1,460 research outputs found

    Modeling musicological information as trigrams in a system for simultaneous chord and local key extraction

    Get PDF
    In this paper, we discuss the introduction of a trigram musicological model in a simultaneous chord and local key extraction system. By enlarging the context of the musicological model, we hoped to achieve a higher accuracy that could justify the associated higher complexity and computational load of the search for the optimal solution. Experiments on multiple data sets have demonstrated that the trigram model has indeed a larger predictive power (a lower perplexity). This raised predictive power resulted in an improvement in the key extraction capabilities, but no improvement in chord extraction when compared to a system with a bigram musicological model

    Integrating musicological knowledge into a probabilistic framework for chord and key extraction

    Get PDF
    In this contribution a formerly developed probabilistic framework for the simultaneous detection of chords and keys in polyphonic audio is further extended and validated. The system behaviour is controlled by a small set of carefully defined free parameters. This has permitted us to conduct an experimental study which sheds a new light on the importance of musicological knowledge in the context of chord extraction. Some of the obtained results are at least surprising and, to our knowledge, never reported as such before

    A Survey on Joint Object Detection and Pose Estimation using Monocular Vision

    Get PDF
    In this survey we present a complete landscape of joint object detection and pose estimation methods that use monocular vision. Descriptions of traditional approaches that involve descriptors or models and various estimation methods have been provided. These descriptors or models include chordiograms, shape-aware deformable parts model, bag of boundaries, distance transform templates, natural 3D markers and facet features whereas the estimation methods include iterative clustering estimation, probabilistic networks and iterative genetic matching. Hybrid approaches that use handcrafted feature extraction followed by estimation by deep learning methods have been outlined. We have investigated and compared, wherever possible, pure deep learning based approaches (single stage and multi stage) for this problem. Comprehensive details of the various accuracy measures and metrics have been illustrated. For the purpose of giving a clear overview, the characteristics of relevant datasets are discussed. The trends that prevailed from the infancy of this problem until now have also been highlighted.Comment: Accepted at the International Joint Conference on Computer Vision and Pattern Recognition (CCVPR) 201

    Probabilistic Modeling Paradigms for Audio Source Separation

    Get PDF
    This is the author's final version of the article, first published as E. Vincent, M. G. Jafari, S. A. Abdallah, M. D. Plumbley, M. E. Davies. Probabilistic Modeling Paradigms for Audio Source Separation. In W. Wang (Ed), Machine Audition: Principles, Algorithms and Systems. Chapter 7, pp. 162-185. IGI Global, 2011. ISBN 978-1-61520-919-4. DOI: 10.4018/978-1-61520-919-4.ch007file: VincentJafariAbdallahPD11-probabilistic.pdf:v\VincentJafariAbdallahPD11-probabilistic.pdf:PDF owner: markp timestamp: 2011.02.04file: VincentJafariAbdallahPD11-probabilistic.pdf:v\VincentJafariAbdallahPD11-probabilistic.pdf:PDF owner: markp timestamp: 2011.02.04Most sound scenes result from the superposition of several sources, which can be separately perceived and analyzed by human listeners. Source separation aims to provide machine listeners with similar skills by extracting the sounds of individual sources from a given scene. Existing separation systems operate either by emulating the human auditory system or by inferring the parameters of probabilistic sound models. In this chapter, the authors focus on the latter approach and provide a joint overview of established and recent models, including independent component analysis, local time-frequency models and spectral template-based models. They show that most models are instances of one of the following two general paradigms: linear modeling or variance modeling. They compare the merits of either paradigm and report objective performance figures. They also,conclude by discussing promising combinations of probabilistic priors and inference algorithms that could form the basis of future state-of-the-art systems

    Automatic chord-scale recognition using harmonic pitch class profiles

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This study focuses on the application of different computational methods to carry out a”modal harmonic analysis” for Jazz improvisation performances by modeling the concept of chord-scales. The Chord-Scale Theory is a theoretical concept that explains the relationship between the harmonic context of a musical piece and possible scale types to be used for improvisation. This work proposes different computational approaches for the recognition of the chord-scale type in an improvised phrase given the harmonic context. We have curated a dataset to evaluate different chord-scale recognition approaches proposed in this study, where the dataset consists of around 40 minutes of improvised monophonic Jazz solo performances. The dataset is made publicly available and shared on freesound.org. To achieve the task of chord-scale type recognition, we propose one rule-based, one probabilistic and one supervised learning method. All proposed methods use Harmonic Pitch Class Profile (HPCP) features for classification. We observed an increase in the classification score when learned chord-scale models are filtered with predefined scale templates indicating that incorporating prior domain knowledge to learned models is beneficial. This study has its novelty in presenting a first computational analysis on chord-scales in the context of Jazz improvisation
    • …
    corecore