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ABSTRACT

In the quest for anti-cancer drugs with high efficacy and low toxicity, cancer
metabolism has increasingly beena focus of interest in clinical research.
Enhanced glycolysis and robust production of lactate constitute characteristic
traits that discriminate many cancerous cells from their normal counterparts.
This, in principle, may provide researchers with a general handle on such a
complex disease, regardless of the intrinsic genotypic heterogeneity of the
single transformed cells. The work carried out during this project and presented
in this thesis consists of developing and applying analytical approaches, mainly
drawn from the field of metabolic control analysis (MCA), to the study of cancer
metabolism. The ultimate goal is to assess whether, and to what extent, the
metabolic features of cancer cells may be exploited in the attempt to attack the
malignancy more specifically than through traditional clinical approaches. The
underlying idea consists of identifying enzymes that represent points of fragility
specifically characterising the cancerous metabolic phenotype. These enzymes
are such that an alteration in their activity (due for example to the action of an
anticancer drug) would elicit the desired response in cancer cells, without

affecting their normal counterparts.

The application of MCA relies on a mathematical representation of the system
under study. Creating such a model is often hampered by the lack of data about
the precise kinetic laws governing the different reaction steps and the value of
their corresponding parameters. The most important result reached during this
project shows that the metabolic quantities defining the normal and cancer
phenotypes (such as fluxes and metabolite concentrations), together with
heuristic assumptions about the properties of typical enzyme-catalyzed
reactions, already allow for a fast and efficient way to explore the effectiveness
of putative drug targets with respect to criteria of high efficacy and low toxicity.

The relevance of this result lies in the fact that the quantities defining a



metabolic phenotype are experimentally more accessible than the kinetic

parameters of the different enzymatic steps in the system.
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PREFACE

The goal of this thesis is to apply metabolic control analysis (MCA) to the study
of cancer metabolism and to assess whether and to what extent the metabolic
features of cancer cells can be exploited to target them more specifically than

through traditional approaches, such as chemotherapy or radiotherapy.

Despite focusing only on the metabolic level of a complex phenomenon like
cancer, the area to explore is so vast that it provides room for many different
routes of investigation. Because the quantification of the control properties of
entire metabolic pathways is impractical from an experimental standpoint, the
application of MCA often relies on the creation of a dynamic model of the system
under investigation. As a first step of this project, then, we aimed to understand
where the boundaries of such a model had to be drawn. Although researchers
usually focus on the metabolic alterations occurring in the central carbon
metabolism, remarkable metabolic differences between normal and cancer cells
may lie in pathways not yet deeply studied within the context of cancer
research, and a wider portion of the metabolome might need to be considered.
At the other extreme, a comprehensive kinetic model of the entire metabolome,
besides being extremely challenging to accomplish, would not be necessarily
useful from the perspective of understanding the basic mechanisms underlying
the biological processes under study. In fact, if the complexity of the model
equals the complexity of the system it is meant to reproduce, the former would
not provide any particular insight into the causative relationships between

different phenomena occurring in the system!. Subsequently, the first step of

1 One could argue, however, that it is the approach adopted in the study of such a genome-scale
model, rather than its size or complexity, which determines the limits of our understanding of
the system functioning. Indeed, promoters of MCA support the idea that the application of
regulation analysis and MCA itself might provide researchers with the means to reach that
understanding, despite the complexity of such a comprehensive representation of the system.
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this project was intended to set up a criterion to discriminate between sets of
reactions and pathways reasonably worthy of being included in the model, and
others which could be reasonably neglected. This study was performed through
a constraint-based approach ultimately relying on Flux Balance Analysis (FBA).
In particular, an algorithm was created to explore the entire space of minimal
FBA solutions (ie. all the minimal sets of active reactions consistent with the
mass balance requirement) reproducing the metabolic features observed,
separately, in cancer and normal cells. In doing so, we aimed to identify two sets
of reactions, one for each of the two metabolic phenotypes, which always carry a
non-null flux in all the minimal solutions found for the two phenotypes taken
separately. These two sets of reactions would constitute a minimal subnetwork
able to host the metabolic changes occurring in the emergence of cancer, hence
providing us with a minimal scaffold of reactions that could be used to build up
the kinetic model necessary to apply MCA.

The methodology proposed, however, turned out to have strong limitations
when applied to a genome-scale reconstruction of metabolism, because of the
high computational resources requirements. Nevertheless, the algorithm
provided a proof of concept for cases in which one wants to explore and identify
the minimal subnetworks of a wider system able to capture the essence of the

whole network in respect to specific features.

Because of the inapplicability of this algorithm on a genome-scale level, we
carried out our study on MCA using an in silico representation of the central
carbon metabolism covering the pathways that are commonly taken into
account in the study of glucose metabolism. From a mechanistic modelling
perspective there are other limitations which have to be taken into account,
mainly related to the lack of data about detailed dynamic description of various
enzymatic steps and uncertainties in the enzyme kinetic parameters. To assess
whether the control properties of the system can be determined when detailed

knowledge of the system dynamics is missing, we used a probabilistic approach,
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where kinetic parameters such as Michaelis-Menten constants of
inhibition/activation constants were sampled randomly. This study was based
on the assumption that the two metabolic states under comparison (normal and
cancer) were completely determined. The rationale of this assumption is that
high-throughput metabolomics and fluxomics techniques are now standard
procedures in the analysis of cellular metabolism, making fluxes and
concentrations experimentally more accessible than kinetic parameters. Using a
simplified reconstruction of the central carbon metabolism, and a paradigmatic
cancerous phenotype as an example, we showed how our probabilistic
approach can provide researchers with some guidance when developing drugs

with high efficacy and low toxicity acting at a metabolic level.

The next step consisted of using this sampling approach in a real case study,
where we attempted to constrain to a minimum the uncertainties of the system.
A more extensive and detailed model of central carbon metabolism was created,
where actual rate laws were used to describe the enzymatic kinetics. The two
metabolic states under comparison were described relying as much as possible
on the experimental data available in literature. For the cancer phenotype, in
particular, we aimed to represent specifically the altered metabolic features of
breast neoplastic cells. The remaining unknown or uncertain quantities, in
terms of metabolic phenotype and kinetic parameters, were finally sampled
from intervals representing the range of their possible values, allowing us to
make a probabilistic assessment of the suitability of the different enzymes as

drug targets.

HOW TO READ THIS THESIS

Because of the different techniques and approaches used during the unfolding
of this PhD project, we deemed that the content of this thesis would be better

conveyed in the form of independent chapters. Each chapter represents a self-

12



contained piece of work with its own Methods and Discussion sections, and is

provided in the form of a manuscript.

Chapter 1 - The first chapter is a literature review introducing cancer
metabolism and commenting on a variety of modelling approaches in its study.
In particular, the historical milestones marking the increasing acknowledgment
of cancer metabolism in computational models of cancer are highlighted. The
role of mainstream systems biology approaches, such as MCA and FBA, in cancer
research is also considered. Their potential role in elucidating some aspect of
cancer metabolism, such as its suitability as a new domain of intervention for

the development of anticancer drugs, is discussed.

Chapter 2 - This chapter illustrates the algorithm we proposed to explore the
set of minimal subnetworks of a larger system, which are consistent with

specific requirement of optimality.

Chapter 3 -This chapter focuses on showing how a random sampling approach
can help to highlight differences between the control profile of two distinct
metabolic phenotypes in a probabilistic manner. This methodology, which
combines Monte-Carlo sampling with MCA, is designed to overcome the
limitations due to lack of knowledge about the detailed dynamic properties of
the system under study, specifically in the form of the exact value of its kinetic
parameters. The study is conducted on a simplified representation of the central
carbon metabolism. The metabolic states under comparison are representative
of a normal phenotype and a paradigmatic cancer phenotype, where the general

metabolic features of neoplastic cells are taken into account.

Chapter 4 - A case study is discussed, where the probabilistic approach to MCA

is applied to assess the suitability of different enzymes as molecular targets for a

drug designed to attack specifically breast cancer. All the data about the system

13



dynamics and the two metabolic states under comparison (normal and cancer)
are retrieved from literature. The results are presented and discussed with
regard to different possible clinical strategies, each aimed to hinder or perturb a

specific aspect of cancer metabolism.

Chapter 5 - Possible future developments of the study presented in the

previous chapters are discussed.
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CHAPTER 1

COMPUTATIONAL APPROACHES TO CANCER

METABOLISM
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INTRODUCTION

The term cancer covers a variety of complicated, multi-stage diseases, which
involve the alteration of many interwined cellular processes and mechanisms
[1-4]. The advent of high throughput technologies in biological sciences in the
last fifteen years has enormously increased the mass of information about the
genes involved in the development of cancer as well as the pathways and
subcellular circuitry in which they participate [5-9]. This emerging complex
picture has not led accelerated progress in treatment options to the extent that
some originally envisaged [10]. However it has challenged biologists to find new

ways to reason to exploit this apparently rich set of knowledge.

One response to the difficulty of understanding cancer biology based on a
purely discursive reasoning has been to adopt computer-assisted approaches to
the study of the disease. Non-linear processes dominate the way in which
tumour cells interact with their microenvironment. It is clear that the intuitive,
verbal reasoning approaches favoured by many oncologists are insufficient to
describe the resulting complex system dynamics. Rather, experience from other
areas of science has taught us that quantitative methods are needed to develop
comprehensive theoretical models for interpretation, organization and
integration of this data. In the past decade, computational attempts to describe
and understand cancer have been partly reframed by the advent of systems
biology, a new paradigm in biological sciences where the functional properties
of life are understood as emerging from and studied on the bases of the

molecular mechanisms underlying them [11, 12].
It is the argument of this thesis that the role of metabolism in cancer is an area

in which a systems biology perspective has a useful contribution to make,

particularly through the application of concepts drawn and developed from the

16



field of metabolic control analysis. Accordingly, this chapter reviews the
background biology of cancer, with a particular focus on its metabolic processes.
We survey related previous modelling work, and explore the actual and
potential role of some of the conceptual and computational systems biology

frameworks in the study of cancer metabolism.

CANCER: A BIOLOGICAL PERSPECTIVE

WHAT IS CANCER?

In pluricellular organisms, cells behave in a cooperative way, adjusting their
behaviour in accordance to the needs of the tissue, the organ and eventually the
whole organism. All the functions that characterise a cell as a living entity are
regulated through a tight interaction between the cell and its surroundings.
Specific chemical signals are sent and received by each cell in order to
coordinate its behaviour with the needs of the “cellular community”. Growth,
replication and even death occur when they are specifically required. From an
ecological perspective, there is no natural selection occurring within a healthy
human body. Self-sacrifice rather than survival of the fittest is the general role
governing cell populations in pluricellular organisms. In cancer this “social”
behaviour is lost and replaced with a behaviour that is characteristic of
competition, rather than cooperation. Cells become insensitive to the signals
received from their environment and start to behave autonomously. Cancer
begins with a single cell mutating in such a way to gain a selective advantage
over its neighbours, allowing it to proliferate more quickly and become the
founder member of a growing mutant clone, known as a tumour. Successive
rounds of mutation, competition and selection lead to progressively less
collaborative and more dangerous cells. Thus cancer development can be
viewed as somatic (of the body) evolution [13]. In the next stage of disease

progression, the uncontrolled cells forming the initial transformed colony (the
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tumour) may invade adjacent tissues and spread to other locations of the body
via lymphatic or blood channels, forming metastases. This invasive property is
precisely what differentiates cancer from a benign tumour, where the original

aggregation of abnormal cells is self-limited and does not invade or metastasise.

In the past decades cancer research has collected an enormous amount of
information about the differences between cancer cells and their normal
counterparts, with the intent of understanding the genetic mechanisms
underlying carcinogenesis and ultimately to develop new anticancer drugs [14].
The emerged picture is overwhelmingly complex, and depicts cancer as a
disease involving the disruption and alteration of many molecular mechanisms
and processes occurring at different hierarchical levels in the cell. Knowledge
about gene alterations in different kinds of cancer has been collected and
organised by Feutral et al. (2004) in a 'census' which encompasses almost 300
mutated genes, mostly involved in signal transduction processes, that are
causally implicated in oncogenesis [15]. The combined knowledge of these
oncogenes, the pathways in which they are involved and the interactions of
these pathways with each other can enable us to identify differences in the way
cancerous and normal cells process biological information [14]. However, the
wiring of the altered interaction map alone can be informative to a very limited
extent. The non-linear dynamics of many molecular interactions, the presence of
feedbacks and the tight cross-talk between different routes make the outcome
of the system highly unpredictable. An even more complex picture emerges
when also considering the supra-cellular level, in which cancer cells interact
directly (by physical contact) or indirectly (through signalling) with each other
or adjacent normal cells. Phenomena such as invasion and angiogenesis (the
formation of new capillaries induced by cancer cells through cytokine secretion)
can be ascribed to the supra-cellular effects of the altered intracellular

interaction network.
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The molecular processes and genetic alterations involved in the raising of a
tumour cell depend strongly on the kind of tumour. Malignant tumour growth is
the result of multiple genetic and epigenetic changes, where each one, taken
individually, is insufficient by itself to transform the cell, but a number of
changes together lead to cancer when summed by accumulation. These changes
are quite heterogeneous and no single genetic defect, set of defects or sequence
of defects is found in all cells exhibiting a transformed phenotype [16-
18]. Nevertheless a set of common traits has been recognised to be universally
present in transformed cells, allowing them to escape their normal behaviour
and become malignant. These features, described and summarised in Hanahan
et al. [19], are the results of genetic alterations involving genes which play an
important role in processes and mechanisms such as growth, mitosis, apoptosis.
The final outcome of these alterations is a cell with an uncontrolled proliferation

and insensitive to apoptotic signals.

THE HALLMARKS OF CANCER

Six essential alterations in cell physiology have been identified and suggested as
collectively dictating malignant growth in all types of cancer [19]: self-
sufficiency in growth signals, insensitivity to growth-inhibitory (antigrowth)
signals, evasion of programmed cell death (apoptosis), limitless replicative
potential, sustained angiogenesis, and tissue invasion and metastasis. Each of
these physiological changes represents the successful breaching of an

anticancer defence mechanism hardwired into cells and tissues.

Normal cells require grow signals in order to move from a quiescent into a
proliferative state. These signals, received from neighbour cells or through the
endocrine systems, bind specific receptors on the cell membrane, and activate
signalling pathways that instruct the cell to enter mitosis. In cancer cells, self -

sufficiency with respect to growth signals is achieved through a combination of
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three mechanisms: endogenous synthesis of growth signals [20, 21],
overespression of cell surface receptors of growth signals [20, 22-25] and
alterations in the downstream circuitry that receives and processes the signals

emitted by ligand-activated growth factors receptors [26-28].

Besides evading normal growth regulation, cancer cells also acquire the ability
to evade antiproliferative signals, which constitute another regulatory
mechanism through which quiescence and homoeostasis is maintained in
normal tissue. In different stages of the cell cycle, normal cells pass through
some checkpoints, where, based on the signals received from the external
environment, they choose whether to proliferate. Antigrowth signals can block
proliferation either by forcing cells to pause in their proliferative cycle and
enter into a quiescent state, or by inducing them to permanently relinquish their
proliferative potential and remain in a postmitotic state. An example of
antigrowth signal is provided by TGF-beta, which blocks the cellular advance in
mitosis. In many human cancers, response to this anti-growth signal is negated
through a variety of mechanisms, including down-regulation of TGF-beta
receptors, or elimination of their downstream targets. The cross-talk occurring
between antigrowth signalling pathways and the cell cycle has been
investigated extensively [29-35]. Although the description of the
interconnectedness of these two cellular mechanisms is still incomplete and
subject to further delineation, the necessity to circumvent the antigrowth

signalling circuitry by developing cancers has been ascertained [19].

The ability of tumour cell populations to expand in number is determined not
only by the deregulation of cell proliferation but also by the evasion of
apoptosis, the programmed cell death mechanisms which acts to destroy cells
representing a threat to the organism. Surface receptors binds with survival or
death factors in the extracellular environment, while intracellular sensors

monitor the cell well-being and activate apoptosis in response to detected
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abnormalities such as DNA damage, signalling imbalance provoked by oncogene
action, survival factor insufficiency or hypoxia [36]. Many apoptotic signals
converge to mitochondria, which respond to them by releasing cytochrome c, a
potent catalyst of apoptosis [37, 38]. A central role in the apoptosis is played by
p53, a tumour suppressor protein that elicits the release of cytochrome c by
upregulating the expression of the proapoptotic protein Bax when sensing
damages in the DNA. Disruption of the apoptotic machinery can be obtained by
impairing its sensoring system (e.g. surface receptors or intracellular
"sentinels"), effector components (the proteases that execute the cell
disruption) or the transduction of death and survival signals. A most common
occurring impairment of the programmed cell death involves mutations in p53,

which is found in more than 50% of human cancers.

Self-sufficiency in growth signals, insensitivity to antigrowth signals and
evasion of apoptosis, although leading to the uncoupling of the cell growth
program from the signals received from the environment, do not ensure the
expansion of the initial tumour clone to macroscopic size. A cell-autonomous
program is present in virtually all mammalian cells that limits cell multiplication
independently of the cell-to-cell signalling pathway. Evasion of this self-limiting
program leads to immortalised cells with a limitless replicative potential [39].
Immortalisation of cells involves telomere maintenance [40], ie. in
immortalised cells telomeres are maintained at a length above a critical

threshold that enables descendant cells to multiply indefinitely [40-48].

The nutrient supply and waste removal provided by blood vessels is crucial for
cell survival and proliferation [49-51]. As such, avascular tumours lacking their
own network of blood vessels cannot grow beyond a size of 2-3 mm3.
Angiogenesis (the formation of new capillaries) is an important step in the
transition from a small, abnormal mass of cells to life-threatening malignant

growth. Tumour cells, at some point in their development, begin to synthesise
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proteins, such as the vascular endothelial growth factor (VEGF), capable of
stimulating angiogenesis. These proteins bind to the receptors of endothelial
cells (the building blocks of capillaries), inducing them to penetrate the tumour
nodule and begin the process of constructing a network of vessels. As the
endothelial cells proliferate, they secrete growth factors that stimulate the
growth and motility of tumour cells. Besides in the apoptotic mechanism, p53
also plays an important role in mediating angiogenesis. Here, the role of p53 is
to counterbalance the expression of VEGF through upregulating the expression
of the anti-angiogenic agent thrombospondin-1 (TSP-1) [52], thus ensuring
inappropriate angiogenesis does not occur. In cells bearing mutant p53, hypoxia
induced VEGF is not so readily controlled by anti-angiogenic molecules such as

TSP-1, hence the neovascularisation may occur [53].

As mentioned above, at the early stage of carcinogenesis, transformed cells
remain localised in the original place where the tumour clone formed. Although
curable through removal, in situ tumours are usually asymptomatic - hence
often undetected. In the next stage of tumour progression, altered cells break
through the basement membrane that encapsulates the original solid tumour
and invade the adjacent tissue. Should a cancer cell successfully enter the
circulatory system, either through lymph vessels or breaching of a blood
vessel’s lining, it will be transported throughout the body and may eventually
lodge in the capillaries of another distant organ. Here the cells may begin to
multiply, forming a secondary tumour known as a metastasis. Metastases are
the cause of around 90% of deaths from cancer [54]. Whilst the primary
(original) tumour can be controlled by many available therapies, widespread

metastatic disease is very difficult to treat.
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METABOLIC FEATURES OF CANCER CELLS

It has long been known that many tumour cells have a metabolic profile that
differs from that of their normal counterpart. Otto Warburg, in the late 1920s,
was the first to report the metabolic alterations characterising tumour cells. In
particular he and his co-workers observed that the cancer metabolic phenotype
is characterised by a higher uptake of glucose and a robust production of lactate,
even under aerobic conditions (a phenomenon now known as the Warburg
effect) [55]. These findings represent a keystone in cancer research, and the
metabolic phenotype characterised by an enhanced uptake of glucose and
aerobic glycolysis has since been considered as a reliable biomarker for
tumours [56]. The glycolytic shift is nowadays exploited in positron emission
tomography (PET) to identify malignant and fast-growing tumours and
metastasis, emphasising the importance of Warburg’s original observations [57,

58].

Based on metabolic data collected from numerous animal and human tumour
samples, Warburg hypothesised that the observed cancerous metabolic
phenotype arises from impairments in the respiratory chain, and suggested that
the very cause of cancer should have been sought in the replacement of
respiration of oxygen with fermentation of glucose into lactate [59-61]. These
insights, however, met with scepticism, mainly stemming from the predominant
concept that the altered metabolism was a non-causative epiphenomenon
rather than a mechanistic determinant of carcinogenesis. Indeed, Warburg's
theory, seemed inconsistent with evidence of apparently normal respiratory
function in some tumour cells [62-70]. Moreover, the additional observation
that the metabolic shift featuring in the Warburg effect arises primarily from
genomic mutability selected during tumour progression, promoted the idea of
cancer as a genetic disease, hence pushing researchers to focus on genetic

alterations underlying the emergence of the malignancy. However, the
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increasing amount of genomic data collected over several decades showed that
a prototypical cancer genotype can not be defined. Malignant cells are
remarkably heterogeneous because of the critical role of accumulating random
mutations during carcinogenesis [71, 72] and studies of breast and renal

cancers have found that every tumour cell exhibited a novel genotype [73, 74].

In recent years, the recognition of the virtual universality of aerobic glycolysis in
transformed cells, despite the marked genotypic diversity, has been diverting
part of the cancer research focus to the role of such metabolic alterations in the
development, sustenance and invasion of cancer [75]. The revitalised interest in
the Warburg effect has produced a vast literature addressing the emergence,
significance and functional implication of the altered cancer metabolism.
Moreover, although cancer is still predominantly considered a genetic disease
[76-80], Warburg's deepest hypothesis is also gaining some attention, namely
that cancer is caused by the metabolic shift from respiration to lactate
production. In particular, Seyfried et al. [81] suggest that cancer is primarily a
metabolic disease, as emerging evidence would show [82-90], and propose the
hypothesis that damage to cellular respiration precedes and underlies the

genome instability that accompanies tumour development.

Whether cancer has genetic or metabolic origins, an altered glycolysis
characterised by the features observed by Warburg is considered today not only
a good biomarker for tumours but also a possible target for new approaches in
cancer therapy [91], as it provides researchers with a clear discriminating factor
between normal and altered cells that could be exploited for drug intervention.
Indeed, in recent researches a suppression of the phenotypic features of cancer
carbon metabolism by either substrate limitation, pharmacological intervention,
or genetic manipulation was found to mediate potent tumour-suppressive

effects [92].
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LINKS BETWEEN HALLMARKS OF CANCER AND CANCER METABOLISM

The metabolic features of neoplastic cells are intricately linked to the principal
hallmarks of cancer listed above. The causative relationships between these
different aspects of the disease have been partly elucidated, providing
arguments for both the ideas of cancer metabolism as an epiphenomenon or as

a causative factor in the emergence of the malignancy.

The constitutive activation of growth factor signals causes the metabolic
reprogramming of cancer cells through different mechanisms. An example is
provided by the cell-autonomous activation of the PI3K/Akt signalling pathway,
whose components are frequently altered in human cancers [93]. The activated
form of Akt, in particular, stimulates glycolysis by enhancing the activity of

glycolytic enzymes such as glucose transporters and phosphofructokinase [94].

A glycolytic enzyme that is often overexpressed in cancer is hexokinase,
particularly in its isoform HKII. This enzyme provides one of the links between
the cancerous metabolic features and the ability of transformed cells to escape
apoptosis. In tumours, HKII is predominantly bound to the outer membrane of
mitochondria via the voltage-dependent anionic channel (VDAC) [95]. The
VDAC-HKII interaction (possibly enhanced by the constitutive activation of Akt
[96]) alters the permeability of the outer membrane and prevents cytochrome c,
an important apoptotic signal, to be released into the cytosol, hence suppressing

mitochondrial induced cell-death [97].

One of the principal mechanisms promoting the metabolic shift occurring in
cancer cells resides in the activation of hypoxia-inducible factor 1 (HIF-1). This
transcription factor is activated by the hypoxic stress that cancer cells undergo
during the first stages of tumour progression, and is involved in the

overexpression of HKIL. A recent work indicates that HIF-1 also promotes
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angiogenesis by activating the expression of VEGF [98], showing how tumour
metabolism and some other hallmarks of cancer can also be elicited in parallel

by the same causative event.

HIF-1 also plays an important role in the promotion of invasion and metastasis.
In particular, the activation of its a subunit (HIF-1a) is responsible for the loss
of E-cadherin [99, 100], a transmembrane protein that ensures cell adhesion.
The active form of HIF-1a also promotes the expression of two genes (met and

TWIST) that facilitate cell mobility and induce tissue invasion and metastases

[101, 102].

Another important link between alterations in signalling pathways and
reprogramming of cancer cells metabolism is provided by the loss of p53, which
leads to enhanced replicative potential by impairing the apoptotic mechanisms,
as mentioned above. Because p53 negatively regulates phosphoglycerate
mutase (PGM), the enzyme that converts 3-phosphoglycerate (3PG) to 2-
phosphoglycerate (2PG) in glycolysis [103], and transcriptionally activates
TIGAR, a glycolysis and apoptosis regulator that inhibits the overall
phosphofructokinase activity, loss of p53 result in an enhanced activity of PGM

and PFK, contributing to increase the glycolytic flux.

There are many other mechanisms (reviewed in [104]) that link cancer
metabolism to the principal hallmarks of cancer previously described. The
emerging picture suggests that metabolic alterations occurring in transformed
cells can partly be the consequence of non-metabolic oncogenic events, and
partly the triggering factors of non-metabolic cancer hallmarks. The metabolic
and non-metabolic features of cancer can also be the result of a coevolution
caused by the need of simultaneously subverting different tumour suppressor

mechanisms.

26



CANCER: A MODELLING PERSPECTIVE

The vast number of mechanisms involved in carcinogenesis, either directly
affected by genetic alterations or indirectly responsive to them, and the highly
complex network of interactions in which these mechanisms interplay, have
made cancer elude traditional attempts at understanding it. In molecular
biology, the focus is on single molecules rather than the networks of
interactions in which they are involved. Because this approach fails to capture
the systemic nature of cancer (as well as many other complex diseases),
the redefinition or recognition of cancer as a Systems Biology disease seems to

be most appropriate [14].

The term Systems Biology, first introduced by Zieglgansberger and Toélle [105],
refers to a relatively new trend in biological sciences, where the detailed
knowledge of the molecular mechanisms underlying biological functions -
obtained through the reductionistic approach of molecular biology - is
eventually integrated in a conceptual framework that puts the systemic
properties of biological entities at the centre of any investigation. Systems
Biology aims to understand how the interactions between the components of a
biological system give rise to the properties and functions of that system. This
paradigm shift has been applied by an increasing number of researchers, who
underline the timeliness of replacing reductionism with a systemic approach in
drug discovery, both in general and more specifically in cancer research [14,
106-108]. It is evident, in fact, that the understanding of cancer cannot result
from considering single oncogenic events, but can only come from accounting
for the combined and in fact integrating action of various extracellular and
intracellular triggers. Such a change of perspective also requires the tools and
approaches able to address the complexity of the systems under study, which
intuition and verbal reasoning alone will fail to grasp. The introduction of

computer-assisted analytical tools to help researchers to describe and predict
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the behaviour and evolution of cancer is then central to any advance;
mathematical models, informed by extant data and continuously revised by new
information, become an essential factor for both interpreting experimental data

and guiding experimental design [109].

In the following sections we will show how computer-assisted approaches have
been historically used in an attempt to describe and understand cancer, and
how they have evolved from a simple, mesoscale (multicellular) description of
the phenomenon into a more detailed representation that includes some
aspects of the system biochemistry. We will also show how this transition,
whilst widening the range of modelling approaches, has increasingly
acknowledged the role of metabolism in its attempt to describe and predict the
disease behaviour, and its response to possible drug intervention strategies.
With respect to this point, in the last section we will explore the potential role of
some of the most promising mathematical frameworks and computational
techniques in addressing the problem of developing anti-cancer drugs acting at

a metabolic level with both high specificity and low toxicity.

HISTORICAL APPROACHES

Although the systems biology paradigm is relatively recent and has not been
broadly applied yet to drug discovery, mathematical modelling of cancer is not
new. Historically, however, mathematical attempts to describe cancerous
phenomena have focused on modelling mesoscopic features of tumour growth,
with the aim of identifying the main processes governing the dynamics of
tumour expansion and its response to different therapies. There exists a
substantial literature about the different routes along which tumour growth
modelling has developed [110-117]. In this section we highlight the milestones
that marked a specific path leading from the first attempts to describe tumour

development to more recent approaches, where the metabolic features of

28



cancer are taken into account and integrated into larger models of tumour
growth. A common trait of the models presented in this section is the use of
differential equations to describe the mesoscopic characteristics of cancer, but
where subcellular molecular processes underlying the development of the

tumour physiology are not taken into account.

Many of the early mathematical models found in the literature focus on the
growth of multicellular spheroids (MCSs), clusters of cancer cells grown in vitro
to mimic the early stages of in vivo avascular tumour growth and to test the
applicability of new cancer treatment strategies [118]. In 1972, Greenspan
proposed a model to explain the growth rate of a solid tumour in the earliest
stages of development, when, because of the disordered and poor
vascularisation, the inner part of the nodule receives nutrients and release
waste products primarily by diffusion [119]. The model accounts for the
structure of nodular tumours as depicted in Figure 1. In the centre of the nodule
the concentration of vital nutrient is below the critical level to sustain life, and a
central necrotic core develops. This central core is surrounded by a middle layer

of viable, non-proliferating cells and an outer shell where all mitosis occur.

Figure 1 - Internal structure of a nodular carcinoma. The central core (r<R1) represents the
necrotic region which emerges as a consequence of low nutrient viability, unable to sustain cellular
life. The central layer (R1<r<R2) is constituted by quiescent cells, while the external shell
(R2<r<R3) hosts those cells which undergoes mitosis. Adapted from [119].

Based on the experimental observation showing that the growth of a solid
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tumour by diffusion alone leads asymptotically to a dormant but viable steady-
state, the model was used to infer the main processes, such as necrosis or
metabolic wastes, affecting the dynamics of solid tumour growth. Existing
models of MCS and avascular tumour development are essentially extensions of
Greenspan's model, and are effectively used to describe the evolution of the
tumour outer boundary in response to vital nutrients (in particular oxygen) and

growth factors [120-124].

An important step forward in modelling tumour growth and development was
made by adopting population ecology methods, which provide a means for
examining tumours, not as an isolated collection of transformed cells, but rather
as an invading species in a previously stable multicellular population. The
tumour-host interface was modelled by Gatenby [125, 126] as a network of
interacting normal and malignant cell populations, using coupled, non-linear
differential equations. These interactions were explored to identify the crucial
parameters that control tumorigenesis and to demonstrate the limitations of
traditional therapeutic strategies. The model, in particular, was used to simulate
different stages in tumour progression analogous to the initiation, promotion
and invasion stages observed in experimental systems. This was done by
changing the parameter values in the differential equations describing the
interactions between the normal and neoplastic cell populations. Because the
transition from one phase to another could be achieved through different
possible changes in the parameter values, the authors proposed the idea of
"functional equivalence", in which disparate tumour traits (modelled through
the parameters of the differential equations) can play identical roles in tumour
growth and invasion. These traits, in turn, were translated into clinical factors,
allowing predictions of treatment strategies likely to be successful or
unsuccessful at each phase of tumour growth. For example, tumour survival
after initiation was shown to be dependent solely on host-generated effects. At

this stage, hence, immunological response, modelled through one of the Lotka-
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Volterra (competition) factors in the differential equations, emerged as the
factor to exploit in order to suppress tumour growth, consistently with the
concept of immune surveillance. From a clinical perspective, tumour
progression at this early stage could then be stopped by strategies such as
reducing the levels of growth factors (e.g. through hormonal manipulation or by
blocking their receptors), increasing the immunological response to tumour

antigens, or increasing the levels of negative growth factors or receptors.

The first time metabolism was introduced in tumour modelling was in a study
interrogating the potential role of the glycolytic phenotype in facilitating
tumour invasion. Tumour cell populations, as with any invading population in
biology, must directly perturb their environment in such a way as to facilitate
their own growth while inhibiting the growth of the original community. The
commonality of altered tumour metabolism, in particular the adoption of the
glycolytic phenotype in most cancers, led Gatenby and Gawlinski to propose the
acid-mediated tumour invasion hypothesis [127] where the tumour cells'
increased acid secretion, coupled with their resistance to low extracellular pH,
may provide a simple but complete mechanism for cancer invasion. The model
consists of a system of three coupled reaction-diffusion equations describing the
spatial distribution and temporal evolution of normal tissue density, neoplastic
tissue density, and excess concentration of H* ions. The equations take into
account mesoscale parameters such as the intrinsic growth rate of the normal
and neoplastic populations, their carrying capacity, diffusion coefficients and
Lotka-Volterra factors. The normal tissue dynamics, in particular, was modelled
in order to account for the lethal effect of the acidic environment caused by the
excess of H* ions, while the cancerous tissue was assumed to be insensitive to
the acidic pH. The excess of H* ions was assumed to be produced at a rate
proportional to the neoplastic cell density and to diffuse away chemically
through buffer binding. Early tumour growth was shown to be critically

dependent on H* production by transformed cells and the level of vasculature,
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the latter being represented by the carrying capacity of the cancerous tissue. By
varying these factors, a variety of tumour morphologies were reproduced,
including tumours growing to large volumes with declining growth rates, highly
necrotic growth with the development of tumour chords, and even initial
growth followed by a decrease in tumour volume, representing spontaneous

regression.

While in Gatenby and and Gawlinski's model the differences in acidity between
tumour and normal micro-environments are represented without considering
intracellular and extracellular pH separately, Webb et al. developed a
mathematical model aiming to elucidate the mechanisms through which cancer
cells maintain their internal pH at physiological levels despite an acidic
extracellular environment [128]. The model consists of two variables, the
intracellular and extracellular H* ions concentrations, [H*]i and [H*]e
respectively. The correlation between hypoxia and low external pH [129] is
introduced by assuming that the hydrogen ions transported outside the cell are
removed from the interstitial space at a rate which is proportional to a
parameter V, representing the extent of vascularity. The lower the vascularity,
and hence the level of oxygen, the more acidic the interstitial space. The activity
of membrane based ion-transport mechanisms is also taken into account by
adding in the differential equations for [H*]i and [H*]e specific terms
representing the dependencies of internal and external pH upon these
transporters. The activity of the lactate/H* symporter, in particular, is
introduced as representative of the tumour glycolytic activity (characterised by
production and excretion of lactate) and is assumed to be inhibited by low
extracellular pH. The model focuses on the combined activities of these cell
membrane ion-transporters in the regulation of the intracellular pH, where the
hallmarks of solid tumours, like disorganised vasculature, hypoxia and high
glycolytic metabolism, are taken into account. In particular, the model suggests

a causative relation between the increased reliance of cancer cells on the
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energetically inefficient glycolytic pathway and the fact that their internal pH is

less sensitive to external acidity than it is in normal cells.

With Gatenby and Gawinski's model, as well as with that of Webb et al., an
interesting trend was initiated in modelling tumour growth, where the
mesoscopic features of tumour and cancer, such as vascularisation or tumour
colony size, were linked to variables which are more straightforwardly related
to the internal metabolic processes of altered cells. Although the dependency of
tumour growth on the acidity of the environment was still described in terms of
mesoscopic variables, such as the size of the cell-populations and pH, Gatenby's
and Webb's work can represent a first step in the attempt to provide an
understanding of physiologically relevant tumour properties in terms of the

molecular processes underlying them.

The link between the temporal evolution of tumour growth and the features
underlying the altered cancerous metabolism was further investigated by
Casciari et al. [130]. The authors used a simplified representation of tumour cell
glucose metabolism to determine the metabolic profile of altered cells. This
metabolic profile was then incorporated into a model of tumour growth, which
considers the interaction of tumour cells with oxygen, glucose, lactate, carbon
dioxide, hydrogen ions and other ionic species. The oxygen and glucose
consumption rates were described through empiric equations, where the
functional forms of the rate was based on empirical considerations rather than
on biochemistry [131]. The consumption rate of the remaining metabolites was
obtained through stoichiometric analysis (conservation of reactants). The model
was used to predict and interpret the different phases of EMT6/Ro spheroid
growth in terms of the underlying metabolic profile. Many theoretical
predictions matched with previously published experimental data. For example,
the predicted viable rim thicknesses of the spheroid based on low

concentrations of glucose was found to fit data about 1000 microns spheroids
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grown at medium glucose concentrations of 5.5 mM or less. The model,
however, could not accurately predict other phenomena such as the decrease in
oxygen and glucose metabolism seen in spheroids with time, leading to
observed growth plateau. In spite of these inaccuracies, to date Casciari et al. is
acknowledged to be one of very few experimentally-grounded models of cellular

metabolism and tumour growth.
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Figure 2 - Simplified model of oxygen, glucose and pH regulation, waste product transport
and buffering for a tumour cell and its surroundings. Reproduced with permission from
Smallbone 2005.

The attempts to relate the observed physiological characteristic of tumour
development and invasion with the long observed feature of cancerous
metabolism, opens a new possible trend in modelling cancer, where different
levels of description are taken into account. However, as pointed out by Rejniak

et al. [116], integrating all the different aspects of a complex phenomenon like
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cancer into a common description might turn to be as complicated as the
disease itself. Hence, although envisaging the potential of an integrated
approach [132], current systems biology applications on cancer research still

tend to focus on and describe single levels of organisation within the cell.

The stepping stones described above in tumour growth modelling demonstrate
how cancer metabolism has gradually gained attention in the cancer modelling
community, and how its relevance in the development of the disease has been
acknowledged even from a theoretical standpoint. We also mention, however,
that a substantial part of the systems biology effort has focused on integrating
signal transduction and gene expression data to create in silico representations
of cancer cells and their functioning [133-135]. A particularly ambitious project
is the computer simulation of a human cancer cell by Christopher et al. [136],
where the authors have reproduced in silico the connectivity of signal
transduction pathways with gene-expression networks through multiple
iterations between experiments and model predictions. However, the
interconnectedness of signalling pathways with metabolism, and the
recognition of the latter as trigger, regulator or end-point of many oncogenic
events, makes cancer metabolism a more immediate target of investigation.
There also exists a wider spectrum of theoretical frameworks to address the
study of metabolic networks, which make metabolism a domain where systems

biology could contribute most.

In the next sections we will comment specifically on two mainstream systems

biology approaches in the study of metabolism, and how they have been (or

might be) used in the context of cancer research.
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METABOLIC CONTROL ANALYSIS

In the quest for anti-cancer drugs, cancer metabolism has increasingly been a
focus of interest in clinical research. Enhanced glycolysis and a robust
production of lactate constitute a characteristic trait that discriminates many
cancerous cells from normal cells, albeit to different extents for different
cancers. As one of the main problems in defeating cancer is the genetic
heterogeneity of the altered cells constituting the malignancy (due to randomly
accumulated mutations during tumour progression), the virtual universality of
these metabolic features can provide researchers with a general handle on

cancer, regardless the specific genotype of the single cells.

In order to develop an anti-cancer drug operating at a metabolic level with
requirements of high efficacy and low toxicity, the entire metabolic network
must be taken into account. Potent inhibitors of essential enzymes often do not
show the expected effect at the cellular level, proving that the ultimate
biological effect of targeting specific enzymes is strongly mediated by the whole
network in which these enzymes operate [137-139]. Consequently, the
traditional assumption that biological processes are controlled by single
molecular components or enzymatic steps [140] has to be replaced by the more
evidence-supported concept that the control over biological functions is more
likely to be spread over much of the entire biochemical network [141, 142]. In
the context of clinical research, this change of perspective leads us to consider
the network, rather than the single enzyme within a network, as the target of a
drug [143]. The specific enzymatic step is then re-thought in terms of "access
point” to the network, a site of intervention whereby the action of a drug would
elicit the desired response at a system level with respect to some property of
interest. In order for a drug to match requirements of high efficacy and low
toxicity, it is necessary to identify sites of intervention that represent points of

fragility for the altered metabolic phenotype but not for the normal one [14,
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143, 144]. Targeting the network through such enzymes would elicit a strong
response in the diseased cell (high efficacy) without affecting normal cells (low
toxicity). Finding the right balance between efficacy and toxicity is the key to

successful drug development.

Metabolic control analysis (MCA) is a quantitative methodology that can be
profitably used to identify points of fragility in metabolic networks, by
evaluating the importance and relative contribution of individual enzymatic
steps in the overall functioning of a given metabolic system. Differential MCA, in
particular, has been proposed in clinical research as a tool to understand how
the system responds to specific perturbations under different physiological
conditions, providing a way to assess both the efficiency and the specificity of a
compound designed to target specific enzymes [108, 137, 142-144].

The extent to which any system property is controlled by an enzymatic step is
quantified in terms of control coefficients. A control coefficient is defined as the
relative change at steady state of the property P (the response of the system)
divided by the small relative change in the activity of an enzyme i (the causative

event) [145]. Mathematically:

CP — piry AP/P _ dIn(P)

i - (1)
Aav-0Ay; /v, dIn(v;)

Important examples of control coefficients are the flux control coefficient
C,.] and the concentration control coefficient CiS; here the system property P of
interest is the flux Jthrough a specific pathway, and the concentration of a
metabolite S, respectively. Two important relations, known as summation
theorems of MCA, state that the summation of the flux control coefficients and

the concentration control coefficients over all the enzymes in the system equals

1 and O respectively [146-149].
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Zc{ =1 (2)

Zcf =0 3)

These relationships allow for the fact that the control over a certain system
property need not be exerted by a single enzymatic step, but may well be shared
among the different enzymes. When a reaction changes its control over J or S,

this is compensated for by changes in the control by all other reactions.

The operational framework of MCA is in part theoretical [147] and in part
experimental [150]. From an experimental point of view, infinitesimal changes
are neither detectable nor inducible. In practice, quantifiable, non-infinitesimal
changes are measured and then used to extrapolate the control for very small
changes [142]. The experimental procedures for the determination of the flux-
control distribution have been reviewed in [151] and acknowledged for having
largely contributed to elucidating how the control of important pathways is
spread among the different enzymatic steps in different unicellular organisms.
In the context of cancer research, MCA has been undertaken to identify enzymes
exerting a major control over important fluxes of the tumour energy
metabolism. Boren et al [152] showed that the first reaction in the pentose
phosphate pathway, catalysed by G6PDH, has a strong control over the
synthesis of ribose (a fundamental component of nucleic acids) in tumour cells.
This seems to suggest G6PDH as point of intervention for an anticancer drug
aiming to reduce the proliferative capacity of transformed cells by inhibiting
nucleotide synthesis. In a similar work, Comin-Anduix et al. proved the highly
controlling role of transketolase enzyme, TKL, on the cell proliferation rate in
the Ehrlich's ascites tumour model [153]. More recent studies elucidated how
the control over the glycolytic flux was distributed among the different

glycolytic enzymes. In particular, Marin-Hernandez et al. [154] showed that in
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AS-30D hepatocarcinoma the main flux control (71%) resides in the first part of
the glycolytic pathway (i.e. GLUT and HK), and the rest of the control (29%) is
localised in the ALD-LDH segment. In a clinical strategy aimed to kill cancer
cells through starvation, the first steps of glycolysis seem then to be the most

suitable drug target in terms of efficacy for AS-30D tumour cells.

In all these cases, however, no comparative study with normal cells was made to
assess whether the efficacy of a drug targeting those enzyme would also be
coupled with low toxicity, ie. a low effect on the non-cancerous cells. Such
comparative studies may be difficult to carry out experimentally, as there is
currently no simple way to assess in vivo the replication rate of non-cancerous
cells. The computer assisted approach to MCA might represent a way to
overcome this limitation. In silico application of MCA is based on a dynamic
representation of the system under study, where the stoichiometric, topological
and dynamic properties of the metabolic network are taken into account. The
system is described as a set of mass-balance equations governing the rate at

which the different metabolites are consumed:

ds
—=N-v (4)
dt

where S denotes the set of metabolite concentrations, N is the stoichiometry

matrix, whose generic element {N;;} represents the stoichiometric coefficient of

metabolite i in reaction j, and v is the set of the reaction rates, which depend on
the functional form of the rate equations used to describe the kinetics of each
enzymatic step. By expressing the rates v as explicit functions of the metabolite
concentrations, Eq.(4) becomes a set of differential equations that can be solved
numerically if initial conditions and parameter values are known. The model
can then be used to find (if it exists) a set of fluxes and metabolite
concentrations satisfying the steady-state condition (where, by definition,

dS/dt=0). By taking the derivatives of these steady-state fluxes or
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concentrations with respect to the enzyme activities, the control coefficients can
be readily calculated through software packages of numerical analysis such as
Copasi [155]. The repository of live models JWS-online also provides a facility to
evaluate the control coefficients of any of the models present in the database
[156]. This procedure provides researchers with a virtual benchwork for a rapid
and simultaneous assessment of the control exerted by all the enzymes in the
network over a variety of systemic properties (often referable to specific fluxes).
Because cancer and normal cells have different metabolic phenotypes, it is
reasonable to expect they also have different control profiles. The predicted
differential response of cancerous versus normal cells to specific drug
interventions may be assessed by comparing the control coefficients of two
distinct dynamic models, one representing the metabolic network in the normal
physiological state and one reproducing the cancerous metabolic features. Good
putative drug targets would be those enzymes showing a major control on a
property of interest in the former model and and a minor control (over the same
property) in the latter model. Theoretical comparative studies have not been
performed at present (with the exception of Bakker et al. in their work on
T.brucei drug design [157]). However, the potentiality of the in silico approach of
MCA in cancer research has been shown in a recent work by Reuss [158], where
the author predicted a high control of GGPDH over the replication rate of HEPG2
liver cancer cells, confirming the previous experimental result obtained by
Boren et al. [152]. Similarly, kinetic modelling of glycolysis in AS-30D and HeLa
tumour cells has revealed that indeed GLUT and HK together with HPI are the
main flux-controlling steps in both tumours (A. Marin-Hernandez, R. Moreno-
Sanchez and E. Saavedra, manuscript in preparation) in accordance to previous

experimental results [154].
Because the specific features of cancer metabolism provide neoplastic cells with

selective advantages over their normal counterparts, targeting cancer

metabolism in order to elicit specific metabolic responses is one on the
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branches that cancer research is currently trying to explore [152, 159-163].
From this perspective, metabolism becomes the target of the treatment as well
as the domain of the functional properties one aims to alter. This purely
metabolic perspective allows for a simplified description of the cancer
phenomenon, where, in a first attempt, the metabolic network is considered as a
separate subsystem from the more complex cellular context. However,
metabolism is widely interconnected with other cellular processes. Signalling
events lead to related metabolic reactions which, in turn modify other metabolic
functions or gene expression. It seems then reasonable and desirable to widen
the focus of MCA from purely metabolic events to other cellular processes. An
MCA extension which includes gene-expression and signalling transduction has
been already formalised and proposed with the name of hierarchical regulation

analysis [164, 165].

FLUX BALANCE ANALYSIS

Drugs are designed to affect one or more specific properties of the cells needing
treatment. These properties usually represent what differentiates diseased cells
from their normal counterparts, or a pathogenic organism from its host. The
property one chooses to affect can vary depending on the specific clinical
strategy pursued. Because neoplastic cells grow and replicate at a considerably
faster rate than their normal counterparts, the rationale behind many of the
possible choices in cancer treatment consists of halting the proliferative
potential of the malignant tissue. Indeed, traditional clinical approaches such as
chemotherapy and radiotherapy aim to Kkill cancer cells by disrupting their
replication machinery. Similarly, in drug intervention at the metabolic level, the
preliminary step consists of identifying a property which characterises the
altered phenotype and which is therefore sensible to target. In this respect,
constraint-based modelling approaches, and particularly Flux Balance Analysis

(FBA), can provide us with a way to identify these properties.
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FBA is a constraint-based approach widely used to study the metabolic
capabilities of a cell or a subcellular system. In the classical formulation of FBA
only the stoichiometric information is considered, while the dynamic aspects of
the system are neglected. The underlying assumption of FBA is that any
metabolic system is aimed to fulfil a specific biological task at the best of its
possibilities. The goal of FBA is then to explore the range of all the possible
metabolic phenotypes (in terms of flux distributions at steady states) that allow
the system to optimise that task. The mathematical representation of the
biological task of interest is called objective function and in the existing FBA
approaches takes the form of a linear combination of the (unknown) flux-

variables. The general formulation of FBA can be written as follows:

maximise Z=f".v

N-
subjectto | v (5)

v <v<v
where N is the stoichiometric matrix of the system, v is the flux vector whose

elements represent the rate at which the different reactions occur in the

network, v* and vV are the lower and upper bound of the fluxes, and Zis the

objective function.

If the system under study is known to optimise a certain biological requirement,
then that requirement might be considered as the property one may want to
target in order to disrupt the metabolic phenotype of the cell. However, the
identification of the biological task that the objective function should represent
is not always easy. For studies involving E.coli metabolism, Z is usually defined
to represent the yield of biomass [166], assuming that bacteria aim to grow as

fast as possible (although this assumption does not reflect a generally valid
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principle in microbiology [167]). By contrast, for human cells, things are not so

straightforward.

Since cancer cells grow at a much higher rate than their normal counterparts, it
would seem reasonable to adopt the same approach as for E.coli by choosing the
maximisation of biomass production rate as the optimisation criterion. Although
this intuitive choice may seem sensible, the resulting FBA solution highlights a
flux-pattern which does not match with the observed characteristic of cancer
metabolism discussed above [59]. Because of the high demand of ATP in the
production of biomass, the flux pattern corresponding to the maximal yield
shows the glucose uptake flux entirely entering the TCA cycle, with no lactate
production. To retrieve a flux pattern highlighting the cancer metabolic features
previously discussed (a constitutive activation of the branch leading to lactate
production and, possibly, the reduction of the flux entering the TCA cycle), the
FBA problem has then to be formulated differently. A possible way to do so
consists of replacing the maximal yield of biomass with a different criterion of
optimality. In a recent work, Simeonidis et al. showed how an appropriate
reformulation of FBA can be used to reproduce the Crabtree effect, an
experimentally-observed behaviour whereby S.cerevisiae produces ethanol
aerobically in the presence of high external glucose concentrations rather than
producing biomass through the TCA cycle [168]. The authors hypothesised that
(one of) the “driving forces” behind yeast metabolism is resource preservation
(see also [169]). By minimising the number of active reactions (and hence the
number of enzymes) needed to produce a required amount of biomass, the flux
patterns obtained as solutions of the FBA problem showed the characteristic
switch from respiration to fermentation that occurs when the concentration of
glucose in the growing medium is increased above a certain threshold. Because
of the commonalities in the metabolic features of fermenting yeast and
cancerous cells [170], a similar argument might be applied to reproduce the

constitutive metabolic changes occurring in carcinogenesis. From an FBA
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perspective, higher concentration of glucose in the growth medium and higher
rate of glucose uptake due to over-expression of glycolytic enzymes are both
implemented by increasing the upper limit of the glucose uptake flux. In both
cases, the requirement of resource preservation would force the system to
switch from respiration to fermentation/lactate production as soon as the
glycolytic flux becomes high enough to provide the cell with the amount of ATP

needed for the required production of biomass.

A related issue that FBA could address is whether cancer cells are committed to
optimise different biological functions concurrently. Indeed, the enhanced
replication rate of neoplastic cells, combined with a predilection for
fermentation (which is not the most efficient way to produce ATP) would seem
to support a multi-functional optimisation hypothesis, whereby different
criteria of optimisation have to be satisfied simultaneously. As initially
hypothesised by Gatenby and Gawlinski [127], the production and excretion of
lactic acid constitutes a way for cancer cells to compete with their normal
counterpart by creating an hostile environment for normal cells. However, the
fact that sometimes the TCA cycle is nevertheless active (although to a smaller
extent than it could) makes evident that competing through excretion of lactate
is not the only task that cancer cells try to optimise. Using a specular argument,
one could say that, despite the enhanced replication rate of cancer cells, the fact
that the TCA cycle is somehow hampered shows that replicating at the highest
possible rate is not the (only) objective that drives cancer cells, or, in other
words, that there are multiple goals pushing the system toward a different
metabolic flux pattern. The relevance of different possible optimisation criteria
in the functioning of the system and their relative weights could also help to
elucidate why the phenotypic traits of cancer metabolism are present to

different extents in different types of cancer.
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There are other points that an FBA approach might help to elucidate.
Knowledge of the metabolic shift occurring in tumorigenesis predominantly
involves central carbon metabolism. However, the shift may extend beyond
central metabolism, and remarkable metabolic differences between normal and
cancer cells may lie in pathways not yet studied within the context of cancer
research. A further application of FBA could highlight particularly active
metabolic pathways in cancer on a genome-scale level, and identify the regions
where the flux pattern differs most between cancer and normal cells. Shlomi et
al. [171] have recently used an FBA approach to describe the tissue specificity of
human metabolism, where tissue-specific gene and protein expression data
were integrated with a genome-scale reconstruction of the human metabolic
network. Different integer values were assigned to different gene-expression
states, so to distinguish among highly (1), lowly (-1) and moderately (0)
expressed genes. The objective function of the FBA problem was then set to
account for the differences between the activity of each reaction in the
predicted pattern of fluxes and the integer representation of the corresponding
experimental gene-expression level. By minimising such an objective function,
the authors were able to retrieve stoichiometrically and topologically consistent
flux patterns on a genome-scale level with the maximum number of reactions
whose activity was in accordance with their expression state. This study may
establish a FBA-based computational approach for the genome-wide study of

normal and cancer human metabolism in a tissue-specific manner.

Another interesting point FBA might address is the following. Given the
selective pressure that biological systems undergo when functioning under
mutual competition, it seems reasonable to assume that cancer cells fulfil their
specific biological tasks in the most economic way. In other words, given the
available external substrates and given a set of functionally important targets to
accomplish, the cell would employ its resources most 'effortlessly’. From a

metabolic perspective, this would translate into the employment of a minimal

45



number of active reactions, or, more generally, a minimal employment of
resources. In E.coli, for example, experimental results have shown that fitness
increases while unused catabolic functions decrease, this reduction being
beneficial and therefore favoured by selection [172]. In the context of FBA, this
'principle of minimal effort' has been used in different forms to identify the
pattern of fluxes that best portraits the system functioning with respect to
specific criteria of optimality [169, 173]. On the other hand, there exist different
flux patterns that are equally optimal with respect to a certain criterion or set of
criteria. Extension of FBA to find alternate optimal solutions [174] or alternate
optimal patterns of fluxes [175] have been developed. In particular, as part of
this thesis work I have already proposed an algorithm able to find all the
minimal and equally optimal flux patterns of a metabolic network with respect
to a given functional task [175]. The superposition of all minimal optimal flux
patterns allows us to identify those pathways or sets of reactions that must be
active in order for the system to optimally fulfil a given function, and other sets
of reactions that can be alternatively active. The application of such an approach
in the context of cancer research might help to identify and predict the
narrowest region of human metabolism necessary to observe the carcinogenic
metabolic shift. From the perspective of developing a kinetic model of cancer
metabolism, these results might also provide modellers with a concise set of
reactions that can be used as a backbone for a mechanistic representation of the
system under study, as well as an idea about which pathways and reactions can

be reasonably neglected.

CONCLUSIONS

Despite the genotypic heterogeneity of cancer cells, the common metabolic
features that have been observed in a variety of different kind of cancers make
cancer metabolism an increasing focus of interest from a clinical perspective

[176]. Moreover, metabolism is tightly related to many aspects of cellular
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functioning, and the metabolic alterations occurring during carcinogenesis have
been proven to play a major role in the emergence and progression of the
disease [177]. Hence, cancer metabolism seems to be an anchor-point that
might be exploited to directly or indirectly affect many aspects of the disease.

The application of systems biology approaches in the study of cancer
metabolism is deemed to deepen our understanding of an important aspect of
the disease and to strongly enhance our ability to develop drugs with higher

efficacy and lower toxicity.

There is a need to further develop models of cellular metabolic processes in
healthy and cancerous tissue, and to analyse them with new tools and
approaches derived from the systems biology perspective. By admitting that
cancer is truly a systemic disease, one my may begin to understand its emergent
behaviour as more than the sum of its constituent parts. Moreover, through
providing a theoretical framework to which the vast array of available
metabolic data may be fused, one may begin to uncover the non-linear

interactions that govern this complex disease.
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GLOSSARY

e adenoma: Benign epithelial tumour in which the cells form recognisable
glandular structures.

e angiogenesis: The formation of new capillary blood vessels.

e anthracycline therapy: Type of chemotherapy that acts to prevent cell
division by disrupting the structure of the DNA.

e apoptosis: Programmed cell death, as signalled by the nuclei in normally
functioning cells.

e basement membrane: Extracellular matrix characteristically found under
epithelial cells. There are two distinct layers: the basal lamina, immediately
adjacent to the cells, and the reticular lamina.

e benign: Not malignant. Benign tumours do not invade or metastasise,
having lost growth control but not positional control. They are usually
surrounded by a fibrous capsule of compressed tissue, and treatment or
removal is curative.

e carcinogen: Chemical, virus or radiation that can induce cancer.

e carcinoma: Malignant epithelial tumour.

e clastogenic: Altering the structure of chromosomes.

o differentiation: Process undergone by cells as they mature into normal
cells. Differentiated cells have distinctive characteristics, perform specific
functions and are less likely to divide.

e epigenetic: Differentiation due to selective gene activation and expression.
Not due to changes in the genome.

e epithelium: Covering of internal and external surfaces of the body,
including the lining of vessels and other small cavities. It consists of cells

joined by small amounts of 'cementing' substances. Epithelium is classified
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into types on the basis of its depth (in terms of cell number) and the shape of
the superficial cells.

extracellular matrix (ECM): Any material produced by cells and secreted
into the surrounding medium, usually applied to the noncellular portion of
tissues. Although produced by cells, the ECM can influence the behaviour of
cells quite markedly, an important factor to consider when growing cells in
vitro.

heritable: Capable of being transmitted from parent to child.

hyperplasia: Abnormal increase in the number of normal cells in a tissue.
hypoxia: Diminished oxygen supply.

in situ: Localised. A carcinoma that has not breached the basement
membrane.

invasion: Movement of cells into adjacent tissue normally occupied by a
different cell type.

in vitro: Cell manipulation outside the body.

in vivo: In the living body. An experimental procedure using an intact live
animal.

malignant: Tending to become progressively worse and to result in death.
Malignant tumours are invasive and have the capacity to metastasise.
Compare benign.

mesoscale: Description of tumours that does not rely on the detailed
biochemical mechanisms underlying the emergence of the malignancy. The
variable and parameters taken into account are referable to multicellular
properties and/or are averaged to take into account the global effect of a
population of cells.

metastasis: Transfer of cells from one organ or part to another, not directly
connected with it. This usually occurs through the blood vessels, lymph

channels or spinal fluid.
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oncogene: Overexpressed version of a normal gene (the proto-oncogene)
that promotes excessive growth. Compare tumour suppressor gene.
necrosis: Non-programmed cell death.

quiescence: The state of not dividing.

somatic: Characteristic of the body.

stroma: (syn: interstitium) Connective tissue framework of an organ, gland
or other structure, in contrast to the functional cells. Rich in extracellular
matrix.

tumour: (syn: neoplasm) Abnormal mass of tissue serving no useful
function to the host, resulting from excessive cell division that is
uncontrolled and progressive. May be either benign or malignant.

tumour suppressor gene (TSG): (syn: anti-oncogene) A gene negatively
regulating cell division that, when inactivated (through mutation for
example), allows escape from normal growth constraints. Compare

oncogene.

50



REFERENCES

10.

11.

12.

13.

14.

15.

16.

Weinstein, B., The Origins of Human Cancer: Molecular Mechanisms of
Carcinogenesis and Their Implications for Cancer Prevention and
Treatment -- Twenty-seventh G. H. A. Clowes Memorial Award Lecture.
Cancer Research, 1988.48: p. 4135-4143.

Weber, G.F., Molecular Mechanisms of Cancer. 2007: Springer.

Frank, S.A., Dynamic of Cancer - Incidence, Inheritance and Evolution.
Princeton Series in Evolutionary Biology, ed. H.A. Orr. 2007, Princeton:
Princeton University Press.

Armitage, P., Multistage Models of Carcinogenesis. Environmental Health
Perspectives, 1985. 63: p. 195-201.

Engle, LJ., C.L. Simpson, and ].E. Landers, Using high-throughput SNP
technologies to study cancer. Oncogene, 2006. 25(11): p. 1594-1601.

Kallioniemi, O.-P., et al., Tissue microarray technology for high-throughput
molecular profiling of cancer. Hum. Mol. Genet., 2001. 10(7): p. 657-662.

Sanchez-Carbayo, M., Use of High-Throughput DNA Microarrays to Identify
Biomarkers for Bladder Cancer. Clin Chem, 2003. 49(1): p. 23-31.

Vogelstein, B. and K. Kinzler, Cancer genes and the pathways they control.
Nature medicine, 2004. 10(8): p. 789-799.

Wood, L., et al., The Genomic Landscapes of Human Breast and Colorectal
Cancers. Science, 2007. 318(5853): p. 1108-1113.

Venter, C., et al, The Sequence of the Human Genome. Science, 2001.
291(5507): p. 1304-1351.

Kitano, H., Systems Biology: A Brief Overview. Science, 2002. 295(5560):
p. 1662-1664.

Westerhoff, H. and B. Palsson, The evolution of molecular biology into
systems biology. Nature Biotechnology, 2004. 22(10): p. 1249-1252.

Boland, C. and A. Goel, Somatic evolution of cancer cells. Seminars in
Cancer Biology, 2005. 15(6): p. 436-450.

Hornberg, |, et al., Cancer: a Systems Biology disease. Bio Systems, 2006.
83(2-3): p. 81-90.

Futreal, P.-A,, et al, A census of human cancer genes. Nature Reviews
Cancer, 2004. 4: p. 177-183.

Bishop, ].M., The molecular genetics of cancer. Science, 1987. 235(4786):
p.305-311.

51



17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

31.

32.

33.

34.

Weinberg, R.A., Oncogenes, antioncogenes, and the molecular bases of
multistep carcinogenesis. Cancer research, 1989. 49(14): p. 3713-3721.

Cho, KR. and B. Vogelstein, Genetic alterations in the adenoma--
carcinoma sequence. Cancer, 1992. 70(6 Suppl): p. 1727-1731.

Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell, 2000.
100(1): p. 57-70.

Fedi, P. et al, Growth factors, in Cancer Medicine. 1997, Baltimore:
Williams & Wilkins. p. 41-64.

Laurent, A, et al,, Controlling Tumor Growth by Modulating Endogenous
Production of Reactive Oxygen Species. Cancer Research, 2005. 65(3): p.
948-956.

Slamon, D.J., et al, Human breast cancer: correlation of relapse and
survival with amplification of the HER-2/neu oncogene. Science (New
York, N.Y.), 1987.235(4785): p. 177-182.

Yarden, Y. and A. Ullrich, Growth Factor Receptor Tyrosine Kinases.
Annual Review of Biochemistry, 1988. 57: p. 443-478.

Lukashev, M.E. and Z. Werb, ECM signalling: orchestrating cell behaviour
and misbehaviour. Trends in cell biology, 1998. 8(11): p. 437-441.

Giancotti, F.G. and E. Ruoslahti, Integrin signaling. Science (New York,
N.Y.), 1999. 285(5430): p. 1028-1032.

Medema, R.H. and ].L. Bos, The role of p21ras in receptor tyrosine kinase
signaling. Critical reviews in oncogenesis, 1993. 4(6): p. 615-661.

Hunter, T., Oncoprotein networks. Cell, 1997. 88(3): p. 333-346.

Kinzler, KW. and B. Vogelstein, Lessons from hereditary colorectal cancer.
Cell, 1996.87(2): p. 159-170.

Weinberg, R.A., The retinoblastoma protein and cell cycle control. Cell,
1995. 81(3): p. 323-330.

Fynan, T.M. and M. Reiss, Resistance to inhibition of cell growth by
transforming growth factor-beta and its role in oncogenesis. Critical
reviews in oncogenesis, 1993. 4(5): p. 493-540.

Markowitz, S., et al.,, Inactivation of the type Il TGF-beta receptor in colon
cancer cells with microsatellite instability. Science, 1995. 268(5215): p.
1336-1338.

Schutte, M., et al., DPC4 gene in various tumor types. Cancer Research,
1996.56(11): p. 2527-2530.

Chin, L. ]J. Pomerantz, and R.A. DePinho, The INK4a/ARF tumor
suppressor: one gene--two products--two pathways. Trends in biochemical
sciences, 1998. 23(8): p. 291-296.

Zuo, L., et al., Germline mutations in the p16INK4a binding domain of
CDK4 in familial melanoma. Nature Genetics, 1996. 12(1): p. 97-99.

52



35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49.

Dyson, N,, et al.,, The human papilloma virus-16 E7 oncoprotein is able to
bind to the retinoblastoma gene product. Science (New York, N.Y.), 1989.
243(4893): p. 934-937.

Evan, G. and T. Littlewood, A matter of life and cell death. Science (New
York, N.Y.), 1998. 281(5381): p. 1317-1322.

Green, D.R. and ].C. Reed, Mitochondria and apoptosis. Science (New York,
N.Y.), 1998.281(5381): p. 1309-1312.

Guo, L., et al., Effects of cytochrome c on the mitochondrial apoptosis-
induced channel MAC. Am ] Physiol Cell Physiol, 2004. 286(5): p. C1109-
1117.

Hayflick, L., Mortality and immortality at the cellular level. A review.
Biochemistry. Biokhimiilja, 1997. 62(11): p. 1180-1190.

Shay, J.W. and S. Bacchetti, A survey of telomerase activity in human
cancer. European journal of cancer (Oxford, England : 1990), 1997.
33(5): p. 787-791.

Bryan, T.M. and T.R. Cech, Telomerase and the maintenance of
chromosome ends. Current opinion in cell biology, 1999. 11(3): p. 318-
324.

Bryan, T.M,, et al., Telomere elongation in immortal human cells without
detectable telomerase activity. The EMBO journal, 1995. 14(17): p. 4240-
4248.

Bodnar, A, et al., Extension of Life-Span by Introduction of Telomerase into
Normal Human Cells. Science, 1998. 279(5349): p. 349-352.

Vaziri, H. and S. Benchimol, Reconstitution of telomerase activity in
normal human cells leads to elongation of telomeres and extended
replicative life span. Current biology : CB, 1998. 8(5): p. 279-282.

Counter, C,, et al., Dissociation among in vitro telomerase activity, telomere
maintenance, and cellular immortalization. Proceedings of the National
Academy of Sciences of the United States of America, 1998. 95(25): p.
14723-14728.

Halvorsen, T., G. Leibowitz, and F. Levine, Telomerase Activity Is Sufficient
To Allow Transformed Cells To Escape from Crisis. Mol. Cell. Biol., 1999.
19(3): p. 1864-1870.

Zhu, ]., et al,, Telomerase extends the lifespan of virus-transformed human
cells without net telomere lengthening. Proceedings of the National
Academy of Sciences of the United States of America, 1999. 96(7): p.
3723-3728.

Greenberg, R,, et al., Short dysfunctional telomeres impair tumorigenesis in
the INK4a(deltaZ/3) cancer-prone mouse. Cell, 1999. 97(4): p. 515-525.

Bouck, N., V. Stellmach, and S.C. Hsu, How tumors become angiogenic.
Advances in cancer research, 1996. 69: p. 135-174.

53



50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.
67.

Hanahan, D. and ]. Folkman, Patterns and emerging mechanisms of the
angiogenic switch during tumorigenesis. Cell, 1996. 86(3): p. 353-364.

Folkman, ]., et al, Tumour angiogenesis, in Cancer Medicine. 1997,
Baltimore: Williams & Wilkins. p. 181-204.

Dameron, K.M., et al, Control of angiogenesis in fibroblasts by p53
regulation of thrombospondin-1. Science, 1994. 265(5178): p. 1582-1584.

Ravi, R, et al, Regulation of tumor angiogenesis by p53-induced
degradation of hypoxia-inducible factor la. Genes and Development,
2000. 14: p. 34-44.

Sporn, M.B., The war on cancer. Lancet, 1996. 347(9012): p. 1377-1381.

Warburg, O., F. Wind, and E. Negelein, The Metabolism of Tumors in the
Body. The Journal of general physiology, 1927. 8(6): p. 519-530.

Gottlieb, E., Cancer: The fat and the furious. Nature, 2009. 461(7260): p.
44-45.

Delbeke, D., Oncological Applications of FDG PET Imaging: Brain Tumors,
Colorectal Cancer Lymphoma and Melanoma. ] Nucl Med, 1999. 40(4): p.
591-603.

Czernin, J.,, Oncological Applications of FDG-PET, in PET: molecular
imaging and its biological applications. 2004, Springer-Verlag: New York.

Warburg, O. and F. Dickens, The Metabolism of Tumors. The American
Journal of the Medical Sciences, 1931. 182(1): p. 123.

Warburg, 0., On the origin of cancer cells. Science (New York, N.Y.), 1956.
123(3191): p. 309-314.

Warburg, O. The prime cause of cancer and prevention. in Annual meeting
of Nobelists. 1969. Lindau, Germany.

Moreno-Sanchez, R, et al., Energy metabolism in tumor cells. The FEBS
journal, 2007.274(6): p. 1393-1418.

Moreno-Sanchez, R, et al., The bioenergetics of cancer: Is glycolysis the
main ATP supplier in all tumor cells? BioFactors, 2009. 35(2): p. 209-225.

Bonnet, S.b,, et al., A mitochondria-K+ channel axis is suppressed in cancer
and its normalization promotes apoptosis and inhibits cancer growth.
Cancer cell, 2007. 11(1): p. 37-51.

Semenza, G. HIF-1 mediates the Warburg effect in clear cell renal
carcinoma. Journal of bioenergetics and biomembranes, 2007. 39(3): p.
231-234.

Aisenberg, A.C., The Glycolysis and Respiration of Tumors. 1961.

Fantin, V.R. and P. Leder, Mitochondriotoxic compounds for cancer
therapy. Oncogene, 2006. 25(34): p. 4787-4797.

54



68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

Hervouet, E,, et al., A new role for the von Hippel-Lindau tumor suppressor
protein: stimulation of mitochondrial oxidative phosphorylation complex
biogenesis. Carcinogenesis, 2005. 26(3): p. 531-539.

Weinhouse, S., The Warburg hypothesis fifty years later. Journal of cancer
research and clinical oncology, 1976.87(2): p. 115-126.

WeinHouse, S., et al.,, On Respiratory Impairment in Cancer Cells. Science,
1956.124(3215): p. 267-272.

Loeb, L.A, Mutator phenotype may be required for multistage
carcinogenesis. Cancer research, 1991. 51(12): p. 3075-3079.

Rabinovitch, P.S., et al., Progression to cancer in Barrett's esophagus is
associated with genomic instability. Laboratory investigation; a journal of
technical methods and pathology, 1989. 60(1): p. 65-71.

Kerangueven, F., et al, Genome-wide Search for Loss of Heterozygosity
Shows Extensive Genetic Diversity of Human Breast Carcinomas. Cancer
Research, 1997. 57(24): p. 5469-5474.

Jiang, F., et al., Construction of evolutionary tree models for renal cell
carcinoma from comparative genomic hybridization data. Cancer
research, 2000. 60(22): p. 6503-6509.

Gatenby, R. and E. Gawlinski, The glycolytic phenotype in carcinogenesis
and tumor invasion: insights through mathematical models. Cancer
research, 2003. 63(14): p. 3847-3854.

Kim, J.-w. and C. Dang, Cancer’s Molecular Sweet Tooth and the Warburg
Effect. Cancer Research, 2006. 66(18): p. 8927-8930.

Hsu, P. and D. Sabatini, Cancer Cell Metabolism: Warburg and Beyond.
2008.134(5): p. 703-707.

Shaw, R., Glucose metabolism and cancer. Cell division, growth and death
/ Cell differentiation, 2006. 18(6): p. 598-608.

Jones, R. and C. Thompson, Tumor suppressors and cell metabolism: a
recipe for cancer growth. Genes & Development, 2009. 23(5): p. 537-548.

Vizan, P., S. Mazurek, and M. Cascante, Robust metabolic adaptation
underlying tumor progression. Metabolomics, 2008. 4(1): p. 1-12.

Seyfried, T. and L. Shelton, Cancer as a metabolic disease. Nutrition &
metabolism, 2010. 7(1): p. 7.

Seyfried, T. and P. Mukherjee, Targeting energy metabolism in brain
cancer: review and hypothesis. Nutrition & metabolism, 2005. 2.

Chen, Y., et al., Oxygen consumption can regulate the growth of tumors, a
new perspective on the Warburg effect. PloS one, 2009. 4(9).

Ramanathan, A., C. Wang, and S. Schreiber, Perturbational profiling of a
cell-line model of tumorigenesis by using metabolic measurements.

55



85.

86.

87.

88.

89.

90.

91.

92.

93.

94,

95.

96.

97.

98.

Proceedings of the National Academy of Sciences of the United States of
America, 2005.102(17): p. 5992-5997.

John, A.P., Dysfunctional mitochondria, not oxygen insufficiency, cause
cancer cells to produce inordinate amounts of lactic acid: the impact of this
on the treatment of cancer. Medical hypotheses, 2001. 57(4): p. 429-431.

Booyens, ., Cancer: A simple metabolic disease? Medical Hypotheses,
1983.12(3): p. 195-201.

Galluzzi, L., et al., Mitochondrial gateways to cancer. Molecular aspects of
medicine, 2009. 31(1): p. 1-20.

Cuezva, ]., et al., The Bioenergetic Signature of Cancer. Cancer Research,
2002.62(22): p. 6674-6681.

Kiebish, M., et al., Cardiolipin and electron transport chain abnormalities
in mouse brain tumor mitochondria: lipidomic evidence supporting the
Warburg theory of cancer. Journal of lipid research, 2008. 49(12): p.
2545-2556.

Arismendi-Morillo, G. and A. Castellano-Ramirez, Ultrastructural
mitochondrial pathology in human astrocytic tumors: potentials
implications pro-therapeutics strategies. ] Electron Microsc (Tokyo),
2008.57(1): p. 33-39.

Targeting tumour metabolism. Nature Reviews Drug Discovery, 2010. 9:
p. 503 - 504.

Wittig, R. and ]. Coy, The role of glucose metabolism and glucose-
associated signalling in cancer. Perspectives in medicinal chemistry,
2008. 1: p. 64-82.

Vara, J.AF., et al, PI3K/Akt signalling pathway and cancer. Cancer
Treatment Reviews, 2004. 30(2): p. 193-204.

Manning, B.D. and L.C. Cantley, AKT/PKB Signaling: Navigating
Downstream. Cell, 2007.129(7): p. 1261-1274.

Rose, I.A. and ].V.B. Warms, Mitochondrial Hexokinase. Release, rebinding
and location. The Journal of Biological Chemistry, 1967. 242(7): p. 1635-
1645.

Miyamoto, S., A.N. Murphy, and ].H. Brown, Akt mediates mitochondrial
protection in cardiomyocytes through phosphorylation of mitochondrial
hexokinase-II. Cell Death and Differentiation, 2008. 15: p. 521-529.

Pastorino, ].G., N. Shulga, and ].B. Hoek, Mitochondrial Binding of
Hexokinase Il Inhibits Bax-induced Cytochrome c Release and Apoptosis.
The Journal of Biological Chemistry, 2002. 277: p. 7610-7618.

Kim, J.-w., et al., Hypoxia-inducible factor 1 and dysregulated c-Myc
cooperatively induce vascular endothelial growth factor and metabolic
switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Molecular
and Cellular Biology, 2007.27(21): p. 7381-7393.

56



99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

Esteban, M.A,, et al., Regulation of E-cadherin Expression by VHL and
Hypoxia-Inducible Factor. Cancer Research, 2006. 66(7): p. 3567-3575.

Pouysségur, |., F. Dayan, and N.M. Mazure, Hypoxia signalling in cancer
and approaches to enforce tumour regression. Nature, 2006. 441(25): p.
437-443.

Pennacchietti, S. et al, Hypoxia promotes invasive growth by
transcriptional activation of the met protooncogene. Cancer Cell, 2003.
3(4): p. 347-361.

Yang, M.-H., et al, Direct regulation of TWIST by HIF-1a promotes
metastasis. Nature Cell Biology, 2008. 10(3): p. 295 - 305.

Kondoh, H., et al, Glycolytic enzymes can modulate cellular life span.
Cancer Research, 2005. 65(1): p. 177-185.

Kroemer, G. and ]. Pouyssegur, Tumor Cell Metabolism: Cancer’s Achilles’
Heel. Cancer Cell, 2008. 13(6): p. 472-482.

Zieglgdnsberger, W. and T.R. Tolle, The pharmacology of pain signalling.
Current opinion in neurobiology, 1993. 3(4): p. 611-618.

Ahn, A, et al., The clinical applications of a systems approach. PLoS
medicine, 2006. 3(7).

Laubenbacher, R, et al,, A systems biology view of cancer. Biochimica et
biophysica acta, 2009. 1796(2): p. 129-139.

Westerhoff, H., et al., Integrating systems approaches into pharmaceutical
sciences. European journal of pharmaceutical sciences, 2008. 35(1-2): p.
1-4.

Gatenby, R. and P. Maini, Mathematical oncology: Cancer summed up.
Nature, 2003. 421(6921): p. 321-321.

Preziosi, L., Cancer Modelling and Simulation. 2003: Chapman & Hall /
CRC Press.

Araujo, R.P. and D.L. McElwain, A history of the study of solid tumour
growth: the contribution of mathematical modelling. Bulletin of
mathematical biology, 2004. 66(5): p. 1039-1091.

Byrne, H.M., et al, Modelling aspects of cancer dynamics: a review.
Philosophical transactions. Series A, Mathematical, physical, and
engineering sciences, 2006. 364(1843): p. 1563-1578.

Sanga, S., et al, Predictive oncology: A review of multidisciplinary,
multiscale in silico modeling linking phenotype, morphology and growth.
Neurolmage, 2007. 37: p. S120-5S134.

Bellomo, N., M. Chaplain, and E. De Angelis, Selected Topics in Cancer
Modeling: Genesis, Evolution, Immune Competition and Therapy. 2008:
BirkhAruser Boston.

57



115.

116.

117.

118.

1109.

120.

121.

122.

123.

124.

125.

126.

127.

128.

Byrne, H. and D. Drasdo, Individual-based and continuum models of

growing cell populations: a comparison. Journal of mathematical biology,
2009. 58(4-5): p. 657-687.

Rejniak, K. and L. McCawley, Current trends in mathematical modeling of
tumor-microenvironment interactions: a survey of tools and applications.
Experimental biology and medicine (Maywood, N.J.), 2010. 235(4): p.
411-423.

Anderson, A.,, M.A]. Chaplain, and K. Rejniak, Single-Cell-Based Models in
Biology and Medicine. Mathematics and Biosciences in Interaction. 2007:
Birkhauser Basel.

Sutherland, R.M., Cell and environment interactions in tumor
microregions: the multicell spheroid model. Science, 1988. 240(4849): p.
177-184.

Greenspan, H.P., Models for the Growth of a Solid Tumor by Diffusion.
Studies in Applied Mathematics, 1972. LI(4).

McElwain, D., Apoptosis as a volume loss mechanism in mathematical
models of solid tumor growth. Mathematical Biosciences, 1978. 39(1-2):
p. 147-157.

McElwain, D.L.S. and P.]. Ponzo, A model for the growth of a solid tumor
with non-uniform oxygen consumption. Mathematical Biosciences, 1977.
35(3-4): p. 267-279.

Greenspan, H.P., On the growth and stability of cell cultures and solid
tumors. Journal of theoretical biology, 1976. 56(1): p. 229-242.

Byrne, H.M. and M.A.]. Chaplain, Free boundary value problems associated
with the growth and development of multicellular spheroids. European
Journal of Applied Mathematics, 1997. 8(06): p. 639-658.

Byrne, H.M., A weakly nonlinear analysis of a model of avascular solid
tumour growth. Journal of mathematical biology, 1999. 39(1): p. 59-89.

Gatenby, R.A., Models of tumor-host interaction as competing populations:
implications for tumor biology and treatment. Journal of theoretical
biology, 1995.176(4): p. 447-455.

Gatenby, R.A., Application of competition theory to tumour growth:
implications for tumour biology and treatment. European journal of
cancer (Oxford, England : 1990), 1996. 32A(4): p. 722-726.

Gatenby, R. and E. Gawlinski, A Reaction-Diffusion Model of Cancer
Invasion. Cancer Research, 1996. 56(24): p. 5745-5753.

Webb, S.D., J.A. Sherratt, and R.G. Fish, Mathematical modelling of tumour
acidity: regulation of intracellular pH. Journal of theoretical biology, 1999.
196(2): p. 237-250.

58



129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

Helmlinger, G., et al,, Interstitial pH and pOZ gradients in solid tumors in
vivo: High-resolution measurements reveal a lack of correlation. Nature
Medicine, 1997. 3(2): p. 177-182.

Casciari, J.J., S.V. Sotirchos, and R.M. Sutherland, Mathematical modelling
of microenvironment and growth in EMT6/Ro multicellular tumour
spheroids. Cell proliferation, 1992. 25(1): p. 1-22.

Casciari, J.J., S.V. Sotirchos, and R.M. Sutherland, Variations in tumor cell
growth rates and metabolism with oxygen concentration, glucose
concentration, and extracellular pH. Journal of cellular physiology, 1992.
151(2): p. 386-394.

Lengeler, ].W., Metabolic networks: a signal-oriented approach to cellular
models. Biological Chemistry, 2000. 381(9-10): p. 911-920.

Rajasethupathy, P., S.J. Vayttaden, and U.S. Bhalla, Systems modeling: a
pathway to drug discovery. Current Opinion in Chemical Biology, 2005.
9(4): p. 400-406.

Schwab, E.D. and K. Pienta, Modeling signal transduction in normal and
cancer cells using complex adaptive systems. Medical Hypotheses, 1997.
48(2):p. 111-123.

Lamb, ]., The Connectivity Map: a new tool for biomedical research. Nature
Reviews Cancer, 2007. 7: p. 54-60.

Christopher, R, et al., Data-Driven Computer Simulation of Human Cancer
Cell. Annals of the New York Academy of Sciences, 2004. 1020: p. 132-
153.

Bakker, B., et al, Network-based selectivity of antiparasitic inhibitors.
Molecular biology reports, 2002. 29(1-2): p. 1-5.

Gerber, S., et al,, Drug-efficacy depends on the inhibitor type and the target
position in a metabolic network--a systematic study. In Memory of
Reinhart Heinrich, 2008. 252(3): p. 442-455.

Westerhoff, H.V., Systems biology: new paradigms for cell biology and drug
design. Ernst Schering Research Foundation workshop, 2007(61): p. 45-
67.

Krebs, H.A., Rate control of the tricarboxylic acid cycle. Advances in
enzyme regulation, 1970. 8: p. 335-353.

Groen, AK., et al, Control of Gluconeogenesis in Rat Liver Cells. The
Journal of Biological Chemistry, 1983. 258(23): p. 14346-14353.

Moreno-Sanchez, R,, et al., Metabolic control analysis indicates a change of
strategy in the treatment of cancer. Mitochondrion, 2010. In press.

Hornberg, J., et al.,, Metabolic control analysis to identify optimal drug
targets, in Systems Biological Approaches In Infectious Diseases. Progress
in drug research., H.1. Boshoff and C.E. Barry III, Editors. 2007. p. 171-189.

59



144.

145.
146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

Cascante, M., et al., Metabolic control analysis in drug discovery and
disease. Nature Biotechnology, 2002. 20(3): p. 243-249.

Burns, J.A,, et al,, Control of metabolic systems. 1985. 10(16).

Heinrich, R. and T.A. Rapoport, A Linear Steady-State Treatment of
Enzymatic Chains. General Properties, Control and Effector Strength. The
European Journal of Biochemistry / FEBS, 1974. 42(1): p. 89-95.

Kacser, H. and ].A. Burns, The control of flux. Symposia of the Society for
Experimental Biology, 1973. 27: p. 65-104.

Giersch, C. Control analysis of metabolic networks. 1. Homogeneous
functions and the summation theorems for control coefficients. European
journal of biochemistry / FEBS, 1988. 174(3): p. 509-513.

Westerhoff, H.V. and K. Van Dam, Thermodynamics and Control of
Biological Free Energy Transduction. 1987: Elsevier.

Groen, A.K. and H.V. Westerhoff, Modern Control Theories: A Consumer's
Test, in Control of Metabolic Processes, A. Cornish-Bowden and M.L.
Cardenas, Editors. 1990, Springer. p. 101-118.

Moreno-Sanchez, R., et al, Metabolic Control Analysis: A Tool for
Designing Strategies to Manipulate Metabolic Pathways. Journal of
Biomedicine and Biotechnololy, 2008. 2008(597913).

Boren, J., et al., Metabolic control analysis aimed at the ribose synthesis
pathways of tumor cells: a new strategy for antitumor drug development.
Molecular biology reports, 2002. 29(1-2): p. 7-12.

Comin-Anduix, B., et al., The effect of thiamine supplementation on tumour
proliferation. A metabolic control analysis study. European journal of
biochemistry / FEBS, 2001. 268(15): p. 4177-4182.

Marin-Hernandez, A., et al.,, Determining and understanding the control of
glycolysis in fast-growth tumor cells. Flux control by an over-expressed but
strongly product-inhibited hexokinase. The FEBS journal, 2006. 273(9): p.
1975-1988.

Hoops, S., et al.,, COPASI--a COmplex PAthway SImulator. Bioinformatics,
2006.22(24): p. 3067-3074.

Snoep, J., The Silicon Cell initiative: working towards a detailed kinetic
description at the cellular level. Current opinion in biotechnology, 2005.
16(3): p. 336-343.

Bakker, B.M. et al, Metabolic control analysis of glycolysis in
trypanosomes as an approach to improve selectivity and effectiveness of
drugs. Molecular and Biochemical Parasitology, 2000. 106: p. 1-10.

Reuss, M. Multiscale Modeling in Cancer Therapy and Synergistic Interplay
of Target Identification and Drug Delivery. in Metabolic Engineering VIII
Conference. 2010. Jeju Island, Korea.

60



159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

Fischer, K., et al., Inhibitory effect of tumor cell-derived lactic acid on
human T cells. Blood, 2007. 109(9): p. 3812-3819.

Sahra, 1.B,, et al,, Targeting Cancer Cell Metabolism: The Combination of
Metformin and 2-Deoxyglucose Induces p53-Dependent Apoptosis in
Prostate Cancer Cells. Cancer Research, 2010. 70(6): p. 2465-2475.

Targeting tumour metabolism. Nature Reviews Drug Discovery. 9(7): p.
503-504.

Cao, X, et al, Glucose uptake inhibitor sensitizes cancer cells to
daunorubicin and overcomes drug resistance in hypoxia. Cancer
Chemotherapy and Pharmacology, 2007. 59(4): p. 495-505.

Harmon, AW. and Y.M. Patel, Naringenin inhibits glucose uptake in MCF-7
breast cancer cells: a mechanism for impaired cellular proliferation. Breast
Cancer Research and Treatment, 2004. 85(2): p. 103-110.

Snoep, ], et al., DNA supercoiling in Escherichia coli is under tight and
subtle homeostatic control, involving gene-expression and metabolic
regulation of both topoisomerase I and DNA gyrase. European journal of
biochemistry / FEBS, 2002. 269(6): p. 1662-1669.

Kahn, D. and H. Westerhoff, Control theory of regulatory cascades*,
Journal of Theoretical Biology, 1991. 153(2): p. 255-285.

Reed, ]. and B. Palsson, Genome-scale in silico models of E. coli have
multiple equivalent phenotypic states: assessment of correlated reaction
subsets that comprise network states. Genome research, 2004. 14(9): p.
1797-1805.

Schuster, S., T. Pfeiffer, and D. Fell, Is maximization of molar yield in
metabolic networks favoured by evolution? Journal of Theoretical Biology,
2008.252(3): p. 497-504.

Simeonidis, E., et al., Why does yeast ferment? A Flux Balance Analysis
study. Biochemical Society Transactions, 2010. 38(5).

Leon, M.P.d,, H. Cancela, and L. Acerenza, A Strategy to Calculate the
Patterns of Nutrient Consumption by Microorganisms Applying a Two-
Level Optimisation Principle to Reconstructed Metabolic Networks. Journal
of Biological Physics, 2008. 34(1-2): p. 73-90.

Diaz-Ruiz, R, et al., Tumor cell energy metabolism and its common
features with yeast metabolism. Biochimica et Biophysica Acta (BBA) -
Reviews on Cancer, 2009. 1796(2): p. 252-265.

Shlomi, T. et al, Network-based prediction of human tissue-specific
metabolism. Nat Biotech, 2008. 26(9): p. 1003-1010.

Cooper, V.S. and R.E. Lenski, The population genetics of ecological
specialization in evolving Escherichia coli populations. Nature, 2000.
407(6805): p. 736-739.

61



173.

174.

175.

176.

177.

Holzhiitter, H.-G., The principle of flux minimization and its application to
estimate stationary fluxes in metabolic networks. European journal of
biochemistry / FEBS, 2004. 271(14): p. 2905-2922.

Lee, S., et al., Recursive MILP model for finding all the alternate optima in
LP models for metabolic networks. Computers & Chemical Engineering,
2000. 24(2-7): p- 711-716.

Murabito, E., et al.,, Capturing the essence of a metabolic network: A flux
balance analysis approach. Journal of Theoretical Biology, 2009. 260(3):
p. 445-452.

Annibaldi, A. and C. Widmann, Glucose metabolism in cancer cells. Current
Opinion in Clinical Nutrition and Metabolic Care, 2010. 13(4): p. 466-
470.

Hsu, P.P. and D.M. Sabatini, Cancer Cell Metabolism: Warburg and Beyond.
Cell, 2008. 134(5): p. 703-707.

62



CHAPTER 2

CAPTURING THE ESSENCE OF A METABOLIC
NETWORK: A FLUX BALANCE ANALYSIS

APPROACH"

* The content and the organization of this chapter is given in the same format in which the
manuscript was submitted to the Journal of Theoretical Biology.
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ABSTRACT

As genome-scale metabolic reconstructions emerge, tools to manage their
size and complexity will be increasingly important. Flux Balance Analysis
(FBA) is a constraint-based approach widely used to study the metabolic
capabilities of cellular or subcellular systems. FBA problems are highly
underdetermined and many different phenotypes can satisfy any set of

constraints through which the metabolic system is represented.

Two of the main concerns in FBA are exploring the space of solutions for a
given metabolic network and finding a specific phenotype which is
representative for a given task such as maximal growth rate. Here we
introduce a recursive algorithm suitable for overcoming both of these
concerns. The method proposed is able to find the alternate optimal
patterns of active reactions of a FBA problem and identify the minimal

subnetwork able to perform a specific task as optimally as the whole.

Our method represents an alternative to and an extension of other
approaches conceived for exploring the space of solutions of an FBA
problem. It may also be particularly helpful in defining a scaffold of
reactions upon which to build up a dynamic model, when the important

pathways of the system have not yet been well-defined.
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INTRODUCTION

FBA is a constraint-based approach suitable for studying the range of possible
phenotypes of a metabolic system [1-5]. Despite this declared intent, it is
common practice to rely on one single optimal solution (usually the first one
found) for further studies on the system under investigation [6-8], even though
it is well-known that FBA problems generally have many more than one
equivalent solutions that all satisfy the optimality criteria - a behaviour of the
system that is known in optimisation as degeneracy. Available software
packages and optimisation solvers do not typically find alternate optima, but
stop after the first solution is found. This solution is then treated as
representative of the pattern of flux in the real system, but no computational or
biological evidence actually supports this arbitrary choice. In order to make the
simulated phenotype more representative of reality, a common approach is to
reduce the feasible space of solutions by enriching the system with additional
information (ie. constraints) retrieved from experimental measurements [9-
11]. These may refer, for example, to the maximum activity of the enzymes
catalysing the different reactions in the network or even to the current value of
certain fluxes under the conditions considered. Moreover, in order to guarantee
the feasibility of the solutions, reaction thermodynamics is often included in
FBA by imposing additional non-linear constraints describing energy balance

with the chemical potential [12, 13].

In the original formulation of FBA, only topological and stoichiometric
information is considered, while the dynamic aspects of the system are
neglected. The topology and stoichiometry of a metabolic network can be

represented through the stoichiometric matrix S, whose generic element s; is

the stoichiometric coefficient of metabolite i in reaction j [14]. The mass balance
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equations at steady-state for all the metabolites can then be expressed through the
following expression

S-v=0 (1)

where v is the flux vector whose elements v, represent the rate of each reaction

J in the network. Additional constraints can also be added in order to bind the

fluxes within a certain range of values

(2)

where v]L. and v;j are lower and upper bounds respectively for fluxes v;. These

constraints are generally used to determine the reversibility of the reactions as
well as to establish a maximum value for their flux when the corresponding

V.. has been measured experimentally, or to specify the availability of specific

nutrients [3, 11, 15]. The polytope defined by the set of constraints (1) and (2) is
called the space of feasible solutions or, more simply, the feasible space.

The main concern in FBA is finding, within the feasible space of solutions, the
flux distributions that allow the system to optimally perform a specific task (e.g.
maximization of biomass production). The general formulation of a FBA

problem may then be expressed as follows

max f(v)
f:R" >R
subject to

(D), (2)

(G.F.)

where fis a mathematical function, called objective function, representing the
response of the system in terms of its ability to perform the task we are
interested in. The aim is then to identify feasible sets of steady-state fluxes
optimizing the stated cellular function represented by f, for a metabolic network

subject to a set of mass conservation constraints such as (1) [16].
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The objective function f is usually represented by a linear combination of flux

variables v i

f:zajvj (3)

This, together with the linearity of constraints (1) and (2), casts the general

formulation of FBA into a linear programming (LP) problem.

Alternate optimal solutions and alternate optimal patterns

FBA problems are in general strongly underdetermined. The underlying
assumption of the use of a linear objective function, in fact, implies that its level
sets are hyperplanes and that the level set corresponding to the optima may be
parallel to one of the edges or facets of the convex polytope defined by
constraints (1) and (2). Although this leads to an infinite number of optimal
solutions, we are often interested in a finite subset of them, where each solution
differs from the others in the set of its active reactions (or non null vectorial
components). More precisely, we are interested in finding all the different
patterns of active reactions that are compatible with the criterion of optimality
of an FBA problem. This set of optimal patterns is in part identified by the so
called alternate optimal solutions, represented by the extreme points that lie at
the intersection between the hyperplane of the objective function and the
polytope of the feasible space [17], but is not limited to them. The optimal
patterns, in fact, can also be partly derived through overpositions of different
alternate optima solutions. Given the similarity of these two concepts, from now

on we will refer to the set of optimal patterns as alternate optimal patterns.
The principle of minimal effort

It is not a trivial task to find all the alternate optimal patterns, nor to assess

which one is best at representing the real pattern of fluxes in the cell under the
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specific conditions considered. Attempts in addressing these two issues have
been proposed separately. The literature reports a number of algorithms for
finding the extreme points of the convex polytope defined by equations (1-2)
[18, 19]. Lee et al,, in particular, proposed a recursive method for finding the
alternate optimal solutions in linear programming (LP) models for metabolic
networks [17]. On the other hand, different ways have been proposed to find
solutions representative of the system under examination [20-22]. Holzhiitter
(2004), in particular, suggested an approach based on the principle of “minimal

effort” to infer the solution most likely to represent the true pattern of fluxes.

The algorithm presented in this paper is suitable for both these purposes,
although the principle of minimal effort has been formulated differently. Here
the set of active reactions is minimized rather than the total flux through the
network (as in Holzhiitter’s work), hence the problem is turned into finding the
minimal subnetwork with the same optimal capabilities as the whole network.
The biological rationale behind this approach can be explained as follows: given
a specific cellular function to accomplish and given a set of available external
substrates, the cell should minimize the number of enzymes necessary to
optimally perform this function. This formulation of the principle of minimal
effort turns to be particularly suitable when the cellular function to optimize is
the production of biomass. There is experimental evidence that decrease in the
number of active reaction steps and increase in growth rate can occur in
parallel. More specifically, turning off reactions that do not contribute to
growth, allows nutrients and proteins that were used in these processes to be
“reallocated” and used to produce biomass [23-25]. A more practical reason for
applying the principle of minimal effort as stated above is that the minimal
optimal solution provides a concise set of reactions that can be used as a
backbone for the development of kinetic models which capture the essence of

the whole system, being at the same time as small as possible. This would allow
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researchers to build large-scale kinetic models of organisms, by providing an

idea about which pathways can be reasonably neglected.

To illustrate the algorithm, two examples are presented. First, a “toy model” is
used as a workbench to assess the suitability of the algorithm. Then, a simplified
reconstruction of the central carbon metabolism of E. Coli is used to compare
the results between our algorithm and the one presented by Lee et al. [17]. The

detailed formulation of the algorithm is given in the Methods section.

RESULTS

A TOY NETWORK

The “toy model” used in this first example (Fig. 1) has been conceived to easily
assess the suitability of the algorithm for the aims it addresses. The network
consists of 16 reactions and 10 compounds. All fluxes are bound between -10
and 10 (arbitrary units), except for reaction 1 where the lower bound is set to 0

and the upper bound to 1.

Figure 1 - A toy model consisting of 16 reactions and 10 compounds. The number
next to each reaction is the identifier of that reaction. The double pointed arrows
represent reversible reactions. All the reactions in the model are reversible except

reaction 1.
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The criterion of optimality is the maximization of the flux through reaction 16,
which may be seen as the output of the system. By applying our algorithm, 109

alternate optimal patterns were found, with an optimum value of v, =1.

Optimal solution (a) Linear pathway (b) Loop(s) (c)

1

-9

Figure 2 - Some of the alternate optimal patterns found for the toy model of Fig. 1
when maximising the flux through reaction 16. Each of the solutions shown in column a is
the superposition of a linear pathway, connecting the input and the output of the system
(column b), and one or more loops of reactions (column c). The numbers on the active
reactions represent their corresponding flux. It must be noted that the flux through an
active reaction might be decomposed in two or more different fluxes (differing sometimes
even in their directions) in accordance to the decomposition of the optimal solution into

the corresponding linear pathway and loops.

Some of these patterns are shown graphically in Fig. 2. It is easy to see how they

can be decomposed into a linear pathway, connecting the input (v,) and the
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output (v, ) of the system, and one or more loops of reactions. These loops are

referred as infeasible cycles because they can carry a non-null flux without any
communication between the system and the external environment in terms of

exchange of matter [26].

The presence of infeasible cycles is one of the major causes of degeneracy in an
FBA problem. In order to prevent the optimal solutions containing any
infeasible cycles, reaction thermodynamics is sometimes included in FBA by
imposing additional non-linear constraints describing energy balance with the
chemical potential [12, 13]. The infeasibility of these reaction loops makes them
not only biophysically unachievable but also unnecessary for the optimality of
the system. Consequently, in minimal optimal solutions (i.e. solutions satisfying
the previous criterion of optimality and having the minimum possible number
of active reactions) no infeasible cycles can be present. In order to find these
solutions, and hence their corresponding pattern of active reactions, we fixed
the flux of reaction 16 at the optimal value identified previously and we run the
algorithm with a new criterion of optimality: minimizing the number of non-
zero fluxes. The algorithm found 8 minimal alternate optimal patterns
consisting of 6 active reactions each (Fig. 3). Thanks to the simple topology and
the symmetry of this network it is easy to see that a minimal solution cannot
have less than 6 active reactions and that there are no minimal patterns other
than the eight identified, providing evidence of the suitability of the algorithm
for finding all the alternate optimal patterns of a linear optimization problem

and its minimal solutions.
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Figure 3 - Complete set of minimal optimal patterns for the model in Fig. 1. These
solutions don’t present any reactions loop and are not decomposable into simpler

pathways.

A MODEL OF THE CENTRAL CARBON METABOLISM IN E. COLI.

After testing the algorithm on the toy model, we applied it on a simplified
reconstruction of the central carbon metabolism of E. Coli (Fig. 4). This model is
taken from Lee et al [17] in a study aimed to identify the alternatives in the
carbon trafficking in mutants lacking pyruvate kinase. The model consists of 30
metabolites and 34 reactions or, in terms of the stoichiometry matrix, 30
equations (mass balances) and 34 variables. The complete set of constraints
used in Lee et al. (balance equations, lower and upper bounds) is reported in the
Appendix. Since some of the reactions are supposed to have a constant flux
(equations a.17-a.27 of Appendix) it is possible to remove them from the set of
variables and deal with a reduced system consisting of 18 equations and 23

variables.
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Figure 4 - Simplified metabolic map of E.coli central carbon metabolism as proposed
inLeeetal [17].

Our algorithm was run to find the alternate optimal patterns while minimizing
the flux through reaction 18 (pyruvate kinase). The algorithm found 28
alternate optimal patterns - versus the 9 alternate optimal solutions obtained by
Lee et al. Although Lee’s approach has a slightly different scope than ours
(rather than finding alternate optimal patterns it finds alternate optimal
solutions, which are a subset of the former), these results show an improvement
in respect to similar approaches previously proposed to explore the feasible

space. The complete set of optimal patterns is presented in Table 1.

We also applied our algorithm to find the minimal optimal solution(s) of the
system. To do so, we fixed the flux of reaction 18 to the optimal (minimal) value
found previously (this ensures the optimality of the minimal solutions we

wanted to find) and we minimized, as objective function, the number of active
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reactions. The algorithm found one minimal solution consisting of 27 active
reactions (including the reactions with fixed flux). The solution is represented in

Table 1 by the highlighted column.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 22 23 24 25 26 27 28
ri 1111 11 1 11 T 11111111 1111111111
ry 1111111111141 111 111111111111 11
ry 1111111111412 11111 111111111111
Is 1 1111111151242 11111 111111111111
ry 1111111111412 11 1111111111111 11
rg 1 1110O0O0OO0OO0O|2I2 011011 111110111111
r10 1111111111412 11111 111111111111
ri2 1 1111111151242 11111 111111111111
ra 1111111111412 11 1 11 111111111111
rig 1111111111141 111 111111111111 11
ris 0o 0 00 O0OOODOTUO|O|0O OO OO OOOTOOOOOOO OO OOUOTO
r19 $1 1111111152421 1111 111111111111
ra 1111111111412 111 111111111111 11
ra3 111111160 0(0fOO0111 11010110 0O0O0O0O0O0
Faa 111111111412 11111 111111111111
ras 1 1111111152421 1111 111111111111
ra7 11111111 10f2 01 1 001101011111 11
rag 11101010 11/0(2 01 1 0010000111 1000
Fa9 1 011110111402 01 000 11 0100O010 111
ra; 1 1111111152421 1111 111111111111
r3; 0111111111402 21011001101 110011
I3 11111111102 12 0011 111001 1001 10
I3a 1111111111412 11111 111111111111

Table 1 - The columns of the matrix represent the optimal patterns of active reactions
found in E.Coli central carbon metabolism. A reaction is labelled 1 or 0 when active or
inactive respectively. Reactions which were always active or inactive in all the solutions
found have been omitted (except for reaction 18, whose value was minimized according to
the criterion of optimality considered). The highlighted column is the solution with the

minimum set of active reactions.

DISCUSSION

Even though FBA is meant in principle to provide insights on the whole range of

possibilities for a metabolic network rather than identifying a specific
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phenotype, it is common practice to rely only on one specific solution for further
studies and analysis [6, 7]. Sometimes different solutions are found by changing
the constraints on the flux variables in order to simulate, for example, different
growth conditions [21, 27]. This leads de facto to a different FBA problem and
doesn’t answer the question about how many alternative ways the system has
to optimally achieve a specific task in a given condition specified by a fixed set of

constraints.

Finding a way to explore more extensively the range of possibilities of a
metabolic network and identifying a pattern of fluxes which can reasonably
represent the real trafficking of matter in the system are two of the main
directions toward which the original formulation of FBA has been developed in
this paper. The algorithm presented here has been conceived to address both
these important issues. It represents an extension in respect to algorithms
previously proposed to explore the feasible space of solutions and it can also be
used to identify the minimal subnetwork(s) able to capture the essence of the

whole system in terms of its ability to optimally perform a specific task.

By applying this algorithm on a toy model, we assessed its suitability to achieve
these two goals. The algorithm was used firstly to enumerate the alternate
optimal patterns of the system, regardless of the number of their active
reactions, and secondly to identify its minimal optimal solutions (and hence the
subnetworks highlighted by their patterns of active reactions). We note that this
second task was performed independently from the first one and that the
identification of the minimal optimal solutions can be done directly, without
passing through the previous enumeration of the whole set of alternate optimal
patterns. This would prove particularly useful in the case of a large and highly
interconnected network, where finding all the alternate optimal patterns could

be extremely time-consuming.
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The requirement for an optimal (or suboptimal) solution to have the minimal
set of active reactions has previously been adopted by Leén et al in a recent
study meant to calculate bacterial responses to different growth media [21]. For
a given set of bounds on the exchange fluxes (defining a specific growth
medium) only one solution was found. The approach we propose here has the
advantage of combining the minimal effort principle, as stated in the
Introduction, with an algorithm able to enumerate the alternate optimal
patterns that optimises a given cellular function under a specified set of
constraints. Merging these two features in the same algorithm provides a
straightforward way to extend the results of previous studies where the focus
on identifying the most “simple” solution in terms of number of active reactions
was uncoupled from the problem of enumerating the different patterns in which

such a solution can occur.

A second, larger network was then used to compare the results obtained
through our algorithm with those presented by Lee et al. [17]. We found 28
alternate optimal patterns versus the 9 alternate optimal solutions identified in
Lee’s original work, suggesting our algorithm represents an improvement upon
previous approaches proposed to explore the alternatives in the trafficking of
matter in metabolic networks. The reason for this higher number of solutions
(patterns) lies in the slightly different scope of the two approaches. Here we are
looking for different flux distributions in terms of active reactions, regardless of
the specific value of the non-zero fluxes. In Lee’s work the focus was on finding
solutions that were identified by both a specific pattern of active reactions and
unique values of their fluxes, thus limiting the solutions found to a subset of all

the possible alternate optimal patterns.

We also mention that the set of the minimal optimal patterns constitutes a
subset of the elementary flux modes of a metabolic network (see [28] for their

definition). Recently, Figueiredo et al. [29] proposed an algorithm to compute
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the shortest of these elementary flux modes, of which the minimal optimal
patterns are still a subset. Figueiredo’s algorithm can indirectly provide with an
efficient way to identify also the minimal optimal patters, as we defined them.
Once the shortest elementary modes have been found, one has just to check
whether they can carry a pattern of fluxes satisfying the given criterion of
optimality. We underline, however, that the benefit of our algorithm consists of
combining in the same formulation a means to explore the different ways in
which a given biological function can be performed in optimal conditions with a
way to identify the minimal metabolic resources that have to be put in place to

achieve that same degree of optimality.

Further improvements in our approach may be achieved by taking into account
the thermodynamics of the system. Currently, the only aspect related to
thermodynamic properties is introduced through the upper and lower bounds
of the flux variables. Setting one of these bounds to zero, in fact, provides the
corresponding reaction with a preferential directionality. Our approach could
benefit from considering the thermodynamics of the whole optimal solutions.
Following a method proposed by Holzhiitter [22], a possible way to do that is by
using the equilibrium constants of all the enzymatic steps to weight the fluxes
through their corresponding reactions and hence assign an energy cost to the
whole solution. This cost would then be used to rank the different solutions by
assessing to what extent they are thermodynamically favourable. Although our
algorithm is conceived to find alternate optimal patters, which are not
necessarily identified by unique sets of fluxes (unless they corresponds to
alternate optimal solutions), the implementation of this method does not require
any major change to our original algorithm and would provide it with a second
criterion to assess the suitability of the solutions in representing the real

metabolic phenotype.
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METHODS

The central idea of the algorithm proposed in this paper consists in introducing

for each flux v; a binary variable W? which flags the corresponding reaction as

active or inactive:

4 (4)

In order to make this flagging mechanism work, the general FBA formulation set
out in the Introduction (model G.F.) was enriched with a new set of constraints.

In particular:

e Every flux variable v; was split into three different variables: v?, v; and v;f.
_ 0 - +
V=V +V; 4V (5.a)
These new variables are meant to carry respectively the “almost null”,

negative and positive part of the flux. If flux v, is positive, for example, then

V_. :VQ:

;=v;=0 and v, =v;.r >0 (similarly when the flux is negative). If the flux is

“reasonably” close to zero to be considered null (i.e. its value is smaller than a

given threshold ¢ ), then we have v; = v;.r =0 and v, = v? =0.

e For each flux v; three binary variables, w?, w; and w]+., were further

introduced in the model. These variables are subject to the following

constraint

wi+w; +wi =1 (5.b)
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so that only one of them can be non zero (i.e. 1) at the same time. The
introduction of these binary variables recast the FBA problem into a mixed

integer linear programming (MILP) problem.

Binary variables W?, w

; and W;T were coupled respectively with the

previously introduced continuous variables V?, v,

; and v; through the

following constraints:

vf(l—w?)ﬁvjﬁv?(l—wi?) (5.0
-& w? < v;) <& W? (5.d)
V]L-Wj_- Sv,<ew; (5.e)
gwj<vi< w}“v;] (5.)

where ¢, as mentioned above, is a very small number used as the tolerance

for considering a flux as zero or non-zero (a flux is considered zero when

‘vj‘<g).

Constraint (5.c) implements the forward implication of equation (4), ie.

when W? equals 1 the corresponding flux v; is forced to zero. On the other

hand, the backward implication is assured by the constraints (5.d-f) and (5.b)

It's easy to prove this statement using a reductio ad absurdum argument. If
the flux v, was zero (ie. ‘vj‘<g) with W? =0, then either WJ+. =1 or w; =1
(equation 5.b). Let’s assume w}“ =1 (this won’t make our argument lose in
generality). In this case, w? =w; =0 (equation 5.b), and consequently
v? =v; =0 (equations 5.d and 5.e). This implies that v, = v]+. > ¢ (equation 5.a

and 5.f) contradicting the assumption that v, equals zero (Q.ED).
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The new formulation of the FBA problem can then be written as follows:

max f(v)
(N.F.1) f:R" >R
s.t.

(1), (5-a-f)

The tolerance value ¢ used as a threshold to discriminate between zero and

non-zero fluxes was set to 10™°. Model N.F.1 was formulated in GAMS (General

Algebraic Modelling System) and solved using the CPLEX solver.

Alternate optimal patterns

In order to find alternate optimal patterns, the model N.F.1 was run iteratively.
At each iteration a new constraint (an integer cut) was added to “cut away” from
the feasible space solutions already found in previous iterations. Specifically, at
iteration K the following set of integer cuts have been added to the system:

>wi-> wi<|z-1, k=12 ., K-1 (6)

jezk jezk

where Z* is the set of indexes corresponding to the null fluxes (ie. inactive

reactions) at iteration k,

Z k‘ denotes its cardinality and Z¥ is the complement

of Z¥ over the whole index set.

More specifically, the algorithm used to find alternate optimal patterns can be

described as follows:

Step 1
a) In the first iteration (K =1), model G.F. is solved. The objective function is

chosen according to the optimal criterion we want to use.

b) Set Z*(k=1) is defined.
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Step K ,for K>2.

a) Model N.F.1 is solved.

b) Set Z¥ is defined.

c) If the optimal value of the objective function is not smaller than the value
found in the previous iteration the algorithm repeats step K, otherwise it

stops.

Finding the minimal subnetworks
To find the minimal subnetwork(s) with the same optimal capability of the

whole system, an optimisation was performed using the following formulation:

max 3w’
J

(N.F.2) subject to
(1), (5.a-f)

The only difference between N.F.2 and N.F.1 consists in the objective function,

here defined as f:=ZW?, i.e. the objective is to maximise the number of
j

reactions with a zero flux. Maximising f forces the solution(s) to have the

minimal number of active fluxes.

To assure the optimality of the minimal solution(s) found through N.F.2, the
general FBA formulation (model G.F.) was first run, in order to find the optimal
value of the flux we wanted to optimise; subsequently the flux optimized
through G.F. was fixed to the optimal value identified and model N.F.2 was then
solved to find the minimal solution(s). As before, model N.F.2 was formulated in

GAMS and solved using the CPLEX solver.
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NOMENCLATURE

We present below the complete list of variables and parameters used in the

algorithm and their correspondent description

Indices

Sets

Continuous variables

Binary variables

i

Index of metabolites
Index of reactions

Index of iterations

Set of indexes j corresponding to the null
fluxes at iteration k.

Complement of Z* over the whole index set

of the reactions.

Variable representing the flux through
reaction j.
Variable carrying the almost zero part of

flux v;.

Variable carrying the negative part of flux
v;.

Variable carrying the positive part of flux

Vj.

Equals 1if v; is zero, equals 0 otherwise.

Equals 1 if v; is negative, equals 0

otherwise.
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Parameters

Equals 1 if v, is positive, equals 0

otherwise.

Stoichiometric matrix

Lower bound of flux v;

Upper bound of flux v,

Tolerance for considering a flux as zero or

non-zero (flux v; is considered zero when

‘Vj‘<8).
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APPENDIX

Set of balance equations defining the system represented in Fig. 4.

r—ry=r;—=ry=0 (a.1) Fyg =T33 =13, =0 (a.16)
Ro-Ta—Fu+h+6=0 (a2) 2.5, =0.205 (a.17)
Iy —Ts—Te=0 (a.3) 2.5r;; =0.0709 (a.18)
—1 Ty —Tig—T1; — T3 =0 (a.4) 2.5r,;,=0.129 (a.19)
r+rg—ry —hg—Ty+r=0 (a.5) 2.5r,c =1.493 (a.20)
—Iy —+Tyy + T30 —T33 =0 (a.6) 2.5r;,=0.7191 (a.21)
Iyy =y =Ty =Ty, =0 (a.7) 2.5r, =0.897 (a.22)
Iy, —Tys =0 (a.8) 2.5r, =0.361 (a.23)
Fys —Fy7 —The =0 (a.9) 2.5r,, =2.833 (a.24)
~lyg +Ty; —Tyg =0 (a.10) 2.5r,, =2.928 (a.25)
ry—r,—r;=0 (a.11) 2.5r,, =1.078 (a.26)
~r, 41, —1, =0 (a.12) 2.5r;,=1.786 (a.27)
1, —Ty+1: =0 (a.13) 2ry +rys + 13, =7.2 (a.28)
r,—rg—ry=0 (a.14) Tatp T 112 =314 —Tig — T3

=31y =25y, =233 =Ty (a.29)
2ryy +Tg =Ty =113 =0 (a.15) —Iy; +2r5=0
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CHAPTER 3

A PROBABILISTIC APPROACH TO IDENTIFY
PUTATIVE DRUG TARGETS IN BIOCHEMICAL

NETWORKST

T The content and the organization of this chapter is given in the same format in which the
manuscript was submitted to the Journal of the Royal Society Interface.
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ABSTRACT

Network-based drug design holds great promise in clinical research as a
way to overcome the limitations of traditional approaches in the
development of drugs with high efficacy and low toxicity. This novel
strategy aims to study how a biochemical network as a whole, rather than
its individual components, responds to specific perturbations in different
physiological conditions. Proteins exerting little control over normal cells
and larger control over altered cells may be considered as good
candidates for drug targets. The application of network-based drug design
would greatly benefit from using an explicit computational model
describing the dynamics of the system under investigation. However,
creating a fully characterized kinetic model is not an easy task, even for
relatively small networks, as it is still significantly hampered by the lack of

data about kinetic mechanisms and parameters values.

Here we propose a Monte Carlo approach to identify the differences
between flux control profiles of a metabolic network in different
physiological states, when information about the kinetics of the system is
partially or totally missing. Based on experimentally-accessible
information on metabolic phenotypes, we develop a novel method to
determine probabilistic differences in the flux control coefficients
between the two observable phenotypes. Knowledge of how differences in
flux control are distributed among the different enzymatic steps is
exploited to identify points of fragility in one of the phenotypes. Using a
prototypical cancerous phenotype as an example, we demonstrate how
our approach can assist researchers in developing compounds with high

efficacy and low toxicity.
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INTRODUCTION

The main challenge in drug discovery consists of developing drugs which are
both effective and selective, hence non-toxic. In this respect, drug development
approaches have often assumed that the enzyme chosen as target plays the role
of “rate limiting step” for the biological function of interest [1]. However, single
and completely rate-limiting steps barely exist [2] and it is not easy to identify
them if they do. Potent inhibitors of essential enzymes often do not show the
expected effect at the cellular level [3-5]. Often, the network of biochemical
interactions in living cells buffers changes introduced in a single enzymatic step.
Likewise, local changes may induce unforeseen adverse side-effects on the
whole system [4]. This interconnectedness of biological function usually results
in poor predictive power with respect to the requirement of high efficiency and

low toxicity for a drug.

With the advent of Systems Biology, drug discovery has been shifting its focus
from a single-molecule to a system-level perspective, and the concept of
network-based drug design has been introduced [3-6]. Within this new
paradigm, the aim is to study a biochemical network as a whole and identify
points of fragility specifically characterizing an altered phenotype (as in a
cancer cell) [7, 8]. By targeting these points of fragility, a significant response in
altered cells is induced. Differential network-based drug design then maximizes
the difference in response of target cell versus normal cell [9]. A possible
implementation of network-based drug design is based on Metabolic Control
Analysis (MCA), where the concept of fragility is expressed in terms of control
coefficients [10]. Differential MCA, in particular, has been proposed as a tool to
understand how the system responds to specific perturbations under different

physiological conditions or in different host cells, hence providing a way to
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assess both the efficiency and the specificity of a compound designed to target

specific enzymes [3, 9, 11].

However, one fundamental requirement for applying MCA is the availability of a
fully-characterized kinetic model of the system under study. Creating such a
model is not an easy task, even for relatively small metabolic networks [12, 13].
In most cases, the detailed enzymatic mechanisms governing the dynamics of
the different metabolic steps are unknown and precise knowledge of kinetic
parameters under the relevant in vivo conditions is usually not available. The
resulting uncertainty in predicting the dynamic behaviour is significant and
increases drastically with the size of the system [12]. Randomized sampling of
the parameter space represents a way in which such uncertainty can be
quantified and probabilistic insights about the dynamical behaviour of the
system can be obtained. Such probabilistic approaches have been recently used
in a number of different studies, spanning from applications on MCA [14, 15], on
metabolic engineering [16], to a description of the dynamics in metabolic
networks [17-19]. Here we build upon these ideas and present a Monte Carlo
approach to identify differences between the control profiles of a metabolic
network in two different settings, one representative of a tumour cell and the
other of a corresponding normal cell. Our aim is to show how putative targets
for drugs operating at the metabolic level may be identified in a probabilistic
manner, when only partial knowledge is available with respect to the kinetic
properties of the system. In particular, our analysis is based on experimentally
accessible information on metabolic phenotypes, such as observable
concentrations and fluxes, rather than on detailed knowledge of Kkinetic
parameters. It is demonstrated that a combination of such phenotypic data,
together with heuristic assumptions about the properties of typical enzyme-
catalyzed reactions, already allows for a fast and efficient way to explore the
effectiveness of putative drug targets. Our method makes use of biophysical

constraints on the metabolic network, as provided by mass-conservation and
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thermodynamics, and implements an efficient numerical scheme to allow
scanning of a large parameter-space, making it applicable to networks of large
size. As a proof-of-concept, we apply our methodology to identify the points of
fragility characterizing a paradigmatic cancer metabolic phenotype. We
demonstrate that our method allows us to identify those enzymes that exert a
high differential control upon a given relevant system property, and thus

represent suitable sites to specifically target the cancerous phenotype.

METHODS

METABOLIC CONTROL ANALYSIS

The dynamic behaviour of a metabolic system, consisting of m metabolites and r
reactions, can be described by a set of ordinary differential equations of the

form

ds
—=N-v 1
o (1)
where S is an m-dimensional vector denoting the set of metabolite

concentrations and N is the mxr stoichiometry matrix. The r-dimensional

vector V:V(S,K) describes the functional form of the reaction rates, which

depend on the metabolite concentrations S and the set of kinetic parameters K.
The presence of mass-conservation relationships and conserved chemical
moieties in the network results in linear dependencies among the rows of N. In
this case, one distinguishes between a set of independently variable metabolite
concentrations $™ and a set of dependent metabolite concentrations S$°. To
characterize the dynamics of the system it is sufficient to consider the set of
independent variables, making use of a reduced stoichiometry matrix N’
consisting of linearly independent rows only. The link between N' and N is

provided by the expression N=L-N', where L denotes the link matrix [20].
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To evaluate the system, each reaction has to be assigned particular rate
equation and each kinetic parameter needs to be assigned a specific quantitative
value. Given a set of initial conditions, Eq. (1) can then be solved

computationally, using standard methods of numerical integration. Usually, the

model gives rise to one or more steady states (VO,SO) that can be compared to

experimentally observed values. The response of the system to a perturbation of
a kinetic parameter, representing for example the action of a drug, can be
quantified in terms of control coefficients, as introduced by Metabolic Control

Analysis (MCA) [21-24]. In particular, given an effector p, which acts directly on

the enzymatic step i, the (scaled) concentration control coefficient C’ is defined

cs.—| 95 P | /[ dvip|_(dnS )
" \dp, S dp, v, ) \dlnv,

and quantifies the ratio between the relative change of the steady-state

as [20, 25]

concentration of metabolite S and the relative change in the catalytic action of

enzyme [ (induced by an infinitesimal change in the parameter p,). Analogously,

the flux control coefficient C’ is defined as

¢l | Y P /[P |_|dIn] 3)
’ dp, ] dp, v, dinv, )’
and quantifies the response of the system in terms of the relative change in a

steady-state flux J. Reder [20] showed that the matrix C° of the concentration

control coefficients can be expressed as

¢ =—(D,) L(J)"-N'"D, 4)

\'A
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where J' denotes the Jacobian of the system with respect to the independent

variables, while D, and D, denote square matrices with elements S° and v°

on the diagonal, respectively, and zero elsewhere.

For the matrix of flux control coefficients C’ the following expression holds:

Y b

C'=1+D}.
s,

N
o C. (5)
Because ]J' can be written in terms of the link matrix and the reduced

stoichiometry matrix as

ov
'=N"-—"L, 6
J P (6)
it follows from Egs. (4)-(5)-(6) that, once the network topology (as represented

by L and N') and the network “phenotype” (as represented by D , and D) are

known, the only quantities to be evaluated in order to retrieve the control

coefficients are the partial derivatives 0v/dS. These, in turn, depend of the

functional form of the rate equations governing the dynamics of each enzymatic
step, the kinetic parameters, and the metabolic state where the derivatives are
evaluated. When full kinetic information is available, the control coefficients can
be readily calculated using available software packages, such as Copasi [26], or
online simulation tools for biochemical models that reside in repositories, such

as JWS Online [27].

DIFFERENTIAL METABOLIC CONTROL ANALYSIS

To locate suitable drug targets, one aims to identify those enzymes where a
perturbation - usually a decrease in enzyme activity induced by an applied

inhibitor - elicits a large response in at least one vital aspect of the functioning

94



of the diseased cell, whereas a similar decrease in the activity of the same
enzyme is less detrimental for the functioning, or “phenotype”, of normal cells.
We note that the diseased metabolic phenotype often corresponds to changes in
either enzyme concentrations (because of mutations in regulatory elements or
signal transduction genes), or availability of external substrates (influx),
whereas most Michaelis-Menten constants remain unchanged. Given detailed
kinetic models of both phenotypes, the putative action of a drug is applied to
both models and the difference in the response is assessed using differential
MCA or direct simulations.

The vital aspect of the diseased cell that is targeted may be the production flux
of ATP or it could be the growth rate itself. Because it is often a flux, we shall

denote it by | Our aim is then to locate suitable sites for the action of a drug

target *
which result in the maximal differential response in this desired flux between
diseased phenotype and normal phenotype. Suitable drug targets are chosen

according to the following, alternative or simultaneous, criteria:

e Maximal selectivity. We assume that the effect we aim for is the decrease

of J in the diseased cells. In this case we are interested in enzymes

target

which exert a positive control upon J in the altered phenotype:

target

C]

i (disease)

>0. Independent of whether the effect induced in normal cells

consists of a decrease or increase of | we require this effect to be

target ’
lower, in magnitude, than in altered cells. In terms of flux control

coefficients of an enzyme i, this criterion can be expressed as follow

Si]target = C_]target _ ‘ C]target > 0 (7)

i (disease) i (normal)

The higher the value of Si]‘”g“, the stronger the differential response

between normal and altered cells. We note that Eq. (7) does not impose any
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restriction on the sign nor the value of ¢’***  provided that its magnitude

i (normal) ?

is smaller than the magnitude of €/ Indeed, enzymes with non-

i (disease) *

negligible negative value of C Jurge may be also considered suitable targets

i (normal)

as long as the difference in magnitude with C’** _ allows to reach an

i (disease)
acceptable specificity through an appropriate dosage of an applied

inhibitor.

Minimal toxicity. To avoid other system properties (not captured by the

flux of interest J_ . ) undergoing important changes in normal cells, we

require the normal phenotype to be wholly robust against perturbation in
the drug target activity. In this respect we define the toxicity coefficient,
which quantifies how far the normal phenotype deviates from its original

metabolic state after an inhibition of enzyme i:

j €{all exchange fluxes}, (8)

1 ,
Ti = N ;‘Ci]](normal)

where the summation is over all the N exchange fluxes of the system. This
definition of fragility reflects a black-box perspective, where the behaviour
of the system is assessed through its inputs and outputs. However, other

definitions of fragility are possible and are examined later in Discussion.

A MONTE CARLO STRATEGY

A straightforward implementation of the strategy described above is only rarely

applicable, as detailed kinetic models, describing the normal as well as the

diseased phenotype, are usually not available. To overcome this limitation, we

implement a Monte Carlo strategy which allows us to deal with incomplete

knowledge of kinetic parameters and explicitly takes into account available
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phenotypic data. In particular, we assume that for both states of the system the

measured metabolic phenotype, characterized by a set of concentrations and

fluxes, is known. In this respect, our approach is based on the fact that high-

throughput metabolomics and fluxomics studies are now standard techniques in

the analysis of cellular metabolism [28-34]. We proceed according to the

following rationales:

)

(i)

We require that the map of the metabolic network of interest is known
and is the same for both the diseased and the normal phenotype. In
addition, we assume that the topology of regulatory interactions is, as far

as possible, available.

For some of the enzymatic steps, information about the detailed functional
form of the rate laws may be available. However, in the absence of such
information, we employ heuristic assumptions about generic reaction
characteristics to describe the dependencies of flux rates with respect to

substrates, products and allosteric effectors.

(iii) To obtain a probabilistic understanding on how the control is distributed,

the kinetic parameters are sampled randomly from pre-assigned intervals.
Each sampled set of parameters is made compliant with the given
metabolic phenotypes and additional thermodynamic and biophysical

constraints, by rescaling the maximal activity of every reaction step.

(iv) For each sampled set of parameters the differential response in the normal

and the disease phenotype is evaluated.

Our workflow is illustrated in Fig. 1. In the following, each step is described

more thoroughly and the details of its implementation are given.
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Input

( Normal metabolic state j (Altered metabolic statej

\ 4

Monte Carlo
approach Parameter
sampling

———— M
& . E .t t I
Assumptions iteratively

4 N

Evaluation of the
control coefficients
in the two metabolic

e Heuristic assump-
tions about the
enzymatic mecha-

nisms
states
e The equilibrium (Egs. (4)-(5)
constants are in the text)
known

N J

Figure 1 - Workflow of our Monte Carlo approach. The Monte Carlo approach
described in the text receives as input the two metabolic states under comparison (each
defined in terms of fluxes and metabolite concentrations at stationary condition). The
computation of the control coefficients, following the sampling of the parameter values, is
done assuming that the rate equations and the equilibrium constants are known. Where
the detailed enzyme mechanism is unknown, a heuristic approximate rate equation can be
used.

DEFINING GENERIC REACTION CHARACTERISTICS

To evaluate the differential response, each rate equation has to be assigned a
specific mathematical form. To describe the kinetics of enzyme catalyzed
reactions for which the true kinetics is unknown, several possible heuristic
approximate rate equations have been proposed in the literature [35-37]. In
general, good results are obtained for functional forms that follow generalized
Michaelis-Menten equations. Given a reaction converting a set of substrates A

into a set of products B

a, A +a,A, +..— BB + BB, +..
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such rate equation can be written as follows

V=freg' maXHa, ( L J (9)

F(a, b) K

eq

where

f., 1s @ dimensionless prefactor describing the interactions of the enzyme

with allosteric regulators. Following the definition given in [37], we write

ﬁeg:[HK’ 1P J {HKA +QJ (19)

with P, and @, denoting respectively a generic (allosteric) inhibitor and
activator, and K f,k and Kg, denoting their corresponding binding constant.

This equation assumes that the activators and inhibitors are non

competitive.

e V _ isthe forward maximal rate of the enzyme and implicitly depends on

max

the enzyme concentration.

- A . . . . .
e a,:=—_- is the concentration of reactant A, divided by its Michaelis

A

i

constant K

B.
* b ::K_’J" is the concentration of reactant B; divided by its Michaelis
B;

constant K’
J
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e F(a,b) is a positive polynomial of the scaled reactant concentrations.

Following [37], we choose
F(&,B):Hi(1+€1i +ota )+Hj(1+5]. +..+b) )—1 (11)
e [ isthe mass-action ratio, defined as

1-' — HIBlm
IT, A

)

* K, denotes the equilibrium constant of the reaction.

The functional form described above captures the generic characteristics of
enzyme catalyzed reactions, such as reversibility, product inhibition, saturation
and a reaction direction that only depends upon the mass-action ratio relative
to the equilibrium constant. In the case study presented in this paper, we used

equations in the form proposed in [37] for every reaction.

DEFINING THE KINETIC PARAMETERS

Once the functional form of each rate equation is specified, the equations have
to be populated with their respective kinetic constants. Again, we may assume
that a (usually small) number of kinetic parameters is available, either by direct
experimentation or from data repositories [38, 39]. To account for the
remaining unknown or uncertain values, we implement Monte Carlo approach
to systematically evaluate the behaviour of the network in a probabilistic
manner. The idea is to sample the parameters so that their values comply with
known phenotypic data and satisfy basic biophysical and thermodynamic

constraints.
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Our starting point consists of a metabolic state as characterized by a flux
distribution v° and a set of metabolite concentrations S°. The flux distribution
v" satisfies the stationarity constraint dS°/dt=N-v’=0, and the direction of

each flux must be consistent with the set of concentrations, relative to its
equilibrium constant. Reaction parameters are then assigned or sampled

according to the following criteria:

e Equilibrium constants. The equilibrium constants are physicochemical
quantities which reflect the change in standard Gibbs free energy
occurring in a reaction. They do not depend on the specific organism or
cell type, but may depend on intracellular parameters, such as
temperature. While as yet a Ilarge-scale detailed experimental
quantification of the change in free energy is not available, a number of
algorithms exist that allow for a reasonable computational approximation
[40-44]. In the case study presented here, the values assigned to the

equilibrium constants are obtained from [45].

e Michaelis-Menten constants. The Michaelis-Menten constants are

genuine enzyme Kinetic parameters and are sampled randomly in

intervals [K}",K,;*]. Different options are available to specify the

interval borders. Here, the intervals boundaries are chosen according to
the observed metabolite concentrations. We sample the values of the
parameters from intervals covering at least two orders of magnitudes
around the steady-state concentrations of the corresponding metabolite.

In particular, if [S], and [S], denote the concentration of a metabolite S in
the two metabolic states, the affinity, inhibition and activation constants of

any enzyme in respect to S are sampled between min{[S],,[S],}*x10™“ and

max{[S],,[S],}x10”, with & and p representing adjustable factors. To

ensure that the sampled values are evenly spread among the different
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order of magnitudes around [S], and [S],, the sampling is performed

using a logarithmic distribution. In the sampling process no distinction is
made between parameters relating to regulatory interaction and substrate
and product affinities. The results shown in the next section refer to
sampling conditions where « = =1. The robustness of our results was

subsequently tested for different choices of ¢ and f, and different

sampling distributions.

e Maximum rates. Given the metabolic state and the parameters defined
above, it follows from Eq. (9) that the maximum reaction velocity V__ is
unambiguously determined. In other terms, to make the sampled values of

Michaelis-Menten constants compliant with the metabolic state (VO,SO)

and the thermodynamics of the system (determined by the equilibrium

constants K, ), the maximum reaction velocity is computed by reversing

Eq. (9) withrespectto V__ .

EVALUATING THE CONTROL COEFFICIENTS.

The sampling is performed iteratively. For each sampled set of parameters, the

partial derivatives ov/0S are evaluated based on the generalized Michaelis-

Menten rate equation described above. Both metabolic states were tested for
stability by evaluating their corresponding Jacobian. Parameter sets resulting in
Jacobians with positive real part among their spectrum of eigenvalues were
discarded, otherwise the control coefficients were evaluated using Eqs (4)-(5).
We note that the computation only employs basic matrix inversion and
multiplication - a procedure which is orders of magnitude faster than numerical

integration, making our approach applicable to systems of large size. The

process is repeated iteratively until 2,5x10* samples is obtained.
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ASSESSING THE SUITABILITY OF DRUG TARGET CANDIDATES

The differences in the control profiles between diseased and normal phenotype
are evaluated according to the criteria of maximal selectivity and minimal
toxicity specified above. Because of the probabilistic nature of our approach,
these criteria have to be reformulated such that they describe the average, over
all the saxmpling iterations, of the two quantities defined in Eqs (7)-(8). As an
additional criterion, we evaluate the reliability of the estimated average
selectivity. As a quantitative measure of the quality of our prediction, we define
the reliability coefficient as the ratio of the average selectivity to the standard

deviation of the sampled selectivities:

J target
Si

J target —
Ri - S ] target )
i

(12)

DEFINING THE DISEASED PHENOTYPE

To show the applicability of our method on a system of reasonable complexity,
we consider a case study to identify suitable sites for drug intervention
specifically targeting a cancerous phenotype. As to the best of our knowledge no
detailed characterization of a cancer metabolic phenotype (in terms of fluxes
and metabolite concentrations) exists, we employ a modelling approach to

obtain a set of fluxes and concentrations representative of a generic cancer

phenotype.

Our starting point consists of a fully defined metabolic map of human

erythrocyte metabolism [45], modified for our purpose (Fig. 2). Two different

103



sets of maximal activities (V_ ) are used to reproduce the flux patterns

characteristic of a normal cell and a paradigmatic cancer cell.
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Figure 2 - Metabolic map of central carbon metabolism. The metabolic map was
derived, in its main features, from Holzhlitter’s model of erythrocyte metabolism and
subsequently enriched with a reaction representing the TCA cycle and a reaction

representing the oxidative phosphorylation process.

In particular, the cancerous metabolic phenotype is obtained by increasing the

V. of those enzymes which are often overexpressed in cancer, namely the

glucose transporter [46, 47], hexokinase (HXK) [48-51] and phosphofructo-
kinase (PFK) [48, 51, 52]. The activity of a fourth enzyme, the glutathione
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oxidase (GSHox), is also increased in order to achieve a higher flux through the

pentose phosphate pathway, as observed by Richardson et al. [53].

We emphasize that the model itself is not used in further analysis and its
purpose is solely to obtain a kinetically and thermodynamically consistent set of
concentrations and fluxes that represents the common features shared amongst
a wide panel of different cancerous cell lines, in particular a higher uptake of
glucose and an enhanced production of lactate [54-56]. Details of model

construction and analysis are given in the Supplementary Material.

RESULTS

IDENTIFYING THE CONTROL PROFILE OF THE SYSTEM BASED ON THE
TOPOLOGY AND THE METABOLIC STATE.

The conjecture underlying our probabilistic approach is that some of the control
properties of a metabolic system are independent from the precise magnitude of
the enzyme parameters. The rationale behind this conjecture is that the signs
and magnitudes of the control coefficients are determined to an appreciable
extent by the topology of the system as well as the metabolic state under
consideration [20, 57]. To investigate our conjecture, we distinguish between
two extreme scenarios: if the control coefficients are entirely determined by the
metabolic map and phenotype, then their value should be independent from the
specific choice of the kinetic parameters; on the other hand, if stoichiometry and
phenotype had no bearing on control properties at all, then the control
coefficients calculated for randomized values of the kinetic parameters should

have infinitely wide and flat distributions.

Fig. 3 shows the distributions obtained for the control exerted by selected

enzymes upon the glucose import flux in the normal phenotype. In some of the
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cases, the control coefficients are distributed fairly narrowly with respect to the
entire likely range of value. For example, the control coefficient of the glucose

transporter (GLT, Fig. 3a) is distributed almost entirely between 0.01 and 0.05.
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Figure 3 - Calculated distributions of the control exerted by some enzymes over the
glucose uptake flux in the normal phenotype. (a) Glucose transporter (GLT) (b)
Phosphofructokinase (PFK), (c) Transketolase 1 (TK1), (d) Phosphoglyceratekinase
(PGK), (e) Lactate dehydrogenase (LDH), (f) ATPase.

This reinforces an earlier conclusion from a precise calculation that this control
coefficient is small and that inhibitors of the glucose transporter are unlikely to
be toxic to human erythrocytes [58]. More importantly, it confirms the strength

of our conjecture for this case; ie. within the limits of experimental accuracy
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[59], the value of this flux control coefficient can be estimated on the basis of the
metabolic map, the metabolic phenotype and very limited kinetic information.
The other panels of Fig. 3 show that this phenomenon is not unique. It is also
valid for the control exerted on this same flux by other enzymes in the system,
also for ones with higher flux control. Fig. 3 also shows that the accuracy by
which metabolic map and metabolic phenotype determine the flux control
coefficient is not always the same. For the phosphofructokinase, for example,
the estimated flux control coefficients on glucose import exhibit a broad
distribution covering almost the entire interval between zero and one (Fig 3b).
The other panels in Fig. 3 are chosen as representative cases where the
distribution of the control coefficients over the uptake of glucose is either
mainly confined in the negative semiaxes (as opposed to glucose transporter
and phosphofructokinase) or is spread evenly around zero, allowing no best

guess on the sign of the actual control coefficient.

Fig. 4 summarizes the distributions of the estimated control coefficients for the
entire network. Each position in the matrix corresponds to the control exerted
by an enzyme (columns) upon a flux within the network (rows) and shows the
(colour-coded) percentage of calculated control coefficients that is positive. If
the box is white then the flux control coefficients is positive independent, to a
good extent, of the values of the kinetic constants. For example, the figure shows
that the control exerted by the first 6 enzymes on all the first 13 reactions is
positive, as indeed might be expected from the network topology shown in Fig.

2.
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Figure 4 - grey-scale representation of the matrix of the flux control coefficient in
the normal metabolic state. The matrix of the flux control coefficients in the normal
metabolic phenotype is represented as a grey-scale matrix. The entry (j, i) is associated to
the statistical control exerted by enzyme i (column index) upon flux j (row index). More in
particular, the shade of the entry represents the percentage of calculated control
coefficients that is positive. The ends of the colours scale represent the extreme situations
in which the distribution lies entirely over positive (white) or negative (black) values. The
numbers at the left and the bottom of the matrix refers to the different reaction steps in

the system as depicted in Fig.2.

Likewise, the enzymes 14-18 (corresponding to G6PDH, 6PGD, GSSG, GSHox and
EP) mostly exert a negative control on the flux through reaction 3 (PGI), again
consistently with our expectations from the network topology. However, other

results are less straightforward to interpret, showing the utility of our
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calculations for complex reaction network. Overall, Fig. 4 confirms our
conjecture that often at least the sign of the control coefficient is, to a good
extend, independent from the precise values of kinetic parameters -- enabling us
to obtain a best guess for putative drug targets in the face of incomplete

information.

IDENTIFYING CANDIDATE TARGETS FOR DRUG INTERVENTION

From the perspective of limiting the survival or proliferation of cells that
function as parasites in the human body, a possible strategy consists of
inhibiting glycolysis, provided the pathway is phenotypically different in the
parasitic versus the host cells [3, 5, 60, 61]. From a MCA perspective, this
translates into inhibiting the activity of an enzyme which exerts a major control
over (for example) the uptake of glucose in the diseased/parasitic phenotype
and a minor control over the same flux in the normal phenotype. The rationale
of such an approach is to starve the diseased/parasitic cells without
significantly affecting the host. From here on we will refer to this specific

strategy to present and comment on our results.

When identifying potential drug molecular targets, several criteria may be
important and taken simultaneously into account. One criterion considered here is
the effect that a certain fractional inactivation of the molecular target has on the

target flux /... We shall call this the criterion of maximal selectivity. In particular
we used a combination of effectiveness and selectivity by introducing the selectivity
coefficient .S'I.]“"get defined in Eq (7). As evident from the previous section, we can

calculate the selectivity coefficient for each specific diseased cell compared to each
specific normal cell with the same kinetic parameters but Vmax's adjusted to reflect
the differences in their phenotype. This enables us to calculate a distribution of the
selectivities between all diseased and normal cells that we consider statistically

feasible in the sense of the parameter sampling we do. Fig. 5 shows the
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distributions we found for these selectivity coefficients for the same enzymes of Fig.

3.

2500 : : : 2000 ‘ B ‘
. (a) A1 (b)
2 2000 GLT 1 ] 1500 | o - PFK
"2, 1500}
§ 1000}
% 1000!
kS
~ 500} 500/
0 0
0.08 -0.06 -0.04 -0.02 0 06 04 02 0 02 04
5000 : : 2500 — ‘
m (c) Ih (d)
% 4000t TK1 1 2000 + M PGK
g 3000 ] 1500 |
[
o 2000} ] 1000 |
(@]
Z 1000} ] 500 |
0 0
015 -0.1 -0.05 0 0.05 0.5 0 0.5 1
3000 : : : : 5000
. (e) _ ()
" LDH 1L 4000r  ATPase |
3 2000}
o 3000
g
< 1000} 2000,
(@]
= 1000 |
0 0
01 005 0 005 01 015 2 1 0 1
S_]targe[ S'Jlargel

Figure 5 - Calculated distributions of the selectivity coefficient. The distribution of
the selectivity coefficients with respect to the uptake of glucose are shown for the same

enzymes as in Fig.3.

One may expect at least some flux control coefficients to differ between diseased
and healthy cells. However, because the diseased phenotype was taken to be
due to overexpression of four enzymes (see Methods), those differences would
be such that the flux control by those enzymes in the diseased cells would be

smaller than in the normal cells. As shown by Fig. 5a-b for the glucose
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transporter and phosphofructokinase, this is indeed what we observed for these
four enzymes, which, consequently, cannot be considered good candidate drug
targets (cf. [62]). The issue therefore became whether the overexpression of

these four enzymes would increase the control coefficients of other enzymes.

Fig. 5.d-e shows that for PGK and LDH this was indeed the case; for these
enzymes there was the desired selectivity between diseased and normal cells in

terms of their control on the target flux. We will further use a high magnitude of

the average selectivity Si}‘”ge‘ (averaged over all the sampling iterations) as our

first criterion in deciding about the best molecular drug targets. Importantly, for
PGK and LDH this average selectivity was stronger than the uncertainty of its
magnitude. This brings us to the criterion of reliability of the calculated average
selectivity. For the statements about selectivity to be meaningful we should like
them to be relatively insensitive to the uncertainty in the values of the kinetic
parameters. As a quantitative measure of this criterion we used the reliability

coefficient defined as in Eq. (12).

A further criterion we wish to consider is the toxicity of the drug. As a measure
of toxicity, here we used the average relative effect of the inhibition of the target
enzyme on all cellular functional fluxes. In quantitative terms, this was done

through Eq. (8), where the toxicity coefficient T, is defined as the average

magnitude of the flux control coefficients with respect to the target enzyme,

where the average is computed over all the exchange fluxes. In this paper we
consider the average f of this toxicity coefficient, computed over all the

sampling iterations.

We now have three criteria by which to compare potential molecular drug

targets. In any actual situation we will need to look at all three criteria
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simultaneously. To make the weighing of the three criteria as transparent as

possible, we introduce the following scaled quantities:

_ Si]target
" sl -
~ Ri]target
" max (R Y
%E maf{f'} i , (15)

[ max{Ti} —min {7_"1}

where o,, p, and 1/7, are the normalized selectivity, the normalized reliability

and the normalized safety, respectively. We note that the latter increases with

decreasing toxicity. By restricting our search for putative targets to only those

enzymes with positive average selectivity SI.]”‘“)'Qt , L.e. enzymes which tend to

produce the wanted inhibiting effect on J in the diseased phenotype, the

target

three normalized criteria are bound between 0 and 1.

Fig. 6 depicts the values of the normalized selectivity, reliability and safety for

all the enzymes with positive average selectivity Si]‘“ge‘ . Because it is hard to

interpret the 3-D figure, Fig.7 gives the projections onto the three planes: safety
vs. reliability, selectivity vs. reliability and selectivity vs. safety. A most
interesting result was that one enzyme target was both most selective and most
reliable, and was also hardly toxic. This target was phosphoglyceratekinase
(PGK). The fact that all three criteria come out with a single enzyme target
suggests that that target could indeed be exceptionally valuable. It also suggests
that the methodology we have introduced may be useful; a lesser result would

have been if the target that was most selective would have been least reliable
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and most toxic, or if the least toxic target would also have been least selective.
However, in general, we expect that no single target is best according to all three
criteria introduced above. The more important result therefore is that our
methodology leads to a clear separation of the potential targets at least in the
dimensions of selectivity and reliability. In this respect the criterion of toxicity

appeared to be less discriminatory for the enzymes shown.

We may wish to classify drug targets with a single score, which takes into
account all three criteria (selectivity, reliability and lack of toxicity), perhaps

with different weights. To do so, we define the following quantity

WT
w, o, +w -+ -

Z= i (16)
W, +w +w,

as the score to be assigned to enzyme i. Eq. (16) represent a plane in the three-

dimensional space defined by o,, p, and 1/, .

Figure 6 - The normalized selectivity (o, ), safety (1/7,) and reliability ( p,), defined by
Egs. (13), (14) and (15) respectively, are plotted versus each other. Enzymes with negative

values of S 1] wet (see text) are not represented in the graph. The grey plane represents the
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set of points in the three-dimensional space sharing the same score, as defined by Eq. (16).

Different scores are represented by different planes, parallel to each other.
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Figure 7 - Orthogonal projections of the three-dimensional scatter-plot shown in Fig.6.

For a minimally required score Z* one may draw the corresponding plane in
Fig. 6 and require all enzyme targets one wishes to consider for further
development to lie above that plane. In Fig. 6, we have drawn the plane

corresponding to Z*=1/3 and weight factors w_=4, w_=2 and w,=1. This

specific choice for the weight factors value was made to prioritize the maximal

selectivity over the minimal toxicity, and the latter over the requirement of
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minimal uncertainty. Table 1 shows the list of enzyme with positive average

selectivity, sorted by decreasing value of Z.

Enzyme Score
PGK 0.99
ENO 0.56
LDH 0.48
PGM 0.45
LCT 0.40
TPI 0.38
GAPDH 0.36
ALD 0.35
6PGDH 0.32

Table 1 - Suitability of the different enzymes as drug targets. The suitability of each
enzyme as drug target is evaluated according to the three criteria of selection described

in the text. The score is computed through Eq. (16) with w, =4, w, =2 and w,=1.

ROBUSTNESS OF THE RESULTS

As a probabilistic method, our approach crucially relies on the robustness of
the results with respect to different ways of sampling the parameter values. To
this end, we repeated the data generation process and the subsequent analysis
using different sampling conditions. In particular we changed the range of
values from which the parameters were sampled and the sampling distribution.
For each different set of sampling conditions, we ranked the suitability of the

different enzyme as drug targets as explained above.

Table 2 summarizes the results obtained for the different sampling conditions,
showing PGK as the highest scoring target for all of them. As expected, enzymes
with lower scores than PGK did not always keep their position in the ranking
list. The lower the score the higher the chance for the enzyme to enter the list in

a different position, when the sampling condition was altered. In most of the
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cases, however, the top 6 entries of the list remained the same. In particular PGK
always emerged as the best guess as putative target, while Enolase (ENO) and
Phosphoglycerate mutase (PGM) were always found within the top 4 entries of
the list, and Lactate dehydrogenase (LDH) was almost always found between

the 3rd and the 6t position (see Supplementary Materials for more details).

o B  Sampling function Best guess
1 1 Logarithmic PGK
1 2 Logarithmic PGK
2 1 Logarithmic PGK
2 2 Logarithmic PGK
1 1 Linear PGK
1* 1% Logarithmic PGK

Table 2 - Best drug target guesses for different sampling conditions. The first two
columns refer to the parameters a and [ used to define the intervals from which the

parameter values were sampled. The first 4 rows refer to sampling conditions where the
intervals were defined separately for each parameter, as discussed in Methods. The last
row (*) refers to a sampling performed on the same interval for all the parameters. The

borders of this interval were defined as min{[S],,[S],}x10™* and max{[S],,[S],}x10”,
where {[S],,[S],} denotes the set of concentrations of all the metabolites in the two

metabolic states.

The use of a linear sampling distribution caused the most different results in
respect to the scoring list obtained with a logarithmic distribution, even for the
high-scoring enzymes (except for PGK, which was always at the top of the list).
This fact can be ascribed to the highly asymmetric sampling of the parameter
values in respect to the metabolite concentrations. When using a linear
distribution, there is a much higher probability that the sampled value of the
Michaelis-Menten constants exceed the concentration of the corresponding

metabolites. In our case, where a =/ =1 (see Methods for their definition), for
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each reaction step statistically at least 90% of the sampled values were larger
than the concentration of their corresponding metabolites. This implies a
scenario where the saturation level of all the enzymes in respect to all their
reactants and modifiers was almost always greater that 50%. On the other
hand, when using a logarithmic distribution, the value of the Michaelis-Menten
constants tended to be evenly sampled around the metabolite concentrations,
or, more precisely, among the orders of magnitude spanned by the sampling

intervals.

COMPARISON WITH THE DYNAMIC MODEL

To assess the significance of our result, we compared the insights gained
through our statistical approach with the results obtainable directly through a
dynamic simulation. The dynamic model used to retrieve the cancer metabolic

state (see Methods and Supplementary Material) was used as workbench for this

assessment.
Metabolic branch/process Normal state Cancer state
Glucose uptake -7% -44%
Lactate production -61% -82%
TCA cycle -1% -8%

Phoshoribosylpyrophosphate

9 0
synthetase (PRPPS) +9% +13.0%
ATPase 2% 12%
Oxidative phosphorilation -1% -8%

Table 3 - Relative changes in the principal fluxes of the system after decreasing the
activity of PGK. The fluxes considered are the same as in Figure 8. The relative changes
reported are the result of decreasing the activity of PGK from 12.9 to 6.5 mM/s.
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The two sets of parameters characterising the two metabolic states (normal and

cancer) were both modified by decreasing the activity (V_ ) of PGK from 12.9

to 6.5 mM/h, simulating the addition of a noncompetitve inhibitor. Fig. 8 shows
how some of the fluxes of the metabolic system changed in the two phenotypes
in response to this perturbation. Table 3 shows the relative changes recorded

once the system reached the new steady state after the perturbation.
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Figure 8 - Effects induced on the principal fluxes of the system by decreasing the
activity of PGK. The plots show the effect of decreasing the activity of PGK from 12.9 to
6.5 mM/h in the two phenotypes (normal and disease). Six main fluxes are considered: (a)
glucose uptake, (b) PRPPS, (c) lactate production, (d) flux entering the TCA cycle, (e)
ATPase and (f) flux through the oxidative phosphorylation process.
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DISCUSSION

Despite a surge in the perspectives of using mechanistic mathematical
modelling in clinical development [63-66], parametric uncertainty remains a
challenge to mechanistic approaches in medicine [13]. However, contrary to the
scarcity of kinetic data, the comprehensive quantification of all concentrations
and fluxes within a metabolic system is, at least in principle, experimentally
feasible. The question we addressed in this paper is whether the knowledge of a
metabolic phenotype only - expressed in terms of fluxes and metabolite
concentrations at steady-state — allows for a probabilistic understanding of how
the control properties of a biochemical system are distributed among the
different enzymatic steps and metabolic processes. We developed a Monte Carlo
approach which aims to provide researchers with a probabilistic description of
how the control properties of a metabolic network differ between two fully
characterized metabolic phenotypes, when only minimal knowledge of the
system is available with respect to its kinetic parameters. Our goal was to locate
points of fragility in a diseased/pathogen phenotype which can be considered
for drug interventions with maximal effectiveness and minimal toxicity. In
particular, enzymes which exert a major control over a certain property of
interest in a diseased/pathogen phenotype, and a minor control over the same
property in the normal/host phenotype, represent good putative targets. In our
method, the control profiles characterizing the two phenotypes under
comparison are determined for sampled values of the unknown affinity,
inhibition and activation constants. Our Monte Carlo approach provides us with
a statistical understanding of how the control is differentially distributed
between the two metabolic states, where the word ‘statistical’ should be
interpreted in the sense of uncertainty rather than in the sense of population

dispersion.
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The system under study was a simplified reconstruction of the central carbon
metabolism, with two metabolic states that were representative of a normal and
a paradigmatic cancerous phenotypes. The results presented in this work refer
to a clinical strategy aimed to starve specifically cancer cells, ie. to locate
enzymes which exhibit a high differential control upon the uptake of glucose,

denoted as | between the two phenotypes.

target ’

In the development of new drugs, pharmaceutical companies tend to give
priority to the maximal effect that a compound can induce in the disease cells.
Among the palette of compounds which pass this filter, a second screening is
performed to look for compounds which leave the normal phenotype unaltered
as much as possible. Our approach is different. To assess the suitability of the
enzymes as possible targets for an anti-cancer drug, three different criteria
were considered in this paper: maximal selectivity, maximal safety (or minimal
toxicity) and maximal reliability. The first criterion was formulated in such a
way as to encompass both the requirements of high effectiveness and high
selectivity with respect to the specific property one wants to affect in the
diseased cells. High values of the selectivity coefficient correspond to a high

(positive) control over | in the diseased cell, and a relatively small control

target
over the same flux in the normal cells. In particular, we introduced the
selectivity coefficient, as defined in Eq.(7), to quantify the differential response
of the system to inhibition of enzyme i. Alternative definitions than Eq.(7) may
also be considered. For example, Bakker et al. defined it as the ratio between the

control over | in the parasitic/diseased cell over the same control in the

target

host/normal cell [3]. Such a definition, however, may result in over-ranking

enzymes with small control in the diseased phenotype as putative targets. An

enzyme A with Cﬁ‘azﬁgrmal) =0.01 and Cﬁ‘*‘;ﬁi‘seased):o.l, for instance, would be
considered preferable to an enzyme B with Cé‘agﬁe;rmal) =0.3 and Cé‘“{gﬁ;eased] =09, as
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the ratio Clo= C e would be around three times the ratio

(diseased) A (normal)

Cé‘ﬁj‘seased) / Céta[rrg]e(;rmal)' However, using an appropriate dosage of a drug that

inhibits enzyme B, one could reduce the effect of the enzyme inhibition in the
normal cell to a negligible extent while maintaining in the diseased cell a much

higher effect than would be feasible by inhibition of enzyme A.

The criterion of maximal safety (or minimal toxicity) was introduced to assure
that the normal phenotype was robust to a perturbation of the drug target. The
predicted toxic effect of inhibiting an enzyme i was quantified through the
toxicity coefficient defined in Eq. (8). We defined this coefficient as the average
magnitude of the flux control coefficient of enzyme i with respect to all the
exchange fluxes. Our definition reflects a black-box perspective, where the
behaviour of the system is assessed solely through its input and output fluxes.
However, the definition of toxicity is far from unique and its suitability may
depend on the specific situation. For example, an alternative choice would be to
define the toxicity as the maximal control coefficient over all the fluxes within
the network. Also, there may be reactions or pathways for which a change in the
flux does not induce any major effect on the vital functions of the cell, while
even small alterations in other fluxes might entail significant stress in the
normal cellular physiology. In this case, the criterion of minimal toxicity can be
augmented by assigning different weights to the respective control coefficients.
Another possibility in defining the toxicity coefficient would be to take into
account the concentration of key metabolites that are known to have toxic
effects in the normal phenotype. In this case, the toxicity is assessed in terms of
the concentration control coefficients of the enzyme targets with respect to

these metabolites.

Finally, the third criterion of maximal reliability was introduced in order to

prefer enzymes whereby the computed average selectivity was affected by the
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least possible uncertainty.

To evaluate the suitability of an enzymes as a drug target, different weights can
be assigned to these criteria, depending on the relevance they have for the
researcher. In the present work we chose to prioritize the maximal selectivity
over the minimal toxicity, and the latter over the requirement of minimal
uncertainty. By doing so, PGK was identified as the best guess for a suitable drug
target. Although in this case PGK was both the most selective and most reliable
enzyme target, besides being hardly toxic, we note that in general the outcome
of our analysis can sensibly depend on the priority ascribed to the three criteria
mentioned above. From a clinical perspective, performing our analysis with
different weight factors may then provide a palette of best drug targets
referring to different thresholds amongst the required properties of selectivity,

safety and reliability.

The robustness of our results was tested against different choices of the
sampling conditions. The fact that PGK always emerged as the best guess as
putative target represents an important result, as it suggests that the sampling
approach proposed in this paper can provide a relevant insight about the
control profile of a metabolic system that is reasonably robust with respect to
alterations in the numerical methods. If the top entries of the scoring list were
to change completely based on the sampling condition, the method would have
proven to be of less utility. We note, however, that in general different choices of
the sampling distribution may lead to different enzymes as best putative drug
target. The use of different sampling distributions may then be thought and
adopted as a way to provide a more restrictive assessment of how the
emergence of a specific enzyme as best target is due to topological constraints

rather than specific parameter values (or range of values).
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The conclusions achieved through our probabilistic approach, leading to the
identification of PGK as the best putative target, were compared with the

outcome of a mechanistic approach by decreasing the activity (V__ ) of PGK in

the dynamic model introduced in Methods and described in Supplementary
Material. The response of the system to this perturbation showed that the
normal phenotype was indeed less sensitive to an inhibition of PGK than the
diseased phenotype. This lower sensitivity has been observed not only in
respect to the glucose uptake flux, but in the general behaviour of the system.
The exchange fluxes and the main metabolic processes were in fact less affected
in the normal phenotype (Fig. 8), showing good agreement with our statistical
result. Regarding specifically the production of lactate, we registered a
significant decrease in the flux through LDH in both normal and diseased
phenotype (-61% and -82%, respectively). Since this strong decrease occurred
on a branch which is virtually unused in normal cells (except for muscle cells
under anaerobic conditions and erythrocytes), this result does not invalidate

PGK as putative drug target candidate.

In conclusion, the statistical approach proposed in this paper provides us with a
useful strategy for assessing how the control profile is differently distributed in
two distinct metabolic phenotypes. It also highlights which enzyme can best
represent a putative target with respect to requirements such as high
effectiveness and low toxicity. The significance of the results obtained through
this kind of analysis, however, may be improved at different levels, not
necessarily only related to the probabilistic nature of our approach. For
example, a higher degree of detail in the representation of the metabolic map
would reduce the approximation introduced by considering lumped reactions
representing more complex biochemical pathways or processes. In the example
provided in this paper, two of such reactions were used to represent the TCA

cycle and oxidative phosphorylation. Expanding a lumped reaction into the
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entire set of enzymatic steps it represents, could lead to new and important
insights about how the control properties are distributed in the system. This is
mostly the case when metabolic intermediates that are only involved in a
lumped pathway have regulatory effects on enzymatic steps outside that
pathway. A more detailed description of the lumped pathway would then result
not only in a “higher resolution” of how the control properties are locally
distributed amongst the different steps which were lumped together, but also in
a different overall control profile. Just as in the case of conventional kinetic
modelling, the level of detail in which the metabolic map is represented can
determine the level of accuracy of the regulatory map, and consequently have a

non negligible effect on the results.

A related aspect is the choice of rate equations of the enzymatic steps. While
generic rate equations are commonly used to capture generic aspects of
metabolic networks, the actual, experimentally determined, rate equations may
result in a slightly modified control properties. In particular, the experimental
determination of reaction functions may also identify further unknown
regulatory interactions, as well as possible cooperativity between metabolic
compounds. Regarding the use of the generic rate equation, we also note that
different choices are possible. The specific instance of generalized Michaelis-
Menten equation proposed by Liebermeister et al. [37], and used in this paper,
takes into account generic characteristics of enzyme catalyzed reactions - such
as reversibility, product inhibition, saturation, reaction direction that only
depends upon the mass-action ratio relative to the equilibrium constant.
However, alternative choices have been proposed by Rohwer et al. [67] that also
account for competition between substrates and products and take possible
cooperativity into account. We note though, in contrast to explicit kinetic
models, we are only interested in the derivatives of the rate equations, such that

minor differences in the precise functional form often have no major effect. In
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most applications, we also expect that at least partial information on some
kinetic parameters is available. Such partial information allows to further
constraint the sampling intervals and to obtain results that are specific for the
system under study. In this sense, our approach can be straightforwardly
incorporated into an interative scheme that allows to quantify uncertainty in
the control profile, and hence allows to pinpoint further experiments to increase

the specificity and reliability of the results.
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SUPPLEMENTARY MATERIAL

THE MECHANISTIC MODEL

A full detailed characterization of a cancer metabolic phenotype in terms of
fluxes and metabolites concentrations has not been performed. To obtain a set
of fluxes and concentrations representative of a generic cancer phenotype we
decided to use a modelling approach. First of all we implemented a kinetic
model reproducing the system shown in Fig.2 of the main text. The model was
created using Copasi [26]. The dynamic of each reaction step was described in
terms of a generalized Michaelis-Menten equation, in the form of the
convenience kinetics [37]. The list of allosteric regulation considered in the

model is listed in Table S1.

Enzymatic step Activators Inhibitors

HXK G6P
PFK AMP ATP
PK F16P2

G6PDH NADP

TCA cycle ADP/ATP

Table S1 - List of the allosteric effectors considered in the kinetic model.

Where possible, affinity, inhibition and activation constants were retrieved from
BRENDA database [38], otherwise their value was chosen within the same order
of magnitude of the corresponding substrate or modifier concentration. For the
equilibrium constants we used the value listed in Holzhiitter 2004 [45]. Finally,

the maximum activity (V_ ) of each enzyme was computed in order to fit the

max

set of fluxes and concentrations defining the normal metabolic state.
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The cancerous metabolic phenotype was retrieved by increasing by a factor of

four the V__ of GLT, HXK, PFK and GSHox. The list of fluxes and metabolite

X

concentrations defining the two metabolite states are provided in Tables S2-S3.

Metabolite Normal state Cancer state

GLC 4.57E+00 4.81E+00
G6P 3.95E-02 8.46E-02
F6P 1.56E-02 3.28E-02
F16P2 9.68E-03 4.09E-01
DHAP 1.49E-01 1.02E+00
GraP 6.06E-03 4.16E-02
13P2G 4.81E-04 2.60E-03
3PG 6.58E-02 1.43E-01
2PG 8.44E-03 1.82E-02
PEP 1.09E-02 2.45E-02
PYR 8.40E-02 1.01E-01
LAC 1.68E+00 1.68E+00
ATP 1.60E+00 1.73E+00
ADP 3.24E-01 2.78E-01
AMP 7.47E-02 1.79E-01
NAD 6.53E-02 6.53E-02
NADH 1.56E-04 1.97E-04
6PG 2.51E-02 4.37E-02
Ru5P 4.72E-03 1.29E-02
X5P 1.27E-02 3.48E-02
R5P 1.40E-02 3.83E-02
S7p 1.54E-02 2.52E-02
E4P 6.27E-03 3.29E-02
GSH 3.11E+00 3.03E-02
GSSG 1.87E-04 6.22E-04
NADP 2.34E-05 5.47E-05
NADPH 4.89E-03 4.86E-03

Table S2 - Set of metabolite concentrations characterizing the normal and cancer

states. All the concentrations are expressed in mM.
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Reaction Normal state Cancer state
GLT 1.51E+00 2.61E+00
HXK 1.51E+00 2.61E+00
PGI 1.42E+00 2.34E+00
PFK 1.47E+00 2.48E+00
ALD 1.47E+00 2.48E+00
TPI 1.47E+00 2.48E+00
GAPDH 2.95E+00 5.04E+00
PGK 2.95E+00 5.04E+00
PGM 2.95E+00 5.04E+00
ENO 2.95E+00 5.04E+00
PK 2.95E+00 5.04E+00
LDH 0.30E+00 2.10E+00
LAC_Tran 0.30E+00 2.10E+00
G6PDH 9.70E-02 2.71E-01
6PGDH 9.70E-02 2.71E-01
GSSGR 1.94E-01 5.43E-01
GSHox 1.94E-01 5.43E-01
EP 4.80E-02 1.46E-01
KI 4.90E-02 1.25E-01
TK1 2.40E-02 7.29E-02
TA 2.40E-02 7.29E-02
PRPPS 2.50E-02 5.25E-02
TK2 2.40E-02 7.29E-02
TCA 2.66E+00 2.94E+00
OxPh 1.33E+01 1.47E+01
ATPase 4.28E+01 4.90E+01
AK 0.00E+00 0.00E+00

Table S3 - Patterns of fluxes characterising the normal and cancer metabolic

states. The fluxes are expressed in mM/s.
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List of the rate equations and parameter values used in the model

The values of the kinetic parameters used in the mechanistic model have been

chosen according to the following criteria:

e The equilibrium constants (K,, ) have been taken from Holzhiitter 2004 [45].

For the equilibrium constant of the TCA pseudo-reaction we used the

product of the K, of the enzymatic steps taking part in the Krebs cycle. The

equilibrium constant for the oxidative phosphorylation process was set to an

arbitrary high value.

e The affinity, inhibition and activation constants (K}, K, K?

) have been
retrieved, where possible, from Brenda database [38]. When more than one
value was available, factors such as taxonomy as well as temperature and pH
at which the parameter was measured have been taken into account. When
no value was found for a given parameter, we used as reference point the
concentration of the metabolite to which that parameter refers. In this case

the value of the parameter was set to 10" where m is the order of magnitude

of the corresponding metabolite concentration expressed in mM.

e The value of the maximal activities (V__ ) have been computed in order to

make the set of concentration at steady-state and the parameters values
compliant with the set of fluxes representative of the normal metabolic state

(see main text).
The chemical reactions reported below are written following the direction of

their positive flux in the normal physiological metabolic state. The values of the

equilibrium constants refers to this same direction.
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1. Glucose uptake (GLT) - Glc(e)— Glc

s 16LCI(e) ( ,_leLeyieLel (e)]

max Kglic Keq
Var = [GLCI(e) [GLC]
1+ P + K
Glc Glc

Glc

Vi =3.69E+01; K, =1.00E+00; K. =1.00E+00;

2. Hexokinase (HXK) - Glc+ ATP — G6P + ADP

[G6P]-[ADP]

[GIc]-[ATP] [GIc]-[ATP]

nax . 1_
; KgIIC'KZITP Keq
K
V”XK:[[G6P]GiPK’ j [Glc] [ATP] [G6P] [ADP]
Gep (1+ M]-(1+ = j+£1+ — J-(1+ o j
Glc ATP G6P ADP

V... =6.88E+01; K, =3.90E+03; K/, =3.80E+00; K»,, =1.51E+00; K%, = 1.00E-02;
K"  =1.00E-01; K!., =2.9E-02;

ADP G6P

3. Phosphoglucose isomerase (PGI) - G6P — F6P

max M

, IG6P] [ . [F6P]/[G6P]]

v _ G6P Keq
PGI —
[G6P] [F6P]
1+ P + K
G6P F6P

Viwe =2.79E+03; K, =3.92E-01; K, =3.51E10-01; K, =1.86E-02;

G6P FeP

4. Phosphofructo-kinase (PFK) - F6P + ATP — F16P2+ ADP

[F16P2]-[ADP]

[F6P]-[ATP] [F6P]-[ATP]

. J1=

. - ngP'KXITP Keq
K [AMP)
Ve z( ATPI+ K] N AMP]+K’ J
(ATP)+ K}y, ) ([AMPY+K),,, ) (| TF6PY) (| TATPY) [, [F16P2]) [, [ADP]|_,
KFMGP K:’TP Kﬁ/llst K/];/’DP

V.o = 1.13E+02; K, =1.00E-05; K, =1.00E-01; K\, =1.20E-01; K}’ ,, = 1.00E-02;

F6P ATP F16P2
KM

M, =490E-01; K, =2.5E-01; K/, =1.00E-01;

ATP AMP
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5. Aldolase (ALD) - F16P2—> DHAP +GAP

[DHAP]-[GAP]
[F16P2] | [F16P2]
max KM K

F16P2 eq

(1+WJ{H[DHMAP]MH[G‘?WP]jA

F16P2 DHAP GAP

v

Vo = 1.41E+02; K, =1.14E-01; K ,, =9.00E-03; K ,,, =1.00E-02; K;;, =5.70E-02;

6. Triosephosphate isomerase (TPI) - DHAP — GAP

[DHAP] { . [GAP]/[DHAP]]

v _ - DHAP Keq
TR [DHAP] [GAP]
1+ K + K
DHAP GAP

Voax =3.61E+03; K, =4.07E-02; K}, ., =5.00E-01; K}, =2.60E-01;

DHAP GAP

7. Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH) -
GraP+ NAD —13P2G + NADH

[13P2G]-[NADH]
' 1= [GraP]-[NAD]
Ky K K

GraP NAD eq

capon = (1+ [Gmp]M1+ [NAD]]+[1+ [135261M1+ [NADH]]_l

KM M M
GraP NAD 13P2G NADH

[GraP]-[NAD]

V

V..o =8.18E+03; K, =1.92E-04; K, , =7.00E-02; Ky, =1.00E-01; K}3,,, =1.00E-02;
K,y =1.00E-02;

NADH

8. Phosphoglycerate kinase (PGK) - 13P2G + ADP —3PG + ATP

[3PG]-[ATP]
v | [13P2G]-[ADP]
max M M T
K -K K

13P2G ADP eq

o (1+[1352G]j-[1+[A3P]J+[1+[31;6]]'(1+[AIN),P]}—1
K K K K

13P2G ADP 3PG ADP

[13P2G]-[ADP]

v

Vo =1.29E+01; K, =1.46E+03; K},,; =1.00E-04; K}, =2.30E-01; K, =5.90E-01;
K}, =1.00E+00;

ATP
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9. Phosphoglycerate mutase (PGM) - 3PG — 2PG

, [3PG) [ L_[2P G]/[3PG]j

v ~ max K?[)VIIJG Keq
pam [2PG] [3PG]
1+ K + K
2PG 3GP

V... =130E+02; K, =145E-01; Kb, =2.20E-01; K}t =4.10E-02;

3PG 2PG

10. Enolase (ENO) - 2PG — PEP

[2PG] ( . [PEP]/[ZPG]}

) ~ max KQ/;G Keq
ENo [2PG] [PEP]
1+ K + K
2PG PEP

Vo =3.54E+02; K, =1.70E+00; K, =2.20E-01; K;,, =2.00E-01;

2PG PEP

11. Pyruvate kinase (PYK) - PEP + ADP — PYR+ ATP

[PYR]-[ATP]
. [PEP]~[ADP]. 1- [PEP]-[ADP]
max KM ‘KM K

pep "1 app eq

:( [F16P2] J
P\ KA, +[F16P2] (1+[PEP]]‘[l_F[ADP]]J{“_[PYR]J‘[lJr[ADP]J_l

M M M

PEP ADP PYR ADP

Vo =2.86E+04; K, =1.38E+04; Ky, =1.70E-01; K, =2.40E-01; K, = 4.80E-01;

PEP ADP PYR

K}, =3.50E-01; K} ,,, =1.00E+00;

F16P2

12. Lactate dehydrogenase (LDH) - PYR+ NADH — LAC + NAD

[LAC]-[NAD]
' | {_ [PYR]-[NADH]
max KM 'KM K

PYR "~} NADH eq

o (1+[PX;R]].[H[NiDH]]J{lJF[LfIWC]}[H[1\/,3)]}_1
K K K K

PYR NADH LAC NAD

[PYR]-[NADH]

\%

PYR NADH

Ky, =1.00E-02;

Vo =1.36E+03; K, =9.09E+03; K, =3.00E-02; K, =7.00E-03; K. = 1.00E+00;
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13. Lactate efflux (LCT) - LAC — LAC(e)

70 ( | LLAC] (e)/[LAC]j

) ~ max K[}ZC Keq
Ler [LAC] [LAC](e)
1+ P + K
LAC LAC

Viwe =4.21E+03; K, =1.00E+00; K. =1.00E+00;

LAC

14. Glucose -6-phosphate dehydrogenase (G6PDH) -
G6P + NADP — GA6P + NADPH

[GA6P]-[NADPH]
[[G6P]-[NADP] | | [G6P]-[NADP]
KN Ky K

G6P NADP eq

) z( [NADP] J
K2 . +[NADP] [ - [G6P]J‘[ 1. [NADP]}L( - [GA6P]J ( - [NAMDPH]]_ )

M M

M
G6P NADP GA6P NADPH

Vi =6.15E+03; K, =2.00E+03; K4, =1.00E-02; K, =2.38E-03; K., =8.64E-01;
Ky ey =1.40E-02; K, ., =1.00E-02;

NADPH NADP

15. 6-phosphogluconolactonase (6 PGDH) - GA6P + NADP — RuSP + NADPH

[RuSP]-[NADPH]
[[GA6P]-[NADP] | | [GA6P]-[NADP]
max o pM KM K

GA6P NADP eq

[1+[GA6P]].(1+[NADP]}{lJF[RuSP]](lJF[NAMmDH]j_l

M M M
GA6P NADP Ru5P NADPH

v

V... =L166E+02; K, =1.42E+02; K[, =1.40E-02; K%, =1.30E-02; K%, = 1.00E-02;
K . =1.00E-02;

NADPH

16. Glutathione reductase (GSSG) - GSSG + NADPH — 2 GSH + NADP

[GSHT -[NADP]

[[GSSG]-[NADPH] | . _ [GSSG]-[NADPH]

max KM . KM K

GSSG NADPH eq

(1+[GSEG])(1+[NAMDPH]}{PF[G.?;H]+[[G§4H]j MH[N/LDP]J_l
K K K K K

GSH GSH NADP
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Vi = 9-05E+01; K, =1.04E+00; K ;5 =1.90E-02; Ky, =8.00E-03; Ky, =6.50E-02;
Ky\,,» =1.00E-04;

NADP

17. Glutathione oxidation (GSHox) - 2 GSH — GSSG

M
K GSH eq

v ([GSH]} [ | GSSGY/[GSHY j

GSHox — 2
1. [GiH] +{ [GiH]J N [GSA;SG]
K" | K K

GSH GSSG

Vo = 1.18E+02; K, =1.00E+05; K . =1.00E-03; K g, =6.90E-01;

GSSG

18. Phosphoribulose epimerase (EP) - RuSP — X5P

[Ru5P] [ . [XSP]/[RuSP]J

Vo = - K}I:LSP eq

2 [Ru5P] [X5P]
1+ P + P

RuSP X5P

V... =1.02E+04; K, =2.70E+00; K}, =1.90E-01; K}, =1.00E-02;

19. Ribose phosphate isomerise (KI) - Ru5P — R5P

max M K

Ru5P eq

[RuSP] ( . [R5P]/[Ru5P]]

Vig =

. [Rzisp] . [RiP]
KRMSP KRSP

V... =6.13E+02; K, =3.00E+00; K}'., =6.60E-01; KL, =2.20E+00;

max Ru5P

20. Transketolase I (TK1) - X5P + R5P — GraP +S7P

[GraP]-[S7P]
_[X5P]-[R5P] 1- [X5P]-[R5P]

max KM 'KM

X5P R5P Keq

TK1 =
(1+ [Xip]}[1+ [Rip]}{1+ [Gr;P]J-(1+ [SZP]j_l
KXSP KRSP KGraP KS7P
Vo =1.38E+01; K, =1.05E+00; Ky, =1.50E-01; Kc, =3.00E-01; K, =4.90E+00;
K} , =4.00E+00;

S7pP

v

21. Transaldolase (TA) - GraP+S7P —E4P +F6P
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[E4P]-[F6P]
[GraP]-[S7P] 1- [GraP]-[S7P]

M KM K

GraP S7pP eq

TA =
(1+ [GrSP]J-(lJr [SZP]jJr[lJr [Eip]]-(lJr [FSP]J—l
KGraP KS7P KE4P KF6P
Viow =2.05E+02; K, =1.05E+00; K, , =3.80E-02; K¢, =1.80E-01; K}, , =7.00E-03;
K}, =3.43E-01;

%

22. Transketolase 2 (TK2) - E4P + X5P — GraP + F6P

[GraP]-[F6P]

[XSP)-[E4P] | | [XSP]-[E4P]
max KM 'KM

xsp "Ngap Keq

TK2 —
[1+ [Xgp]j-(1+ [Eip])+(1+ [Gr;P]]-(lJr[FgP]J—l
KXSP KE4P KGraP KFGP
Vi =5.98E+02; K, =1.20E+00; Ky, =1.50E-01; K},,, =3.60E-01; K, =4.90E+00;
KY , =7.00E+00;

FeP

v

23. Phosphoribosylpyrophosphate synthetase (PRPPS) -
R5P+ ATP — PRPP + AMP

[PRPP]-[AMP]
' | 1_ [R5P]-[ATP]
" Ky K, K

R5P ATP eq

(1+ [RSP]]-(1+ [ATP]J+[1+[PRPHJ{1+ [AMP]]—l

[RSP]-[ATP]

v

M M M M
R5P ATP PRPP AMP

Ve =1.60E-01; K, =1.00E+05; K¢, =3.30E-02; K}, =1.40E-01; K}, =1.00E+00;
K}, =122E-01;

AMP

24. TCA pseudo-reaction - PYR+4 NAD — 4 NADH

[NADH]
[PYRI-[NAD] | , _ [PYR]-[NAD]
ADP " Ko Ko K,,

TCA — ﬁ :
Kt ADP [1+[PYR]J'(PF[NAD])J{“_[NADH]J_l

ADP | ATP ﬁ
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V.o =5.63E+01; K, =5.71E+15; K, =1.00E-01; K, =1.00E-01; K}, = 1.00E-03;
K} =3.61E-01;

ADP/ATP

25. Oxidative phosphorylation (OxPh) - 3 ADP + NADH —3 ATP + NAD

[ATP]-[NAD]
. | {_ [ADP]-[NADH]
max - peM KM K

ADP NADH eq

Voxen =
(1+ [AQP]J-[lJr [NﬁDH]j+(1+Miﬂj-(1+[M3mj—l
K K K K

ADP NADH ATP NAD

[ADP]-[NADH]

V.. =2.15E+02; K, =1.00E+09; K" =1.00E-01; K%, =1.00E-03; K, =1.00E+00
K" =1.00E-01;

NAD

)

26. ATPase - ATP — ADP

v .[ATP].(l_[ADP]/[ATP]J

v _ - K.Z/ITP Keq
ATPase —
[ATP] [ADP]
1+ K + K
ATP ADP

Vo = 1.56E+02; K, =1.00E+05; K, =1.00E-01; K}, = 1.00E+00;

ADP ATP

27. Adenylate kinase (AK) AMP + ATP — 2 ADP

[ADPT
[ATP]-[AMP] | | _[ADP]-[AMP]
- K‘ZITP.KZIMP Keq

VAI( -

[1+ [AgP]j‘[“_ [AII‘;IP]J+[1+ [AZP] _{[AI;P]J }—1
KATP KAMP KADP KADP

Vo =8:47E-02; K, =2.50E+01; K" =3.80E-01; K" =1.30E+01; K =1.00E-01;

AMP ATP ADP
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ROBUSTNESS OF THE RESULTS

The parameter values were sampled according to the corresponding metabolite
concentrations. In particular, the affinity, inhibition or activation constant for

any enzyme in respect to metabolite S (acting as a substrate or as a modifier)
was sampled between min{[S],,[S],}x10™ and max{[S]l,[S]z}xloﬁ, where
[S], and [S], are the concentration of S in the two metabolic states under

comparison, and « and g are two adjustable factors.

The parameter sampling and the subsequent data generation process described
in the main text under Methods was repeated for different sampling conditions.

In particular, different sampling distributions and different values for ¢ and f

were used. Tables S4-7 show the list of the enzymes with positive average

selectivity Si]”'g“ (see main text for its definition), sorted in descending scoring

order, for each sampling condition.

Enzyme Score
PGK 0.99
ENO 0.56
LDH 0.48
PGM 0.45
LCT 0.40
TPI 0.38
GAPDH 0.36
ALD 0.35
6PGD 0.32

Table S4 - Sampling function: logarithmic. Sampling intervals:a=1, f=1

137



Enzyme Score

PGK 0.99
ENO 0.51
PGM 0.44
TPI 0.40
LDH 0.40
GAPDH 0.38
ALD 0.37
LCT 0.34
EP 0.31
6PGD 0.30
TA 0.29
AK 0.25

Table S5 - Sampling function: logarithmic Sampling intervals: =1, =2

Enzyme Score
PGK 0.99
ENO 0.64
LDH 0.51
PGM 0.45
LCT 0.42
6PGD 0.35
TPI 0.33
GSSG 0.29
GAPDH 0.29

Tables S6 — Sampling function: logarithmic. Sampling intervals: ¢« =2, f=1

Enzyme Score
PGK 0.99
ENO 0.58
PGM 0.44
LDH 0.41
LCT 0.35
TPI 0.38
6PGD 0.34
GAPDH 0.30
ALD 0.30
GSSG 0.29
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Tables S7 — Sampling function: logarithmic. Sampling intervals: a =2, =2

Enzyme Score
PGK 0.94
PRPP 0.93
ENO 0.74
PGM 0.43
GSSG 0.43
LDH 0.41
6PGD 0.39
PGI 0.38
KI 0.36
G6PD 0.35
LCT 0.35
TPI 0.33

Tables S8 - Sampling function: logarithmic. Sampling intervals: =1, f=1*

* In this case, the sampling is performed on the same interval for all the parameters. The

borders of this interval are defined as min{[S],,[S],}x10™* and max{[S],,[S],}x10”, where
[S], and [S], denote the complete sets of metabolite concentrations in the two metabolic

states.

Enzyme Score
PGK 0.99
AK 0.75
PFK 0.70
ENO 0.47
GAPDH 0.43
PGM 0.43
ALD 0.42
TPI 0.41
EP 0.39
TA 0.38
PGI 0.37
TK1 0.33
PK 0.29

Table S9 - Sampling function: linear. Sampling intervals: =1, f=1.
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ABSTRACT

In many diseases, such as cancer, cells show a specific metabolic shift from
their normal physiological state. The differences between the normal and
the altered metabolic phenotypes may be exploited to identify points of
fragility characterising the disease, and hence to specifically target altered
cells. The application of Metabolic Control Analysis (MCA) has been
proposed as a possible way to identify such points of fragility at the
metabolic level. Here we use an MCA approach to assess the suitability of
different enzymes as molecular targets for drugs designed to attack breast
cancer. We base our study on experimental data characterising the
metabolic features of breast cancer, and make use, where possible, of
actual Kinetic equations in the attempt to provide the most realistic
description of the system under study. Unknown metabolic and Kinetic
quantities are sampled randomly, providing us with a probabilistic
assessment of the control profile of the system in the two metabolic
phenotypes. The suitability of the different enzymes as molecular targets
is subsequently assessed with respect to criteria of both high efficacy and

low toxicity.
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INTRODUCTION

For almost a century, it has been known that the emergence of cancer is
accompanied by specific metabolic alterations. In particular, most cancer cells
are characterized by an increased glucose consumption and an aerobic
glycolytic activity (known as the Warburg effect) [1]. This metabolic shift,
observed almost universally during carcinogenesis, has always been considered
a reliable biomarker for tumours [2], and today researchers are assessing the
possibility to exploit it in order to target cancer cells more specifically than
through traditional approaches [3]. There is currently a quest to find anticancer
drugs operating at the metabolic level with both high efficacy and low toxicity.
The underlying idea consists of identifying enzymes that represent points of
fragility that specifically characterise the cancerous metabolic phenotype [4-6].
These enzymes are such that an alteration in their activity (due for example to
the action of an anticancer drug) would elicit the desired response in cancer
cells, without affecting their normal counterparts. Metabolic Control Analysis
(MCA) is a conceptual framework that can profitably be used to identify such
points of fragility [7-9]. The aim of MCA is to understand how the control upon a
system’s property is distributed among the different enzymatic steps of a
metabolic network [7]. Enzymes which exert a strong control over a property of
interest in the cancer metabolic phenotype and a low control in the normal
phenotype can be considered good candidate targets for a drug aimed to elicit a

high differential response between neoplastic and normal cells.

One way to apply MCA and gain insights on the suitability of the different
enzymes as putative molecular targets is to generate a fully characterized
computational representation of the system under study [10]. Unfortunately, a
complete dynamic characterization of a metabolic network is often hindered by

the lack of data about the kinetic mechanism of the different enzymatic steps
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and the value of many parameters to relevant in vivo conditions. A possible way
to circumvent this limitation consists of sampling the uncertain or unknown
quantities and predicting the control properties of the system on a probabilistic
basis [11-17]. In a previous work [18] we showed how putative targets for
drugs operating at the metabolic level may be identified through MCA in a
probabilistic manner, when minimal knowledge is available about the dynamic
properties of the system. In particular we showed that the complete set of fluxes
and concentrations defining the two metabolic states under comparison,
combined with heuristic assumptions on the properties of typical enzyme-
catalysed reactions, already allows for a fast and efficient way to explore the
effectiveness of putative drug targets in the abundant cases where detailed
kinetic models are unavailable or incomplete. As a proof-of-concept, we applied
our methodology to identify points of fragility characterizing a paradigmatic
cancer metabolic phenotype, while using only generalised Michaelis-Menten

equations to describe the kinetics of the different enzymatic steps.

Using the same conceptual framework, here we address a similar issue but with
a more specific clinical implication. In particular, we aim to assess the suitability
of different metabolic enzymes as putative molecular targets for a drug
specifically designed to attack breast cancer. In order to do so, we based our
study on the experimental data currently available in literature about the
metabolic features of breast cancer, and made use, where possible, of actual
kinetic equations in the attempt to minimize the uncertainty introduced in the
description of the system dynamics. The reason for choosing this type of cancer
lies on the fact that breast cancer is, to our knowledge, the most extensively
characterized in terms of the pattern of the metabolic fluxes acquired by the
cells during carcinogenesis and some of the metabolite concentrations [19, 20].
The uncertainties of the system, such as unknown parameter values or
unquantified metabolite concentrations, are randomly sampled allowing for a

probabilistic assessment of how the control profile of the system differs
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between the two metabolic states: cancer and normal. These differences are
then used to identify the best putative enzyme targets with respect to specific
clinical strategies aimed to attack breast cancer cells in an effective and non-

toxic way.

METHODS

MCA TO LOCATE POINTS OF FRAGILITY OF A METABOLIC SYSTEM

The concept of control coefficient is central in MCA and provides a way to
evaluate - at steady-state - the extent to which a property of interest changes in

response to a perturbation in the activity of an enzyme [7, 21, 22]. Important

examples of control coefficients are the flux control coefficient C!and the

concentration control coefficient C’ , defined as

O tim N _ 1) _dn()

= = 1
w0 Ay v dv, v, dIn(v,) )

05 qi AS/S _ dS/S _ dIn(S)

= lim = = 2
" w0Av v, dv, v, din(v) ()

where | is the steady-state flux of a given pathway, S the steady-state

concentration of a given metabolite and v; is the catalytic activity of enzyme i. In
Egs.(1)-(2) it is assumed that the change in the enzymatic activity v, (which

elicits changes in steady-state fluxes and concentrations) is caused by the action

of an effector (for example a drug) acting directly and selectively on the

enzymatic step i. Given a metabolic state (VO,SO), described in terms of the

complete set of fluxes and metabolite concentrations at steady-state, Reder [23]
showed that the matrix of the flux control coefficients C’ and the matrix of the

concentration control coefficients C° may be expressed as
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-1
CS_—(DSO)l-L-[N' v -LJ N'-D,, (3)
0
] 4 OV s
¢/=1+01.%Y .p, -C (4)
v 680 S

where D , and D, denote diagonal matrices of elements S’ and v°, while N'

and L denote respectively the reduced stoichiometric matrix and the link matrix
(see [23] for definitions), both completely determined by the stoichiometry of

the system.

In this paper we use Egs. (1)-(2) to evaluate the control properties of the system
under two different metabolic states, one representing the cancerous phenotype
and the other representing the normal phenotype. The information needed to
evaluate the control coefficients cover the stoichiometry of the system (given by

N' and L), its dynamic properties (reflected in the partial derivatives 6S/ov )

and the two sets of fluxes and metabolite concentrations defining the two

metabolic states (as described by D , and D). We base this information as

much as possible on literature data in an attempt to minimize uncertainties in
the definition of the system properties and the metabolic states under
comparison. As we will see later in this section, unknown or uncertain
quantities such as kinetic parameters or some of the metabolite concentrations

are sampled from reasonable ranges of values.

DEFINITION OF THE METABOLIC MAP

The system under study is a representation of the central carbon metabolism as
depicted in Fig. 1, and consists of glycolysis, the pentose phosphate pathway, the

TCA cycle and a simplified representation of the respiratory chain.
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Figure 1 - Metabolic map of central carbon metabolism. The pathways and metabolic
processes taken into account are glycolysis, the pentose phosphate pathway, the TCA cycle and a
simplified representation of the oxidative phosphorylation.
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Three different compartments are taken into account: the cytosol, hosting
glycolysis and the pentose phosphate pathway; the mitochondria, where the
TCA takes place; and the intermembrane space, where the protons produced in
mitochondria are pumped in and subsequently released from for the
mitochondrial synthesis of ATP. We note that considering the intermembrane
space adds an unnecessary degree of details to our representation of central
carbon metabolism, as protons equilibrate immediately between
intermembrane space and cytosol. However, we chose to consider explicitly all
the three compartments to provide a better schematic representation of the

system under study.

Our model represents an extension of the reconstruction of erythrocyte central
carbon metabolism by Schuster and Holzhiitter [24]. The choice to adopt the
latter model as our starting point was motivated by the fact that erythrocyte
metabolism is the most extensively studied and characterized. Schuster and
Holzhiitter’s model, in particular, provides us with a detailed description of the
kinetics of each enzymatic step and a comprehensive regulatory map of the
metabolic regulations occurring in glycolysis as well as in the pentose
phosphate pathway. Additional reactions were added to this initial model in
order to take into account the TCA cycle and the oxidative phosphorylation,
which are absent in human erythrocytes. The ANT transporter and a
phenomenological translocation step accounting for the shuttling activity of

NAD/NADH were also introduced to connect the cytoplasm to the mitochondria.
Following Li et al. [25], the electron transport chain and oxidative

phosphorylation are described through three lumped reactions (see

Supplementary Material for details).
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RATE LAWS OF THE REACTION STEPS

The enzyme kinetics of glycolysis and the pentose phosphate pathway is
described through the same rate equations used in Schuster’s reconstruction of
erythrocyte central carbon metabolism [24]. With respect to a generic

biochemical reaction a A, +a,A, +..— B,B, + ,B, +..., all these equations can

be written in the following general form [24]:

B
V=1, '[HkA:k —riéi}f(A,B,E.K) (4)

eq

where K, denotes the equilibrium constant, V. the maximal forward rate,

and fis a function containing all the non-linearities due to saturation, allostery,
etc. This function depends on the concentrations of reactants (A), products (B)
and effectors (E), and on the kinetic parameters (K) such as Michaelis constants
or activation/inhibition constants. The benefit of using reaction rates that can

be expressed through the general form of Eq.(4) is that the thermodynamic

properties, described by the factor (HkA,f’k—H,Blﬂ’/Keq), are maintained

separated from the specific enzymatic mechanism governing the reaction
dynamics. In expanding Schuster and Holzhiitter's model to encompass the
respiration pathway, we tried to describe the kinetics of the reactions in the
TCA cycle following this same principle. The rate equations, in particular, were
taken from Wu et al. [26] (for PDH, CIS, ACO, IDH and AKD) and Mogilevskaya et
al. [27] (for SDH and FUM). The kinetics of SCAS and MDH were described in
terms of generalized Michaelis-Menten rate laws, in the specific implementation

proposed by Liebermeister et al. [28].

The kinetics of the three lumped reactions representing the electron chain and

oxidative phosphorylation were described through the same rate laws used in Li
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et al. [25], where the general form of Eq.(4) is modified in order to take into
account the dependency of the reaction rates on the proton motive force (see

Supplementary Material for details).

The intercompartment translocation of metabolites depends on the action of
specific carriers. The Kkinetics of carrier mediated transport was described
through the general rate equation proposed by Li et al. [25]. For the facilitated
translocation of an uncharged metabolite S from compartment cl1 to

compartment c2, this rate equation can be written as follows:

v:Tm{ Su___Sa ] (5)

where S, and S, denote the concentrations of S in compartment c1 and c2

respectively, T __ is the maximal transport rate from compartment cl to

max

compartment c¢2, and K,, is the Michaelis-Menten constant. A modified version

of Eq.(5) was used to describe the translocation of ATP/ADP via ANT and the
apparent transport of NAD/NADH between cytosol and mitochondria in order
to take into account the effect of the mitochondrial membrane potential on

these charged cofactors (details given in Supplementary Material).

The non facilitated transport was described through a passive diffusion rate
equation:

v=/1(Scl—SC2) (6)

where A is the permeability coefficient for diffusion from c1 to c2.
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DEFINING THE METABOLIC STATES UNDER COMPARISON

The normal phenotype

Schuster and Holzhiitter's model of erythrocyte metabolism was used as
starting point not only for the creation of the metabolic map depicted in Fig.1,
but also in the definition of the normal metabolic state. In particular, its
metabolite concentrations were used as representative of typical physiological
values. The pattern of fluxes through the different branches was also
maintained as in Schuster and Holzhiitter’s original model, with the exception of
the lactate dehydrogenase flux, which was mainly diverted toward the TCA
cycle in order to represent the functioning of a normal cell, where glucose is
processed through the respiration pathway. To evaluate the fraction of
glycolytic flux entering the TCA cycle, the rates of glucose uptake and lactic acid
secretion are set to the physiological value measured in skeletal muscle cells at
normal resting condition, respectively 0.195 and 0.09 mM/min [25]. To
accomplish this, we rescale the fluxes through glycolysis and the pentose
phosphate pathway in order to preserve the original flux distribution pattern,
(i.e. the fluxes maintain the same relative value with respect to each other). The
flux entering the TCA cycle has been obtained by subtracting the conversion
rate of pyruvate into lactate from the pyruvate kinase flux, thus ensuring the

mass balance of pyruvate at steady-state.

By allowing the flux from pyruvate to enter the TCA cycle, the oxidation of
NADH into NAD through lactate dehydrogenase can only occur at a lower rate
than in the complete fermentative regime of Shuster and Holzhiitter’'s model,
thus breaking the original redox balance in the cytosol. The rate of NAD-NADH
translocation between cytosol and mitochondria was set to restore this balance,
while maintaining the original cytosolic concentration of the two cofactors. This

translocation step was introduced to represent the transport of NAD and NADH
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via the glutamate-aspartate cycle and the glycerol phosphate cycle. The net
production and transportation rate of NADH in and toward mitochondria was in
turn counterbalanced by the reduction of NADH into NAD in the electron
transport chain and oxidative phosphorylation, where mitochondrial ADP is
phosphorylated to ATP. The balance between mitochondrial ADP and ATP was
maintained by allowing the ATP produced in the oxidative phosphorylation to
be released in the cytosol, while importing an equal amount of cytosolic ADP

into mitochondria.

Disease phenotype

To our knowledge, no study has been performed yet that characterizes the
metabolic cancer phenotype in terms of both fluxes and metabolite
concentrations. For a partial characterization of the cancerous metabolic
phenotype we used the pattern of fluxes measured by Richardson et al. in the
most advanced stage of tumour progression in breast cancer [19]. This pattern
of fluxes is characterized by a different distribution of the glucose uptake flux
amongst the different pathways of the central carbon metabolism. In particular,
the flux entering the pentose phosphate pathway now accounts for ~26% of the

pyruvate production versus the 2% of the normal metabolic state.

The analysis of Richardson et al., based on 13C labelling techniques, implies the
quantification of specific metabolites as a prerequisite to assess the
downstream trafficking of carbon influx. However, the set of metabolites for
which the concentration is provided in their study do not overlap with the
metabolic intermediates of glycolysis, pentose phosphate pathway and TCA
cycle, as depicted in Fig. 1 (the only exceptions are lactate and succinate).
Moreover, the concentrations are given in terms of relative changes between the
least and most advanced stages of cancer progression considered in their study,
making them unsuitable for retrieving absolute concentrations starting from a

normal metabolic phenotype.
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Some of the concentrations of glycolytic intermediates, however, can be
retrieved from earlier studies. Cohen et al. [20], for example, quantified the
differences in the phosphate metabolite levels in a number of breast cancer cell
lines, thus providing us with a range of values that can be used to constrain
some of the glycolytic intermediate concentrations. Some general features of
cancer physiology can also help us to reduce the uncertainty in the
characterization of the cancerous metabolic profile. For example, lactate is
generally found to be present in tumours at levels much higher than in the
corresponding normal tissues [29-32]. On the other hand, despite the increased
acid production, different studies have consistently demonstrated that the
intracellular pH of tumours is the same or slightly alkaline compared with that
of normal cells [33], as tumour cells excrete protonsthrough up-regulation of
the Na*/H*antiport and other membranetransporters. Consequently,
extracellular pH is substantiallylower (usually by ~0.5 pH unit) than normal
[34-36]. Some other constraints may be inferred through some general
considerations. For example, in normal cells, as a consequence of the activity of
the respiration chain and the coupled ATP synthesis, pH in mitochondria is
higher than in cytosol. On the other hand, in the absence of any respiration
activity the proton concentration in mitochondria cannot exceed the proton
concentration in cytosol. This provides us with a lower and upper bound for the
mitochondrial pH in cancer cells, where the respiratory activity, relative to the
glucose uptake, is lower than it would be in a full respiratory regime. Table 1
lists the range of values we set for some of the metabolic intermediates in the

cancerous phenotype and the corresponding bibliographic references.
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Metabolite Range of values Reference

Glucose (Glc) 0.05-0.95 [37]
Glucose-6-phosphate (G6P)  0.0153 - 0.90 (a) [20]
Fructose-6-phosphate (F6P) 0.0765-1.131 (a) [20]

GSH 04-23 [37]

Lactic acid (Lac) 5.02-10.7 [29-32, 37]
Succinate (Succ) 0.9-3.2(b) [37]

pH (cytosol) 7.1 [33]

pH (mitochondria) <76;>71

Table 1 - List of constraints for metabolite concentrations in the cancerous phenotype.

(a) The concentration of G6P and F6P were originally expressed in ymol/108 cells. To convert these

values to mM, we evaluated the cellular volume assuming spherical cells of typical diameter 50 um.

(b) The original values refer to the concentration of succinate with respect to the total cell volume.

To convert those values to mitochondrial concentrations, we multiply them by a factor of 10.

SAMPLING METABOLITE CONCENTRATIONS

The uncertainty in the definition of the cancerous phenotype due to the lack of
unique values for most of the metabolite concentrations has an effect on the
outcome of the system in terms of its control profile. This effect was assessed
through a random sampling approach, where the uncertain metabolite
concentrations were sampled and the control coefficients subsequently

evaluated.

Sampling metabolite concentrations in a sensible manner is not trivial. These
concentrations have to satisfy the thermodynamic constraints imposed by the
reactions in which the corresponding metabolites are involved and the set of
steady-state fluxes characterizing the metabolic state under consideration. The
rate equations used in our model are such that the logarithmic form of the
corresponding thermodynamic constraints can be expressed as linear

inequalities
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DN, X, $b,  with j=1,2,.,n (7)

G >
i=1

where X, is the logarithmic concentration of metabolite S, and N; is the

stoichiometric coefficient of S, in reaction j. The direction of the inequalities in

Eq.(7) depends on the specific reaction j, and is determined in particular by the
sign of the flux at steady-state and the specific rate equation from which the
constraint is derived. For the metabolite concentrations to be
thermodynamically meaningful, their logarithmic values have to satisfy
simultaneously all the n linear inequalities of Eq. (7). To sample values which

are compliant with this requirement, we used the known property according to

which, given a set of solutions {X(l),X(Z),...,X(K)} of Eq.(7), any linear

combination of the form

e (8)

is also a solution of the same set of inequalities. Thanks to this property, once an
initial representative set of solutions is found, a thermodynamically compliant
way to sample the metabolite concentrations consists of combining these

solutions linearly with random coefficients ¢, . To find a first representative set
of solutions {X(l),X(Z),...,X(K)} we used a linear programming approach, in the

form of the algorithm proposed by Lee et al. [38]. More details are provided in

Supplementary Materials.
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SAMPLING KINETIC PARAMETERS

Another source of uncertainty is represented by the value of the kinetic
parameters. As a reference point we adopted the parameter values originally
used in the publications from which the kinetic equations were taken. However
one needs to be aware that the values of kinetic parameters are often retrieved
by fitting a model to the experimentally observed behaviour of the system
under study. Partial knowledge of the enzymatic mechanisms or simplifying
assumptions on the topology of the network or its regulatory map may cause
the fitted kinetic parameters to differ appreciably from their in vivo value.
Because of these reasons we also considered the kinetic parameters among the
quantities to be sampled with the aim to assess to what extent their precise
value is relevant in determining the control profile of the system. From an

operational standpoint, we distinguish between different kinds of parameters:

1. The equilibrium constants K, were taken from Holzhiitter [39] for all the

reactions and assumed to be known.

2. Affinity, inhibition or activation constants were sampled randomly. The
sampling was performed logarithmically and covered, for each parameter,
two orders of magnitude around its original value (i.e. the value provided in

the work from which the corresponding kinetic law was taken).

3. Maximal activities such as V__ and T, were adjusted at each sampling

iteration in order to make the metabolic state (i.e. metabolite concentrations

and fluxes) compliant with the steady-state condition.
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IDENTIFYING PUTATIVE DRUG TARGETS

The suitability of the different enzymes as putative drug targets was assessed
with respect to the same three criteria used in our previous work [18]. We
briefly summarise them here. In doing so we assume that the aimed action of a

drug hitting an enzyme i is meant to induce a decrease in a given flux Jearget -

1. Maximal selectivity. The selectivity coefficient

(12)

i (cancer) i (normal)

S]target C]target ‘C]target
i

was used to quantify the differential response of the system in the two

metabolic states under comparison, cancer and disease. Here C’**¢ and

i (cancer)

Cle==  denote the control coefficients of enzyme i with respect to Jtarger in the

i (normal)
cancer and normal metabolic state respectively. The higher the (positive) value

of S i’”””e‘, the higher the differential response elicited by a drug hitting enzyme i.

We are interested in particular in enzymes with the highest possible value of

Si]”*g‘” , where the average is computed over all the sampling iterations.

2. Minimal toxicity. The toxicity coefficient T,

1
' = ﬁz‘ i (normal)

J

j €{all the N exchange fluxes} (13)

was used to assess to which extent perturbations in the activity of enzyme i
affect the overall behaviour of the system in the normal metabolic state. The
propensity of the system to move away from its original status due to the action

of a drug hitting enzyme i is measured through the average sensitivity of the
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input and output of the system in respect to catalytic activity of that enzyme.

The requirement of low toxicity translates into low values of f .

3. Maximal reliability. The reliability of the calculated average selectivity

Sl.lf“g“ was evaluated through the reliability coefficient, defined as:

J target
Si

]Larget —
Ri a S]target
o i

(14)

where G(Sijf“g“) denotes the standard deviation of the calculated selectivities

over all the sampling iterations.

To make the three criteria above quantitatively comparable, we normalized the

three coefficients defined in Eq. (12)-(13)-(14) as follows:

S']target
o= S (15)
max {S 1] et }
alli
R‘]target
P = 1 (16)
rrllla'X{Ri]target }
max 7_11 —7_11.
le \7) (17)

1

max T} ~min{T}

When considering only enzymes with positive Sij“"g“ , all the three normalized

coefficients have values spanning from 0 to 1. Here 0 represents the worst
scenario in terms of either selectivity (normal and cancer cells are equally

responsive in magnitude), toxicity (highest alteration of the normal metabolic
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phenotype) and reliability (maximal uncertainty of the average selectivity). On
the other end, 1 represents the best possible result for all the three criteria. We

used the normalized coefficients o, 1/2',. and p, to compute, for each enzyme i,

a unique score Z; accounting simultaneously for all the three criteria mentioned

above:
W, -0, +W, -p+ rf
Z = ’ (18)
W, +w, +w
o P T
where w_, w_  and w_ are weight factors that can be chosen according to the

specific relation of priority one wants to give to the three criteria.

RESULTS

DIFFERENT STRATEGIES FOR TARGETING CANCER METABOLISM

The results reported in this section refer to three possible strategies of

intervention to target cancer metabolism.

e Strategy 1 - The first strategy consists of blocking glucose uptake in an
attempt to starve cancer cells specifically. Because of the high dependence of
cancer cells on glucose as source of energy [40], decreasing the glucose

uptake is likely to weaken their proliferative potential [41].

e Strategy 2 - The second strategy consists of decreasing the pentose
phosphate pathway flux in order to hinder the synthesis of ribose, a
fundamental component of nucleic acids. The rationale behind this strategy
is that the most (around 75~90%) of ribose recovered from nucleic acids of

certain tumour cells arrives directly or indirectly through the PPP [42, 43].
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Hence, inhibiting the PPP flux would result in hindering cancer cell

replication [44].

e Strategy 3 - A third clinical approach may consist of inhibiting the excretion
of lactic acid. Cancerous cells, in fact, compete with adjacent normal cells by
creating an acidic extra-cellular environment which is harmful to the non-
neoplastic tissue [45]. By inhibiting lactic acid excretion (which is the main
cause of the low extracellular pH in the cancer microenvironment), one
would hinder one of the means by which cancerous cells invade in the pre-
existing normal cell population [46, 47]. At the same time, a decreased lactic
acid efflux would induce the self-poisoning of cancer cells through the excess

of endogenous lactic acid production [48-50].

STRATEGY 1: STARVING CANCER CELLS

Because we already had a reference value for the kinetic parameters (see
Methods), we started to evaluate the control coefficients from sampled values
only of the (unknown/uncertain) metabolite concentrations of the cancerous
phenotype, in order to assess to what extent the uncertainties of the cancerous
metabolic state alone were affecting the control profile of the system. By
limiting the sampling process to the metabolite concentrations, we obtained one
single value for each of the control coefficients in the normal metabolic state, as
no quantity defining the non-cancerous metabolic phenotype was involved in
the sampling process. Conversely, in the cancerous metabolic state a
distribution of values was obtained for each control coefficient, reflecting the
effect that the uncertainty of the input data has on the response of the system.

Fig. 2 shows the distributions of the calculated selectivity coefficients of some of
the enzymes in the system with respect to the uptake of glucose. The selectivity
coefficients of hexokinase (Fig. 2.a) are entirely distributed around negative

values. According to the definition of the selectivity coefficient provided in
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Eq.(12), this means that the magnitude of the control exerted by this enzyme on
the uptake of glucose is larger in the normal phenotype than it is in the
cancerous. This result seems in accordance with the fact that hexokinase (HXK)
is one of the most overexpressed enzymes in many tumours [51], including
breast cancer [52, 53], especially in its isoform HXKII. Indeed, when the
concentration (hence the activity) of a specific enzyme increases, its control is
theoretically expected to decrease as a consequence of the lower degree of

saturation of the enzyme with respect to its substrate [54].
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Figure 2 - Selectivity coefficient distributions - Strategy 1. The selectivity coefficients are
shown for HXK (a), PFK (b), GLT (c) and G6PDH (d). The results refer to a clinical strategy aimed to

starve cancer cells.

Similarly, phosphofructokinase (PFK) also shows negative values of its
selectivity coefficient (Fig. 2.b), accordingly with what one would expect on the
bases of the same reasoning exposed above. Interestingly, however, the
selectivity coefficient of the glucose transporter (Fig. 2.c) is highly positive,

despite this enzyme being known to be strongly overexpressed in breast cancer
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[55-59]. This result, seemingly in contrast with known experimental data about
enzyme expression levels, might not be in contradiction with the behaviour that
the system would have in vivo. The overexpression of a particular enzyme, in
fact, must be seen in relation with the (differential) levels of expression of all the
other enzymes, as they also contribute in determining the control profile of the
system. Hence overexpression of a particular enzyme does not necessarily result
in a decreased of its control. The high control that the glucose transporter
shows over the uptake of glucose in the cancerous phenotype might find some
substantiation in a study on AS-30D and HeLa tumour cells revealing that GLUT
is amongst the main flux-controlling steps in both tumours (A. Marin-

Hernandez, R. Moreno-Sanchez and E. Saavedra, personal communication).

Another interesting result is the positive values of the selectivity coefficient of
G6PDH (Fig. 2.d), the first enzymatic step of the pentose phosphate pathway.
These positive values might well reflect the fact that the glucose uptake flux is
diverted into the PPP to a much greater extent in the cancer phenotype than in
the normal one. By hindering the flux through the PPP one should then elicit a
greater inhibitory effect on the glucose uptake in cancer cells. This result might
also suggest that G6PDH has a higher control over the PPP flux in cancer cells
than it has in normal cells. We will verify this assertion later, when presenting
the results obtained for the second clinical strategy (decreasing the PPP flux in

order to hinder the synthesis of ribose).

A more comprehensive picture of the suitability of the different enzymes as
molecular targets can be achieved by considering not only the maximal
selectivity as discriminator factor, but also the criteria of minimal toxicity (or
maximal safety) and maximal reliability introduced in the previous section. In
order to provide a general picture of how the three criteria are met by the

different enzymes, Fig. 3 shows the normalized selectivity o,, safety 1/z, and
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reliability p, plotted against each other. Only enzymes with a positive average

selectivity coefficient are shown, as the others represent bad candidate drug
targets. Interestingly, GLT appears to be the best candidate in respect to
maximal selectivity as well as minimal toxicity (maximal safety), and it is also

among the best candidates in terms of reliability.
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Figure 3 - Normalized selectivity, safety and reliability coefficients plotted versus each
other - Strategy 1. The value of the coefficients was evaluated with regard of the clinical strategy

aimed to strarve cancer cells.

For each enzyme we used Eq.(18) to calculate a unique score representing the

overall suitability of the enzyme as putative target, where the three criteria are
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simultaneously taken into account. The weight coefficients in Eq.(18) were set

as follows: w, =4, w =2 and w, =1 in order to prioritize the maximal

selectivity over the minimal toxicity (maximal safety) and the latter over the
maximal reliability. The first two columns of Table 2 list the enzymes shown in

Fig. 3 and their corresponding score.

Strategy 1 Strategy 2 Strategy 3
Reaction step Score Reaction step Score Reaction step Score
GLT 1.00 G6PDH 1.00 GLT 1.00
G6PDH 0.46 GLT 0.60 G6PDH 0.46
Phi exc. 0.39 AK 0.48 RibPiso 0.36
GPI 0.36 TrKetl 0.41 GPI 0.35
RibPiso 0.36 GAPDH 0.37 TPI 0.34
Comp. II+I11+1V 0.35 GSSGRD 0.36 Phiexch 0.34
TPI 0.34 RibPepi 0.36 PGLDH 0.34
ALD 0.34 TrKet2 0.35 PPRPPS 0.33
PGLDH 0.34 TrAld 0.35
PRPPS 0.33 PGK 0.35
Phi trs. 0.24 BPGP 0.32

ATPase 0.10

Table 2 - Suitability of the enzymes as drug target when only metabolite concentrations are
sampled. The suitability of each enzyme as drug target is assessed with regard to the three

clinical strategies described in the text. The score associated to each enzyme is computed through

Eq. (18) with weight factors w_=4, w_=2 and w, =1. Only enzymes with positive average

selectivity are shown.

STRATEGY 2: HINDERING THE PRODUCTION OF RIBOSE

The same type of analysis was repeated for a drug designed to hinder the
production of ribose by inhibiting the flux through the pentose phosphate
pathway. Fig. 4 shows the distribution of the selectivity coefficient for some of
the reaction steps in the system. The high positive values of the selectivity
coefficient of GGPHD (Fig. 4.a) reflect the fact that the first step of PPP has a

stronger control in the cancerous phenotype than in the normal, hence
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confirming our previous supposition. Although no comparative study has been
performed yet, this result is partly corroborated by experimental studies [44]
and theoretical studies [60] showing that GGPDH exerts a higher control in

cancer cells over the flux of the oxidative part of PPP.
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Figure 4 - Selectivity coefficient distributions - Strategy 2. The selectivity coefficients are
shown for G6PDH (a), 6PGDH (b), TK1 (c) and GLT (d). The results refer to a clinical strategy
aimed to hinder the production of ribose.

On the other hand, the selectivity coefficient of 6PGDH, the second step of
pentose phosphate pathway, is distributed around very low (and negative)
values (Fig. 4.b), meaning that the control exerted by that enzymatic step would
have a very similar amplitude in both the normal and the cancerous phenotype.
The glucose transporter, GLT, also shows appreciable positive values of its
selectivity coefficient (Fig. 4.d). This is not a surprising result considering that
the control exerted by GLT on the glucose uptake is higher in the cancer
phenotype than in the normal. Because the glucose influx through GLT is split

between PPP and the downstream steps of glycolysis, it is reasonable to expect
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that the positive differential control of GLT on the uptake of glucose is “echoed”

in the control over the flux entering the pentose phosphate pathway. This fact

makes GLT an interesting candidate target as its inhibition would elicit the

desired response in the system with respect to two possible strategies of

intervention, one aiming to starve cancer cells, and one aiming to hinder their

replication potential by decreasing the production of ribose.
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Figure 5 -Normalized selectivity, safety and reliability coefficients plotted versus each other

- Strategy 2. The value of the coefficients was evaluated with regard of the clinical strategy aimed

to hinder ribose production.

169



Fig. 5 shows that G6PDH is the best enzyme in terms of all the three criteria of
selection. GLT might be also considered as a putative target, sharing with

G6PDH (and other enzymes) the highest value of safety (1/7,), and being the

second best in terms of both selectivity and reliability. The central part of Table
2 shows the global score computed for the different enzymes through Eq.(18).

The enzymes listed are the same shown in Fig. 5, i.e. enzymes with a positive

average selectivity coefficient S 1] et

STRATEGY 3: INHIBITING THE EXCRETION OF LACTATE

In a clinical strategy aimed to hinder the lactic acid efflux from cancer cells, one
might consider to inhibit the activity of enzymes such as the lactate transporter
(LCT) or the lactate dehydrogenases (denoted in Fig. 1 as LDH and LDHP).
Paradoxically, in our study these enzymes show very low selective coefficients
(Fig. 6.a-b-c), meaning that the control they exert on the lactic acid efflux is
similar in cancer and normal cells. Although in general this represents a bad
result in terms of drug selectivity, in the context of this specific clinical strategy
it might not imply particularly harmful consequences. Normal cells, in fact, do
not rely on the fermentative pathway of glycolysis (except for muscle cells
under effort), hence a drug targeting one of these enzymes might elicit the
desired effect on cancer cells without compromising the normal functioning of
their normal counterparts. In this case, rather than the selectivity coefficient,
one might be interested in the distribution of the pure flux control coefficients
of LDH, LDHP and LCT. However, our data showed that for these enzymes not
only the differential control (selectivity coefficient) was particularly low, but
also the control coefficients corresponding to each of the metabolic states under
comparison. In contrast with LCT, LDH and LDHP, a high selectivity coefficient is
shown by the glucose transporter (Fig. 6.d). Interestingly, the values of the

selectivity coefficient of GLT are higher for the efflux of lactate than for the
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uptake of glucose. As a consequence of targeting GLT, then, one would expect an
increasing in the ratio between the flux entering the TCA cycle and the glucose

influx from the value of the unperturbed cancer phenotype.
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Figure 6 - Selectivity coefficient distributions - Strategy 3. The selectivity coefficients are
shown for LCT (a), LDH (b), LDHP (c) and GLT (d). The results refer to a clinical strategy aimed to
inhibiting the excretion of lactate.

From Fig. 7, GLT appears to be the best putative target in respect to the criteria
of highest selectivity and reliability. It is also hardly toxic, as many of the other
enzyme shown in the plot. The score of the enzymes in Fig. 8 is reported in the

right part of Table 2.
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Figure 7 -Normalized selectivity, safety and reliability coefficients plotted versus each other
- Strategy 3. The value of the coefficients was evaluated with regard of the clinical strategy aimed

to hinder the excretion of lactate.

SAMPLING CONCENTRATIONS AND KINETIC PARAMETERS

The same analysis performed for the three clinical strategies illustrated above
was repeated by including the kinetic parameters in the set of sampled
quantities. In particular, in addition to the concentrations, we sampled
parameters such as Michaelis-Menten constants of inhibition/activation
constants, quantifying the strength of the interaction between the enzymes with

their substrates and effectors.
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The effect of enlarging the set of sampled quantities consisted of spreading the
distributions of the control properties over wider ranges of values. In the vast
majority of cases (90%), the averages of the selectivity coefficient distributions
maintained their sign. This fact implies that the main traits of the control
properties of the system already emerge from the data defining the metabolic
states under comparison. In particular, the qualitative behaviour of the
enzymes, in terms of the differential response that their inhibition would elicit
in the system between the two metabolic states, is statistically predicted to be
the same independent of whether the kinetic parameters are included or not in
the set of sampled quantities. However, the increased uncertainty in the
definition of the model, due to the sampling of the parameters, might affect the
results obtained previously in terms of the suitability of the different enzymes
as putative drug targets. In Table 3 we provide the listing of the top scoring
enzymes for the three different clinical strategies where the kinetic parameters

were included in set of sampled quantities.

Strategy 1 Strategy 2 Strategy 3
Reaction step Score Reaction step Score Reaction step Score
GLT 1.00 G6PDH 1.00 GLT 1.00
Phi exc. 0.49 GLT 0.59 Phiexch 0.42
GPI 0.42 AK 0.48 GPI 0.41
ACO 0.38 TrKetl 0.40 G6PDH 0.34
G6PDH 0.35 GSSGRD 0.37 RibPiso 0.34
Phi trs. 0.35 GAPDH 0.36 TrAld 0.34
RibPiso 0.34 RibPepi 0.35 TrKet2 0.34
TPI 0.34 TrKet2 0.35 TrKetl 0.32
TrAld 0.34 TrAld 0.35
TrKet2 0.34 PGK 0.35
TrKetl 0.33 ATPase 0.09

Table 3 - Suitability of the enzymes as drug targets. when both metabolite concentrations
and kinetic parameters are sampled. As in Table 2, except for the fact that the results are
obtained by sampling both the metabolite concentrations of the cancerous phenotype and the

kinetic parameters.
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DISCUSSION

In this paper we presented a study aimed to identify putative targets for a drug
operating at the metabolic level and designed to attack breast cancer. The
suitability of the different enzymes as putative targets was assessed with
respect to criteria of maximal efficacy and minimal toxicity, both evaluated in
terms of control coefficients. The criterion of low toxicity, in particular, requires
that both the normal and the cancerous metabolic phenotypes are taken into

account and their control profiles compared.

The two metabolic states (normal and cancer) and the dynamic properties of
the system were described based on currently available literature data.
Unknown quantities were sampled randomly and the control properties of the
system evaluated at each sampling iteration. The search for putative targets was
performed with regard to three possible clinical strategies: starvation of cancer
cells through inhibition of glucose uptake; hindering of cell replication by
inhibition of ribose production; prevention of tumour expansion via
acidification of extracellular environment by inhibiting lactate excretion. The
glucose transporter (GLT) and glucose-6-phosphate dehydrogenase (G6PDH)
emerged as the two best putative targets in respect to all the three clinical
approaches. In interpreting these results, however, some considerations have to
be made. For example, the normal metabolic phenotype has been described in
terms of the flux pattern and metabolite concentrations of different cell types. In
particular, the concentrations of cytosolic metabolites and the ratio between the
glycolytic flux and the PPP flux were taken from Schuster’s model of human
erythrocytes [24]; on the other hand the concentration of most metabolites in
mitochondria and the portion of the glycolitic flux entering the TCA cycle were
retrieved by experimental data referring to skeletal muscle cells under resting
condition [25]. In doing so we intended to describe the normal metabolic

phenotype based, to the wider possible extent, on experimental data, hence
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using physiological values for the quantities defining the normal metabolic
state. However, the heterogeneity of these data and the fact that they do not
specifically refer to human breast cells’ metabolism may affect the outcome of
our study and the reliability of its predictions. For example, it is known that the
glucose transporter do not exert a high control on the glucose uptake in human
erythrocytes [10]. This might be (or have contributed to) the reason why GLT
showed a particularly high differential control between the cancerous and the
normal metabolic states over influx of glucose. The experimental
characterization of the metabolic phenotype in non-neoplastic human breast
cells would contribute to improve the reliability of our study, whose
probabilistic nature remains particularly valuable in the abundant cases in

which the value of the kinetic parameters are unknown or uncertain.

To further improve the reliability of our predictions, another aspect to be
considered is the value of the equilibrium constants. In our analysis, the
equilibrium constants were assumed to be known and a thermodynamically
consistent set of values was obtained from [39]. We point out two possible
limitations of such an assumption. In the first place, the values of the
equilibrium constants are often retrieved using computational algorithms
designed to provide reasonable approximations [61-63], and they do not
necessarily reflect the value of the relevant in vivo conditions. Experimental
quantification of the free energy changes occurring in different metabolic
reactions is available on repositories such as Web GCM [64], but they are
currently far to cover even just the central carbon metabolism as represented in
Fig. 1. A second limitation is introduced by considering the same set of
equilibrium constants for both the normal and the cancerous metabolic
phenotypes. The value of the equilibrium constants varies depending on the
specific physiological conditions, and factors such as the pH can affect it to a
considerable extent [65]. Despite the internal pH of cancer cells is basically the

same as in normal cells [33], the mitochondrial concentration of protons (which
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is buffered by the bigger cytosolic volume) might significantly differ in the two
phenotypes, resulting in a different set of values for the equilibrium constants of

mitochondrial reactions.

Regarding specifically the third clinical approach, we notice that inhibiting the
excretion of lactic acid has a double effect: on one hand it prevents cancer cells
from creating the hyperacidic extracellular environment by means of which
they invade the normal tissue; on the other hand it results in accumulation of
intracellular lactic acid with toxic effect for neoplastic cells. Depending on the
rationale driving this clinical strategy, different definitions of selectivity and
toxicity coefficients may be provided. If the focus is on increasing the
concentration of lactic acid in transformed cells above toxic levels (rather than
decreasing the acidity of the tumour micromilieu), the criteria of selectivity and
toxicity might be better defined in terms of concentrations coefficients rather

than flux coefficients.
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SUPPLEMENTARY MATERIAL

RATE EQUATIONS

Metabolic reactions
The rate laws used to describe the kinetics of the different reaction steps are of

four different forms. All the metabolic reactions in our model follow kinetic laws

that can be expressed in the following general form

_IB)”
K

v=V__ ~£Hk[Ak]“k ]~f(A,B,E,K) (5.1)

eq

where [A,] and [B,] denote the concentrations of substrates and products
involved in the generic reaction o, 4, + a,A4, +...— S,B, + ,B, +..., while ¢, and
S, denote their corresponding stoichiometric coefficients. f is a function

describing the interactions of the enzyme with substrates (A), products (P) and
allosteric effector (E). The strength of such interactions depends on Kkinetic
parameters (K) such as Michaelis-Menten constants of inhibition/activation
constants. As stated in the main text, the benefit of using kinetic laws following

the general form of Eq.(A.1) is that the thermodynamics of the reaction,

expressed by the factor (Hk[Ak]“k ~TI1,[B,1" /Keq), is maintained separated from

the properties ascribable to the specific enzymatic mechanism governing the

reaction kinetics and described by f(A,B,E,K).
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Carrier-mediated transport

The carrier mediated transport of a generic metabolite S from compartment c1
to compartment cZ was modelled through the general rate law proposed by Li et

al. [25]:

V= Tmax ( K SCl SCZ ] (SZ)

cl +Sc1 KCZ +SCZ

where T is the maximal transport rate from compartment c1 to compartment

X

c2,and K,, is the Michaelis-Menten constant.

A slightly modified version of Eq. (S.2) was used to describe the transport of
cofactors between cytosol and mitochondria. In particular, the antitransport of
ATP and ADP across the inner mitochondrial membrane was modelled through

the following equation:

PS, B PS
Kot +PS Kmit

cyt—mit,PS cyt cyt—mit,PS

mit S3
+PS . (53)

V=Tyx -
where PS=[ATP]/[ADP] is the phosphorylation potential. A similar expression

was used for the apparent transport of NADH from cytosol to mitochondria in

exchange for NAD:

RS RS .
V= T . cyt _ . mit S4
MAX {KCYt + Rscyt Kmlt + RSmit j ( )

cyt—mit,RS cyt—mit,RS

where RS=[NADH]/[NAD] denotes the redox potential. We note that Egs.(S.3)-

(S.4) are characterized by two Michaelis-Menten constants, as these flux

expressions describe the action of antiporters [25]. In particular, the
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phenomenological Michaelis-Menten parameters include the effect of

mitochondrial membrane potential (AY ).

Passive diffusion

Passive diffusion was modelled through the following expression:

v=A4(S,-S.,) (S.5)

where A denotes the permeability coefficient for diffusion from compartment

c1 to compartment c2.

Electron transport and oxidative phosphorylation

The electron transport chain and oxidative phosphorylation were described

through the following three lumped reactions, as in Li et al. [25]:

NADH(m) + H*(m) + 0.5 O2(m) = NAD(m) + H20 + 10 AH*
FADH2(m) + 0.5 Oz = FAD(m) + H20 + 6 AH*
ADP(m) + Phi(m) + H*(m) +3 AH* - ATP(m)

The first two reactions require pumping protons from the mitochondrial matrix
(m) into the inter membrane space, while the third reaction requires 3 of these
protons to be pumped back into the mitochondrial matrix, providing the motive
force for the phosphorylation of ADP into ATP. The kinetics of these three

reaction were described through the following rate laws (taken from [25])

RT MAX K/ MAX b
Ve [NADH][0,]”°[H'] [NAD] (56)
1+ 2 +

K’ K’

exp(_m%].w [NADHJ[O,"*[H'] _,, [NAD]
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MAX K’ MAX b

V= o (S.7)
1+ [FADH, ][O, ] N [FAD]

K’ K°®

exp[_ 6AG,, j_v ; [FADH,][0,]** _y» [FAD]

exp[+ 3AG,, j v [ADP] [1}9(1] [H] v [ATbP]
R K K
= r (S.8)
1, [ADP][P][H"] [ATP]

K' K"

Egs. (5.6)-(5.7)-(S.8) have the form of generalized Michaelis-Menten equations

where the forward rate has been modified to depend on the proton motive force

defined by AGH+ . The proton motive force, in turn, can be expressed as:

where

H+
AG,. =F-A¥Y+RTIn| -~ (S.9)

H +

mit

Fis the Faraday’s constant (F=2.3061x10" cal ;
-mmol
i 3 cal

R is the gas constant (R=1.986-10 ;

K-mmol

T the absolute temperature (in the human body T=312 K =37°C);

AY is the mitochondrial membrane potential. If the inner and outer
surface of the mitochondrial membrane are thought as the plates of a
capacitor [66], the membrane potential can be expressed as:

H' —H'.
A =0 (S.10)

where C denote the capacitance. Empirical values can be found in the

literature for C. We set €=6.75x10" mTM [67, 68].
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List of the rate equations

The control coefficients were evaluated at each sampling iteration step based on
a set of rate equations governing the kinetic of every reaction or metabolic
process. Here we report the complete set of rate equations characterizing the
dynamics of our reconstruction of central carbon metabolism. We also provide
the parameter values that give rise to the normal metabolic steady-state (see
next section). In particular:

e For thermodynamic consistency, all the equilibrium constants (K, ) were

retrieved from the same source [39];

e The maximal activities or rates (V__,T__ or A) were evaluated to make

the set of metabolite concentrations and the values of the other
parameters consistent with the flux characterising the steady-state under
consideration.

e For all the other parameters we kept the value used in the paper from

which the rate equation was taken.

Reactions occurring in the cytoplasm

Hexokinase (HXK) - GLC + MgATP — G6P + MgADP + H*

Viz [ MgATP)-[Mg]

" [GLC] m . ‘I/WMI . [MgATP]+ M1 _[G6P][MgADP]
[GLC]+KGLC KMgATP Mg,ATPMg Keq

%

HXK_1+[1\4€4,47p]{1+ [Mg] j+[1\/llg]+[1.55+G?de.[l_‘_[Mlg]J+[GZI3P2]+[Mg]-[C;‘23P2]
K K K, | K K

1
MgATP Mg,ATPMg Mg G6P G23P2 KMg MgG23P2

V. ..=129E-01; K, =3.90E+03; V,,=1.58E+01; V,,,=3.32E+01; K} =1.00E+01;

GLC
Kgp=4.50E-03; K, =1.03E+00; K, ,,=1.44E+00; K =1.14E+00; K ,,,,=2.70E+00;
K, =3.44E+00;

Mg,ATPMg G23P2
MgG23P2
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Glucosephosphate isomerise (GPI) - G6P — F6P

Vm.[%p_%fj
K

eq

Vepr =
G6P+K" [1+F6PJ

G6P M
F6P

V,=1.20E+02; K, =3.93E-01; K, =1.82E-01; K ,=7.10E-02;

G6P F6P

Phosphofructokinase (PFK) - F6P + MgATP — F16P2+ MgADP + H"

K

(150221} L1
KATP KMg
[1+ [Aﬂ@d].(u [F6P]j

M
AMP Fé6pP

Vinax ~([F6P] [MgATP]—LF16P2] [MgADP]J

VPFK

(F6P+ K}, )-(IMGATP1+ Ky pyp )| 1+ L,

MgATP

V= 1.49E+00; K, =1.00E+05; K ,=1.00E-01; K ,;,=1.00E-02; K* =3.30E-02;

F6P ATP
M
K

MgATP

=6.80E-02; Kllwg =4.40E-01; L,=1.07E-03;

Aldolase (ALD) - F16P2 — DHAP +GraP
[DHAP]-[GraD]

[F16P2] [F16P2]
Vmax ' M 1 -
KF16P2 Keq
Vap =
1. [F16P2] [GraP] [DHAP]- ([GmP] +K G’Viap) | [F16P2] [GraP]
K117V116P2 KéraP KZJWHAP 'Kcl;mp Kllﬂwwpz 'K(I;lrap

V,..=1.27E+01; K, =1.14E-01; K%, ,,=7.10E-03; K }t,,,=3.64E-02; K !, =1.91E-01;
K ,=5.72E-02; K!! ,=1.76E-01;

GraP ™~ GraP ™~

Triosephosphate isomerase (TPI) - DHAP — GraP

v _ - KgIHAP Keq
TR [GraP] [DHAP]
1+ K + K
GraP DHAP

V,...=7.03E+02; K, =4.07E-02; K }t,,,=8.38E-01; K/, ,=4.28E-01;

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) -
GraP + Phi+ NAD — 13P2G + NADH + H*
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[13P2G]-[NADH]
[GraP]-[NAD]-[Phi] | | _ [GraP]-[NAD]-[Phi]

max M M M
KGraP 'KNAP 'Kphi Keq

Vaaroit = (1+ [Gmp]M1+ [Nﬁp])_[1+[l”;'lj+(1+[13’fmj.[1+ [Nf‘WDH]jA

M
GraP NAP Phi 13P2G NADH

Ve =5.54E+02; K, =6.61E-05; K;; ,=5.00E-03; K ;,,=5.00E-02; K ;; =1.13E+01;

GraP

KM

13P2G

=3.50E-03; K, =8.30E-03;

Phosphoglycerate kinase - (PGK) 13P2G + MgADP — 3PG + MgATP

mec.[[MgADP]-[BPZG]—

M M
KMgATP "Ri3pac

[MgA TP]-[3PG]]

oK = (1+ [MgADP]j_[lJr [1K3P2G]j+(1+ [I\I/igMATP]]_[lJF [3PG])_1

M M KM
MgADP 13P2G MgATP 3PG

v

M

V,=6.44E+02; K, =1.46E+03; K, ,,,=3.50E-01; K ,,,=4.80E-01; K% ,,,=2.00E-03;
KY =1.20E+00;

3PG™

Bisphosphoglycerate mutase (BPGM) - 13G2P — 23G2P

V. KN, -([131926]—[231%;]}

eq

Vepeu =
14 [2 3}526]

23P2G

V,=1.29E-01; K, =1.00E+05; K3 ,,,=7.60E+04; K33 ,,,=4.00E-02;

Bisphosphoglycerate phosphatase (BPGP) - 23P2G — 3PG + Phi

Vo -{[231326] —BK”]J

eq

A =
brap [23P2G]+ K},

V. =6.82E-02; K, =1.00E+05; K3 ,,,=2.00E-01;

Phosphoglycerate mutase (PGM) - 3PG — 2PG

v .[[3PG] - [Z;G]J

eq

PGM —
[BPG]+ Ky, -[1 + [IZ{PG]J

1

M
2PG

Ve =2.58E+02; K, =1.45E-01; K;,.=5.00E+00; K;,;=1.00E+00;
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Enolase (ENO) - 2PG — ENO

v .[[zpa] —i[’;fp ]J

eq

Veno =
[2PG)+ K}y, -{1+[PEP]j

M
PEP

Vox=1.93E+02; K, =1.70E+00; K},.=1.00E+00; K ,..,=1.00E+00;

2PG PEP

Pyruvate kinase (PYK) - PEP + MgADP + H" — PYR + MgATP

Vo -([PEP] -[MgADP] —WWJ

eq

PYK —

4
i ,[H[AT[PW]j
ATP

[1+[P§P]J '[“[?Am]}

PEP F16P2

(IPEP]+ Ky, )-([MgADP]+ Ky 0 )| 1+

MgADP

V,=3.68E+01; K, =1.38E+04; L,=1.9E+01; K;,,=2.25E-01; K, , ,,=4.74E-01;
K., =3.39E+00; K}, ,=5.00E-03;

ATP F16P2

Lactate dehydrogenase (LDH) - PYR + NADH + H" — LAC + NAD

[LAC]-[NAD]
. | {_ [PYR]-[NADH]
max KM . KM K

PYR NADH eq

[1+ [IZYR])[H [NADH]){1+ [IL(AC]M1+ [NAD]j_l

M M M KM
PYR NADH LAC NAD

[PYR]-[NADH]

\%

V,..=2.98E+02; K, =9.09E+03; K
K" =5.00E+00;

M =3.98E-01; K =7.00E-03; K" =8.00E+00

PYR NADH LAC

Lactate dehydrogenase 2 (LDHP) - PYR + NADPH + H" — LAC + NADP

[LAC]-[NADP]
PYR]-[NADPH]

[PYR]-[NADPH] | | [
max KM 'KM

PYR NADPH eq

Vipg =
[H[PYR]J.{HUVMHJHH[LAC]J.[HWJ_l
K K K

M M M KM
PYR NADPH LAC NADP

V,=1.98E-01; K, =1.42E+04; K },=3.98E-01; K/, =7.00E-03; K, .=8.00E+00
K"  =5.00E+00;

NADP

184



Glucose 6-phosphate dehydrogenase (G6PDH) - G6P + NADP — 6PG + NADH + H"

[6PG)-[NADPH]

[G6P]-[NADP] [G6P]-[NADP]

ax . 1 —
K(I;VIGP ‘K 11\Z40P Keq
Veorpn =
[G6P]
[NADP]- (1 +
1. cop | [ATPy,] , [NADPH] , [23P2G]
K" K! K" K!
NADP ATP NADPH 23P2G

V. =2.09E+01; K, =2.00E+03; K¢, =6.67E-02; K, ,,=3.67E-03; K, ,,,=3.12E-03;

G6P NADP NADPH
1
K

! »=749E-01; K, ,,.=2.29E+00;

23P2G

Phosphogluconate dehydrogenase (6PGDH) - 6PG + NADP — RuSP + NADPH + H*

[RuSP]-[NADPH]
| | [6PG]-[NADP]
max KM . KM K

6PG NADP eq

[6PG]-[NADP]

Vepreon =

M
6PG

[NADPH]- £1 L 16P G]]

( . [N,?WDP]J . ( 1, [6PG] 12 3IPZG]] LATPy] |
K K K K K

NADP 6PG 23P2G ATP NADPH

V,.=2.03E+02; K, =1.42E+02; K %,,=1.00E-02; K}, ,,=1.80E-02; K},,,,,,,=4.50E-03;

6PG NADPH

K' =1.54E-01;K!., =1.20E-01;

ATP 23P2G

Glutathione reductase (GSSG) - GSS + NADPH + H" — 2 GSH + NADP

([GSH] ]2 [NADP]
[GSSG]-[NADPH] \ KX,

V . KII\‘;DP
max KM . KM - K
GSSG NADPH eq
Vesser =
[NADPH]- [1 + [G‘S;f G]j [GSH]- (1 + [GSMH ]J
1 + KGSSG + [NADP] . 1 + GSH
M M M
KNADPH KNADP KGSH

V. =1.16E+01; K, =1.04E+00; K ¢, =6.52E-02; K, ,,,=8.52E-03; Ky, =2.00E+01;
K! =7.00E-02;

NADP

Glutathione oxidation (GSHox) - 2 GSH — GSSG

Voo =K -[GSH]

GSHox

K=3.86E-03;
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Phosphoribolose epimerase (EP) - Ru5P — X5P

V. -[[RuSP]— [)1(< 24 ]]

eq
V. =

EP
[RuSP]+K [1 + XSPJ

RusP M
X5P

Vo =9.97E+02; K =2.7E+00; K, ,=1.90E-01; K .,=5.00E-01;

Ru5P X5P

Ribose phosphate isomerise (KI) - Ru5P — R5P

Vmax.(musp]_msm]

_ e

Vi = RSP
[RuSP]+Kj ., -(1 + ]
KRSP

Ve =9:40E+01; K, =3.00E+00; K ,,=7.80E-01; K 3¢ ,=2.20E+00;

Ru5P R5P

Phosphoribosylpyrophosphate synthetase (PRPPS) - R5P + ATP — PRPP + AMP

Vinax '[[RSP] .[MgATP]—LPRPPI [MgAMP]J

eq

1%
K}y +[MgATP])- (K, +[RSP])

PRPPS —
RSP

V,..=1.42E-01; K, =1.00E+05; K} ,=5.70E-01; K, =3.00E-20;

Transketolase 1 (TK1) - X5P +R5P — GraP +S7P

- .[[RSP].[XSP]_WJ

Vi1 (K, +[R5P])-[X5P]+ (K, + K, -[S7P])-[R5P]+ (K, + K, -[S7P])-[GraP]+ K, -[STP] +..
.., -[X5P]-[GraP]

V. .=3.02E+00; K, =1.05E+00; K,=4.18E-01; K,=3.06E-01; K,=1.24E+01; K,=4.96E-03;
K.=4.11E-01; K,=7.74E-03; K,=4.88E+01;

Transaldolase (TA) - GraP +S7P — E4P + F6P

Viax '[[57P]-[GraP]—Wj

Y= (K, +[GraP])-[S7P]+(K, + K, -[F6P])-[GraP]+ (K, + K, -[F6P])-[E4P]+ K, -[F6P] +...
K. -[S7P]-[E4P]

V,..=3.50E+00; K, =1.05E+00; K,=8.23E-03; K,=4.77E-02; K,=1.73E-01; K,=6.10E-03;
K.=8.68E-01; K,=4.66E-01; K,=2.52E+00;
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Transketolase 2 (TK2) - X5P + E4P — F6P +GraP

Vinss -([E4P] [X5P]- WJ

Vrez (K, +[E4P])-[X5P]+ (K, + K, -[F6P])-[E4P]+(K, + K, -[F6P])-[GraP]+K, - [F6P] +...
..K, -[X5P]-[GraP]

V,...=3.02E+00; K, =1.2E+00; K,=1.84E-03; K,=3.06E-01; K,=5.48E-02; K,=3.00E-04;
K.=2.87E-02; K,=1.22E-01; K,=2.15E-01;

Adenylate kinase (AK) - ATP + AMP — 2 ADP

Vo .([Mg ATP][AMP] [MgADP].[ADP]]

Vo = K:/[TP 'K,I:IMP Keq
AK [1 +[MgATP]j _ [1 N [AMP]J . (IADP]+[MgADP)) , [MgADP]-[ADP]
K (%)

V,.=1.78E+02; K, =2.5E-01; K},,=9.00E-02; K¢ ,=1.10E-01; K,,=8.00E-02;

ADP AMP

ATPase - ATP — MgADP + Phi+ H"
VATPase :K [MgATP]
K=2.13E+00;

Reactions occurring in mitochondria

Pyruvate dehydrogenase (PDH) - PYR+ NAD +CoA — ACoA+ NADH +CO, +H"

[PYR]-[CoA]-[NAD]

V. _-[PYR]-[CoA]-[NAD]-| 1— [ACoA]: [CI?2 ]-[NADH]

eq

Vepy =

KMC- [1 + [M‘LDH]j -[PYR]-[CoA]+ KMB- [1 + [AZOA] ) -[PYR)-[NAD]+ KMA-[CoA]-[NAD]

NADH ACoA

Voex =9-18E-01; K, =1.00E+05; KMA =3.83E-02; KMB =9.90E-03; KMC =6.07E-02;

K., =4.02E-02; K},,,, =4.00E-02;
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Citrate synthase (CIS) - ACoA + OAA — Cit + CoA + H*
[CoA]-[Cit]

Vs -[0AA]-[AC0A] 1_[0AA]I-(M

eq

Ves = }
KK .£1+ [C’f]jmj{ -[ACoA]-(lJr

Cit

[Cit]
.

}+[0AA]-[AC0A]+

1 1 1 1 1
KA TP KADP KAMP KCOA KSCA

[OAA]K” '(1 L [ATP,,] [ADP,,]  [AMP,,] [CoA] [SCA]J

V,..=2.69E+00; K, =1.00E+05; K, =9.00E-01; K',,,=1.80E+00; K,,,=6.00E+00;
K!,=1.60E+00; K/,,=6.75E-01; K!.,=1.40E-01; K'=3.33E-03; K"'=4.00E-03; K}=7.00E-03;

Aconitase (ACO) - Cit — ICit

,Lcit] [ | _licit] /[Cit]]

) ~ max Kg[t Keq
Aco [Cit] [ICit]
1+ K + K
Cit Icit

V. =5.56E+01; K, =7.14E-02; K, =1.10E+01; K., =2.96E-01;

Cit ICit

Isocitrate dehydrogenase - ICit + NAD = AKG + NADH + CO, + H"

Viax '([NAD]'[ICitF _Licie} ‘[AKG]'[COZ]-[NADH]]

— eq
VIDH -

(INAD]+ K )-[ICit ]’ +[[NAD]-(K§4 + K Ky )+ K [NAM;(],UC“FJ
Q

A
£1+ KADP ]_(1+[ATPT0T]]
;
[ADPTOT] KATP
V. =1.26E+03; K, =1.004E+00; K'=7.40E-02; K/ =5.90E-02; K, =9.10E-02;
K,=7.66E-03; K,=2.90E-02;

a-ketoglutarate dehydrogenase (AKD) - AKG + NAD + CoA — SCA+ NADH + CO,

[CO,]-[SCA]-[NADH]
v | 1_ [AKG]-[CoA]-[NAD]
max K

eq

AKD — M 4 o ”
1+ K -(1+ Ko J-[1+[AT,PTOT]J+ Ky 1+[SC;4] LS. .(1+[NALI)H])
[AKG] [ADFy, ] K op [CoA] K, ) [NAD] Ky
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Vo =7-73E+01; K, =1.00E+05; K, =1.00E-01; K}, =5.00E-02; K’ =8.00E-02;

ADP

K, =5.50E-02; K;' =2.10E-02; K, =6.90E-03; K = 4.50E-03;

Succinyl-CoA synthetase (SCAS) - SCA+ ADP + Phi — Succ + ATP

[Succ]-[ATP,,,]-[CoA]
[SCA]-[ADP,yy]-[Phi] | | _ [SCA]-[ADP,yy ]-[Phi]

e gMOKMOLKM T K

SCA ADP Phi eq

Vscas = .
(1+ [sgA]M“ [ADgTOT]j_(1+ [PZ’]HH [S”M“]j-(u [ATng]]___
K K K K K.

SCA ADP Phi Succ

...[1+ [C‘A’fl]]q
KCOA

Voo =7-10E-01; K, =2.00E+00; K, =2.50E-01; K7, =4.10E-02; K}y, =1.40E+00;
K}  =1.00E+00; K, =1.60E+00; K, = 1.00E-02;

Succ ATP

Succinate dehydrogenase (SDH) - Succ + FAD — Fum+ FADH,

[Fum]-[FADH,]

[Succ]-[FAD] [Succ]-[FAD]

max 1_
K.gucc‘KprélD eq
VvV =
ot 1, [Succ] | [FAD] K  [Succ] [FAD] , [Fum]  [FADH,] KY  [Fum] [FADH,]
K: KY K K: K" K: K K. K: K"
Succ FAD Succ Succ FAD Fum FADH, Fum Fum FADH,

V.o =3.30E-01; K, =1.00E+05; K2 =1.30E-01; K}, =3.00E-04; KX =2.50E-02;

Succ FAD Fum
KY . =150E-03; K =1.00E-02; K =2.90E-01;

FADH, Succ Fum

Fumarase (FUM) - Fum — Mal

B L ( - [Mal]/[Fum]J

max Kg:lm Keq
Veum =
[Fum] [Mal]
1+ K + P
Fum Mal

Ve =3.58E+00; K, =5.00E+00; Ky =4.70E-02; K, =1.70E-02;

Fum Mal

Malate dehydrogenase (MDH) - Mal + NAD — OAA+ NADH + H"

[0AA]-[NADH]
[Mal]-[NAD] | | [Mal]-[NAD]

max KM ‘KM

Mal NAD K eq

o [1+[MSI]J,[H[NﬁD]J{H[OﬁA]]_(lJr[NfﬂllDH]j_l
K KNAD KOAA KNADH

Mal

1%
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Vo =8.03E-01; K, =6.26E+03; K,;, =5.50E-01; K, =1.00E-01; K, =1.00E-02;
KM

NADH

=1.00E-02;

Electron transport and oxidative phosphorylation

Complex I+I1I+1V - NADH +H" +0.5 0, - NAD+ H,0 +10AH"

(NAD] (104G,
/ 10AG,. | [NADH][O,]*[H"] | [NADH][O,]"’[H"] RT
Vi "X =g | K I K
eq
vV =
L 1, INADH][O,"*[H'] _[NAD]
" K’ T

V. ..=4.72E+04; K, =1.00E+12; K ,=2.05E-06; K, =3.15E+00;

ComplexII +1III + IV - FADH, +0.5 0, > FAD+ H,0+6AH"

[FAD] [ 06AG,.
Vo 886G | [FADH,I[0,1* | | [FADH,][0,]"° RT
max. p - ’ f N

RT K K

eq

V =
H+HT+1V 1. [FADH, ][O, ]0‘5 N [FAD]

K’ K’

V,..=2.89E+02; K, =1.00E+12; K ,=3.94E-02; K,=2.12E+00;

Complex V- ADP+Phi+ H" +3AH" — ATP
3AG,.

v .exp(ﬁAGm ] [ADP][PiJ[H'] | , _ [ADPI[Pi][H'] RT
max RT Kf Keq
VV = . .
1, [ADP][Pi][H"] [ATP]

K K®

V, ..=4.05E-01; K, =1.00E+12; K ,=2.71E-04; K, =8.68E+00;
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Exchange and translocation reactions

Glucose uptake (GLT) - GLCo — GLC(c)

, [6LCo] [ - [GLC]/[GLCO]]

v _ - ngCo Keq
GLr [GLCo] [GLC] «,-[GLCo]-[GLC]
1+ K + K + KK
GLCo GLC GLCo GLC

V,.x=4.32E+00; K, =1.00E+00; K ;;,,=1.70E+00; K ;. =6.90E+00; 2, =5.40E-01;

GLCo GLC

Lactate exchange (LCT) - LAC(c)— LACo

VLCT = Vmax (LAC - LACOJ

eq

V. ..=2.95E+02; K, =1.00E+00;

Pyruvate Translocation (PYRT) - PYR(c)— PYR(m)

v =T . [PYR(c)] ~ [PYR(m)]
PYRT S [PYR(c)]+ K;]K'R(c)»[m) [PYR(m)]+ K,",”YR(CH,"]
T =9-92E-01; K iy () =5.28E-02;

NADH/NAD translocation - NADH(c)+ NAD(m)— NADH(m)+ NAD(c)

(INADH]/[NAD]) , ) (INADH]/[NAD])
Kot +([NADH]/[1VAD])cyt Kot s mices + ([NADH]/[NAD])

VNAD(H) Transp = TMAX :
cyt—mit,PS

T .=3.87E-01; K% =6.28E-04; K"" =1.58E+01;

cyt—mit cyt—mit

ATP/ADP translocation - ATP,,.(m)+ ADP,,.(c)— ATP,,,(c)+ ADP,,.(m)

(IATPr)[ADPir]),, (TP )/[ADPy,])
Kit-sn + ([ATProp /[ADPro, 1) o Ko sepe +([ATPyop 1/[ADPro, 1)

Vaxp Transp = Lmax [

T =6.66E+00; K™  =554E-01; K  =6.66E+02;

mit—cyt mit—cyt

Intermembrane protons balancing (Protons leaking) - H'(im) — H"(m)

Vigimom = A ([ (im)]=[H" (m)])

A =1.56E+00;

Mitochondrial protons balancing - H"(c) — H"(m)
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[H+ ]cyt [I-I+ ]mit

1% =Tyay —
HY, cyt—mit MAX M + M +
Kcytﬁmit + [H ]cyt Kcyt%mit + [H ]

mit

T . =453E+01; K =2.75E-05;

cyt—mit

Oxygen exchange between cytosol and mitochondria - 0,(c)— 0,(m)

<

0,com = A+([0,(c)]=[0,(m)])

A=1.29E+02;

Oxygen exchange between cytosol and extra-cellular environment -

0,(ex) = 0,(c)

VOZ,ex—>c =41 ([OZ(eX)] - [02(6)])

A1=8.67E+00;

Phosphate exchange between cytosol and mitochondria - Phi(c)— Phi(m)

Vous e om = A+ ([Phi(c)]~[Phi(m)])

Phi,c—>m

A=2.87E+00;

Phosphate exchange between cytosol and extra-cellular environment -

Phi(ex)— Phi(c)

v

Phi,ex—c

= 2-([Phi(ex)] - [Phi(c)])

A=1.29E+01;

Carbon Dioxide exchange - CO,(m)— CO,(ex)

VCOZ,m—>ex = /1 : ([COZ (m)] - [COZ (eX)])

A=1.00E+00;
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NORMAL METABOLIC PHENOTYPE

Reaction Flux Reaction Flux
HXK 1.95E-01 PDH 2.90E-01
GPI 1.83E-01 CIS 2.90E-01
PFK 1.89E-01 ACO 2.90E-01
ALD 1.89E-01 IDH 2.90E-01
TPI 1.89E-01 AKD 2.90E-01
GAPDH 3.80E-01 SCAS 2.90E-01
PGK 3.17E-01 SDH 2.90E-01
BPGM 6.36E-02 FUM 2.90E-01
BPGP 6.36E-02 MDH 2.90E-01
PGM 3.80E-01 Complex LIILIV 1.46E+00
ENO 3.80E-01 Complex ILIILIV 2.90E-01
PK 3.80E-01 Complex V 4.10E+00
LDH 7.71E-02 GLT 1.95E-01
LDHP 1.29E-02 LCT 9.00E-02
G6PDH 1.25E-02 PYR translocation 2.90E-01
PGLDH 1.25E-02 NADH/NAD transloc. 3.03E-01
GSSGRD 1.20E-02 ATP/ADP transloc. 4.39E+00
GSHox 1.20E-02 Phi exchange (ext>cyt) | 9.99E-03
EP 6.08E-03 Phi transolc. (cyt>mit) | 4.39E+00
KI 6.37E-03 0; diffusion (cyt>mit) 8.77E-01
PPRPPS 3.33E-03 0; diffusion (ext—>cyt) 8.77E-01
TK1 3.04E-03 H+ diffusion (cyt>mit) | 4.40E+00
TA 3.04E-03 H* exchange (cyt—>ext) 6.00E-01
TK2 3.04E-03 H* leaking (im—>mit) 4.10E+00
AK 3.33E-03 CO, diffus. (mit->ext) 8.71E-01
ATPase 4.69E+00

Table S.1 - List of metabolic fluxes in the normal metabolic phenotype
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Metabolite | Conc. [Ref.] Metabolite | Conc. [Ref.]
GLCo 5.00E+00 [25] Suc 9.50E-01 [25]
GLC 4.57E+00 [39] Fum 9.50E-01

G6P 3.95E-02 [39] Mal 9.50E-01 [25]
F6P 1.53E-02 [39] 0AA 2.40E-03 [25]
F16P2 9.68E-03 [39] FAD 2.12E+00 [25]
GraP 6.06E-03 [39] FADH; 2.40E-01 [25]
DHAP 1.49E-01 [39] NADPH 4.89E-03 [39]
13P2G 4.81E-04 [39] NADP 2.34E-05 [39]
23P2G 2.75E+00 [39] NAD(c) 6.53E-02 [39]
3PG 6.58E-02 [39] NADH(c) 1.56E-04 [39]
2PG 8.44E-03 [39] NAD(m) 3.15E+00 [25]
PEP 1.09E-02 [39] NADH(m) 4.98E-01 [25]
PYR(c) 8.40E-02 [39] ATP(c)* 1.60E+00 [39]
LAC 1.68E+00 [39] ADP(c)* 3.24E-01 [39]
LACo 1.68E+00 [39] AMP(c)* 7.47E-02 [39]
6PG 2.51E-02 [39] ATP(m) 8.68E+00 [25]
Ru5P 4.72E-03 [39] ADP(m) 7.84E+00 [25]
GSSG 1.87E-04 [39] AMP(m) 0.00E+00 [25]
GSH 3.11E+00 [39] Phi(c) 2.90E+00 [25]
X5P 1.27E-02 [39] Phi(m) 1.38E+00 [25]
R5P 1.40E-02 [39] Phi out 2.90E+00 [25]
S7P 1.54E-02 [39] 02(c) 3.38E-02 [25]
E4P 6.27E-03 [39] 02(m) 2.70E-02 [25]
PRPP 1.00E+00 [39] 0; out 1.35E-01 [25]
PYR(m) 2.50E-02 [25] H+*(c) 7.94E-05 [25]
ACoA 2.00E-02 [25] H*(m) 5.01E-05 [25]
CoA 4.00E-02 [25] H+*(im) = H*(m)

Cit 9.50E-01 [25] H+ out 4.79E-05 [25]
ICit 6.70E-02 CO2(m) 1.53E+00 [25]
AKG 1.25E-01 [25] COz out 1.22E+00 [25]
SCA 1.25E+00 [25]

Table S.2 -List of metabolic fluxes in the normal metabolic phenotype

* These concentrations refer to the total amount of ATP, ADP and AMP in cytoplasm.
The free and Mg-bound portions of each of these cofactors were obtained assuming
that the association/dissociation reactions involving Mg and AXP are much faster than
the other ones (and hence carrying a null flux at steady-state). The concentration of
free Mg was set to 5.56E-01 [39] and was treated a parameter rather than a system

variable.
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CANCER METABOLIC PHENOTYPE

Reaction Flux Reaction Flux
HXK 1.70E+00 PDH 3.85E-01
GPI 1.20E+00 CIS 3.85E-01
PFK 1.51E+00 ACO 3.85E-01
ALD 1.51E+00 IDH 3.85E-01
TPI 1.51E+00 AKD 3.85E-01
GAPDH 3.18E+00 SCAS 3.85E-01
PGK 2.76E+00 SDH 3.85E-01
BPGM 4.24E-01 FUM 3.85E-01
BPGP 4.24E-01 MDH 3.85E-01
PGM 3.18E+00 Complex LIILIV 2.82E+00
ENO 3.18E+00 Complex ILIILIV 3.85E-01
PK 3.18E+00 Complex V 7.63E+00
LDH 1.90E+00 GLT 1.70E+00
LDHP 8.95E-01 LCT 2.80E+00
G6PDH 5.00E-01 PYR translocation 3.85E-01
PGLDH 5.00E-01 NADH/NAD transloc. 1.28E+00
GSSGRD 1.05E-01 ATP/ADP transloc. 8.01E+00
GSHox 1.05E-01 Phi exchange (ext=>cyt) | 8.71E-02
EP 3.14E-01 Phi transolc. (cyt>mit) 8.01E+00
KI 1.86E-01 0; diffusion (cyt>mit) 1.60E+00
PPRPPS 2.90E-02 0, diffusion (ext->cyt) 1.60E+00
TK1 1.57E-01 H+ diffusion (cyt->mit) 8.91E+00
TA 1.57E-01 H* exchange (cyt—>ext) 3.09E+00
TK2 1.57E-01 H* leaking (im—>mit) 7.63E+00
AK 2.90E-02 CO; diffus. (mit>ext) 1.15E+00
ATPase 1.07E+01

Table S.3 - List of metabolic fluxes in the cancer metabolic phenotype
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SAMPLING METABOLITE CONCENTRATIONS

To infer the control properties of the system under study, we used a random
sampling approach where the unknown or uncertain quantities are sampled
and the control coefficient evaluated subsequently (see Methods in the main
text). Some of the metabolite concentrations defining the cancer metabolic state
were among these quantities. In sampling the metabolite concentrations one
has to consider the thermodynamic constraints they have to satisfy. For
example, for any reaction governed by a kinetics of the form of Eq.(S.1), the

following constraint can be derived

[Tax

T <k (S.11)
B, > teq
Ipl Bp

where the direction of the inequality depends on the sign of the flux (the “less
than” sign corresponds to a positive flux, while the “greater than” sign
correspond to a negative flux). Similar constraints can also be derived for
reactions governed by the other kinetics laws (see previous section). By taking
their logarithmic form, most of these constraints can be rewritten as linear

inequalities. Eq.(S.11), for example, becomes:

Ya,In(4)-2 3 In(B,)$K, (5.12)

The only exceptions are represented by Eqs. (S6)-(S7)-(S8), where the
exponential factor used to account for the mitochondrial membrane potential
does not allow to linearize their corresponding thermodynamic constraints.
This problem was circumvented by replacing the exponential factors with
appropriate values, such that the sampled concentrations were compliant with

the original thermodynamic constraint derived from these kinetic laws. For
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example, the constraints imposed by Eq.(S.7), assuming the flux of the

corresponding reaction being positive, is:

6AG,, FADH,][0,]** FAD
exp(——RTH J-V,V{AX[ 21[ d —V,gAX[Kb Is0 (5.13)

and can be rewritten as

05 b K 6AG, .
[FADHz][Oz] >VMAX_K . Xp[ Hj (S.14)

[FAD] v, K° RT

6AG .
By replacing exp( RTH J with the maximum value (MV) that this factor can

assume based on the sampling interval of H  concentrations, the constraint

t

expressed through Eq.(S.14) can be rewritten as

[FADH,][0,1"° _ Vyu K/
[FAD] Vix K’

MV (S.15)

We note that Eq.(S.15) represents a more strict constraint with respect to
Eq.(S.14). The advantage of using Eq.(S.15), however, is that it can be linearized

by taking its logarithmic form:

f
MAX

b f
In[FADH, ]+0.5-In[0, ]~ In[FAD] > h{@-% : MV] (S.16)

The same procedure was applied to linearize the constraints derivable from

Eqgs.(S.6)-(S.8).
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The entire set of linear inequalities derived from the n different reaction steps in

the system can be expressed as follows

D> A X sb,  with j=1,2,..,n (S.17)

where X, is the logarithmic concentration of metabolite S, and 4, is the

stoichiometric coefficient of S, in reaction j. The direction of the inequality

depends on the sign of the flux of reaction j and the specific rate law from which

the constraint is derived.

Eq.(S.17) define a convex hull in the m dimensional space of the logarithmic
metabolite concentrations. Fig.S.1 shows an exemplifying representation of a
convex hull in a three dimensional space, corresponding to a scenario where

only three metabolite concentrations are considered (one for each dimension).

Figure S.1 - Schematic representation of a convex hull in three dimensions. Each dimension

represents the logarithmic concentration of a metabolite.
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For the metabolite concentrations to be thermodynamically meaningful, their
logarithmic values have to satisfy simultaneously all the n linear constraints of
Eq. (S.17), i.e. they need to be sampled within the convex hull defined by this

constraints. In order to do so, we used the known property according to which,

given a set of solutions {X(l),x(z),...,X(K)} of Eq.(S.17), any linear combination of

the form

[=EE—— (S.18)

is also a solution of the same set of inequalities. This means that, once an
representative initial set of solutions is found, a thermodynamically compliant
way to sample the metabolite concentrations consists of combining these

solutions linearly with random coefficients ¢, . To find a first representative set

of solutions, we used a linear programming approach. In particular we applied
the algorithm proposed by Lee et al. [38] to find the corner points of the convex
hull. These corner points were then used as the initial set of solution from which
to sample thermodynamically compliant sets of metabolite concentrations

through Eq.(S18).
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SYNOPSIS

In the quest for anti-cancer drugs, cancer metabolism has increasingly been a
focus of interest in clinical research. Enhanced glycolysis and robust production
of lactate constitute a characteristic trait that discriminates many cancerous
cells from their normal counterparts. As one of the main problems in defeating
cancer is the genetic heterogeneity of the altered cells constituting the
malignancy, the near-universality of these metabolic features can provide
researchers with a handle on such a complex disease, regardless of the specific

genotype of the single cells.

In this thesis we have developed and applied analytical approaches, mainly
drawn from the field of metabolic control analysis (MCA), to the study of cancer
metabolism. In particular we aimed to assess whether and to what extent the
metabolic features of cancer cells can be exploited to attack the malignancy
more specifically than through traditional approaches, such as chemotherapy or
radiotherapy. The underlying idea consists of identifying enzymes that
represent points of fragility that specifically characterise the cancerous
metabolic phenotype. These enzymes are such that an alteration in their activity
(due for example to the action of an anticancer drug) would elicit the desired
response in cancer cells, without affecting their normal counterparts. MCA can
help to identify such points of fragility by assessing how the control over
important cellular functions is distributed amongst the different enzymes.
Enzymes which exert a strong control over a fundamental biological property in
the cancer metabolic phenotype and a low control over that same property in
the normal phenotype can be considered good candidate targets for a drug
aimed at eliciting a high differential response between neoplastic and normal

cells.
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The application of MCA relies on a mathematical representation of the system
under study. Creating such a model is often hampered by the lack of data about
the precise kinetic laws governing the different reaction steps and the value of
their corresponding parameters. One of the most important results presented in
this thesis is that the metabolic quantities defining the normal and cancer
phenotypes (such as fluxes and metabolite concentrations), together with
heuristic assumptions about the properties of typical enzyme-catalyzed
reactions, already allow for a fast and efficient way to explore the effectiveness
of putative drug targets. This result was obtained by integrating a random
sampling approach into an MCA framework. In particular, we showed that if the
quantities defining a metabolic phenotype are known, it is possible to gain a
probabilistic insight on how the control over relevant systemic properties is
distributed amongst the different enzymatic steps, although only partial
knowledge may be available with respect to the kinetic properties of the system.
The comparison of the probabilistic control profile of the system between the
two metabolic phenotypes (normal vs. cancer, or host vs. pathogen) allows for a
first screening of the different enzymes as suitable target for drugs with high
efficacy and low toxicity operating at the metabolic level. The relevance of this
result lies in the fact that metabolomics and fluxomics studies are now standard
techniques in the analysis of cellular metabolism, and the quantities defining a
metabolic phenotype are experimentally more accessible than the Kkinetic

parameters of the different enzymatic steps in the system.

We applied our methodology in a case study aimed to identify putative
molecular targets for drugs designed to attack human breast cancer. We based
our study on fluxomic and metabolomic data currently available in literature,
and made use, where possible, of actual kinetic equations in the attempt to
minimize the uncertainty introduced in the description of the system.
Interestingly the results obtained were in accordance with previous

experimental work, highlighting the central role of certain enzymes such as GLT

207



and G6PDH in controlling glycolysis and the pentose phosphate pathway

respectively in some kinds of cancer.

CRITICISM

One possible criticism that could be levelled at the work presented in this thesis
is the limitations inherent to the probabilistic nature to our sampling-based
analytical approach. Indeed, biology seems to work contrary to randomness and
selective pressure may have confined the parameter values to a tiny region of
the entire parameter space. Such a subspace might restrict the behaviour of the
system to an extent that it is not reflected by the “most probable” outcome.
Consequently, the results obtained through a random sampling approach in the
investigation of the control properties of a system might face some scepticism
as they would seem to suggest that the most probable values are indeed (close
to) the value that one would observe in the real system. However, the real
system might be found in the “tail” of the distribution of the possible outcomes.
A possible answer to this criticism is that what defines the tail of a distribution
depends on the average and width of the distribution itself. In this respect, one
has to consider that the reliability of any probabilistic prediction depends on the
quality of its underlying assumptions. In our work we constrained the sampling
interval within reasonable range of values in order to limit the possible
responses of the system to what is reasonably expectable. On this basis it is
more reasonable to be guided by the most probable result, rather than the less
likely, in an attempt to infer the control properties of the system. We also
underline that a common practice in modelling biological systems consists of
“adjusting” the parameters in order to make the model fit with the
experimentally observed behaviour. Although such a model might reproduce
some known characteristic of the system under study, many other possible
choices for the parameter values are able to reproduce that same behaviour.

Sampling the parameters, then, corresponds to evaluating an entire population
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of models, each of them, in absence of any prior knowledge about the parameter
values, equally eligible to represent the system under study. In our case, all the
models of the population (differing from each other by their specific choice of
parameters) were able to reproduce the observed metabolic phenotypes under
comparison (normal and cancer) in terms of fluxes and metabolite
concentrations at steady-state. We suggest that this approach is preferable in
the abundant cases where the parameter values of the relevant in vivo

conditions are unknown.

A different criticism might be put forward when considering the specific choice
of the metabolic pathways taken into account as representative of the system
under study. Glycolysis, the pentose phosphate pathway and the TCA cycle
might not account for all the relevant metabolic changes that cells undergo
during carcinogenesis. In this case further refinement of the model in terms of
actual kinetic equations and parameter values would not necessarily lead to
more realistic results. This issue may be partly addressed through more
extensive experimental quantification of the metabolic changes occurring in
cancer. From a modelling perspective, the application of flux balance analysis
could also contribute in identifying a scaffold of reactions which are supposedly
hosting the main metabolic changes occurring in transforming cells. In
particular, FBA could be used to investigate the motive force that pushes many
cancer cells to (partially or totally) switch from respiration to fermentation, by
considering possible scenarios where the functioning of cancer cells is mainly
driven by different biological needs. In so doing, FBA solutions reproducing the
observed pattern of fluxes in well studied metabolic pathways could be used to
infer and predict other regions of metabolism where cancer and normal cells
differ. Identifying the biological functions driving and shaping the metabolic
phenotype characteristic of many cancer cells could also provide further criteria
to target the malignancy, based on the reprioritization of the systemic

properties underlying the functioning of cancer cells.
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FURTHER WORK

The results obtained during this project suggest possible directions to further
investigate cancer metabolism in a clinical context. Because the control profile
of a metabolic system seems to be determined to a good extent by the metabolic
state under consideration, it would be sensible to dedicate resources to retrieve
a detailed characterization of such metabolic states. This would be done for both
control and cancer cells of a specific type of neoplasia. Human breast cancer is a
natural choice to focus the experimental quantifications of these metabolic
profiles, since it has already been partly characterized. Measured fluxes and
concentrations would be integrated in our MCA-based analytical approach to
predict the suitability of the different enzymes as molecular targets, and the
validity of these predictions tested experimentally. In particular, siRNA and
transient transfection methods could be employed to down-regulate the
expression of the key enzymes highlighted in the study as best putative targets,

and the differential response of cancer versus control cells assessed.
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