix of (raw) p values. These p values specify
the likelihood of a gene a if it is differentially expressed after knock-down of gene b.
This overcomes the critical discretization procedure, which has a direct influence on
the conditional likelihood and can be difficult to estimate.
Additionally, the p values are fitted using a so-called three component beta-uniform
mixture model (BUM) consisting of a uniform and two beta distributions. [Fröhlich
et al., 2007] could show an improvement in fitting the p values using this modification.

Furthermore, they apply a Bayesian prior reflecting the degree of belief in the existence
of edges in the network. The smaller this difference to the prior assumptions, the
higher the edge probabilities should be. Therefore Laplacian distribution is an appro-
priate model to characterize the probabilities.

Markowetz et al. [2005] completely score all possible topologies, which is just applicable
for very small networks. To overcome this issue Fröhlich et al. [2007] introduced
a heuristic called module networks that evolves a graph from subgraphs, named
modules.

First of all, they calculate the hierarchical clustering of the expression profiles. This
realizes the assumption that S-genes with a similar E-gene response profile are close
neighbors in the pathway. After estimating all clusters (modules), the algorithm
composes their connections. To find this connection the method uses the greedy
hill-climbing algorithm. Edges between S-genes will be added subsequently to the
complete network if they increase the likelihood.
This algorithm computed much faster and therefore allowed for the inference of large-
scale networks compared to the original approach. [Fröhlich et al., 2007]
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NEM needs high-dimensional, indirect measurements of rather qualitative knock-
down effects, such as microarrays and is not able to model the time-dependent
behavior of the system.

2.2.2 Dynamic Deterministic Effect Propagation Network

In this section, an overview of the general DDEPN framework, which was applied to
the phospho-protein measurements, is given. DDEPN is a network inference method
for high-throughput data with direct observation of involved proteins after knockdown
of the measured components.

As a first step, DDEPN identifies the state transitions of a hidden Markov model,
where the states correspond to combinations of activities of nodes in the network.
In the second step, a likelihood function scores the candidate networks derived from
the previously estimated state transitions.

The nodes represent the measured proteins. The signal flow through a given network
of proteins is represented in a matrix, which contains a series of possible system states.
DDEPN treats each perturbation as an external influence and includes it as a node
into the network with the constantly active state.
The type of each edge is stored in an adjacency matrix giving 0 for no edge, 1 for
activation and 2 for inhibition. The algorithm starts at the stimuli nodes and then
resolves the status of all children. For example, a child becomes active if all parents,
who are connected via inhibition edges are inactive and at least one parent, who is
connected by an activation edge has to be active.

The method continues with the Viterbi training algorithm to find a series of reachable
system states that are agreeing with the measured experimental data. This algorithm
starts with sampling random states and estimates model parameters depending on
them. With these parameters new the system states are estimated using Hiden
Marcov Model (HMM). This procedure iterates until convergence. After reaching
convergence the likelihood is calculated for the resulting state matrix.

Bender et al. [2010] proposed that each measurement comes from different normal
distributions whether the state of the individual protein is active or inactive. Thus
there is an ’active’ normal distribution if its state is 1, and from a ’passive’ normal
distribution, if its state inactive. The parameters for the distributions are calculated
as unbiased empirical mean and standard deviation of all measurements for this
protein in the given class.
In the next step, the algorithm uses GA to search through the whole population of
possible networks the optimal network structure. Hereby the BIC is used as a fitness
score because it penalizes a higher number of edges.
At the end of this step, the final network is drawn from a combination of all candidate
networks. Each edge that occurs in more than a defined fraction in the population is

25



present in the final network.

Within this approach, it is also possible to include prior knowledge. In DDEPN it is
implemented via Bayes theorem:

P (Φ) =
P (D|Φ)P (Φ)

P (D)
, (2.2)

where Φ is the matrix of model parameters and D consists of measurements. P (D|Φ)
is the likelihood function as defined in [Bender et al., 2011], P (Φ) defines the prior
distribution, and P (D) is a constant normalizing factor.

2.2.3 Literature-based Data Integration

The cross-platform analysis intents to link biological conclusions on different signaling
levels. There are integration methods which concern naive weighted means of tran-
script and protein abundances [Balbin et al., 2013] or prize-collecting Steiner tree
formalism (PCST) to find an optimum tree [Tuncbag et al., 2013] and methods
which consider consensus pathways and molecules [Wachter and Beißbarth, 2015].
Alternative con-cepts exploit the relationships between gene products to produce a
network of related genes, known as an interactome. [Gibbs et al., 2014] To elucidate a
subnetwork or pathway containing gene products with functional relatedness Dutkowski
et al. [2013] developed a de novo clustering algorithm of interactomes. On the other
hand, some techniques integrate data sources before clustering applying a joint latent
model. [Shen et al., 2009; Michaut et al., 2016]

The approach that is used in this work is called pwOmics. [Wachter and Beißbarth,
2015] This integration method takes the different molecular layers into consideration.
There-fore public signaling pathway information and transcription knowledge data is
used to identify molecular interactions.

Different pathway databases are used to classify the pathways of the differentially
expressed (phospho-)proteins together with genes or transcripts in the down- and in
the upstream analysis.

In the first place, the method analyzes the two data sets separately. This permits a
level-specific interpretation of down- and upstream changes of regulatory molecules
in each inhibition experiment. The following analysis steps deal with pre-processed
transcriptome and (phospho-)proteome data. That means the integration approach
takes already normalized and perhaps filtered data sets as input.

To identify downstream target genes, upstream TFs and later proteomic regulators
it is possible to use different pathway databases. A number of public databases
systematically gather pathway information. The focus of this package lies on four
databases that supply their data in the Biological Pathways Exchange (BioPAX)
format: KEGG [Kanehisa and Goto, 2000], Reactome [Croft et al., 2014], Pathway
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Interaction Database [Schaefer et al., 2009] and Biocarta [Nishimura, 2001].

The downstream analysis is motivated by assuming that protein phosphorylation
transmits downstream regulation. In other words, pathways, which include differen-
tially abundant (phospho-)proteins, are determined. Then, gene sets of the identified
pathways are matched against TFs derived from the TF-target gene database. In the
same way, downstream target genes are identified. A target gene is a gene regulated
by a given TF.

To replenish this analysis step the upstream analysis of the transcriptome data
set provides TFs and proteomic regulators based on differentially expression levels.
The purpose here is to detect pathways containing transcripts of possible upstream
proteomic regulators. Thus, firstly upstream TFs of significantly differentially regula-
ted transcripts are identified and afterward, pathways they belong to are determined.
In order to ensure matching genes and proteins, their IDs are transformed into HUGO
gene symbols.

Following the pwOmics literature, the individual analysis follows the static consensus
analysis where signaling networks were constructed depending on intersecting proteins,
TFs, genes and transcripts on each cellular layer. Consequently, the results derived
from individual downstream and upstream analyses are reduced to molecules that are
identified from both platforms. The corresponding proteins and TFs are mapped to
the PPI STRING database [Franceschini et al., 2013]. Steiner trees are generated
using a variant of the shortest paths algorithm [Sadeghi and Fröhlich, 2013]. Steiner
nodes are inserted to assure the connectivity of the network.
Finally, matching TF-target interactions are added by integrating TRANSFACR©

[Matys et al., 2006] information. The accomplished networks arrange interaction
and regulatory information on the consensus molecules.

2.2.4 Network Visualization with R

Visualizations are essential to retrieve fast and easy access to different aspects of
the network because the interaction between biological components can not only
be measured experimentally but also calculated. Several approaches to visualize
biological pathways and relations are possible and offer particular concentration to
features. A more detailed mathematical discussion of graphs within network biology
can be found in [Emmert-Streib and Dehmer , 2011].

Though not specifically developed for it, R has become a powerful tool for network
analysis. To investigate network properties, the R package used in this thesis is called
igraph [Csardi and Nepusz , 2006]. It has implemented considerable tools to visualize
network structures. igraph handles both undirected and directed graphs. Within
the package, different algorithms are provided that allow graphs to be displayed in
an assortment of layouts. The igraph package can deal with labeled and unlabeled
and weighted and unweighted networks. It also supports simple graph-theoretical
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methods and some basic network descriptors to define basic structural features (e.g.,
degree and coefficient of global clustering).

In this thesis, each node of a network is a gene or, respectively, a protein and each edge
indicates whether there exists a dependency between them, whereby the direction of
an edge indicates the orientation of influence.

2.3 Survival Analysis

As part of breast cancer patient data analysis, a Kaplan-Meier (KM) analysis was
performed. The KM method is a non-parametric estimator to estimate and graph
survival probabilities as a function of time. To determine any statistical difference
between the survival curves the log-rank test, implemented in survival R-package
[Therneau, 2015], was used.

In principle, the log-rank test uses the total number of deaths reported and the total
expected number of deaths in each group to generate a test statistic. This test statistic
is later analyzed using the χ2 test with the null hypothesis assuming that all survival
curves are the same. Survival analysis can be applied to any event of interest. In
this thesis, it was used to estimate the survival function of overall survival (OS) and
metastasis-free survival (MFS) among the primary and metastatic tumor of breast
cancer. The KM curves were compared using a log-rank test implemented in survival
R-package. As part of the analysis of breast cancer patient data, full hierarchical
clustering was performed using Pearson correlation as a distance measure.
To divide the different patient groups into clusters within the dendrogram, the cutree-
Dynamic algorithm, as implemented in the dynamicTreeCut R package [Langfelder
et al., 2007], was used. Subsequently, the identified patient clusters were investigated
regarding their MFS.

2.4 R packages

All analyses steps were done in R version 3.4.4. The aforementioned methods are
implemented in different R packages. An overview of all R packages that are used
within this thesis is given in table 2.1. The table lists the packages, a short description
and the repository, from where they can be installed.
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Table 2.1: Table of the utilized R packages.

2.5 Data Sets

2.5.1 Lymphoma

To describe the dominant pattern of gene and protein expression and to derive
pathway activity in BL from measured (global) expression changes, the BL2 cell
line was used as the model system. One way to overcome the limitations of learning
networks from single data types is to use publicly available sources of complementary
data. The data sets investigated in this project includes public available gene expres-
sion measurements and phospho-protein levels generated in the network analysis of
BCR signaling. Further details, as well as the pre-processing steps, performed on
both microarray raw data and proteomic raw data, are described in the following
section.

2.5.1.1 Gene expression data

Gene expression measurements by microarrays are very widespread as a data source to
allocate gene functions because they provide a comprehensive picture of gene activity
in cells.

Within this thesis work, a public microarray data set, that provides measurements
of gene expression in the Burkitt lymphoma cell line BL2, was used. The raw
microarray data files are available at the NCBI Gene Expression Omnibus (GEO)
[Pirkl et al., 2016] database under the accession number GSE68761. The BCR data
was generated using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. It
provides gene expression measurements after the perturbation on 5Z-7-Oxozeaenol
(TAK1), IKK2 inhibitor VIII (IKK2), Ly294002 (PI3K), SB203580 (P38/MAPK14),
SP600125 (JNK), U0126 (ERK1/2).
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2.5.1.2 Phospho-protein data

The phospho-protein expressions, again, in the cell line BL2 were measured using
Luminex bead-based multiplex assays. The cells were stimulated with the growth
factors IgM for 30 min to activate the BCR receptor. Afterward, the cells were
preincubated for 90 min with pharmacological inhibitors against the kinases BTK
(Ibrutinib), MEK (AZD6400, U0126), PI3K (BMK120, Ly294002, Cal-101), AKT
(MK-2206), TAK1 (5Z-7-Oxozeaenol), IKK (ACHP, MLN120B), JNK (SP600125,
JNK inhibitor VIII), p38 (SB203580) or mTOR (Rapamycin).

While being aware of having a biased selection of phospho-proteins, the assay included
proteins that are within or nearby the stimulated pathway and the inhibited kinases.
Read outs of 15 phospho-protein levels were done 90min after inhibition to reach a
network to be approximately in a steady state. That means that, after treatment
and incubation, lysates were assembled and analyzed with the BioPlex Protein Array
system (BioRad, Hercules, CA) using beads specific for pAKT (S473), pERK1/2
(Thr202/Tyr204/Thr185/Tyr187), pGSK3α/β (S21/S9), pMEK1 (S217/S221), pJNK
(T183/T185), pSYK (Y352), pBTK (Y223), pZAP70 (Y319), pNF-κB (S536), pP38
MAPK (T180/Y182), pJUNC (S63), pHSP27 (S78), pRPS6 (S235/S236) and pBAD
(S136).

The data set for this project was generated by Anja Sieber of the Institute of Pathology
(Charité University Medicine Berlin) as published previously [Klinger et al., 2013].
The BioPlex manager software was used for data acquisition. Figure 2.1 gives an
overview of the whole experimental setting of the project.

Figure 2.1: Overview about the whole experimental setting. Bold proteins represent
the intersection of inhibitions in both data sets and measured proteins that where also
inhibited in one experimental condition.
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2.5.2 Breast Cancer

Although many of the members of WNT11 signaling pathways are now known, much
remains to be discovered regarding specific receptor-ligand pairings. For instance,
receptor tyrosine kinase like orphan receptor 2 (ROR2) is a WNT11 receptor that
has been shown to be highly expressed in breast cancer metastases. [Klemm et al.,
2011] The study from Bayerlová et al. [2017] indicated that ROR2 mediated WNT11
signaling plays a central role in breast cancer progression. The following work aims
to further investigate the role of ROR2 in WNT11 signaling.

2.5.2.1 Experimental set up

To investigate the role of ROR2 in WNT11 signaling, in vitro experiments for data
generation were performed in cooperation with the research group of Prof. Annalen
Bleckmann (University Hospital Münster, Department of Internal Medicine-A). As
model cell line hormone receptor-positive MCF-7 human breast cancer cells (DSMZ,
Braunschweig) were used. Cells either expressed pRor2 or the respective pcDNA3.2
empty vector (as in Bayerlová et al. [2017]) and were kept under constant antibiotic
selection with G418 (750g/ml, Roche) or zeocin (10g/ml, Invitrogen).
For the knockdown of WNT11 gene expression, MCF-7 cells were transfected in
suspension with RNAimax reagent (ThermoFisher Scientific) using 10nM control
siRNA (siCTL, #sc-37007) or a siRNA pool directed against Wnt11 (siWnt11, #sc-
41120, both santa cruz). Cells were used 48h post transfection for subsequent experi-
ments.
For stimulation experiments, MCF-7 cells were treated with rhWnt11 (100ng/ml,
#6179-WN/CF, R&D) for the indicated time periods. The laboratory implementation
was realized by Lena Ries (University Medical Center Göttingen, Department of
Hematology/Medical Oncology)

The following Figure 2.2 shows the experimental setting, which was designed by Astrid
Wachter (University Medical Center Göttingen, Department of Medical Bioinforma-
tics) and Kerstin Menck (University Hospital Münster, Department of Internal Medi-
cine-A).

Figure 2.2: Overview about the whole experimental setting.
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2.5.2.2 Gene and protein expression data

2.5.2.2.1 Gene expression data

Newly generated RNA-seq time series data set

To quantify the gene expression changes linked with the observed interplay of WNT11
and ROR2 in MCF-7 cells, three replicates for each experiment were executed using
RNA-seq. Cells were treated as described in 2.5.2.1 and then were sequenced at
NGS Integrative Genomics Core Unit (NIG) by Dr. Gabriela Salinas-Riester. The
measuring points cover 0, 3, 6, 9 and 24 hours after stimulation. The reads were
then mapped against the reference genome GRCh38 using database information from
Ensembl ver. 38.78.

Publicly available RNA-seq data set

To associate WNT11 signaling with clinical outcome, RNA-seq data from brain metas-
tatic tissue published by Blazquez et al. [2018]. This data set contains total RNA reads
of 48 breast cancer patient tissue and overall survival annotations, from the date of
brain metastasis resection forward.

Microarray data set

To examine the role of selected WNT11 pathway members in the development of
metastasis in breast cancer patients, a data set of 2075 patients with breast cancer
was included in the study. The data set is a compilation of ten gene expression
data sets of primary breast cancer patient samples. This data set was compiled by
Bayerlová et al. [2017].

2.5.2.2.2 Protein expression data

Newly generated RPPA time series data set

The newly generated RPPA data set for this project was generated by Eileen Reinz of
the Division of Molecular Genome Analysis in Heidelberg headed by Prof. Dr. Stefan
Wiemann in the group of Dr. Urlike Korf. MCF-7 Cells were treated as decribed
in 2.5.2.1. The RPPA chip covered measurements of 67 proteins and 34 phospho-
proteins. Expression levels were analyzed for each treatment over ten different time
points. For the short-term measurements were carried out at six time points (0min,
5min, 10min, 20min, 30min, 60 min) were measured, for the long-term measuring four
time points (3h, 6h, 9h, 24h). The experiment was carried out with three biological
replicates.
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Publicly available RPPA data set

To study the protein expression in breast cancer patients, a publicly available data set
was supplied to a survival analysis. The utilized RPPA data contains measurements
from brain metastatic tissue of 48 breast cancer patients and was published by
Blazquez et al. [2018].
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CHAPTER III

Results

3.1 Lymphomas

This chapter is divided into four parts. First, an overview of the statistical analysis
of the two data sets is presented. The second section summarizes the network
reconstruction results of transcriptome data (section 2.5.1.1), followed by the study
of the phospho-protein data (section 2.5.1.2). Finally, both data sets were combined
and a literature-based integration analysis was performed.

3.1.1 Differential Expression Analysis

After normalizing the microarray data set as described in section 2.1, each inhibition
experi-ment was compared against the control of the gene expression data. In Figure 3.2
B the resulting log2 transformed FCs of the 250 most significant genes (FDR < 0.05)
are displayed. The significant DEGs were then considered in the subsequent network
analysis.

Interestingly, inhibition of ERK and PI3K show comparable effects on the gene
expression level. The PI3K and ERK pathways both are known as important intracel-
lular signaling pathways. Oncogenic alterations of the effectors in PI3K and ERK
pathways are frequently observed in many cancers. [Kohno and Pouyssegur , 2006;
Jokinen and Koivunen, 2015] A broad crosstalk between these two pathways has been
invested. The both pathways functionally co-regulate the same transcription factors
which drive cell proliferation and cell survival. [McCubrey et al., 2007; Mendoza et al.,
2011]

In the same way, the phospho-protein expression data described in section 2.5.1.2 was
investigated. Before calculating log2 FCs of the phospho-proteins, the distributions
of their expression values were plotted to see if a normalization step is necessary.
Figure 3.1 shows the density plot and box plot for measured phospho-protein expres-
sions, revealing that the distributions of all proteins are not skewed and have no or
just a few outliers. Although some protein expression are closer to a bell shaped
(normal) curve than others, in particular pGSK3α/β. For this reason, it seemed
reasonable to include a normalization step before performing the statistical analysis.
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Figure 3.1: Boxplot and density curves showing the log2 transformed protein
expression levels for each phospho-protein separately.

In Figure 3.2 (A), the result of DE analysis is shown as log2 transformed fold changes
in the inhibition experiment compared with the unperturbed controls.

Nearly every phospho-protein shows very small log2 fold changes and seems to be
slightly down-regulated after most interventions. As an exception, MEK reveals a
strong effect after perturbation of TAK1, p38 MAPK as well as combined treatment
of p38 MAPK and IKK. Furthermore, MEK inhibition leads to lower phosphorylation
of SYK, ZAP70, RPS6, ERK1/2 and of the AKT, p38 MAPK, and JNK pathway,
whereas its own phosphorylation was increased. Also, it is well known that ERK
reduces its own activity through inactivating phosphorylations of RAF-1 and MEK
[Steelman et al., 2011]. This suggests that the signal inhibition of ERK1/2 increased
the phosphorylation of MEK. Furthermore, the perturbation of p38 MAPK highly
elevated the phosphorylation of MEK and ERK1/2, but only marginally increased
phosphoryla-tions of the other proteins, namely ZAP70, BTK, AKT, GSK3A/B,
JNK, c-JUN, and NF-κB.
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Due to the low expression pattern in the phospho-proteins, none of them was signifi-
cantly differentially expressed (FDR < 0.05). Nevertheless, it should be noticed
that a statistically significant difference in the expression level does not imply the
incidence of any difference in biological significance. That is because the mathematical
definition of ’differential expression’ as any non-zero difference does not correspond
exactly to the differential expression biologists follow. Overall, these data reflect
the general image of BCR pathway activation in B cell lymphomas but also indicate
that more subtle systemic alteration underlie this dysregulation, instead of significant
changes in the expression of one or more components. Consequently, all phospho-
proteins were included in further analysis.
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Figure 3.2: Hierarchical clustering analysis and mean log2 FCs of the A: measured
phospho-proteins in the columns and inhibition experiments in the rows and B: 250
most significant genes in the columns and the inhibition experiments in the rows

3.1.2 NEM

Since the utilized data sets are different in their measurement technique (e.g. Affy-
metrix mircoarray and Luminex protein assays), on each data set different network
inference approaches were applied to estimate the signaling between genes and proteins
respectively. To study and re-evaluate the microarrays data described in section 2.5.1.1,
NEM approach (section 2.2.1) was applied. After filtering of FDR < 0.05, a three
component beta-uniform mixture (BUM) model of the p values was fitted via an EM
algorithm.
Subsequently, NEM was executed using a prior knowledge graph. The summarized
graph for this analysis step, shown in Figure 3.4, focuses on the genes, which are
S-genes in the microarray. Figure 3.3 shows a summary of a part of BCR signaling
adapted from Pirkl et al. [2016].
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Figure 3.3: Prior knowledge network for the NEM analysis adapted from Pirkl et al.
[2016]

The resulting model, shown in Figure 3.4, contains many new edges and only three
edges, which overlap with the prior knowledge graph. Based on this gene expression
measurements, the methods generates new hypotheses of signaling transduction. The
learned network predicts that the activation of the JNK pathway is PI3K and ERK-
dependent, while TAK1 relies only on ERK. The signal flow to p38 MAPK can be
stopped with the inhibition of PI3K. The three kinases p38 MAPK, JNK, and IKK2
regulate each other and build a loop in this network. ERK propagates signals into
the p38 MAPK and TAK1 pathway.

Figure 3.4: The highest scoring network edges: The nodes in this graph represent
genes, which were perturbed in the biological experiments, and the edges can be
interpreted as the signal between genes. Blue edges represent confirmed interactions
and black edges are newly inferred by NEM.

The result presents a first model of the BCR signaling network and a hypothesis
explaining how downstream nodes of this pathway could be affected. Nonetheless,
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this analysis could not perfectly explain the signaling network. To extend the network
structure, phospho-protein network analyses were performed to reveal the downstream
signaling flow.

3.1.3 DDEPN

In this step, the aim was the identification of individual drug response patterns
in lyphoma cells. For Bayesian network reconstruction on the previously described
phospho-protein data set (section 2.5.1.2) DDEPN approach was run. The resulting
graphs are shown in Figure 3.6.
As mentioned in the first chapter, in the field of network analysis, it could be shown
that integrating prior knowledge can enhance the result and it helps to decrease the
search space. For these reasons, a prior knowledge graph composed of literature
knowledge was used in this protein network analysis. Figure 3.5 shows a summary of
recent knowledge of a component of BCR signaling, which was constructed manually
from the pathway database KEGG. A detailed description of BCR signaling is given
in section 1.1.1.

Figure 3.5: Manually assembled graph representing the prior knowledge. The prior
knowledge network was used as the starting point for the DDEPN model.

The reconstruction started from predefined initial states of the network nodes. The
inhibited nodes were set to specific values, reflecting the conducted experiment. The
result of integrating the prior knowledge as explained in the previous section is given
in Figure 3.6. Directed edges represent regulatory processes such as activation and
inhibition. It can be seen, that DDEPN did not identify known interactions but infer
some new edges between the proteins. Compared to the prior network, most of the
newly inferred edges were direct connections between protein nodes. For instance, hte
data does not support the chain from SYK over BTK, AKT, and mTOR to RPS6.
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Instead the expression of the proteins was interpreted as a direct interaction between
SYK and RPS6. The low, but rapid, phosphorylation of the proteins complicated the
exact reconstruct the signaling pathway at it is known from literature.

Figure 3.6: The inferred BCR phospho-protein network using DDEPN approach.
Comparison of the reconstructed network with prior knowledge.

To compare the resulting NEM and DDPEN graphs and to get an overview of all
the inferred interactions, both networks were merged into one summary network.
Figure 3.7 shows that the graphs don’t overlap, but complement each other. It
is noticeable that the graphs are connected via the two nodes TAK1 and PI3K.
Accordingly, there are no edges, that are inferred from both data sets. Although
it would be interesting if interactions could be identified that are supported by
transcriptome and proteome measurements.
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Figure 3.7: Merging the resulting NEM and DDEPN graphs. Orange edges are
derived from NEM analysis, and green edges are inferred by DDEPN analysis.

Since the two reconstruction approaches are based on a different design, the resulting
graphs share nodes. This restricts the reconstruction of one single network with edges
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that are inferred from both data sets in parallel. For the purpose of overcoming the
missing overlap and to better integrate both data sets, a different network analysis
approach was conducted in which knowledge from public literature sources was ex-
plored in a more comprehensive way. Specifically, the method pwOmics, which is
explained in section 2.2.3, was utilized.

3.1.4 pwOmics

To perform the main integration steps, the open-source R package pwOmics [Wachter
and Beißbarth, 2015] was used. Each step was performed for every perturbation
experiment separately.

The first step encompassed a downstream analysis of the proteome data set. Pathway
information in this procedure was taken from four databases KEGG [Kanehisa and
Goto, 2000], Reactome [Croft et al., 2014], Pathway Interaction Database [Schaefer
et al., 2009] and Biocarta [Nishimura, 2001]. Given that none of the phospho-proteins
was significantly differentially expressed, the complete set was included in the input
data for the downstream analysis. That resulted in a high number of pathways that
are affected in downstream signaling.

The investigation of the four selected pathway databases in downstream analysis
identified 270 pathways. Conferring to the number of TFs and targets in the down-
stream analysis the identified TFs activate the expression of a high number of genes.

For example, the EGFR signaling pathway was selected from this knowledge-driven
model based on gene and phospho-protein expression data, respectively, for this
condition. The EGFR signaling pathway is described to influence cancer progression
in several cancer types. [Wang et al., 2007; Teixeira et al., 2009; Costa et al., 2011]
This indicates that the EGFR pathway is a relevant factor in cancer development and
progression.

Table 3.1: Result table of the downstream analysis.

For the upstream analysis, all transcripts were filtered with a p value below 0.05. Here,
the TF-target gene interaction information is derived from the TRANSFAC database
[Biobase version 2014.4; Matys et al. [2006]]. Like in the downstream analysis, the
high number of differentially expressed genes resulted in a reasonable list of pathways.
Identified upstream pathways included STAT3 dependent signaling pathway, which
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is involved in tumorigenesis. STAT3 is a transcription factor modulating many
important functions in cellular transformation. [Sansone and Bromberg , 2012] The
results for each of the five conditions are summarized in Table 3.2.

Table 3.2: Result table of the upstream analysis.

As reported by the TF-target gene database, the identified TFs activate the expression
of a high number of proteins, as shown in Table 3.2.

In the static consensus analysis, the results of the different levels for each experiment
were combined. Exemplary, the network of inhibition experiment of PI3K is shown
in Figure 3.8 A.

The profiles of the consensus results display the existence of specific molecules in the
consensus networks under each perturbation, as presented in Figure 3.8 B. Compared
to the other conditions, after TAK1 inhibition, just a few consensus TFs could be
identified by the algorithm. Subsequently, log2 FCs were merged with the static
consensus profiles reflecting the up or down-regulation of specific molecules in the
consensus networks for each inhibition, as illustrated in Figure 3.8 C. As this figure
implies, there are no down-regulated TFs. However, it was recognized that all TFs
show small log2 FC values. Further, it is noticeable that most effects are detected
after PI3K inhibition. This is in line with recent studies who indicate a crucial role
of the PI3K pathways in DLBCL [Erdmann et al., 2017; Bojarczuk et al., 2019] as
well as an impact on B cell, which is strongly dependent on BCR expression [Werner
et al., 2010].

41



Figure 3.8: Static consensus analysis results. A: Static consensus graph of PI3K
inhibition. Red nodes are consensus proteins, blue nodes are consensus TFs and
green nodes are consensus target genes. B: Consensus profiles for TFs of the different
inhibitions. Rows represent the consensus TFs and columns show the conditions.
Blue indicates that the gene is consensus gene under this condition, and white boxes
indicate, that the gene is not in the set. C: Consensus map showing the log2 FCs of
the TF. Rows represent the consensus TFs and columns show the conditions. Grey
boxes indicate that the TF doesn’t belong to the consensus graph under this condition.

Approximately one third of consensus TFs appeared under all perturbation experi-
ments. Among this consensus TFs, Serum Response Factor (SRF) was identified in
every condition. It is a downstream target of a few pathways, such as the mitogen-
activated protein kinase pathway (MAPK) and MEK/ERK pathway. SRF plays an
important role in the regulation of proliferation and cytokine production in lympho-
cytes. [Hao et al., 2003]
A second target, which dominated every consensus graph, even though it was not on
the microarray, as c-Rel. c-Rel is a member of NF-κB transcription factor family.
High c-Rel expression levels are described mostly in B and T cells, where many c-Rel
target genes are associated with B and T cell malignancy. [Gilmorec and Gerondakis ,
2011] In addition, one study indicates that c-Rel may also be directly involved in
regulating DNA replication. [Ishikawa et al., 1993]
Several genes were exclusively found only after one perturbation. A notable example
is the vitamin D receptor gene (VDR). VDR polymorphisms are associated with an
increased risk of BL. The findings of Gascoyne et al. [2017] indicate that the inhibition
of VDR pathway activity may be of therapeutic benefit. Overall, these cases support
the view that the inhibited targets have an important effect on downstream genes.

The pattern of the consensus target genes over all four conditions is displayed in
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Figure 3.9. The heatmap shows genes with the highest absolute log2 FC under the
condition if inhibited PI3K. Grey boxes indicate, that this gene is not a consensus
gene after that perturbation. It is noticeable, that most genes, which are in the set of
consensus genes under PI3K perturbation, are not in the other consensus sets. The
shown genes represent the over all pattern, that the four conditions don’t share many
consensus genes. A comparison of the four gene sets can be found in Figure 3.10.

Figure 3.9: Heatmap of log2 FC of consensus target genes. Grey boxed indicated that
the gene wasn’t identified by the algorithm under that specific condition as a consensus
target gene..

Under PI3K inhibition, the CD69 gene showed the highest log2 FC compared to all
other log2 FCs. CD69 is a marker expressed on the surface of activated leukocytes
by activation of RAS, RAF and calcium release. [D’Ambrosio et al., 1994; Taylor-
Fishwick and Siegel , 1995] Erlanson et al. [1998] investigated its expression in B cell
non-Hodgkin’s lymphomas. They could show that 53% of aggressive cells expressed
the CD69 antigen and demonstrated its impact on advanced stage and shorter survival.

To further study the pattern of targeted genes over all four conditions, the overlap
between them was analyzed. The sets and their intersections are shown as a bar
chart. The first four sets are mutually exclusive. That means that the bars include
all the targeted genes that occur only in an individual set. The diagram shows that
the sets of targeted genes are rather distinct. The vast majority of target genes is not
shared between all four conditions.
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Figure 3.10: Comparing the sets of consensus target genes of the different conditions.
The size of the intersections is shown as a bar chart. Each column represents one
intersection relationship. (142 were exclusively selected for condition PI3K; 42 target
genes were only selected for condition JNK and so on.) Blue horizontal bars display
the four set sizes. Plot generated by using the R package UpSetR from Conway et al.
[2017].

This way of visualization as in Figure 3.10 combines the set perspective and the
element perspective. Related sets (here: intersections) are displayed as a matrix
below the bar chart. The columns of this matrix correspond to the intersections
while the rows correspond to sets, which means that each row matches a field in
a Venn diagram. The number of elements in an intersection can be read from the
length of the bars. That means the vertical histogram represents the size of the
overlap between gene sets.

It can be seen that the most consensus genes were identified after PI3K inhibition (142
genes compared to 43 after inhibition of JNK, 36 after p38 inhibition, and 17 after
TAK1 inhibition). This underlines the importance of PI3K in B cell lymphomas and
has to be biologically validated. Also, it initiates the question with which pathways
BCR signaling is intertwined. This can by the basis for following research, as the
focus of this analysis lied more on BCR signaling in the context of feedback loops
within the pathway.
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3.2 Breast Cancer

3.2.1 Statistical analysis

In the differential analysis of the RNA-Seq and RPPA data, transcriptomic and
proteomic profiles of the stimulated cell lines were compared to the control samples
or other selected stimulation conditions.

3.2.1.1 RNA-Seq differential analysis

As the aim was to study the influence of the receptor ROR2 on WNT11 signaling, the
main questions of the RNA-seq analysis were focused on: Which genes are regulated
by WNT11

1. in the ROR2 overexpressing cells?

2. independently of ROR2 overexpression?

3. dependently of ROR2 overexpression?

Therefore, three cell lines with different characteristics were investigated individually.
As described in section 2.5.2.1, one cell line had no endogenous ROR2, and two cell
lines express endogenous ROR2. From these two ROR2 expressing cell, one cell line
express endogenous WNT11 and in the second cell line WNT11 was silenced with
siRNA. In that way, the observed effects could be directly associated with specific
cellular conditions.

First of all, the RNA-Seq data set was first quality checked via FastQC (Babraham
Bioinformatics) and then aligned to the transcriptome using STAR tool [Dobin et al.,
2013]. Gene-level abundances were estimated by RSEM algorithm [Li and Dewey ,
2011]. Afterwards the R-Package edgeR [Robinson et al., 2010] was used to perform
the statistical analysis of the RNA-Seq data set, in order to identify differentially
expressed genes were identified between different conditions by fitting negative binomial
generalized linear models [McCarthy et al., 2012]. Subsequently, Benjamini-Hochberg
[Hommel , 1988] method was used to adjust the p values and significantly differentially
expressed genes (DEG) were selected with a FDR level below 5%.

Subsequently, each cell line and each time point was investigated separately by
comparing treated vs untreated condition individually. This means, that cells with
and without recombinant human WNT11 (rhWNT) treatment were compared at all
available time points. This should give a first impression of the underlying data before
moving to the main research questions. Figure 3.11 shows the first 50 DEGs for the
three cell lines separately.
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Figure 3.11: Separate heatmaps for A: cells expressing the pcDNA empty vector
B: ROR2 overexpression condition and control siRNA and C: ROR2 overexpression
condition and siWNT11. All three heatmaps show the log2 FCs of phospho-proteins
with dendrograms from hierarchical clustering analyses.

The majority of these DEGs are non-protein coding genes. For this reason, the
analysis was redone with an additional filtering step as described in section 2.1 keeping
only those genes that have at least ten reads for some samples. From a methodical
perspective, low counts do not provide enough statistical evidence to draw a reliable
conclusion. Such genes, therefore, can be removed from the analysis without any loss
of information. Furthermore, independent filtering can increase the sensitivity and
the precision of DEGs [Bourgon et al., 2010; Chen et al., 2016].

In order to answer the aforementioned questions, the following comparisons were
conducted after the pre-filtering step:

1. ROR2 overexpressing cells with and without siWNT11 (pROR2 siControl vs
pROR2 + siWNT11) at time point 0h,

2. cells with empty vector with and without WNT11 (pcDNA vs. pcDNA +
siWNT11) at time points 9h and 24h, and

3. ROR2 overexpressing cells without siWNT11 (pROR2 siControl) at time points
9h and 24h.

It is expected that stimulation effects on the gene expression level are more frequently
observed at the later time points 9h and 24h. Following the central dogma of
molecular biology, information transfer takes place in a sequential way from DNA
to RNA and needs time to be apparent. Therefore, the focus was set on the two later
time points.

The first comparison investigates the genes, which are regulated by endogenous
WNT11 in ROR2 overexpressing cells. Indicating that the significant genes are
regulated by endogenous WNT11 as these cells were not stimulated with rhWNT11.
Among the significant DEGs (FDR< 0.05) some interesting candidates could be
found. Among them are Ror2, Sonic hedgehog (Shh) and CD44. The protein encoded
by Shh is a crucial gene involved in Hedgehog (HH) pathway. Even though the
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potential role of SHH in breast cancer is not well described, recent studies showed its
potential importance, particularly in aggressive triple-negative breast cancer subgroups.
[O’Toole et al., 2011]
The protein encoded by CD44 acts on the cell-surface and is involved in cell-cell
interactions, and cell migration. CD44 is related with the WNT11 signaling pathway.
[Orian-Rousseau and Schmitt , 2015]
These examples demonstrate that interesting effects could be observed and further
investigations are necessary to validate the results and improve the understanding of
the WNT11 signaling landscape. The complete list of significant DEGs resulting from
this DEG analysis was later supplied to a pathway-based analysis with the approach
called pwOmics (see section 2.2.3 for method description).

The lists of DEGs of the other two comparisons are part of separate investigations in
order to follow the study of the effects of endogenous and external WNT11 stimulation
in more detail.

3.2.1.2 RPPA differential expression analysis

Subsequently after preprocessing the raw data set as described in 2.1 differentially
expressed phospho-proteins under particular conditions and time points were examined.

With attention to check which proteins are affected unspecifically by transfection, cells
with ROR2 expression (pROR2) with ROR2 cells with empty transfection (pROR2 +
siControl) were compared. This led to seven differentially expressed phospho-proteins.

To quantify the protein expression changes linked with silencing WNT11, the following
comparison was performed: silenced WNT11 against not silenced WNT11 in cells with
the empty vector (pcDNA vs. pROR2 + siWNT11) and cells with overexpression of
ROR2 (pROR2 vs. pROR2 + siWNT11).

Heatmaps 3.12 across all time points representing the log2 FC values between con-
trasted treatments for the 34 phospho-proteins for each time point. Phospho-proteins
which are found to be differentially expressed (FDR < 0.05) in at least one time point
are labeled in red. The value of log2 FC between contrasted treatments for each gene
is indicated by the colored scale, with red indicating up regulation and blue indicating
down regulation.
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Figure 3.12: Separate heatmaps for A: cells expressing the pcDNA empty vector
B: ROR2 overexpression condition and control siRNA and C: ROR2 overexpression
condition and siWNT11 showing log2 FCs of phospho-proteins with dendrograms from
hierarchical clustering analyses. Cells signed with ”*” indicate a significant log2 FC
with FDR < 0.05.

It can be seen in heatmap 3.12 A for cells expressing the pcDNA empty vector that
the phosphorylation goes up very fast after 10 minutes and a second time after 9h.

Analog to the phospho-proteins, total proteins were analyzed with the same workflow.
Figure 3.13 shows the log2 fold-change values between contrasted treatments for the
67 total proteins for each time point.

Figure 3.13: Separate heatmaps for A: cells expressing the pcDNA empty vector
B: ROR2 overexpression condition and control siRNA and C: ROR2 overexpression
condition and siWNT11 showing log2 FCs of total proteins with dendrograms from
hierarchical clustering analyses. Cells signed with ”*” indicate a significant log2 FC
with FDR < 0.05.

3.2.2 DDEPN

The normalized time-course RPPA data are the basis for modeling the WNT11
signaling networks with the aim of exposing mechanisms of signal transduction dyna-
mics in two of the cell lines. For network reconstruction, the method of DDEPN
[Bender et al., 2011] was applied to take advantage of the dynamical BN approach
which is specially designed for longitudinal protein phosphorylation data measured
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in stimulation experiments.

As phosphorylation is a post-translational process, which alters the function of a
protein through modifying the activity of an enzyme, network reconstruction was
performed for the normalized phospho- and total proteins expression levels separately.
To also benefit the most of this reconstruction method, it is advantageous to integrate
background literature knowledge about protein interactions into the network model.
Accordingly, before starting the main analysis, a sub-graph of the WNT11 pathways
was manually compiled. 10 total proteins and 8 phospho-proteins were selected for
the prior knowledge graphs. The two prior knowledge graphs, i.e. one for the total
proteins and one for the phospho-proteins, are derived from the hsa04310 pathway
from the KEGG database (http://www.genome.jp/kegg). The assembled graphs
encompass a compilation of recent knowledge of the canonical and non-canonical
WNT11 pathways.
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Figure 3.14: A: Prior knowledge graph for total proteins. B: Prior knowledge graph
for phospho-proteins.

At first, reconstruction of the WNT11 signaling network for the total protein measure-
ments was performed in both cell lines individually (Figure 3.15 A). It is observable,
that the algorithm verified only the previously known edge between ROR2→ JNK1 in
MCF-7 pcDNA cells and CTNNB1 → TCF7 in ROR2-overexpressing cells. Instead,
different from the prior knowledge network, the analysis disclosed mostly (11 and 10)
newly derived edges with more direct connections in pcDNA and ROR2-overexpressing
cells.

In the results it is noticeable, that the algorithm could not exactly reproduce the
signaling chain from FZD6 to TCF7. Instead, the method interpreted the observed
effects as direct connections from FZD6 to GSK3, and CTNNB1 or from WNT11 to
DVL3, GSK3 and TCF7. Comparing the signaling networks between the two cell
lines, the algorithm found that WNT11 stimulation alters WNT5A/B and ROR2
expression independent of ROR2 overexpression. WNT5A/B is a representative
ligand of the non-canonical WNT11 signaling pathway, who binds to FZD receptors
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together with different co-receptors, including ROR2. [Verkaar and Zaman, 2010]
Its activation was observed in invasive breast cancer cells. [Pukrop et al., 2006]
On the other hand, WNT11 seems to directly alter CTNNB1, which is a central
canonical WNT11 protein, only in ROR2-overexpressing cells. If CTNNB1 is not
degraded, it accumulates in the nucleus. There, it acts as a transcriptional co-
activator, initiating the cascade of downstream acting genes. [Komiya and Habas ,
2008] The observation, that the edge ROR2 → CTNNB1 is only present in ROR2-
overexpressing cells, indicates towards an influence of ROR2 receptor on downstream
canonical WNT11 signaling. This is in line with a recent study, that identified an
antagonistic function for ROR2 expression in regulating canonical WNT11 activity
in vivo using a breast cancer mouse model. [Roarty et al., 2017]

Secondly, reconstruction of the WNT11 signaling network for the phospho-protein
measurements was conducted in both cell lines individually (Figure 3.15 B). A new,
only two edges from the prior knowledge graph (GSK3B → CTNNB1, SRC →
cRAF) were confirmed by the algorithm. Instead, the DDEPN algorithm estimated
many new edges. In contrast to the total protein network, the two phospho-protein
networks diverge significantly. They overlap only in two edges (WNT11 → PDPK1
and GSK3B→ CTNNB1). The dissimilarity between the two cell lines might indicate
that ROR2 overexpression has an impact on downstream WNT11 signaling. One
central difference is the protein AKT. It is regulated via WNT11 and GSK3B only
in the ROR2-overexpressing cells. The regulatory role of ROR2 on the activation
of AKT was until now just shown in osteosarcoma cells. [Dai et al., 2017] The
results of this study indicate that ROR2 activates the AKT pathway and induces
osteosarcoma cell migration. Also, it is known that the AKT pathway mediates
many biological processes, such as proliferation, apoptosis, and growth. [Vivanco and
Sawyers , 2002] The observation in the reconstructed networks indicates that there is
an unsuspected connection between ROR2 expression and the AKT pathway, which
should be biologically validated.
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Figure 3.15: WNT11 signaling network reconstruction of (A) total protein and
(B) phospho-protein in MCF-7 pcDNA empty vector and ROR2-overexpressing cells.
Yellow rectangles represent target proteins and red show the external stimulus WNT11.

3.2.3 Survival Analysis

In order to gain a better insight into the role of selected WNT11 pathway members
in the development of metastasis in breast cancer patients (see paragraph 2.5.2.2.2),
was applied to pathways enrichment and survival analysis.

As part of Ms. Bayerlovás PhD thesis [Bayerlová, 2015], she examined several
databases for pathways linked to WNT11 signaling. These were sorted into three
subgroups reflecting different WNT11 signaling pathways: two gene sets with 304 and
489 genes representing the canonical and non-canonical WNT11 pathway as well as
one set of genes with 173 genes acting upstream of the WNT11 pathways. [Bayerlová
et al., 2015]
The last set includes genes that deactivate or activate the WNT11 signals, as, for
example, Hedgehog pathway members GLI genes [He et al., 2006] and the MYC gene
encoding the c-myc protein [Cowling et al., 2007].

As a first step of this study, enrichment analysis was conducted on the basis of these
three gene sets. The main purpose was to determine which of WNT11 signaling
pathways is the most present pathway in breast cancer patients. Secondly, resulting
clusters were provided to a Kaplan-Meier (KM) analysis of MFS. The KM curves were
compared applying a log-rank test as implemented in survival R-package. Figure 3.16
A shows the enrichment of WNT11 pathways in the data set and the hierarchical
clustering of the patients. Figure 3.16 B displays the MFS of the individual patient
groups as Kaplan-Meier curves.

Albeit the different group sizes of the gene sets, a tendency can be identified in the
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results. As shown in the heatmap 3.16 A, the analysis revealed that genes involved
in canonical WNT11 signaling are more expressed in primary breast cancer patients
than the genes associated with the other two gene sets. Furthermore, the patients
can be divided into three groups according to their WNT11 pathway activation levels.
Focusing on the canonical WNT11 gene signature, hierarchical clustering shows that
one patient cluster highly expresses canonical WNT11 pathway genes, the second
cluster has a low expression level and the third cluster of patients can be classified
as an intermediate patient group. Further, KM survival analysis revealed differences
for MFS between the three groups (p = 0.00421, Figure 3.16 B).

Figure 3.16: The WNT11 gene signature sets in the patients cohort with primary
breast cancer. A: Heatmap of −log2 p values of log rank statistic, red color represents
small p values and yellow color represents higher p values. Rows represent the three
WNT11 signaling gene sets canonical, non-canonical pathway members and genes,
that regulate WNT11. Cluster analyses yielded three patient clusters. B: Kaplan-
Meier curves display metastasis free survival according to the three clusters.

In primary breast cancer patients, it is noticeable that the patient groups differ in
metastasis free years significantly. Consequently, the canonical WNT11 pathway is
associated with the metastasis free survival.

Moving from primary breast cancer patients to measurements of brain metastasis of
breast cancer patients, the same enrichment was performed on the publicly available
data set of Blazquez et al. [2018]. The data set is described in paragraph 2.5.2.2.1.
Figure 3.17 A shows a heatmap of 48 breast cancer patients with brain metastases.

As it can be seen in Figure 3.17 A, genes of the non-canonical WNT11 pathway is
more present in patients with brain metastasis. Compared to the primary breast
cancer patients, different WNT11 pathway cascades seem to be important for the
development of metastasis. The hierarchical clustering yielded in two main patient
clusters, which were supplied to KM analysis. The results reveal a central role for
the genes of the non-canonical WNT11 pathway in patient survival. KM curves
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in Figure 3.17 B display that patients with high non-canonical WNT11 pathway
enrichment have a shorter OS.

Figure 3.17: The WNT11 gene signature sets in the patients cohort with brain
metastasis. A: Heatmap of −log2 p values of log rank statistic, red color represents
small p values and yellow color represents higher p values. Rows represent the three
WNT11 signaling gene sets canonical, non-canonical pathway members and genes,
that regulate WNT11. Cluster analyses generated two patient clusters. B: Kaplan-
Meier curves display OS according to the two clusters.

The next attempt was to identify single gene markers from the WNT11 module that
correlate with clinical outcome of the primary breast cancer patients. Therefore, the
microarray data set of Ms. Bayerlová, again, was supplied to a third survival analysis.
This time patients were grouped according to high and low expression levels of the
genes WNT11, ROR2 as well as FZD4 and FZD6. For this, the median was chosen
as reference expression value.
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Figure 3.18: Patients were grouped according to expression levels of (A) WNT11,
(B) ROR2, (C) FZD4, and (D) FZD6 below or above the median expression level of
each gene. Kaplan-Meier curves display metastasis free survival according to the two
groups.

As it can be seen in Figure 3.18, ROR2 ( 3.18 B) was detected at p < 0.05 level as
significantly correlated with shorter MFS. Although the three other group splitting
didn’t yield in a significant result, the higher expression levels of the genes show
a trend to result in shorter MFS. This indicates that these four genes have an
impact on the development of metastasis of primary breast cancer patients. ROR2
and several FZDs have previously been described to be involved in the malignant
transformation of breast cancer and to be associated with the survival and prognosis
of patients. [Bayerlová et al., 2017; Zeng et al., 2018]To date, interplays between
individual WNTs, FZDs and ROR2 remain poorly understood. Accordingly, further
experimental studies are required to verify the findings of the present analysis and to
understand the complexity of the underlying signaling mechanisms.

3.2.4 pwOmics

The next aim was to follow WNT11 dependent signaling from the activated receptors
via proteins to the transcriptomic response. Like in the lymphoma project, the
pathway-based integration approach, implemented in the R package pwOmics, was
utilized for the comparative analysis of signaling structure on different cellular layers
based on both data sets.
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The workflow is basically the same as introduced in section 3.1.4. First, individual
analysis of the two preprocessed omics data sets for each cell line was performed to
consider these different functional layers. Therefore all measured phospho- and non
phospho-proteins and significantly (FDR < 0.05) differentially expressed genes were
selected for the down- and upstream analysis.
In the downstream analysis of the proteome data set, on the basis of pathway knowledge
TFs of differentially abundant proteins and their target genes were identified. The
upstream analysis of the transcriptome data set the TFs and proteomic regulators
were determined based on differentially expression levels.

Table 3.3: Result table of the individual analysis.

Secondly, in the consensus analysis, consensus networks were reconstructed on the
basis of joining proteins and genes from the previous down- and upstream analysis
together with the corresponding PPI STRING network as described in section 2.2.3.
This step resulted in an individual network for each cell line. Figures 3.19 A-C show
the three received consensus networks after WNT11 stimulation.

Figure 3.19: Separate consensus graphs for A: cells expressing the pcDNA empty
vector, B: cell with ROR2 overexpression and siWNT11 and C: cells with ROR2
overexpression control siRNA.
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The comparison of the graphs in Figure 3.19 shows that the consensus graph for ROR2
overexpessing cells transfected with siControl (pROR2 + siControl) (Figure 3.19 C)
suggest as a subgraph of the consensus graph for ROR2 overexpessing cells transfected
with siWNT11 (pROR2 + siWNT11) (Figure 3.19 B).

As a result, EGFR signaling was identified in all three cell lines as consensus-based
regulatory process.
Interaction between WNT11 and EGFR has been identified in a few tumors. In
breast cancers, WNT11 overexpression activates signaling via EGFR. [Musgrove,
2004] Several convergence points between the two pathways have been proposed,
as reviewed in [Hu and Li , 2010]. Comparison of the consensus graphs in Figure 3.19
shows that ROR2 overexpression alters the downstream chains of EGFR. Thereby,
fewer effects are observed after WNT11 stimulation in the cells with endogenous
WNT11 (Figure 3.19 B) than in cells without endogenous WNT11 (Figure 3.19 C).
The combination of ROR2 overexpression and presence or absence of endogenous
WNT11 could provide an explanation for the observed differences.

The same pathway-based consensus analysis was applied to investigate signaling
which is affected in ROR2 overexpressing cells by endogenous WNT11 signaling.
Therefore, the significant DEGs and proteins resulting from the comparison of ROR2
overexpressing cells without endogenous WNT11 against ROR2 overexpressing cells
with endogenous WNT11 were supplied to the pwOmics approach. The constructed
consensus graph is shown in Figure 3.20. Due to the large number of DEGs (3789
genes with FDR < 0.05) which were supplied to the algorithm, a rather big consensus
graph was derived.
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Figure 3.20: Consensus graph for ROR2 overexpressing cells at time point 0h.
Consensus protein nodes are colored in red, consensus target gene nodes in green,
consensus transcription factor nodes in blue and Steiner nodes ind yellow.

Among the identified consensus genes are pathway members of, for instance, PI3K/
AKT signaling pathway and JAK/STAT signaling pathway.

In a subsequent step, literature was examined in order to determine what is known
about these pathways. With it, evidence could be found that these signaling pathways
have an important role in breast cancer. For instance, in triple-negative breast cancer,
oncogenic activation of the PI3K/AKT pathway can by its overexpression of one of its
upstream regulator EGFR. [Kallergi et al., 2008; Costa et al., 2018] This is consistent
with the preceding analysis in which EGFR signaling was identified as an altered
pathway in ROR2 overexpressing cells.
Likewise, a relationship between JAK/STAT activation and prognosis of breast cancer
patients has been observed. Lack of activated STAT5 is associated with decreased
survival and drives tumor progression and metastasis. [Peck et al., 2011; Banerjee
and Resat , 2016; Chang et al., 2013]
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CHAPTER IV

Discussion and Outlook

4.1 Discussion

Cancer biology is an astonishing and dynamic field of research. It has the general aim
to determine the factors that make up a living system like a cell and to understand the
interactions between them that result in the (mal-)functioning of the system. In the
recent past, cancer research has become more and more driven by high-throughput
technologies to generate biological data. As a result of the enormous amount of data,
cancer biology research needs computational and statistical methods to analyze the
data. Therefore, in genomics and systems biology applications the attention was
moved towards identifying essential ’functional outputs’. In particular, as it was
started to understand that cancer is not a disease of genes but of pathways.

Generally, pathways work by protein signaling transduction events that in the end
drive changes in gene transcription.[Hanahan and Weinberg , 2000] Post-translational
alterations may not be observed at the gene transcription level. Therefore gene
transcription data provide information on the downstream effects of deregulated
signaling. On the other hand, pathways emerging upstream (of an observed transcrip-
tional pattern) could better be verified employing proteome data.

Over the last few years, the development of new measurement platforms to globally
profile the cell at various molecular levels, including (among others) mRNAs and
proteins, provides us challenges and capabilities to integrate these individual data
types in relevant ways.
In recent years, the potential to study cellular and molecular systems has been
revolutionized as a result of the expansion of omics sciences. An almost unlimited
power lies within huge omics data sets. The success of omics sciences to further our
understanding of human disease remains difficult because of several factors. One key
reason postulated is that while individual omics domains yield distinct and important
information, no single omics science is sufficient to facilitate a comprehensive under-
standing of the complex human biology and physiology. Therefore, multi-omics data,
e.g. multiple types of biological data, should be considered to describe such complex
biological processes.
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As biological and medical scientists are interested in integrating recently measured
data with earlier published clinical and prior biological results. Furthermore, data
have been produced in different formats (graphs, sequences, etc.) and dimensions.
The integrative approaches attempt to investigate an adequately large amount of
samples and to cover the numerous sources of variability in their statistical models.
Thus, omics studies benefit from the collection of large data sets.

In this work, newly generated data sets and publicly available data sets were investi-
gated to identify signaling network structures in cancer cells. In two separately
conducted studies, different network approaches were used to validate exiting know-
ledge and to identify new interactions between genes or proteins.

4.1.1 Lymphomas

The awareness that the survival or proliferation of B cell lymphomas depends on their
interaction with the micro-environment, as well as on the expression of the B cell
receptor Kraus et al. [2004]; Lam et al. [1997] might contribute to novel treatment
strategies. The main question within this project was declared: How can current
knowledge about B cell lymphomas be improved by combing existing methods? To
answer this question, first, separate networks for gene and phospho-protein expression
data were generated.

Based on the above, it can be concluded that both applied methodologies can be of
use to analyze the data sets, but are in our case not sufficient to integrate the phospho-
protein and gene expression measurements. To bring both data sets together a bigger
agreement between measured and inhibited proteins with perturbation experiments
for the micro-array data is needed. Nevertheless, to integrate both data sets and
to overcome the restraints are derived from the small overlap, existing knowledge
collected from literature databases was included subsequently. Thus, a method was
applied, which aims to integrate two data sets using literature information. In this
way, the analysis could benefit from biological pathway knowledge.

To ensure better integration and comparison of the resulting graphs, it is necessary to
have a higher overlap between performed perturbation experiments of both measure-
ments and also with the phospho-proteins, which are quantified. A wider overlap
between nodes of graphs, which are coming from different network approaches is
required to enable to match and integrate both results. In this case, the nodes of
the DDEPN graph represent the measured phospho-proteins and the nodes of the
NEM graph are interpreted as inhibitors. For that reason, it was not revealing to
combine the data sets without the integration of a literature-based analysis step.
There, consensus graphs for each treatment condition were produced.
To overcome this, extensive integration of literature databases and to learn directly
from the underlying data sets, a larger overlap between the measured phospho-
proteins and the performed inhibition experiments in the proteomic and transcriptomic
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measurements are required. For further research, it is advantageous to prepare
data sets with the same experimental setting in order to improve information about
interaction patterns and to understand underlying biological processes.

All of the applied methods could not identify feedback loops that are reported in recent
biological studies. This is because feedback loops cannot be easily identified by these
classical network methods, which only determine signaling flow in a linear pathway
but not within a feedback loop, where the participating elements are upstream and
downstream at the same time. The relationship between p38 MAPK and the MEK/
ERK signaling pathway is so far not fully understood. Different studies indicate an
upstream influence of p38 MAPK on the MEK/ERK pathway. For instance, Hirosawa
et al. [2009] demonstrated an increase of ERK1/2 phosphorylation after p38 MAPK
inhibition, which suggests and negative influence of p38 MAPK on ERK1/2. On the
other side, Chen et al. [2000] detected a direct negative feedback mechanism on RAS
activity by p38 MAPK signaling. Particularly regarding consequences for therapeutic
response and avoiding the development of drug resistance, (therapeutic) agents targe-
ting, for instance, the ERK1/2 pathway should also inhibit the relevant (negative)
feedback loops. Consequently, it is important to understand the pathway mechanisms
and study the existence of feedback loops in lymphoma cells.

Modeling challenges faced in the study of lymphomas included the merging of data
with missing experiments or measurements and also the need for individual data
analysis expertise. Some limitations could be addressed by an extended inclusion
of literature databases. Utilizing the integration approach pwOmics [Wachter and
Beißbarth, 2015] enabled the identification of interesting pathway interplays down-
stream of BCR. These results provide the basis for biological validation and further
investigations.

Furthermore, network reconstruction requires a good balance between prior knowledge
and data driven modeling. Network inference must have three key features:

(i) The method should only consider the part of the prior which supports the
data. This is necessary because the prior information usually is a set of possible
interactions, of which just a subset might be relevant. In addition, this involves
robustness to false interactions in the prior, coming from different sources.

(ii) Using a prior should not restrict the capability to discover the part of the
network for which no prior information exists.

(iii) The user should be able to control the power given to the prior to adjust the
method based on the trust in the prior.

Principally, the approach DDEPN, used to analyze the phospho-proteome data, allows
to control the prior influence with a hyperparameter, which determines the weight of
the prior knowledge during network reconstruction.
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As already mentioned, NEM and DDEPN are designed to model the way of pertur-
bation effect propagation in the networks from parent to child nodes. Therefore
they are not able to simulate feedback loops, which were, in this case, expected
from the biological data. If the focus lies more in the study of feedback loops in a
pathway, the considered mathematical models should be able to estimate multiple
interactions and reproduce existing evidence. To get more insights into feedback
loops, it can beneficial to incorporate more dynamical approaches like, for instance,
ordinary differential equations (ODE). They have already been used to investigate
various biological behaviors such as the dynamics of positive and negative feedback
loops. [Shin et al., 2009] Statistical simulations of these methods allow identifying
the strength of hypothesized causal pathways based on observed data.

4.1.2 Breast Cancer

Being breast cancer one of the most common cancer type among women, there are
enormous studies carried out for breast cancer treatment. But the outcome seems to
be insufficient and demands further extensive research, which could unveil the specific
targets for breast cancer.

The focus of this project was the role of WNT ligands, especially ROR2 on WNT11
signaling in breast cancer.

The dysregulation of WNT11 signaling is directly associated with cancer. The in-
creased development of sequencing technologies allows us to outline the heterogeneous
molecular characteristics of breast cancer cells. WNT11 signaling is highly complex
and not yet fully characterized. The discovery of novel regulators, such as ROR2, adds
to the complexity but also presents exciting new opportunities for the development
of potential therapeutic targets.
As the ROR2 overexpression targets have been implicated in the invasiveness of breast
cancer cells, the association of the non-canonical WNT11 pathway members and
metastasis free years of primary breast cancer patients was investigated.

In this study, several methods and data sets were combined to study the role of
WNT11 signaling pathways in breast cancer. Therefore, gene and protein expression
measurements from breast cancer cell lines were explored as well as survival analysis
of patient data. The methods utilized range from differential expression analysis over
network reconstruction to survival analysis.

To investigate the WNT11 signaling network influenced by ROR2 overexpression,
network reconstruction based on RPPA measurements was conducted. The networks
for total proteins and phospho-proteins were evaluated separately. To investigate the
influence on the WNT11 signaling, the pathways were constructed for ROR2-positive
and -negative cells individually. The comparison of the resulting pathways in the
two cell lines revealed that the utilized network approach, DDEPN, focuses on the
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exploration of WNT11 signaling in cell lines with and without ROR2 overexpression.

Therefore, networks of phospho- and total proteins were studied separately. The
phospho-protein networks displayed an interaction between ROR2 and CTNNB1 in
ROR2 overexpressing cells. CTNNB1 serves as a co-activator in the canonical WNT11
signaling pathway. [Cara et al., 2012] This indicates an influence of ROR2 on down-
stream canonical WNT11 signaling. To study potential receptors of the canonical
WNT11 pathway is important for the discovery of new drug targets. It is known that
the canonical WNT11 signaling pathway is highly activated in malignant breast cell
lines. [Benhaj et al., 2006]

The results of total protein networks also revealed an interesting link to the AKT
pathway, indicating that it might become activated in breast cancer cells by diverse
mechanisms. Given the important role of AKT signaling in regulating processes such
as cell growth, proliferation, and survival, it is comprehensible that components of this
pathway are (dys)regulated in cancer. The understanding of the complex interaction
between members of intertwined pathways is necessary for the development of anti-
cancer drugs that are targeted against this pathway. Some of the results could be
published in [Sitte et al., 2019].

After analyzing the interplay of selected pathway members, the further investigations
focused on linking the different WNT11 pathways and the expression of some of
their members with clinical outcomes. Therefore, genes, that are associated with
WNT11 signaling were divided into three groups. Ms. Bayerlová described in her
PhD thesis [Bayerlová, 2015] three gene sets. Two of them represent the canonical
and the non-canonical WNT11 pathway. The third gene set collects all genes that
are known as upstream regulators of the WNT11 pathway. To learn more about the
WNT11 signaling in breast cancer in a clinical context, microarray data of breast
cancer patients was included in the analysis. The first data set was a microarray data
set, which is a compilation of different publicly available breast cancer patient data,
collected by [Bayerlová, 2015]. The second was RNA-seq measurements of breast
cancer patients with brain metastasis. Based on the three gene sets, enrichment
analysis was applied on both patient data sets, to further reveal the role of the different
WNT11 pathways. This yielded an important role of non-canonical WNT11 pathway
members in the development of metastasis, and, in contrast, an important role of
genes known as canonical WNT11 pathway members in the overall survival of breast
cancer patients with brain metastasis.

In a further attempt, four single gene markers from the WNT11 pathway were tested
if their expression is correlated with metastasis outcome in breast cancer patients.
With this, it could be shown that patients with higher ROR2 expression develop
earlier metastasis than patients with lower ROR2 expression (p < 0.05), but there is
no significant difference between patients with high and low WNT11 expression. This
suggests altered downstream signaling initiated by ROR2. This is in line with recent
studies who could associate ROR2 expression with metastasis and tumor progression.
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[Bayerlová et al., 2017; Roarty et al., 2017]

Finally, to jointly analyze the transcriptomic and proteomic data sets, pathways
databases were investigated. The aim was to identify consensus molecules that are
significantly regulated in both data sets. The results point towards the relationship
between ROR2 overexpression and an altered EGFR signaling in the breast cancer
cells. In the last couple of years, it has been studied that both, WNT and EGFR
signaling, are closely related to tumorgenesis. Recent studies found evidence that
WNT11 and EGFR crosstalk with each other in cancer development. [Hu and Li ,
2010; Schlange et al., 2007] EGFR mediated PI3K/AKT activation stimulates β-
catenin transactivation and increases tumor cell invasion. This indicates that EGFR
activation transactivates β-catenin via WNT11 signaling pathways in tumor cells.
[Sharma et al., 2002; Zhimin et al., 2003]
Reassuringly, AKT signaling was also identified on phospho-protein level as an altered
pathway affected by ROR2 overexpression and external WNT11 stimulation. Previous
research could already investigate aberrant AKT expression as an important signaling
hub in cancer cells. [Sharma et al., 2002; Vivanco and Sawyers , 2002; Costa et al.,
2018] Also, this illustrates a more complex WNT11 signaling topology and different
pathways are intertwined. Changes in upstream signaling molecules will not simply
alter WNT11 signaling, but also other parallel pathways that are regulated by these
upstream activators. Therefore, reinforcing studies are needed to unravel the whole
network machinery.

In spite of the aforementioned results, there are still some open questions in this
study. The predicted results, such as expression of the examined genes and proteins,
and the relations between them and WNT11 signaling pathway, are required to be
confirmed by experiments in cancer tissues.

In conclusion, on one side, this work demonstrates how a systematic approach can
be applied for the identification of the relationship between WNT11 receptors and
downstream signaling routes. On the other side, the results together might suggest
that the role of WNT11 signaling pathway is more complex and that different WNT11
receptors function in different ways.

4.2 General Conclusion and Outlook

This thesis brings open bioinformatics tools together in one workflow that allows
to analyze coupled transcriptome and proteome measurements. Overall, this work
has strengths and limitations that should be mentioned. This study investigates
various ways of network reconstruction, namely NEMs and DDEPNs, that can be
inferred from gene and protein expression data sets and the advantage of incorporating
biological knowledge in such methods. Bioinformatic approaches adapted from graph
theory concepts as well as enrichment analysis were shown to be suitable and strong
instruments to break down complex protein expression patterns, as in the reconstruc-
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tion of WNT11 signaling in the breast cancer cell line MCF-7. In this context, the
applied network analysis approach DDEPN identified interesting interplays down-
stream of WNT11 and ROR2 after external WNT11 stimulation.

The work is as a methodological contribution to the analysis of studies with different
data sets with a considerable overlap of samples.

Hence, the experimental design and data set selection are important factors to consider
for data analysis and consequently for any bioinformatical integrative investigation.
For example, the analysis approach illustrated in the lymphoma study assumes that
gene or protein expression samples have been extracted under two or more treatment
conditions. Therefore, this approach is especially appropriate for experiments with
stimulation or perturbation designs.
In contrast, the breast cancer study comprised more data sets, which made it possible
to apply, additionally to network approaches, survival analysis techniques to associate
the findings from network reconstruction with clinical outcome.

All things considered, bioinformatic approaches adapted from graph theory concepts
as well as enrichment analysis were shown to be suitable and strong instruments to
break down complex gene expression patterns.
Discovering relevant links between important signaling molecules in a pathway and
their predictive outcomes is the key to discover new drug targets. The ability to
produce a detailed characterization of a disease allows the stratification of patients
into well-defined groups for tailored treatment.

Confounding problems made data integration a not trivial task. The types of data to
be integrated range from smaller assays with a selected list of protein expression levels
to high-throughput mRNA measurements. Whereby each technology used brings its
own different degree of reliability. In addition to data generated by high-throughput
technologies, other sources of data, such as clinical data and curated databases, can
be utilized. Curated databases may also combine data from different experimental
conditions. Computational calculations that utilize them risk to continue underlying
systematic bias. These concerns have to be addressed in every integrative analysis.

The integration workflow presented here showed some limitations that need to be
addressed. Combining two different omics data sets requires an appropriate experiment
setting in order to have the same conditions or time points for both data sets. The
analysis of the Lymphoma data sets was limited by missing overlapping conditions.
This is due to the layout of the study, which attempts to combine data from different
individual projects.
Some of the limitations can be compensated by integrating new data sets with prior
knowledge, but the perfect advantage of integrated analysis can be obtained only if
data acquisition from all utilized platforms are designed equally by multidisciplinary
teams. As demonstrated in the breast cancer study, the beforehand designed outline
will allow a better comparison and integration of the transcriptome and proteome
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results.

An important consideration in all bioinformatical studies is how to validate results
both at the biological functional level and at the replication level. The presented
results raise interesting hypotheses, which must be confirmed by a follow-up experimen-
tal validation. In this thesis, a biological validation is ongoing work and not finished
at the moment of submitting the thesis.

This thesis demonstrates on the one hand that it is still challenging to analyze different
data sets in a combined way, but on the other hand, it illustrates that the integration
of multiple data sets allows the identification of new information, which could not
identified when only one data set was considered.

The development of statistical methods aiming at the integration of more than one
single data set will be crucial to obtain information on complex diseases such as cancer.
The presented approaches are potential tools that can be used comprehensively in the
study of the signaling networks in different complex diseases that can ultimately lead
to the discovery of relevant links between important signaling molecules in a pathway
and their predictive outcomes, which is the key to discover new drug targets. The
ability to produce a detailed characterization of a disease allows the stratification of
patients into well-defined groups for tailored treatment.
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Doğrusöz, U, Madden, B, and Madden, P (1997), Circular layout in the graph
layout toolkit, in Graph Drawing, edited by North, S, pp. 92–100, Springer Berlin
Heidelberg, Berlin, Heidelberg.

Dutkowski, J, Kramer, M, Surma, MA, Balakrishnan, R, Cherry, JM, Krogan, NJ,
and Ideker, T (2013), A gene ontology inferred from molecular networks, Nat
Biotechnol, 1 (31), 38–45.

Eduati, F, De Las Rivas, J, Di Camillo, B, Toffolo, G, and Saez-Rodriguez, J (2012),
Integrating literature-constrained and data-driven inference of signalling networks,
Bioinformatics, 28 (18), 23112317.

Ellson, J, Gansner, E, Koutsofios, L, North, SC, and Woodhull, G (2002), Graphviz
- open source graph drawing tools, in Graph Drawing, edited by Mutzel, P, Jünger,
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Fröhlich, H, Fellmann, M, Sueltmann, H, Poustka, A, and Beißbarth, T (2007),
Estimating large-scale signaling networks through nested effect models with
intervention effects from microarray data, Bioinformatics, 8, 386.

Fruchterman, TMJ, and Reingold, EM (1991), Graph drawing by force-directed
placement, Software: Practice and Experience, 21 (11), 1129–1164.

Gascoyne, DM, Lyne, L, Spearman, H, Buffa, FM, Soilleux, EJ, and Banham, AH
(2017), Vitamin d receptor expression in plasmablastic lymphoma and myeloma
cells confers susceptibility to vitamin d, Endocrinology, 158 (3), 503–515.

Gauld, SB, Dal Porto, JM, and Cambier, JC (2002), B cell antigen receptor signaling:
Roles in cell development and disease, Science, 296 (5573), 1641–1642.

Ghanbari, M, Lasserre, J, and Vingron, M (2015), Reconstruction of gene networks
using prior knowledge, BMC Syst Biol, 9 (84).

Ghosh, R, et al. (2011), Trastuzumab has preferential activity against breast cancers
driven by her2 homodimers, Cancer Research, 71 (5), 1871–1882.

Gibbs, DL, Gralinski, L, RS, Baric, and McWeeney, SK (2014), Multi-omic network
signatures of disease, Front. Genet, 4, 309.

Gilmorec, TD, and Gerondakis, S (2011), The c-rel transcription factor in
development and disease, Genes Cancer, 2 (7), 695711.

Gold, MR, Scheid, MP, Santos, L, Dang-Lawson, M, Roth, RA, Matsuuchi,
L, Duronio, V, and Krebs, DL (1999), The b cell antigen receptor activates
the akt (protein kinase b)/glycogen synthase kinase-3 signaling pathway via
phosphatidylinositol 3-kinase, The Journal of Immunology, 163 (4), 1894–1905.

71



Goodacre, R, Vaidyanathan, S, Dunn, WB, Harrigan, GG, and Kell, DB (2004),
Metabolomics by numbers: acquiring and understanding global metabolite data,
Trends in Biotechnology, 22 (5), 245–252.

Grumolato, L, et al. (2010), Canonical and noncanonical wnts use a common
mechanism to activate completely unrelated coreceptors, Genes Dev, 24 (22),
25172530.

Haffty, BG, Yang, Q, Reiss, M, Kearney, T, Higgins, SA, Weidhaas, J, Harris, L,
Hait, W, and Toppmeyer, D (2006), Locoregional relapse and distant metastasis
in conservatively managed triple negative early-stage breast cancer, Journal of
Clinical Oncology, 24 (36), 5652–5657.

Hagberg, AA, Schult, DA, and Swart, PJ (2008), Exploring network structure,
dynamics, and function using networkx, in Proceedings of the 7th Python in Science
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