3,537 research outputs found

    Verifying systems of resource-bounded agents

    Get PDF
    Approaches to the verification of multi-agent systems are typically based on games or transition systems defined in terms of states and actions. However such approaches often ignore a key aspect of multi-agent systems, namely that the agents’ actions require (and sometimes produce) resources. We briefly survey previous work on the verification of multi-agent systems that takes resources into account, and outline some key challenges for future work

    Near-Optimal Scheduling for LTL with Future Discounting

    Full text link
    We study the search problem for optimal schedulers for the linear temporal logic (LTL) with future discounting. The logic, introduced by Almagor, Boker and Kupferman, is a quantitative variant of LTL in which an event in the far future has only discounted contribution to a truth value (that is a real number in the unit interval [0, 1]). The precise problem we study---it naturally arises e.g. in search for a scheduler that recovers from an internal error state as soon as possible---is the following: given a Kripke frame, a formula and a number in [0, 1] called a margin, find a path of the Kripke frame that is optimal with respect to the formula up to the prescribed margin (a truly optimal path may not exist). We present an algorithm for the problem; it works even in the extended setting with propositional quality operators, a setting where (threshold) model-checking is known to be undecidable

    Model counting for reactive systems

    Get PDF
    Model counting is the problem of computing the number of solutions for a logical formula. In the last few years, it has been primarily studied for propositional logic, and has been shown to be useful in many applications. In planning, for example, propositional model counting has been used to compute the robustness of a plan in an incomplete domain. In information-flow control, model counting has been applied to measure the amount of information leaked by a security-critical system. In this thesis, we introduce the model counting problem for linear-time properties, and show its applications in formal verification. In the same way propositional model counting generalizes the satisfiability problem for propositional logic, counting models for linear-time properties generalizes the emptiness problem for languages over infinite words to one that asks for the number of words in a language. The model counting problem, thus, provides a foundation for quantitative extensions of model checking, where not only the existence of computations that violate the specification is determined, but also the number of such violations. We solve the model counting problem for the prominent class of omega-regular properties. We present algorithms for solving the problem for different classes of properties, and show the advantages of our algorithms in comparison to indirect approaches based on encodings into propositional logic. We further show how model counting can be used for solving a variety of quantitative problems in formal verification, including probabilistic model checking, quantitative information-flow in security-critical systems, and the synthesis of approximate implementations for reactive systems.Das Modellzählproblem fragt nach der Anzahl der Lösungen einer logischen Formel, und wurde in den letzten Jahren hauptsächlich für Aussagenlogik untersucht. Das Zählen von Modellen aussagenlogischer Formeln hat sich in vielen Anwendungen als nützlich erwiesen. Im Bereich der künstlichen Intelligenz wurde das Zählen von Modellen beispielsweise verwendet, um die Robustheit eines Plans in einem unvollständigen Weltmodell zu bewerten. Das Zählen von Modellen kann auch verwendet werden, um in sicherheitskritischen Systemen die Menge an enthüllten vertraulichen Daten zu messen. Diese Dissertation stellt das Modellzählproblem für Linearzeiteigenschaften vor, und untersucht dessen Rolle in der Welt der formalen Verifikation. Das Zählen von Modellen für Linearzeiteigenschaften führt zu neuen quantitativen Erweiterungen klassischer Verifikationsprobleme, bei denen nicht nur die Existenz eines Fehlers in einem System zu überprüfen ist, sondern auch die Anzahl solcher Fehler. Wir präsentieren Algorithmen zur Lösung des Modellzählproblems für verschiedene Klassen von Linearzeiteigenschaften und zeigen die Vorteile unserer Algorithmen im Vergleich zu indirekten Ansätzen, die auf Kodierungen der untersuchten Probleme in Aussagenlogik basieren. Darüberhinaus zeigen wir wie das Zählen von Modellen zur Lösung einer Vielzahl quantitativer Probleme in der formalen Verifikation verwendet werden kann. Dies beinhaltet unter anderem die Analyse probabilistischer Modelle, die Kontrolle quantitativen Informationsflusses in sicherheitskritischen Systemen, und die Synthese von approximativen Implementierungen für reaktive Systeme

    Strategic Abilities of Forgetful Agents in Stochastic Environments

    Full text link
    In this paper, we investigate the probabilistic variants of the strategy logics ATL and ATL* under imperfect information. Specifically, we present novel decidability and complexity results when the model transitions are stochastic and agents play uniform strategies. That is, the semantics of the logics are based on multi-agent, stochastic transition systems with imperfect information, which combine two sources of uncertainty, namely, the partial observability agents have on the environment, and the likelihood of transitions to occur from a system state. Since the model checking problem is undecidable in general in this setting, we restrict our attention to agents with memoryless (positional) strategies. The resulting setting captures the situation in which agents have qualitative uncertainty of the local state and quantitative uncertainty about the occurrence of future events. We illustrate the usefulness of this setting with meaningful examples

    Learning Markov Decision Processes for Model Checking

    Full text link
    Constructing an accurate system model for formal model verification can be both resource demanding and time-consuming. To alleviate this shortcoming, algorithms have been proposed for automatically learning system models based on observed system behaviors. In this paper we extend the algorithm on learning probabilistic automata to reactive systems, where the observed system behavior is in the form of alternating sequences of inputs and outputs. We propose an algorithm for automatically learning a deterministic labeled Markov decision process model from the observed behavior of a reactive system. The proposed learning algorithm is adapted from algorithms for learning deterministic probabilistic finite automata, and extended to include both probabilistic and nondeterministic transitions. The algorithm is empirically analyzed and evaluated by learning system models of slot machines. The evaluation is performed by analyzing the probabilistic linear temporal logic properties of the system as well as by analyzing the schedulers, in particular the optimal schedulers, induced by the learned models.Comment: In Proceedings QFM 2012, arXiv:1212.345
    • …
    corecore