1,136 research outputs found

    Structured Indoor Modeling

    Get PDF
    In this dissertation, we propose data-driven approaches to reconstruct 3D models for indoor scenes which are represented in a structured way (e.g., a wall is represented by a planar surface and two rooms are connected via the wall). The structured representation of models is more application ready than dense representations (e.g., a point cloud), but poses additional challenges for reconstruction since extracting structures requires high-level understanding about geometries. To address this challenging problem, we explore two common structural regularities of indoor scenes: 1) most indoor structures consist of planar surfaces (planarity), and 2) structural surfaces (e.g., walls and floor) can be represented by a 2D floorplan as a top-down view projection (orthogonality). With breakthroughs in data capturing techniques, we develop automated systems to tackle structured modeling problems, namely piece-wise planar reconstruction and floorplan reconstruction, by learning shape priors (i.e., planarity and orthogonality) from data. With structured representations and production-level quality, the reconstructed models have an immediate impact on many industrial applications

    Efficient 3D Segmentation, Registration and Mapping for Mobile Robots

    Get PDF
    Sometimes simple is better! For certain situations and tasks, simple but robust methods can achieve the same or better results in the same or less time than related sophisticated approaches. In the context of robots operating in real-world environments, key challenges are perceiving objects of interest and obstacles as well as building maps of the environment and localizing therein. The goal of this thesis is to carefully analyze such problem formulations, to deduce valid assumptions and simplifications, and to develop simple solutions that are both robust and fast. All approaches make use of sensors capturing 3D information, such as consumer RGBD cameras. Comparative evaluations show the performance of the developed approaches. For identifying objects and regions of interest in manipulation tasks, a real-time object segmentation pipeline is proposed. It exploits several common assumptions of manipulation tasks such as objects being on horizontal support surfaces (and well separated). It achieves real-time performance by using particularly efficient approximations in the individual processing steps, subsampling the input data where possible, and processing only relevant subsets of the data. The resulting pipeline segments 3D input data with up to 30Hz. In order to obtain complete segmentations of the 3D input data, a second pipeline is proposed that approximates the sampled surface, smooths the underlying data, and segments the smoothed surface into coherent regions belonging to the same geometric primitive. It uses different primitive models and can reliably segment input data into planes, cylinders and spheres. A thorough comparative evaluation shows state-of-the-art performance while computing such segmentations in near real-time. The second part of the thesis addresses the registration of 3D input data, i.e., consistently aligning input captured from different view poses. Several methods are presented for different types of input data. For the particular application of mapping with micro aerial vehicles where the 3D input data is particularly sparse, a pipeline is proposed that uses the same approximate surface reconstruction to exploit the measurement topology and a surface-to-surface registration algorithm that robustly aligns the data. Optimization of the resulting graph of determined view poses then yields globally consistent 3D maps. For sequences of RGBD data this pipeline is extended to include additional subsampling steps and an initial alignment of the data in local windows in the pose graph. In both cases, comparative evaluations show a robust and fast alignment of the input data

    Fast Cylinder and Plane Extraction from Depth Cameras for Visual Odometry

    Full text link
    This paper presents CAPE, a method to extract planes and cylinder segments from organized point clouds, which processes 640x480 depth images on a single CPU core at an average of 300 Hz, by operating on a grid of planar cells. While, compared to state-of-the-art plane extraction, the latency of CAPE is more consistent and 4-10 times faster, depending on the scene, we also demonstrate empirically that applying CAPE to visual odometry can improve trajectory estimation on scenes made of cylindrical surfaces (e.g. tunnels), whereas using a plane extraction approach that is not curve-aware deteriorates performance on these scenes. To use these geometric primitives in visual odometry, we propose extending a probabilistic RGB-D odometry framework based on points, lines and planes to cylinder primitives. Following this framework, CAPE runs on fused depth maps and the parameters of cylinders are modelled probabilistically to account for uncertainty and weight accordingly the pose optimization residuals.Comment: Accepted to IROS 201

    Machine learning methods for 3D object classification and segmentation

    Get PDF
    Field of study: Computer science.Dr. Ye Duan, Thesis Supervisor.Includes vita."July 2018."Object understanding is a fundamental problem in computer vision and it has been extensively researched in recent years thanks to the availability of powerful GPUs and labelled data, especially in the context of images. However, 3D object understanding is still not on par with its 2D domain and deep learning for 3D has not been fully explored yet. In this dissertation, I work on two approaches, both of which advances the state-of-the-art results in 3D classification and segmentation. The first approach, called MVRNN, is based multi-view paradigm. In contrast to MVCNN which does not generate consistent result across different views, by treating the multi-view images as a temporal sequence, our MVRNN correlates the features and generates coherent segmentation across different views. MVRNN demonstrated state-of-the-art performance on the Princeton Segmentation Benchmark dataset. The second approach, called PointGrid, is a hybrid method which combines points and regular grid structure. 3D points can retain fine details but irregular, which is challenge for deep learning methods. Volumetric grid is simple and has regular structure, but does not scale well with data resolution. Our PointGrid, which is simple, allows the fine details to be consumed by normal convolutions under a coarser resolution grid. PointGrid achieved state-of-the-art performance on ModelNet40 and ShapeNet datasets in 3D classification and object part segmentation.Includes bibliographical references (pages 116-140)

    Efficient Point-Cloud Processing with Primitive Shapes

    Get PDF
    This thesis presents methods for efficient processing of point-clouds based on primitive shapes. The set of considered simple parametric shapes consists of planes, spheres, cylinders, cones and tori. The algorithms developed in this work are targeted at scenarios in which the occurring surfaces can be well represented by this set of shape primitives which is the case in many man-made environments such as e.g. industrial compounds, cities or building interiors. A primitive subsumes a set of corresponding points in the point-cloud and serves as a proxy for them. Therefore primitives are well suited to directly address the unavoidable oversampling of large point-clouds and lay the foundation for efficient point-cloud processing algorithms. The first contribution of this thesis is a novel shape primitive detection method that is efficient even on very large and noisy point-clouds. Several applications for the detected primitives are subsequently explored, resulting in a set of novel algorithms for primitive-based point-cloud processing in the areas of compression, recognition and completion. Each of these application directly exploits and benefits from one or more of the detected primitives' properties such as approximation, abstraction, segmentation and continuability

    Motion Planning For Micro Aerial Vehicles

    Get PDF
    A Micro Aerial Vehicle (MAV) is capable of agile motion in 3D making it an ideal platform for developments of planning and control algorithms. For fully autonomous MAV systems, it is essential to plan motions that are both dynamically feasible and collision-free in cluttered environments. Recent work demonstrates precise control of MAVs using time-parameterized trajectories that satisfy feasibility and safety requirements. However, planning such trajectories is non-trivial, especially when considering constraints, such as optimality and completeness. For navigating in unknown environments, the capability for fast re-planning is also critical. Considering all of these requirements, motion planning for MAVs is a challenging problem. In this thesis, we examine trajectory planning algorithms for MAVs and present methodologies that solve a wide range of planning problems. We first introduce path planning and geometric control methods, which produce spatial paths that are inadequate for high speed flight, but can be used to guide trajectory optimization. We then describe optimization-based trajectory planning and demonstrate this method for solving navigation problems in complex 3D environments. When the initial state is not fixed, an optimization-based method is prone to generate sub-optimal trajectories. To address this challenge, we propose a search-based approach using motion primitives to plan resolution complete and sub-optimal trajectories. This algorithm can also be used to solve planning problems with constraints such as motion uncertainty, limited field-of-view and moving obstacles. The proposed methods can run in real time and are applicable for real-world autonomous navigation, even with limited on-board computational resources. This thesis includes a carefully analysis of the strengths and weaknesses of our planning paradigm and algorithms, and demonstration of their performance through simulation and experiments
    • …
    corecore