5,779 research outputs found

    PCA filtering and probabilistic SOM for network intrusion detection

    Get PDF
    The growth of the Internet and, consequently, the number of interconnected computers, has exposed significant amounts of information to intruders and attackers. Firewalls aim to detect violations according to a predefined rule-set and usually block potentially dangerous incoming traffic. However, with the evolution of attack techniques, it is more difficult to distinguish anomalies from normal traffic. Different detection approaches have been proposed, including the use of machine learning techniques based on neural models such as Self-Organizing Maps (SOMs). In this paper, we present a classification approach that hybridizes statistical techniques and SOM for network anomaly detection. Thus, while Principal Component Analysis (PCA) and Fisher Discriminant Ratio (FDR) have been considered for feature selection and noise removal, Probabilistic Self-Organizing Maps (PSOM) aim to model the feature space and enable distinguishing between normal and anomalous connections

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    Background modeling for video sequences by stacked denoising autoencoders

    Get PDF
    Nowadays, the analysis and extraction of relevant information in visual data flows is of paramount importance. These images sequences can last for hours, which implies that the model must adapt to all kinds of circumstances so that the performance of the system does not decay over time. In this paper we propose a methodology for background modeling and foreground detection, whose main characteristic is its robustness against stationary noise. Thus, stacked denoising autoencoders are applied to generate a set of robust characteristics for each region or patch of the image, which will be the input of a probabilistic model to determine if that region is background or foreground. The evaluation of a set of heterogeneous sequences results in that, although our proposal is similar to the classical methods existing in the literature, the inclusion of noise in these sequences causes drastic performance drops in the competing methods, while in our case the performance stays or falls slightly.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    How to use the Kohonen algorithm to simultaneously analyse individuals in a survey

    Full text link
    The Kohonen algorithm (SOM, Kohonen,1984, 1995) is a very powerful tool for data analysis. It was originally designed to model organized connections between some biological neural networks. It was also immediately considered as a very good algorithm to realize vectorial quantization, and at the same time pertinent classification, with nice properties for visualization. If the individuals are described by quantitative variables (ratios, frequencies, measurements, amounts, etc.), the straightforward application of the original algorithm leads to build code vectors and to associate to each of them the class of all the individuals which are more similar to this code-vector than to the others. But, in case of individuals described by categorical (qualitative) variables having a finite number of modalities (like in a survey), it is necessary to define a specific algorithm. In this paper, we present a new algorithm inspired by the SOM algorithm, which provides a simultaneous classification of the individuals and of their modalities.Comment: Special issue ESANN 0

    Face Recognition Using Self-Organizing Maps

    Get PDF
    corecore