9,564 research outputs found

    Discovering study-specific gene regulatory networks

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Microarrays are commonly used in biology because of their ability to simultaneously measure thousands of genes under different conditions. Due to their structure, typically containing a high amount of variables but far fewer samples, scalable network analysis techniques are often employed. In particular, consensus approaches have been recently used that combine multiple microarray studies in order to find networks that are more robust. The purpose of this paper, however, is to combine multiple microarray studies to automatically identify subnetworks that are distinctive to specific experimental conditions rather than common to them all. To better understand key regulatory mechanisms and how they change under different conditions, we derive unique networks from multiple independent networks built using glasso which goes beyond standard correlations. This involves calculating cluster prediction accuracies to detect the most predictive genes for a specific set of conditions. We differentiate between accuracies calculated using cross-validation within a selected cluster of studies (the intra prediction accuracy) and those calculated on a set of independent studies belonging to different study clusters (inter prediction accuracy). Finally, we compare our method's results to related state-of-the art techniques. We explore how the proposed pipeline performs on both synthetic data and real data (wheat and Fusarium). Our results show that subnetworks can be identified reliably that are specific to subsets of studies and that these networks reflect key mechanisms that are fundamental to the experimental conditions in each of those subsets

    Gcn4p and novel upstream activating sequences regulate targets of the unfolded protein response.

    Get PDF
    Eukaryotic cells respond to accumulation of unfolded proteins in the endoplasmic reticulum (ER) by activating the unfolded protein response (UPR), a signal transduction pathway that communicates between the ER and the nucleus. In yeast, a large set of UPR target genes has been experimentally determined, but the previously characterized unfolded protein response element (UPRE), an upstream activating sequence (UAS) found in the promoter of the UPR target gene KAR2, cannot account for the transcriptional regulation of most genes in this set. To address this puzzle, we analyzed the promoters of UPR target genes computationally, identifying as candidate UASs short sequences that are statistically overrepresented. We tested the most promising of these candidate UASs for biological activity, and identified two novel UPREs, which are necessary and sufficient for UPR activation of promoters. A genetic screen for activators of the novel motifs revealed that the transcription factor Gcn4p plays an essential and previously unrecognized role in the UPR: Gcn4p and its activator Gcn2p are required for induction of a majority of UPR target genes during ER stress. Both Hac1p and Gcn4p bind target gene promoters to stimulate transcriptional induction. Regulation of Gcn4p levels in response to changing physiological conditions may function as an additional means to modulate the UPR. The discovery of a role for Gcn4p in the yeast UPR reveals an additional level of complexity and demonstrates a surprising conservation of the signaling circuit between yeast and metazoan cells

    Phenotype clustering of breast epithelial cells in confocal images based on nuclear protein distribution analysis

    Get PDF
    Background: The distribution of the chromatin-associatedproteins plays a key role in directing nuclear function. Previously, wedeveloped an image-based method to quantify the nuclear distributions ofproteins and showed that these distributions depended on the phenotype ofhuman mammary epithelial cells. Here we describe a method that creates ahierarchical tree of the given cell phenotypes and calculates thestatistical significance between them, based on the clustering analysisof nuclear protein distributions. Results: Nuclear distributions ofnuclear mitotic apparatus protein were previously obtained fornon-neoplastic S1 and malignant T4-2 human mammary epithelial cellscultured for up to 12 days. Cell phenotype was defined as S1 or T4-2 andthe number of days in cultured. A probabilistic ensemble approach wasused to define a set of consensus clusters from the results of multipletraditional cluster analysis techniques applied to the nucleardistribution data. Cluster histograms were constructed to show how cellsin any one phenotype were distributed across the consensus clusters.Grouping various phenotypes allowed us to build phenotype trees andcalculate the statistical difference between each group. The resultsshowed that non-neoplastic S1 cells could be distinguished from malignantT4-2 cells with 94.19 percent accuracy; that proliferating S1 cells couldbe distinguished from differentiated S1 cells with 92.86 percentaccuracy; and showed no significant difference between the variousphenotypes of T4-2 cells corresponding to increasing tumor sizes.Conclusion: This work presents a cluster analysis method that canidentify significant cell phenotypes, based on the nuclear distributionof specific proteins, with high accuracy

    Time Series Cluster Kernel for Learning Similarities between Multivariate Time Series with Missing Data

    Get PDF
    Similarity-based approaches represent a promising direction for time series analysis. However, many such methods rely on parameter tuning, and some have shortcomings if the time series are multivariate (MTS), due to dependencies between attributes, or the time series contain missing data. In this paper, we address these challenges within the powerful context of kernel methods by proposing the robust \emph{time series cluster kernel} (TCK). The approach taken leverages the missing data handling properties of Gaussian mixture models (GMM) augmented with informative prior distributions. An ensemble learning approach is exploited to ensure robustness to parameters by combining the clustering results of many GMM to form the final kernel. We evaluate the TCK on synthetic and real data and compare to other state-of-the-art techniques. The experimental results demonstrate that the TCK is robust to parameter choices, provides competitive results for MTS without missing data and outstanding results for missing data.Comment: 23 pages, 6 figure

    Stochastic Data Clustering

    Full text link
    In 1961 Herbert Simon and Albert Ando published the theory behind the long-term behavior of a dynamical system that can be described by a nearly uncoupled matrix. Over the past fifty years this theory has been used in a variety of contexts, including queueing theory, brain organization, and ecology. In all these applications, the structure of the system is known and the point of interest is the various stages the system passes through on its way to some long-term equilibrium. This paper looks at this problem from the other direction. That is, we develop a technique for using the evolution of the system to tell us about its initial structure, and we use this technique to develop a new algorithm for data clustering.Comment: 23 page

    A citation-based map of concepts in invasion biology

    Get PDF
    Invasion biology has been quickly expanding in the last decades so that it is now metaphorically flooded with publications, concepts, and hypotheses. Among experts, there is no clear consensus about the relationships between invasion concepts, and almost no one seems to have a good overview of the literature anymore. Similar observations can be made for other research fields. Science needs new navigation tools so that researchers within and outside of a research field as well as science journalists, students, teachers, practitioners, policy-makers, and others interested in the field can more easily understand its key ideas. Such navigation tools could, for example, be maps of the major concepts and hypotheses of a research field. Applying a bibliometric method, we created such maps for invasion biology. We analysed research papers of the last two decades citing at least two of 35 common invasion hypotheses. Co-citation analysis yields four distinct clusters of hypotheses. These clusters can describe the main directions in invasion biology and explain basic driving forces behind biological invasions. The method we outline here for invasion biology can be easily applied for other research fields
    corecore