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Abstract. Approaches to the verification of multi-agent systems are typically
based on games or transition systems defined in terms of states and actions. How-
ever such approaches often ignore a key aspect of multi-agent systems, namely
that the agents’ actions require (and sometimes produce) resources. We briefly
survey previous work on the verification of multi-agent systems that takes re-
sources into account, and outline some key challenges for future work.

1 Verifying Autonomous Systems

A multi-agent system (MAS) is a system that is composed of multiple interacting
agents. An agent is an autonomous entity that has the ability to collect information,
reason about it, and perform actions based on it in pursuit of its own goals or on behalf
of others. Examples of agents are controllers for satellites, non-driver transport systems
such as UAVs, health care systems, and even nodes in sensor networks.

Multi-agent systems are ubiquitous. Many distributed software and hardware sys-
tems can be naturally modelled as multi-agent systems. Such systems are by the nature
of their components extremely complex, and the interaction between components and
their environment can lead to undesired behaviours that are difficult to predict in ad-
vance. With the increasing use of autonomous agents in safety critical systems, there is
a growing need to verify that their behaviour conforms to the desired system specifica-
tion, and over the last decade verification of multi-agent systems has become a thriving
research area [24].

A key approach to the verification of MAS is model checking. Model checking in-
volves checking whether a model of the system satisfies a temporal logic formula corre-
sponding to some aspect of the system specification. Model checking has the advantage
that it is a fully automated technique, which facilitates its use in the MAS development
process.3 A wide range of approaches to model-checking MAS have been proposed in
the literature, ranging from the adaptation of standard model-checking tools, e.g., [12,
13] to the development of special-purpose model checkers for multi-agent systems, e.g.,
[27, 22].

3 Another strand of work focusses on theorem proving, e.g., [28], but such approaches typically
require user interaction to guide the search for a proof.



2 Resource-Bounded Agents

In many multi-agent systems, agents are resource-bounded, in the sense that they re-
quire resources in order to act. Actions require time to complete and typically re-
quire additional resources depending on the application domain, for example energy or
money. For many applications, the availability or otherwise of resources is critical to the
properties we want to verify: a multi-agent system will have very different behaviours
depending on the resource endowment of the agents that comprise it. For example, an
agent with insufficient energy may be unable to complete a task in the time assumed by
a team plan, if it has to recharge its battery before performing the task.

However, with a few exceptions which we discuss below, previous work on verifi-
cation of MAS abstracts away from the fact that many multi-agent systems consist of
agents that need resources to operate and that those resources are limited. In particular,
current state-of-the-art verification techniques and tools for MAS are unable to verify
system properties that depend on the resource production and consumption of the agents
comprising the MAS.

In this paper we survey recent work in the emerging field of verification of resource-
bounded agents, and highlight a number of challenges that must be overcome to allow
practical verification of resource-bounded MAS. We argue that recent work on the com-
plexity of model-checking for logics of strategic ability with resources offers the pos-
sibility of significant progress in the field, new verification approaches and tools, and
the ability to verify the properties of a large, important class of autonomous system that
were previously out of reach.

3 Model-Checking with Resources

In this section we give a brief introduction to model-checking multi-agent systems and
explain how standard model checking approaches can be extended with resources.

In a model-checking approach to the verification of multi-agent systems, a MAS is
represented by a finite state transition system.4 A state transition system consists of a set
of states and transitions between them. Intuitively, each state of a MAS corresponds to a
tuple of states of the agents and of the environment, and each transition corresponds to
actions performed by the agents. Each state is labelled with atomic propositions that are
true in that state. A standard assumption is that each state in the system has at least one
outgoing transition (if a state is a deadlock state in the original MAS, we can model this
by adding a transition to itself by some null action and labelling it with a ‘deadlock’
proposition). Properties of the system to be verified are expressed in an appropriate
temporal logic L. The model-checking problem for L is, given a state transition system
M (and possibly a state s) and an L formula φ, check whether φ is true in M (at state
s).

For multi-agent systems, a temporal logic of particular interest is Alternating Time
Temporal Logic (ATL) [9]. ATL generalises other temporal logics such as Computation
Tree Logic (CTL) [19] (which can be seen as a one-agent ATL) by introducing notions

4 There is work on model-checking infinite state transition systems, see, for example, [11], but
in this paper we concentrate on the finite case.



of strategic ability. ATL is interpreted over concurrent game structures (transition sys-
tems where edges correspond to a tuple of actions performed simultaneously by all the
agents, see the example below). The language of ATL contains atomic propositions,
boolean connectives ¬,∧, etc. and modalities 〈〈A〉〉©, 〈〈A〉〉� and 〈〈A〉〉U for each sub-
set (or coalition in ATL terms) A of the set of all agents, which express the strategic
ability of the coalition A. 〈〈A〉〉©φ means that the coalition of agents A has a choice
of actions such that, regardless of what the other agents in the system do, φ will hold
in the next state. 〈〈A〉〉�φ means that coalition A has a strategy to keep φ true forever,
regardless of what the other agents do. A strategy is a choice of actions which either
only depends on the current state (memoryless strategy) or on the finite history of the
current state (perfect recall strategy). Finally, 〈〈A〉〉φU ψ means that A has a strategy to
ensure that after finitely many steps ψ holds, and in all the states before that, φ holds.
The model-checking problem for ATL can be solved in time polynomial in the size
of the transition system and the property [9], and there exist model-checking tools for
ATL, for example, MOCHA [10] and MCMAS [27].

Example Figure 1 illustrates a simple ATL model of a system with two agents, 1 and
2, and actions α, β, γ and idle. Action tuples on the edges show the actions of each
agent, for example, in the transition from state sI to s, agent 1 performs action α and
agent 2 performs idle. In this system, in state sI , agent 1 has a (memoryless) strategy to
enforce that p holds eventually in the future no matter what agent 2 does, which can be
expressed in ATL as 〈〈{1}〉〉>U p. Similarly, in sI agent 1 has a memoryless strategy to
keep ¬p true forever, so 〈〈{1}〉〉�¬p holds in sI .

3.1 Adding Resources

In order to model multi-agent systems where agents’ actions produce and consume
resources, it is necessary to modify the approach above in two ways. One is to add
resource annotations to the actions in the transition system: for each individual action
and each resource type, we need to specify how many units of this resource type the
action produces or consumes. For example, suppose that there are two resource types,
r1 and r2 (e.g., energy and money). Then we can specify that action α in Figure 1
produces two units of r1 and consumes one unit of r2, action β consumes one unit of
r1 and produces one unit of r2, action γ consumes five units of r1, and action idle does
not produce or consume any resources.

The second modification is to extend the temporal logic so that we can express
properties related to resources. For example, we may want to express a property that a
group of agents A can eventually reach a state satisfying φ or can maintain the truth of
ψ forever, provided that they have available n1 units of resource type r1 and n2 units
of resource type r2. Such statements about coalitional ability under resource bounds
can be expressed in an extension of ATL where coalitional modalities are annotated
with a resource bound on the strategies available to the coalition. We call logics where
every action is associated with produced and consumed resources and the syntax reflects
resource requirements on agents, resource logics.

To illustrate the properties resource logics allow us to express, consider the model in
Figure 1 with the production and consumption of resources by actions specified above.



In this setting, we can verify if agent 1 can eventually enforce p provided that it has
one unit of r2 in state sI , or whether the coalition of agents {1, 2} can achieve p under
this resource bound by working together. There are surprisingly many different ways of
measuring costs of strategies and deciding which actions are executable by the agents
given the resources available to them, but under at least one possible semantics, the
answer to the first question is no and to the second one yes, but the latter requires a
perfect recall strategy (the two agents should loop between states sI and s until they
produce a sufficient amount of resource r1, and then execute actions corresponding to
the 〈γ, idle〉 transition from s to s′).

sI s s'

p

⟨idle, idle⟩

⟨idle, idle⟩

⟨idle, idle⟩

⟨α, idle⟩

⟨idle, β⟩

⟨γ, idle⟩

⟨γ, β⟩

Fig. 1: State transition system.

Clearly, the model-checking problem for temporal logics is a special case of the
model-checking problem for the corresponding resource logics. The question is, how
much harder does the model-checking problem become when resources are added?

4 A Brief Survey of Resource Logics

In this section, we briefly review recent theoretical work on the development of resource
logics. We focus on expressiveness and model-checking complexity, as these features
determine the suitability of a particular logic for practical verification.

4.1 Consumption of Resources

Early work on resource logics considered only consumption of resources (no action
produced resources), and initial results were encouraging.

One of the first logics capable of expressing resource requirements of agents was a
version of Coalition Logic (CL)5, called Resource-Bounded Coalition Logic (RBCL),
where actions only consume (and don’t produce) resources. It was introduced in [1] with
the primary motivation of modelling systems of resource-bounded reasoners, however
the framework is sufficiently general to model any kind of action. The model-checking
problem for this logic was shown to be decidable in [5] in polynomial time in the tran-
sition system and the property and exponential in the number of resource types.

5 CL is a fragment of ATL with only the next time 〈〈A〉〉© modality.



A resource-bounded version of ATL, RB-ATL, where again actions only consume
(and not produce) resources was introduced in [2]. It was also shown that the model-
checking problem for this logic is decidable in time polynomial in the size of the tran-
sition system and exponential in the number of resource types. (For a single resource
type, e.g., energy, the model-checking problem is no harder than for ATL.)

Practical work on model-checking standard computer science transition systems
(not multi-agent systems) with resources also falls in the category of consumption-only
systems, for example probabilistic model-checking of systems with numerical resources
as done using PRISM model-checker [26] assumes costs monotonically increasing with
time.

4.2 Adding Production

However, when resource production is considered in addition to consumption, the situa-
tion changes. In a separate strand of work, a range of different formalisms for reasoning
about resources was introduced in [16, 14]. In those formalisms, both consumption and
production of resources was considered. In [15] it was shown that the problem of halting
on empty input for two-counter automata [25] can be reduced to the model-checking
problem for several of their resource logics. Since the halting problem for two-counter
automata is undecidable, the model-checking problem for a variety of resource logic
with production of resources is undecidable. The reduction uses two resource types (to
represent the values of the two counters) and either one or two agents depending on the
version of the logic (whether the agents have perfect recall, whether the formula talk-
ing about coalition A can also specify resource availability for remaining agents, and
whether nested operators ‘remember’ initial allocation of resources or can be evaluated
independently of such initial allocation).

The only decidable cases considered in [14] are an extension of CTL with resources
(essentially one-agent ATL) and a version where on every path only a fixed finite
amount of resources can be produced. In [14], the models satisfying this property are
called bounded, and it is pointed out that RBCL and RB-ATL are logics over a special
kind of bounded models (where no resources are produced at all). Other decidability re-
sults for bounded resource logics have also been reported in the literature. For example,
[20] define a decidable logic, PRB-ATL (Priced Resource-Bounded ATL), where the
total amount of resources in the system has a fixed bound. The model-checking algo-
rithm for PRB-ATL requires time polynomial in the size of the model and exponential
in the number of resource types and the resource bound on the system. In [21] an EXP-
TIME lower bound in the number of resource types for the PRB-ATL model-checking
problem is shown.

A general logic over systems with numerical constraints called QATL∗ was intro-
duced in [17]. In that paper, more undecidability results for the model-checking prob-
lem of QATL∗ and its fragments were shown. For example, QATL (Quantitative ATL)
is undecidable even if no nestings of cooperation modalities is allowed. The main pro-
posals for restoring decidability to the model-checking problem for QATL in [17] are
removing negative payoffs (similar to removing resource production) and also intro-
ducing memoryless strategies. Shared resources were considered in [18]; most of the



cases considered there have undecidable model-checking (apart from the case of a sin-
gle shared resource, which has decidable model-checking).

This brief survey of work to date suggest that the main approach until recently
to dealing with both resource production and consumption was to bound the amount
of produced resources globally in the model. For some systems of resource-bounded
agents, this is a reasonable restriction. For example, agents that need energy to function
and are able to charge their battery, can never ‘produce’ more energy than the capacity
of their battery. This is a typical bounded system. However, in some cases, although ev-
ery single application of the agent’s actions produces a fixed amount of some resource,
repeating this action arbitrarily often will produce arbitrarily large amounts of the re-
source. This may apply to energy stored in unbounded storage, or to money, or many
other natural situations. Recent work suggests that verification of such systems may still
be possible.

5 Decidable Unbounded Production

In [6] a version of ATL, RB±ATL, was introduced where actions both produce and
consume resources. The models of the logic do not impose bounds on the overall pro-
duction of resources, and the agents have perfect recall. The syntax of RB±ATL is very
similar to that of ATL, but coalition modalities have superscripts which represent re-
source allocation to agents. Instead of stating the existence of some strategy, they state
the existence of a strategy such that every computation generated by following this
strategy consumes at most the given amount of resources. Coming back to the example,
the property that agent 1 can eventually enforce p provided that it has one unit of r2
can be expressed as 〈〈{1}(0,1)〉〉>U p6 The model-checking problem for RB±ATL is
decidable (RB±ATL is very similar to one of the resource logics introduced in [14] for
which the decidability of the model-checking problem was left open). The existence of
a decidable resource logic with unbounded production was surprising, as it was the first
indication that it is possible to automatically verify properties of this important class of
resource-bounded multi-agent system.

However, although this result is encouraging, we are not yet at the point of practical
verification of such systems. In [6] the lower bound on the complexity of the model-
checking problem for RB±ATL is shown to be EXPSPACE. The proof of EXPSPACE-
hardness is by reduction of the reachability problem for Petri Nets to the model-checking
problem for RB±ATL. Although the Petri Net reachability problem is decidable, the up-
per bound on its complexity is still unknown; similarly we do not know the upper bound
on the RB±ATL complexity. The complexity of the model-checking problem RB±ATL
is thus much higher than that for ATL without resources and the consumption-only re-
source logics surveyed above. This high complexity makes it difficult to develop practi-
cal verification approaches. The only exception is 1-RB±ATL, RB±ATL with a single
resource type, where the complexity is PSPACE.

6 Here, (0, 1) is the allocation of 0 units of r1 and 1 unit of r2 to agent 1. We only show resource
bound for the proponent agents, {1} in this case. Versions of resource logic where opponents
are also resource-bounded all have an undecidable model-checking problem, see [14].



In [3], a new syntactic fragment FRAL of resource logic RAL with decidable model-
checking has been identified. It restricts the occurrences of coalitional modalities on
the left of the Until formulas; on the other hand, it allows nested modalities to refer
to resource allocation at the time of evaluation, rather than always consider a fresh
resource allocation, as in RB±ATL. More precisely, a formula 〈〈Ab〉〉φU 〈〈A↓〉〉ψ1 U ψ2

says that given resource allocation b, coalition A can always reach a state (maintaining
φ) where with the remaining resources, it can reach ψ2 while maintaining ψ1. The
complexity of model-checking for this fragment is also open, and is also likely to be
high.

Although model-checking of ATL with perfect recall and uniform strategies is un-
decidable, replacing uniformity with a weaker notion, for example defining it using dis-
tributed knowledge, is decidable [23]. Similar results hold for RB±ATL with syntactic
epistemic knowledge and weaker notions of uniformity, RB±ATSEL [4].

Below is a summary of resource logics with decidable model-checking problem. In
all of them, the semantics assume that in every state each agent has an available action
to do nothing, which produces and consumes no resources.

Logic Resource production Complexity of model-checking

RBCL no EXPTIME (PTIME in model)
RB-ATL no EXPTIME (PTIME in model)

PRB-ATL bounded EXPTIME
RB±ATL yes EXPSPACE-hard

1-RB±ATL yes PSPACE
FRAL yes ?

RB±ATSEL yes EXPSPACE-hard

Table 1: Resource logics with decidable model-checking problem

6 Future Challenges

The RB±ATL results offer the possibility of significant progress in the verification of
resource-bounded multi-agent systems. However many challenges remain for future
research. Below we list three of the most important.

Understanding sources of undecidability Developing a better understanding of the
sources of decidability and undecidability (beyond boundedness) will be critical to fu-
ture progress. As observed in [14], subtle differences in truth conditions for resource
logics result in the difference between decidability and undecidability of the model-
checking problem. Preliminary work in this direction is reported in [3].



Lower complexity It is useful to discover sources of undecidability and how to con-
struct expressive logics for which the model-checking problem is decidable. However,
it is even more important to be able to develop logics, or fragments of existing logics
such as RB±ATL, that are sufficiently expressive for practical problems, but where the
model-checking problem has tractable complexity (ideally polynomial in the size of the
transition system, as in the case of bounded production logics). Only then would we
be able to implement practical model-checking tools for systems of resource-bounded
agents.

Practical tools Although model checking algorithms have been proposed for several
of the logics surveyed, work on implementation is only beginning. We aim to develop
practical model-checking tools for verifying resource-bounded MAS by extending the
MCMAS model checker [27] to allow the modelling of multi-agent systems in which
agents can both consume and produce resources. Work on symbolic encoding of RB-
ATL model-checking is reported in [8] and work on symbolic encoding of RB±ATL
model-checking are reported in [7].

Addressing these challenges will allow practical model-checking of resource logics
and constitute a major break-through in multi-agent system verification.
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