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ABSTRACT
In this paper, we discuss the introduction of a trigram musico-
logical model in a simultaneous chord and local key extrac-
tion system. By enlarging the context of the musicological
model, we hoped to achieve a higher accuracy that could jus-
tify the associated higher complexity and computational load
of the search for the optimal solution. Experiments on mul-
tiple data sets have demonstrated that the trigram model has
indeed a larger predictive power (a lower perplexity). This
raised predictive power resulted in an improvement in the key
extraction capabilities, but no improvement in chord extrac-
tion when compared to a system with a bigram musicological
model.

Index Terms— Chord extraction, key extraction, music
signal processing, music information retrieval

1. INTRODUCTION

In Western polyphonic music, the backbone of harmony is
formed by a sequence of chords. They are the building blocks
of the accompaniment over which a melody is played. We
define a chord as a collection of simultaneously sounding ac-
companiment notes, although the distinction between a chord
note and a melody note can be questionable in some cases.
The associated chord name refers to a reference note, the root,
and a set of tonal distances to this reference, the chord type.
All notes together, whether played concurrently (forming a
chord) or sequentially (forming a melody), establish a broader
musical context, which we call a key. Its associated name
refers to a tonal center, the tonic, and a set of tonal distances
in relation to this tonic, called the mode.

Chord extraction is the process of converting an audio
recording into a stream of chord symbols with associated
times. Because a sequence of chords provides a compact
description of a song, automated extraction has multiple ap-
plications. For instance, the resulting chord symbols can be
directly used to learn how to play a basic accompaniment of
a music piece. Furthermore, they can serve as an intermedi-
ate representation for a variety of indirect applications, such

as automatic playlist generation, partly based on harmonic
similarities.

Key extraction is a similar process for extracting key sym-
bols from the recording. A distinction can be made between
global and local key extraction. The former assigns a single
label that applies to the whole song whereas the latter assigns
a label to each time segment. While studying harmony, one
is mostly interested in the movement of chords within a key.
This requires the extraction of both chords and keys.

Since successive chords and keys in a sequence are not
mutually independent, most chord and key extraction systems
model these dependencies. Usually, a finite state automaton
is used, with each state either representing a chord [1, 2, 3, 4],
a key [5] or a key-chord combination [6, 7, 8], depending on
the desired output. Most of the time, a first order Markov as-
sumption is made such that transitions between states only de-
pend on the previous state. However, it is musically intuitive
to consider a bigger context while it has also been shown that
higher order modeling decreases the perplexity [9]. Nonethe-
less, very little research has been done that goes beyond bi-
gram modeling. Only Khadkevich & Omologo [10] have used
trigram and 4-gram modeling in a chord extraction system
before. They report that adding a trigram model to a base-
line system comprising no contextual modeling at all yields
an improvement: the frame accuracy could be raised from
67.86 % to 69.52 %. However, substituting the trigram by a
4-gram model did not offer any additional improvement. Sur-
prisingly, the authors do not report any figures for a bigram
model, while our personal experience is that this already in-
creases the chord extraction performance by 2 % [11]. Note
too that the system of Khadkevich & Omologo first extracts
one global key before it starts to extract the chords. This
means that the influence of higher order contextual model-
ing on key extraction was not investigated. In the present pa-
per this particular influence is assessed in detail because we
conduct all our experiments with a system that performs a si-
multaneous extraction of chords and local keys.

In the remainder of this paper, we will first give a detailed
description of our system in Section 2. Then the used data sets
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and evaluation measure are discussed in Section 3 and the ex-
perimental results in Section 4. We end with some concluding
remarks in Section 5.

2. ARCHITECTURE OF THE SYSTEM

2.1. Overview

The input audio file is supplied to a three stage front-end.
First, it is resampled to 8 kHz and converted to mono. The
resulting waveform is then split into 150 ms long frames with
a step size of 20 ms, and for each frame, a chroma profile is
calculated. This is a logarithmic spectral representation where
the octave information has been discarded such that it repre-
sents the intensity of each of the 12 pitch classes in the frame.
Since its introduction by Fujishima [12], the chroma profile
has been the preferred feature of almost all key and chord ex-
traction algorithms. Finally, the subsequent chroma profiles
are integrated over 11 frames (220 ms), and the integrated
profiles are supplied to the back-end. Due to the smoothing,
they can be supplied at a rate of one per 220 ms which im-
proves the processing speed.

The back-end traces the most likely state sequence through
a huge finite state machine. If a trigram contextual model is
used, each state of that machine represents a distinct combi-
nation of two key-chord pairs representing the actual situation
and the context respectively. The machine comprises (24 *
48) * (24 * 47) ≈ 1.3 million states. The 24 refers to the 24
keys (12 tonics and two modes: major/minor) under consider-
ation, the 48 to the 48 chords (12 roots, 4 chord types: major,
minor, diminished and augmented) and the 47 reflects the
assumption that a key change can only occur in combination
with a chord change. Obviously, the search for the best solu-
tion will gradually extend only those partial solutions whose
probability is within a range of that of the best one. This
so-called beam search strategy is borrowed from continuous
speech recognition systems (e.g. [13]). By storing the history
in each state, no back-tracking is needed and the required
storage capacity remains manageable.

2.2. Chroma extraction

Simply folding a logarithmic frequency spectrum into one oc-
tave produces a chroma profile that contains contributions of
the harmonics because a note usually contains harmonics of
its fundamental frequency. For instance, a third harmonic
would add evidence to the chroma a fifth above the fundamen-
tal, even though that note has not necessarily been played.

Instead of accounting for harmonics in the templates, like
in [3], we chose to deal with this phenomenon in the chroma
extraction step. We therefore adopt multiple pitch tracking
techniques to resolve partials. A comb filter is applied on
a peak-picked spectrum to discover harmonic relations be-
tween the peaks such that their energy can be assigned to
one of the candidate fundamental frequencies once there is

enough harmonic evidence to support this hypothesized F0.
Because the sample frequency was reduced to 8000 Hz and
because we require each fundamental to be supported by at
least one harmonic, the highest detectable fundamental fre-
quency is 2000 Hz. We argue that any note higher than this
upper limit is most likely a melody note and hence, not con-
tributing to a chord. Similarly, we impose a lower limit of
100 Hz on the grounds that any note below this limit is most
likely a bass note, not contributing a unique chroma to the
chord. A more thorough description of the algorithm can be
found in [14]. The advantage of the chosen approach is that it
enables the use of binary chord templates in the back-end, and
these templates can be directly derived from music theory.

2.3. Probabilistic framework

The back-end implements a unified probabilistic framework
for the simultaneous recognition of chords and keys. Its
objective is to retrieve the most likely sequence of states
Q̂ for the acoustic observation sequence X. Each state
qn = (kn, cn, kprev, cprev) represents the combination of
the key-chord pair (kn, cn) assigned to a vector xn and the
key-chord pair (kprev, cprev) from which the transition to the
present pair was made. Using Bayes’s rule, the desired state
sequence Q̂ follows from

Q̂ = argmax
Q

P (Q) P (X|Q)

2.3.1. Acoustic model

The acoustic likelihood P (X|Q) is calculated by means of
an acoustic model. We consider the key and chord labels kn
and cn as two independent means of testing whether an obser-
vation vector complies with a certain state, i.e. P (xn|qn) =
P (xn|cn)P (xn|kn). By making the standard assumption that
acoustic observations emitted in the same state are indepen-
dent, the acoustic likelihood can be factorized as follows

P (X|Q) =

N∏
n=1

P (xn|cn)P (xn|kn)

Because of the scarcity of training data (in comparison with
other fields such as speech processing), we did not attempt to
train any acoustic models (e.g. Gaussian mixture models that
incorporate a lot of free parameters). Instead, we opted for a
model that just penalizes the dissimilarities between xn and
a template vector representing either kn or cn. Note that we
also use the same observations for computing both key and
chord acoustic likelihoods, as opposed to [7] where the inputs
of the key acoustic model are the result of an integration over
a much longer time than the one used for generating the inputs
to the chord acoustic model. Such a long integration time pos-
sibly allows for a better key estimation on acoustic features
alone, but we fear that this also smears the key boundaries.



The chord acoustic model P (xn|cn) utilizes a template
for cn. This template is composed of binary components: 1
for a chroma that is theoretically present in the chord and 0
for one that is not. The components are treated independently
of each other so that the acoustic likelihood is obtained as a
product of 12 likelihoods. The latter are computed by means
of two Gaussian models: one for each possible value (0 or 1)
of the template component [11].

The key acoustic model P (xn|kn) also uses templates,
namely the non-binary templates defined by Temperley. They
represent the stability of the 12 pitch classes relative to a given
key and are based on the Krumhansl–Schmuckler profiles, but
specifically adjusted for computational key-finding [15]. The
measure used in our system is the cosine similarity between
the key template and the observation vector.

2.3.2. Prior transition model

The prior probability P (Q) is computed by making the sec-
ond order Markov assumption. This means that

P (K,C) =

N∏
n=1

P (kn, cn|kn−1, cn−1, kprev, cprev)

We distinguish two types of state transitions: self-transitions
and transitions to another state. The self-transition probabili-
ties are supposed not to depend on the context (kprev, cprev).
Furthermore, since a key change is always presumed to entail
a chord change as well, the self-transitions actually constitute
a chord duration model. We opted for a very simple geomet-
ric model, represented by a single Pc = P (qn = qn−1) for
all states. The parameter Pc is chosen in such a way that the
mean chord duration becomes equal to some predetermined
value dc (e.g. retrieved from an annotated corpus). This is
achieved by satisfying the relation

Pc
1− Pc

=
dc
h
⇐⇒ Pc = 1− h

dc

where h is the time shift between successive frames being
processed.

The transitions between different states constitute a mu-
sicological model, in our case a stochastic trigram model,
which is further decomposed into a key transition model and
a chord transition model:

P (K,C) =

N∏
n=1

cn 6=cn−1

P (kn|kn−1, kprev, cn, cn−1, cprev)

P (cn|kn−1, kprev, cn−1, cprev)

The key transition model P (kn|...) is further simplified by
arguing that the influence of the chords cn, cn−1, cprev on
the identity of the current key label is negligible compared
to that of the keys kn−1, kprev . Consequently, the key transi-
tion model gets reduced to P (kn|kn−1, kprev). This trigram

key model now allows us to explicitly take into account the
fact that the musical concept of key does not allow for key
changes at every chord. We realize this by permitting kn to
differ from kn−1 only when the latter is equal to kprev . This
means that

P (kn|kn−1, kprev) = P (kn|kn−1) (kn−1 = kprev)

= 1 (kn−1 6= kprev & kn = kn−1)

= 0 (kn−1 6= kprev & kn 6= kn−1)

and consequently, that only a bigram key transition model is
required. We can thus reuse our previously developed bigram
model [11]. That model is based on Lerdahl’s regional dis-
tance [16, p.68], which expresses numerically the perceptual
distance between two keys. We assume that keys which are
perceptually close are also likely to appear in sequence and
thus receive a high transition probability. A weaknesses in
this assumption however, is that this gives inadequate proba-
bilities to some key changes such as the “gear change” or the
“one up” which are common in pop music, but not in music
of the Common Practice period on which Lerdahl’s theory is
based.

Since a chord change will usually not be accompanied by
a key change, the key transition model must definitely accom-
modate a strong self-transition. We therefore assign a proba-
bility Pk to the chance of staying in the same key and we fix
this to 0.99. The remaining probability mass is divided over
the key changes according to Lerdahl’s regional distance. A
distance d is converted to a probability by applying a nor-
malized exponential of the form e−νd, where ν is inversely
proportional to the mean perceptual distance between keys.

The chord transition modelP (cn|kn−1, kprev, cn−1, cprev)
can be simplified enormously by rewriting it in terms of rela-
tive chords and key modes. A relative chord c′ in a key k is
obtained by expressing the root of the chord c as a distance to
the tonic of a key k and combining it with its chord type. This
representation is more in line with the way scholars study har-
mony. We also interpret all chords in the same key, namely
kn−1. This is not just a simplification to reduce the number
of parameters, but we argue that this also is in accordance
with common practice in harmonic analysis. Chords at a key
change often give an indication of both the preceding and
the following key (by also belonging to the other key, being
a so called pivot chord, or by being perceptually close to a
chord that does belong to the other key). They thus are also
meaningful when interpreted in the key at the other side of
the change, whereas the movement of relative chords inter-
preted in different keys does not really make sense. Then we
construct a model where the chord transition probability only
depends on the mode mn−1 of key kn−1 and on the relative
chords. This way we exploit the parallelism between keys
that differ in tonic, but not in mode. We end up with distinct
transition models for major and minor keys, for which distinct
idiomatic chord sequences exist. Systems such as the ones



proposed in [1, 2, 3] which do not jointly extract the key and
chord labels would not be able to do so.

All together, the musicological model can be simplified
to a product of two partial models comprising but a limited
number of transitions:

P (K,C) =

N∏
n=1

cn 6=cn−1

P (kn|kn−1, kprev)

P (c′n|mn−1, c
′
n−1, c

′
prev)

Due to this limited number of transitions, one can harvest
much more training examples per transition from the training
corpus and get more reliable probabilities.

2.3.3. Summary

For computational reasons, the search algorithm works with
log-probabilities and in order to have control over the relative
importances of the different sub-models, multiplicative bal-
ance parameters α, δ, µ and κ are being introduced. Thus, the
function to maximize is given by

Q̂ = argmax
Q

N∑
n=1

[
logP (xn|cn) + α logP (xn|kn)

+ δLD + µLM
]

LD = logPc (qn = qn−1)

= log(1− Pc) (qn 6= qn−1)

LM =
[
κ logP (kn|kn−1, kprev)+ (cn 6= cn−1)

(1− κ) logP (c′n|c′n−1, c′prev,mn−1)
]

=0 (cn = cn−1)

3. DATA SETS AND EVALUATION MEASURE

3.1. Data sets

In order to assess the performance of our system, we need
data with accompanying ground truth labels, as well as an
evaluation measure. We have two audio collections at our
disposal. The first one is a private collection of 142 manually
annotated 30 s excerpts of music pieces in a variety of genres
and tempi, hereafter called the SEMA set. We will use it here
as the development set for optimizing the balance parameters.
The second set consists of the 210 songs that were used in the
MIREX 20091 chord estimation contest. It is composed of
full albums by the Beatles (174 songs), Queen (18 songs) and
Zweieck (18 songs).

For investigating how well a relative chord model learned
on one data set scales to another data set, we have built

1http://www.music-ir.org/mirex/wiki/2009:Audio Chord Detection

SEMA MIREX 9GDB
N major minor major minor major minor
1 984 1268 12862 2191 34011 6026
2 866 1125 12379 2074 32580 5600
3 766 1012 11867 1897 31286 5252

Table 1. Total number of valid N-grams per key mode in the
three data sets introduced in the text.

three relative chord transition models: one on SEMA, one
on MIREX and one on 9GDB [17], a symbolic data set of
855 songs with chord and key labels (without duration in-
formation) distributed over 9 genres. The 9GDB set was
originally used to classify songs into genres solely based on
their constituent chords and keys.

3.2. Chord transition models

To construct an N-gram relative chord model, all annotated
chords are mapped to triads and subsequent identical chords
(after their mapping to triads) are merged. Then, a sliding
window of length N is moved over the chord annotations
where every chord ci,∀i ∈ {1, . . . , N} is converted to a rel-
ative chord c′i by interpreting it in the key of cN−1. Based
on these new annotations, we determine the N -gram coun-
ters from which we finally derive a Kneser-Ney back-off
model [18] for each key mode. All trigrams whose count is
larger than K = 4 are converted to a genuine trigram prob-
ability using a discount of D = 2. The remaining trigram
probabilities are then computed by backing off to a bigram
model. The same procedure, this time applied on bigram
counts, is adopted to compute the bigram probabilities (with
the same K and D). Finally, if not all relative chords are seen
in the training data, 5 % of the unigram probability mass is
reserved for these unobserved chords.

Table 1 comprises the number of valid N-grams (en-
tirely composed of maj–min-dim–aug chords) per key mode
(major–minor) for each of the three data sets mentioned
above.

Each obtained model is characterized by a model perplex-
ity, defined as the inverse of the exponent of the mean log
probability of a relative chord c′, given the previous N − 1
relative chords and the mode:

PP (N) = e
−

∑
c′1,..,c′

N
,m P (c′1,..,c

′
N ,m) logP (c′N |c

′
1,..,c

′
N−1,m)

The sum is taken over all valid relative chord combinations
and P (c′1, .., c

′
N ,m) follows directly from the corresponding

N -gram counter computed during the training phase.
Figure 1 shows the model perplexities as a function of

N for the three models we derived: one per data set. Since
N = 0 means that no context is taken into account and that
all chords have the same probability, the figure shows that just
taking the prior probabilities of the chords into account (N =



1) is very effective since it reduces the perplexity by a factor
3.5 to 4. Taking one or two context symbols into account
(N = 2 and N = 3) leads to a further decline in perplexity
for all models, although with a progressively milder slope.
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Fig. 1. The model perplexity (per key mode) as function of N
for each data set.

3.3. Duration model

The duration model is kept constant and the controlling pa-
rameter Pc is set to attain a mean chord duration of 1.71 s.
The latter is exactly the mean chord duration that was ob-
served in the SEMA data set.

3.4. Evaluation measure

System performance is quantified by the percentage of the
time the extracted key or chord labels match with the anno-
tated key or chord labels. To avoid a disputable ranking of
multiple possible mappings of complex chords to triads, we
restrict the chord evaluation to frames where the annotated
chord is one of the basic triads (maj–min–dim–aug, including
inversions). This leaves us with 62.56 % of the data for the
SEMA set and 77.44 % for the MIREX set. Key extraction
performance is measured over the whole data set. For both
chord and key evaluation, only perfect matches are consid-
ered correct.

4. EXPERIMENTAL RESULTS

Per data set (SEMA and MIREX) we have conducted two
types of experiments: experiments with musicological mod-
els that were trained on the same data set and experiments
with models that were trained on an independent data set,
namely 9GDB. The optimal parameters α, δ, µandκ bal-
ancing the different models in the auxiliary function being

rel.chord bigram trigram p-value
model Chord Key Chord Key Key
SEMA 73.16 70.66 73.84 74.03 0.07
9GDB 72.69 63.06 73.12 66.80 0.05

Table 2. Chord and local key extraction score on the SEMA
set for bigram and trigram relative chord models learned on
the SEMA and the 9GDB set and significance of the key im-
provement

rel.chord bigram trigram p-value
model Chord Key Chord Key Key

MIREX 78.29 76.64 78.81 78.44 0.29
9GDB 76.97 65.10 77.15 69.36 10−4

Table 3. Chord and local key extraction score on the MIREX
set for bigram and trigram relative chord models learned on
the MIREX and the 9GDB set and significance of the key
improvement

maximized are determined by means of a grid search on the
SEMA set. The same factors are then reused in the exper-
iments on the MIREX set. The results of our experiments
are summarized in Table 2 and Table 3. They are compared
with a bigram modeling system that was previously described
in [8]. We use the bigram probabilities of the Kneser-Ney
backoff model we constructed here to configure its relative
chord model.

Apparently, moving from a bigram to a trigram musico-
logical model does not improve the chord recognition per-
formance. For the key extraction on the other hand, trigram
modeling does enhance the results. The p-values in the ta-
ble were obtained using the sign test, and they show that in
3 out of the 4 cases, the improvements are significant. Most
important is the significance of the results obtained the inde-
pendent musicological model 9GDB. The results confirm our
earlier finding [8] that key extraction is more sensitive to the
musicological model than chord extraction. However, using a
trigram musicological model strongly increases the computa-
tional requirements. The time to complete is multiplied by a
factor of 34 for the trigram system, taking 431 % of the du-
ration of the processed files instead of 13 % for the bigram
system.

Zooming in on the produced outputs, we see that changing
the musicological model affects the key outputs of only 10 to
20 % of the processed files, but the accuracy usually changes
from zero to perfect (or vice versa) for these files. Obviously,
our strategy of strongly dissuading a key change inside a file
is largely responsible for this behavior. Changes in the chord
labels occur in nearly all files, but the changes are usually
very localized and thus only slightly affecting the accuracies.



5. CONCLUSION

We investigated a further extension of our simultaneous chord
and local key extraction system which consists of replacing a
bigram model of prior musicological information by a more
sophisticated trigram model. We showed that this extension
required a fundamental modification of the search, increas-
ing the system complexity. On the other hand, the extension
does not require any new key transition model component (a
bigram model), but the additional context key is used to con-
strain the key transitions. For the creation of the required rel-
ative chord transition models, we opted for a back-off model
with Kneser-Ney smoothing.

An analysis of perplexities clearly showed that the predic-
tive power of a trigram musicological model is significantly
higher than that of a bigram model. The experimental vali-
dation of the new models on the other hand revealed that this
gain is not translated into a better chord extraction. Never-
theless, there is a modest though statistically significant im-
provement of the key extraction accuracy. We contemplate
that in order to improve the chord extraction, we need a better
acoustical model, a possible direction for future work.
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