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Abstract. In this survey we present a complete landscape of joint object
detection and pose estimation methods that use monocular vision.
Descriptions of traditional approaches that involve descriptors or models
and various estimation methods have been provided. These descriptors or
models include chordiograms, shape-aware deformable parts model, bag of
boundaries, distance transform templates, natural 3D markers and facet
features whereas the estimation methods include iterative clustering
estimation, probabilistic networks and iterative genetic matching. Hybrid
approaches that use handcrafted feature extraction followed by estimation
by deep learning methods have been outlined. We have investigated and
compared, wherever possible, pure deep learning based approaches (single
stage and multi stage) for this problem. Comprehensive details of the
various accuracy measures and metrics have been illustrated. For the
purpose of giving a clear overview, the characteristics of relevant datasets
are discussed. The trends that prevailed from the infancy of this problem
until now have also been highlighted.

1 Introduction
Object detection is the process of finding instances of real-world objects in images or
videos. Object detection algorithms typically use extracted features and learning algorithms
to recognize instances of an object category.

The position and orientation of an object is called the pose of the object. To determine
the pose of an object in an image is called pose estimation. A general task in the various
applications of pose estimation is to determine the position and orientation of each of the
object in the scene with regard to some coordinate system. There have been many works on
object detection and pose estimation separately. This work aims to cover all works that treat
these two problems simultaneously.

Monocular vision, by definition is vision with one eye/camera. This type of vision
greatly limits the perception of depth. For all of joint object detection and pose estimation,
the goal remains the same, given an input image, provide what objects exist in the input
image and their pose. The methods used vary based on the level of sophistication of the
input. In this paper, we discuss methods where the input is a single image (RGB or
Grayscale).
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The various applications of this problem include augmented reality [1], autonomous
driving [2], robotic manipulation [3,4] and inventory management [5]. Applications like
augmented reality and autonomous driving need real-time approaches whereas this
constraint can be relaxed a little when it comes to robotic manipulation or inventory
management in situations where taking time does not pose a threat.

2 Input types
Advancement in technology has enabled us to capture input data at various sophistication
levels.

2.1 Monocular (Colored/Grayscale)
One can say that this is the most common form of input. A colored monocular image is
easily available from any camera. Medical applications that interpret signals as images
commonly use grayscale images.

2.2 RGB-D
These are colored images along with depth data. The apparatus required for these images
has recently become more economically viable in the form of the Microsoft Xbox Kinect.
Other popular sensors are the Asus Xtion PRO LIVE and The Leap.

2.3 LiDAR
Light Detection and Ranging is an optical remote-sensing technique that uses laser light to
densely sample the surroundings, producing accurate measurements of distance to each
point the laser hits. The major hardware components of the LiDAR system include a
vehicle, laser scanner system, Global Positioning System (GPS) and an Inertial Navigation
System (INS).

2.4 RADAR
Radio Detection and Ranging is a radio wave based detection system that helps determine
the location and velocity of objects. There exist three kinds of RADAR - Short Range
(SRR), Medium Range (MRR) and Long Range (LRR). In the context of autonomous
driving, these RADAR systems perform different tasks (SRR for object/pedestrian
detection and emergency braking, MRR for lane change assistance and cross traffic alert
and LRR for Autonomous Cruise Control (ACC) and collision warning).

3 Formulation of object detection and pose estimation

3.1 Object detection
Object detection has two main components – localization and classification of the object of
interest. Localization can be formulated as estimating a vector �stitatin, where s, i, a and
i are respectively the x-coordinate, y-coordinate, height and width of the object. These are
mostly specified in the camera coordinate system. Classification can be formulated as
estimating a single number � that corresponds to the class number of the object of interest.
Combining these two, object detection can be formulated as estimating a vector �tstitati �
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3.2 Pose estimation
There are two ways in which we can formulate the pose estimation problem. We can
formulate it as a classification problem where the all the possible configurations of the
object are quantized into various classes. The pose of the object is then classified into the
appropriate class.

Assume that the set of all possible configurations of the object is  then, on dividing
this set into � dimensions such that all possible configurations in the � th dimension can be
depicted as � where �  �e���t. Further division of � into � subsets gives us �

� where
�  �e���t. Thus, the problem becomes to correctly place the pose of the object into one of
the �

� classes.
In the formulation of pose estimation as a regression problem, we regress an initial pose

to best fit the pose of the object. When we assume the pose of the object to be � -
dimensional, the regression-based approach should estimate a �-dimensional vector as the
pose of the object. Now we look at different types of approaches for joint object detection
and pose estimation. They can be categorized into vision based, hybrid and deep learning
based approaches.

4 Vision based
The vision based approaches heavily use domain knowledge and involve modeling the
input space in such a way that the expected output can be learnt based on the model. The
mathematical formulation, information contained in the selected features, determining what
features to use and using the right learning technique for efficiency are key to approach this
problem with this method.

The different contributions of works that fall under this approach can be broadly
categorized into descriptors/models and estimation methods.

4.1 Descriptors/Models

4.1.1 Chordiograms

Are shape representations based on geometric relationships of object boundary edges
ensuring that foreground elements are prioritized. A chordiogram is a � dimensional
histogram of all chord features on the boundary of a segmented object. A chord is a pair of
points �tt�n on the boundary points. The chord feature �t� is given as

�t�  �t�t t�t t � t�t � � t� (1)
where �t� is the chord length, t� is the chord orientation and t and � are normals of the
object boundary at t and � . They take into account the chord vector lengths, their
orientations and normals given the silhouette of the object of interest and capture the
geometric relationships like relative location and normals between pairs of boundary edges
as a high-level descriptor [6].

4.1.2 Shape aware deformable parts model

A deformable parts model (DPM) is a star shaped conditional random field (CRF), with a
root part for the whole object and several parts connected to the root. Each model part has
an anchor point which is relative to the root part. These parts are allowed to move around
their anchor point with a penalty. For simultaneous object detection and pose estimation
from only model silhouette information, a shape aware modification of the DPM can be
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made. Every coarse pose of the object maps to a component of the learned S-DPM. By
grouping nearby viewpoints, a certain number of discrete poses are arrived at. Silhouettes
of a coarse pose cluster are used in the training of a S-DPM component as positives. The
silhouettes of other poses, objects and random background edges are used as negatives. The
coarse pose of the object is determined by the component with the maximum score at each
image location [6].

4.1.3 Bag of boundaries (BOB)

After extracting contours of the image containing the object of interest, the bounding boxes
of various views of the object are resized to their average size. A template is created in
which each pixel counts the number of contours it is a part of. This gives us a midlevel
representation of the image as a bag of boundaries for shape matching [7]. A BOB operates
on information apart from shape context. It operates on image edge information by
detecting and aggregating boundaries in the neighbourhood of the BOB. The best matching
subset of BOBs to the given shape templates, such that maximal coverage of the image
contours estimated to be boundaries, are found in the case of object detection.

4.1.4 Distance transform templates

Templates based on the distance transform have proved to be effective in detecting and
estimating the pose of texture less planar objects. In [8], an edge map is created with the
Canny edge detector [9], followed by applying the distance transform on this edge map.
The distance transform template is then created by computing the level curve at a given
value. The level curve is essential as it makes sure that small gaps do not cause the object of
interest to be detected as two distinct objects.

4.1.5 Natural 3D markers

Natural 3D markers [10] are a set of landmarks on the object of interest. They are chosen
based on their visibility from different views and that are robust to illumination, partial
occlusions, clutter, etc. They are extracted under multiple viewpoints. In the case of the
N3Ms being clustered in a single region, the occlusion of that region would cause this
method to fail. Thus, the points are taken such that they are evenly spread across the entire
object of interest.

4.1.6 Facet features

Given the image contours, polygons are approximated to reduce the number of vertices.
Prior knowledge of the facets (depicted in figure 1) of the object of interest is then used for
detection and pose estimation [1].

Fig. 1. Depiction of a facet.

4

MATEC Web of Conferences 277, 02029 (2019) https://doi.org/10.1051/matecconf/201927702029
JCMME 2018



made. Every coarse pose of the object maps to a component of the learned S-DPM. By
grouping nearby viewpoints, a certain number of discrete poses are arrived at. Silhouettes
of a coarse pose cluster are used in the training of a S-DPM component as positives. The
silhouettes of other poses, objects and random background edges are used as negatives. The
coarse pose of the object is determined by the component with the maximum score at each
image location [6].

4.1.3 Bag of boundaries (BOB)

After extracting contours of the image containing the object of interest, the bounding boxes
of various views of the object are resized to their average size. A template is created in
which each pixel counts the number of contours it is a part of. This gives us a midlevel
representation of the image as a bag of boundaries for shape matching [7]. A BOB operates
on information apart from shape context. It operates on image edge information by
detecting and aggregating boundaries in the neighbourhood of the BOB. The best matching
subset of BOBs to the given shape templates, such that maximal coverage of the image
contours estimated to be boundaries, are found in the case of object detection.

4.1.4 Distance transform templates

Templates based on the distance transform have proved to be effective in detecting and
estimating the pose of texture less planar objects. In [8], an edge map is created with the
Canny edge detector [9], followed by applying the distance transform on this edge map.
The distance transform template is then created by computing the level curve at a given
value. The level curve is essential as it makes sure that small gaps do not cause the object of
interest to be detected as two distinct objects.

4.1.5 Natural 3D markers

Natural 3D markers [10] are a set of landmarks on the object of interest. They are chosen
based on their visibility from different views and that are robust to illumination, partial
occlusions, clutter, etc. They are extracted under multiple viewpoints. In the case of the
N3Ms being clustered in a single region, the occlusion of that region would cause this
method to fail. Thus, the points are taken such that they are evenly spread across the entire
object of interest.

4.1.6 Facet features

Given the image contours, polygons are approximated to reduce the number of vertices.
Prior knowledge of the facets (depicted in figure 1) of the object of interest is then used for
detection and pose estimation [1].

Fig. 1. Depiction of a facet.

4.2 Estimation methods

4.2.1 Expectation Maximization (EM) and Iterative Clustering Estimation (ICE)

EM finds the maximum likelihood parameters in statistical models. These methods are
conceptually similar (ICE is the manifestation of EM that considers local features that map
to an object instance and evaluates pose hypotheses). The expected membership of each
data point to one of the distributions is given by the expectation step and the parameters for
each distribution are given by the maximization step. Similarly, the expected membership
of each local feature to an object instance is given by the clustering step and the best object
pose corresponding to the feature memberships is given by the estimation step [4,7].

4.2.2 Probabilistic Network

This tree-structured network of probabilistic classifiers uses boosting for quick rejection of
negatives while the positives traverse multiple branches. The fundamental total probability
law is leveraged to compute the probability of being an object, given the pose parameters
[11].

4.2.3 Iterative genetic matching

This method uses a genetic algorithm with a given population, crossover rate and mutation
rate for the purpose of matching. The matching rate is the metric used for determining the
fitness of an individual. This method is proposed as an alternative to the EM and ICE
methods [12].

5 Hybrid approaches
In the case of hybrid approaches, the handcrafted features, representations or intermediate
results of some other technique work with a neural network. Again, the features are as
important as the architecture of the network to make this approach accurate and efficient.

Geometric constraints applied to a predicted 2D bounding box followed by regression
by a CNN to give a 3D bounding box is shown in [2]. Though hybrid methods try to
achieve best of both worlds, extending the network to also extract features has proved to be
much more effective.

6 Pure deep learning based approaches
Pure deep learning based approaches use end-to-end networks to map the inputs directly to
the expected outputs without any intermediate representations or extracted features. Though
computationally expensive, due to recent breakthroughs in technology, accurate real-time
approaches are feasible on high-end GPUs. Recently, CNNs have been outperforming DPM
based methods for the task at hand. We can further classify these approaches into single
stage or multistage methods.

A network is said to be multistage if it has stages performing distinct tasks linearly. A
single stage network has no intermediates and provides the output directly from the input.

6.1 Single stage
SSD-6D [13] proposes an extension of the SSD [14] detection framework for the task of 3D
detection and 3D rotation estimation. The 3D rotation space is decomposed into discrete
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viewpoints and in-plane rotations. The rotation estimation is then treated as a classification
problem. Appropriate sampling for the rotation space is required for obtaining good results.
This approach requires an offline stage to estimate 3D translation. This stage is used to
precompute bounding boxes w.r.t. all possible sample rotations.

PoseCNN [15] jointly carries out segmentation and pose estimation of the segmented
objects. It relies on a fully convolutional network to localize objects which might make it
harder to deal with multiple instances of the same object.

Deep-6DPose [16] proposes adding a branch to the prominent Mask-RCNN [17] for the
purpose of pose estimation such that no further pose refinement is necessary. Decoupling of
pose parameters into translation and rotation so that the rotation can be regressed via a Lie
algebra representation has been shown.

In [18], the authors attempt to combine detection and pose estimation at the same level.
The scores for the presence of an object category, the offset for its location and the
approximate pose are all estimated on a regular grid of locations in the image.

6.2 Multi stage
In BB8 [19], the idea of a cascade of multiple CNNs is proposed. In the first stage, a
segmentation network is applied to the input image to localize objects. The next stage
involves another CNN to predict 2D projections of the corners of the 3D bounding boxes
around objects. Pose in 6D is then estimated for the correspondences between the projected
2D coordinates and the 3D ground control points of bounding box corners.

7 Accuracy measures
The accuracy measures are specific to the proposed methods in the earlier works of pose
estimation. Intersection over Union (IoU) and Mean Average Precision (mAP) has been the
standard for reporting object detection accuracies. For pose estimation as a classification
problem, mAVP is used, whereas for regression, 2D Projections [20], 5cm5° [21] and ADD
(or 6D pose) [22] are used.

7.1 Object detection

7.1.1 IoU

IoU gives a measure of overlap between the detected and the ground truth bounding boxes.
It has become the standard for reporting detection accuracies. Generally, 0.5 and 0.9 are the
thresholds used for considering a detection as successful.

7.1.2 mAP

Average precision (AP) is the average of maximum precision values across eleven recall
values (from 0 to 1.0) with a step of 0.1. Then the mean average precision is the mean of
APs across all classes.

�⩗
e
ee

��⩗� � � �⩗� ��e � �⩗� ��h � � � �⩗� e�� n (2)

7.2 Pose estimation
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7.2 Pose estimation

7.2.1 mAVP

AVP is an extension of the AP metric that includes the extra constraint that the pose
classification is also correct, in addition to the IoU being greater than 0.5. AVP is evaluated
at different levels according to how many total pose bins exist. It is generally evaluated at 4,
8, 12 and 24 bins. The average AVP across all the objects is the mAVP of the pipeline.

7.2.2 2D projections

A pose is considered correct if the average of the 2D distances between the projections of
the object’s vertices from the estimated pose and the ground truth pose is less than 5 pixels.

7.2.3 5cm5°

The 5cm5° metric states that the predicted pose is said to be correct if it is within 5cm of
translational error and 5° of rotational error of the ground truth.

The ADD metric states that an estimated pose is accepted if the average distance
between the ground truth pose and the estimated pose is smaller than 10% of the diameter
of the object.

�⩗⩗
e
�

s

�膐 � 脍 � ��膐 � 脍n
(3)

where 脍 , � , 脍 and � are the respective ground truth translation, ground truth rotation,
estimated translation and estimated rotation of the 3D model.

8 Datasets
Many approaches have proposed their own datasets for this task, however over time,
LineMOD [22] and the Tejani et al. dataset [23] have become popular. The T-LESS dataset
[24] has come up recently with a large number of instances per class using various imaging
tools. More specific datasets like OCCLUSION [25] are trained on for making the pipelines
robust to occlusion.

8.1 LineMOD
It has over 18,000 images with 15 different objects and labels for ground truth pose. It also
has the 3D models saved as a point clouds.

8.2 Tejani et al.
Has around 5,000 images with 6 object categories. There are an average of 870 instances
per category of indoor setting. It also has non-centred objects and cluttered backgrounds.
Labels are provided for orientation.

8.3 Pascal3D+
The Pascal3D+ dataset [26] has 12 object categories with around 3,000 instances per
category of both indoor and outdoor setting. It also has non-centred objects and
backgrounds that are cluttered. Labels are provided for occlusion level and orientation.

8.4 T-LESS
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This dataset has around 38,000 training and 10,000 test images from each sensor of 30
different textureless objects. The training images are of the objects against a black
background and the testing images are real scenes ranging from simple to the ones with
high clutter and occlusion. The sensors used are Primesense CARMINE 1.09 (a structured-
light RGB-D sensor), Microsoft Kinect v2 (a time-of-flight RGB-D sensor), and Canon
IXUS 950 IS (a high-resolution RGB camera). They provide a manually created CAD
model and a semi-automatically reconstructed one.

Table 1. Characteristics of the discussed datasets
Dataset Images Classes Instances Scene Type

LineMOD [22] ~18,000 15 ~1,200 Indoor
Tejani et al. [23] ~5,000 6 ~870 Indoor
Pascal3D+ [26] ~36,000 12 ~3,000 Indoor and outdoor
T-LESS [24] ~48,000 30 ~1,600 Indoor

Table 2. The reported results of the discussed methods on the discussed datasets
Dataset Method Measure Value of Measure

LineMOD [22]

SSD-6D [13] IoU (0.5) 99.4
ADD 76.3

Deep6DPose [16]
IoU (0.5) 99.7

2D projection 99.3
5cm5° 68.5

BB8 [19]
2D projection 89.3

ADD 62.7
5cm5° 69

Tejani et al. [23]
Deep6DPose [16]

IoU (0.5) 99.6
2D projection 99.3

ADD 62
5cm5° 64.5

SSD-6D [13] IoU (0.5) 96.3
2D projection 98.8

Pascal3D+ [26] Share300 [18] mAVP (24) 27.7
T-LESS [24] BB8 [19] ADD 54

Fig. 2. A graphical depiction of Table 2.
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9 Trends

9.1 Accumulation of data
There was a scarcity of data when the relatively old works were published, hence they all
proposed their own dataset and accuracy measures with respect to datasets in their
experiments. Hence, there was no normalized method to report accuracies. Over time, the
works have consistently performed experiments on the LineMOD and Tejani et al. [23]
datasets. The accuracy measures of 5cm5° and ADD have become the standards for pose
estimation, whereas IoU and mAP are used for detection.

9.2 Evolution of approaches
The earlier works showcased their accuracy and the feasibility of their
representations/methods using metrics specific to the dataset used. On the other hand, in the
recent times, feasibility has become a bare minimum, in addition to which, methods must
prove that their accuracies and speeds are also feasible using standard metrics on standard
datasets compared to existing methods.

10 Problems

10.1 Occlusion
An object is said to be occluded if its contour cannot be seen completely as it is obstructed
by another object. When the properties of models are learnt or modelled considering the
object as a whole, there may be severe drops in their accuracies due to occlusion. To
overcome this, DPMs have come up that allow predictions based on the visible parts of the
object. As mentioned earlier, since CNNs implicitly model the object parts unlike the
explicit modelling as in the case of DPMs, CNNs tend to perform better than DPM based
models for occluded objects also. The use of higher potentials for detection and pose
estimation along with segmentation is described in [20]. It is based on HOG templates for
objects and occlusion that do not model a specific object that causes occlusion. Hence they
are termed as discriminatively learnt HOG templates.

10.2 Illumination
Varying types of illumination that cause varying pixel intensities may cause issues with the
extracted features and learnt models. One way to get over this problem is normalization
during learning and inference. However, in the case that only the object in the scene is
poorly illuminated, normalization will not help. One can borrow from the idea of [10] to
use evenly distributed keypoints across the object that are invariant to illumination for the
purpose of its detection and pose estimation.

10.3 Clutter
The objects of interest must be detected regardless of the background. Learning the
properties of the object against a fixed background has been shown to cause a drop in
performance during inference. Thus, the randomness that clutter introduces in the
background is necessary for robustness. Ideally, the training data should have different
levels of clutter from zero to heavy for good accuracies at all the possible levels of clutter.
Methods proposed in [15] are robust to cluttered scenes.
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10.4 Scene diversity
Scene diversity has quite an impact on the performance. If the learning process is carried
out only in a fixed environment, there is less variation in the scene properties, which causes
the inference in another environment to suffer in terms of accuracy. Training must be
carried out in all the possible environments in which inference would be carried out. The
use of PASCAL3D+ [26] that has both indoor and outdoor environments is shown in [18]
to make the system more robust to scene diversity.

11 Conclusion
Through this survey, we have provided an overview of the developments in joint object
detection and pose estimation approaches that use monocular vision. We outlined
descriptors/models and estimation methods used in traditional approaches. A brief
illustration of hybrid approaches was made. Single stage and multi stage pure deep learning
based pipelines were discussed. Characteristics of various datasets were discussed and the
standard accuracy measures were illustrated. Wherever possible, statistics of the datasets
and results on them were tabulated as shown in table 1, table 2 and figure 2. The trends
from the infancy of this problem up until now were also explained.
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