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ABSTRACT   

Developed for studying long, periodic records of various measured quantities, time series analysis methods are 
inherently suited and offer interesting possibilities for Structural Health Monitoring (SHM) applications. However, their 
use in SHM can still be regarded as an emerging application and deserves more studies. In this research, Autoregressive 
(AR) models were used to fit experimental acceleration time histories from two experimental structural systems, a 3-
storey bookshelf-type laboratory structure and the ASCE Phase II SHM Benchmark Structure, in healthy and several 
damaged states. The coefficients of the AR models were chosen as damage sensitive features. Preliminary visual 
inspection of the large, multidimensional sets of AR coefficients to check the presence of clusters corresponding to 
different damage severities was achieved using Sammon mapping – an efficient nonlinear data compression technique. 
Systematic classification of damage into states based on the analysis of the AR coefficients was achieved using two 
supervised classification techniques: Nearest Neighbor Classification (NNC) and Learning Vector Quantization (LVQ), 
and one unsupervised technique: Self-organizing Maps (SOM). This paper discusses the performance of AR coefficients 
as damage sensitive features and compares the efficiency of the three classification techniques using experimental data.   

Keywords: Structural Health Monitoring, damage detection, Autoregressive models, time series analysis, supervised 
learning, unsupervised learning, Nearest Neighbor Classification, Learning Vector Quantization, Self-organizing Maps 
 

1. INTRODUCTION  
Time series techniques, originally developed for analyzing long sequences of regularly sampled data, are inherently 
suited to Structural Health Monitoring (SHM). However, such techniques have yet to be fully explored. Fassois and 
Sakellariou1 present an overview of the principles and techniques of time series analysis and their classification into non-
parametric and parametric methods for applications in SHM. Differentiation between faulty or damaged and healthy 
systems was achieved within the framework of statistical hypothesis testing. As the present study uses a parametric 
method, the following literature review focuses mainly on such approaches and on investigations where the coefficients 
of time series models were used to form damage sensitive features. Sadeghi and Fassois2 applied Autoregressive Moving 
Average models with eXogenous input (ARMAX) to dynamic signals from a laboratory beam and a numerical model of 
a truss and used coefficients of those models as damage sensitive features. Damage was detected and broadly localized 
by locating the feature vectors in the hyperspace spanned by their means and standard deviations. Feature dimensionality 
reduction via Principal Component Analysis (PCA) and an information entropy based criterion was also studied. 
Sakellariou and Fassois3 extended the approach by observing changes in time series coefficients and used them for 
damage detection, localization and severity estimation in a numerical, 6-DOF, linear model of a shear type building 
subjected to seismic excitation. Sakellariou and Fassois4 generalized the method using Autoregressive models with 
eXogenous input (ARX) whose coefficients were functions of fault magnitude and applied it to study damage in a 
laboratory aircraft skeleton structure. A study by Sohn et al.5 used Autoregressive (AR) models to fit the dynamic 
response of a concrete bridge pier. By applying a statistical process control approach to the projected coefficients of the 
AR models the authors were able to distinguish between healthy and damaged states. A later study by Sohn et al.6 
applied a similar methodology to health monitoring of a surface-effect fast patrol boat. However, the authors did not 
attempt to locate or quantify damage. Gul and Catbas7 presented a study in which AR coefficients from a laboratory steel 
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beam and grid structure with varying support and connectivity conditions were classified using a multivariate outlier 
detection technique. Omenzetter and Brownjohn8 used a vector Seasonal Autoregressive Integrated Moving Average 
model to detect abrupt changes in strain data collected from the continuous monitoring of a major bridge structure. The 
seasonal model was used because of the strong diurnal variation in the data caused by the temperature cycle. Zheng and 
Mita9-11 used Autoregressive Moving Average (ARMA) models in a two-stage damage assessment method where 
differences between ARMA models were calculated as their Itakura distances, model cepstra or subspace angle distances 
used as damage detection features, and enhanced localization performance was achieved using pre-whitening filters. The 
approaches were applied to numerically simulated and experimental laboratory data. Nair et al.12 used an ARMA time 
series to model the vibration signals from the ASCE Phase II Experimental SHM Benchmark Structure. The authors 
defined a damage sensitive feature used to discriminate between the damaged and undamaged states of the structure 
based on the first three AR coefficients. Localization of damage was achieved by introducing another feature, also based 
on the AR coefficients, found to increase from a baseline value when damage was near. Nair and Kiremidjian13 
investigated Gaussian Mixture Modeling, an unsupervised pattern recognition technique, to model the first AR 
coefficients obtained from fitting ARMA time series to an analytical, 12-DOF model of the ASCE Phase II Experimental 
SHM Benchmark Structure. The extent of damage was shown to correlate well with the Mahalanobis distances between 
undamaged and damaged feature clusters. 

In order to differentiate between undamaged and damaged systems and locate and quantify damage analytical techniques 
are required to interpret patterns in the damage sensitive features. Such methods can broadly be divided into supervised 
techniques when data from damaged structures is available for training of pattern recognition algorithms, and 
unsupervised when it is not. The present study utilizes the supervised techniques of Nearest Neighbor Classification 
(NNC) and Learning Vector Quantization (LVQ), and unsupervised Self-organizing Maps (SOM). These algorithms 
have been applied in the past in a number of damage detection studies mostly concerned with faults in composite 
materials, mechanical systems and aerospace structures. 

Philippidis et al.14 classified the waveforms of acoustic emission signals recorded during destructive tensile tests on 
coupons of composite materials using LVQ. Raju Damarla et al.15 and Doyle and Fernando16 analyzed high frequency 
vibration data from damaged composite panels and classified damage using frequency and time domain features 
presented to back-propagation (BP) and LVQ artificial neural network (ANN). Tse et al.17 studied a tapping machine 
using statistical features of dynamic forces and torques measured in the various machine components and identified 
several states in which the machine was operating using the LVQ algorithm. Abu-Mahfouz18 considered classification of 
damage in a gearbox system combining frequency response data and basic statistical measures of time-domain dynamic 
signals comparing BP, functional link and LVQ networks. Trendafilova et al.19 considered detection of damage by 
examining frequency response functions of the FEM model of an aircraft wing using the NNC methodology.  

Jammu and Danai20 developed a single category based classifier using the SOM concept that required data only from 
normal conditions of machining equipment. Faults were detected by comparing distances to new feature samples to a 
predefined threshold. Leem21 proposed using a SOM for clustering of signals corresponding to levels of wear in 
machining equipment. Spectral points of force and acoustic emission signals as well as cutting speed and feed rate were 
used as damage features. Huguet et al.22  performed experimental work on coupons of composite material and used 
acoustic emission signals to identify various damage types. The use of a non-linear projection of SOM helped to 
visualize the topology of feature space.  Godin et al.23  examined acoustic waveforms from progressively damaged 
composite materials to differentiate between different damage mechanisms and monitor damage chronology. They 
compared the supervised k-nearest neighbor (k-NN) algorithm and unsupervised SOM and found similar performance 
but k-NN was easier to use. Qui et al.24 applied a wavelet filter and SOM for performance assessment of bearing rolling 
element. The wavelet filter was used for signal denoising and enhancing of weak signatures and SOM for assessment of 
bearing degradation utilizing time domain features. Huang et al.25 studied prediction of ball bearing useful life using 
experimental data and SOM for detecting degradation using several time and frequency domain features. Casoetto et al.26 
established a feature map using peaks in the power spectral density for normal operation of a welding electrode via 
unsupervised learning. Degradation of the electrode was monitored by observing feature migration from the normal state. 
De Oliveira and Marquez27 clustered acoustic emission signals from composite samples in tensile tests using SOM and 
subsequently used k-means algorithm for damage classification. Bar et al.28 evaluated a combination of SOM and multi-
layer perceptron (MLP) for clustering of acoustic emission signals from tensile tests on composites. The SOM was used 
first to classify information for different failure modes, which was later used as information for training MLP for 
automatic classification. Yang et al.29 achieved damage classification by analyzing vibration signals from compressors 
using statistical moments of wavelet coefficients classified using LVQ, SOM and radial basis function networks (RBF). 
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SOM achieved a better performance than LVQ but RBF surpassed both of them. Mujica et al.30 proposed an adaptable 
case-based reasoning (CBR) approach to damage detection. Dynamic signals were processed via wavelet transform and 
wavelet coefficients used as damage features. A SOM was trained to organize available damage cases in memory and 
CBR used to obtain diagnostics by analogy. 

Despite the interest the discussed pattern recognition techniques drew amongst the composite materials, machine and 
aircraft monitoring community, the application of NNC and LVQ for classification of damage to civil infrastructure has 
only recently been investigated31 and to the best of the authors’ knowledge SOM has not yet been applied. This study 
develops a method for structural damage detection that integrates the use of AR models to establish damage sensitive 
features and application of pattern recognition techniques for classification of the AR coefficients depending on damage 
type and location. NNC, LVQ and SOM approaches to pattern recognition are compared. The proposed method is tested 
on two experimental structures. 

2. OUTLINE OF DAMAGE CLASSIFICATION METHOD AND UNDERLYING THEORY 
2.1 Outline of damage classification method 

The proposed approach to damage classification can be summarized as follows: 

• Structural acceleration time histories from multiple sensors in the undamaged and various damaged states are 
fitted with univariate AR models. 

• The coefficients of AR models, arranged in a vector, are used as damage sensitive feature. 

• If required, the reduction of the dimensionality of damage sensitive feature is performed using Principal 
Component Analysis (PCA) or Sammon mapping. 

• LVQ or SOM pattern recognition algorithm is trained to classify the (possibly reduced) AR coefficients into a 
specific damage state. (Note NNC does not require training.) 

• NNC, LVQ or SOM is used to classify the (possibly reduced) AR coefficients into a specific damage state. The 
AR coefficient vectors are fed into the pattern recognition algorithms as individual vectors even though several 
of them may belong to the same experiment. 

The following sections describe briefly the underlying theory of techniques used in this study: AR time series models, 
PCA, Sammon mapping, NNC, LVQ and SOM. 

2.2 Autoregressive models 

In this research, AR time series models are used to describe the acceleration time histories. AR models are a staple of 
time series analysis32 and are often used in the analysis of stationary time series processes. A stationary process is a 
stochastic process, one that obeys probabilistic laws, in which the mean, variance and higher order moments are time 
invariant. AR models attempt to account for the correlations of the current observation in time series with its 
predecessors. A univariate AR model of order p, or AR(p), for the time series {xt} (t = 1, 2, …, n) can be written as: 

 1 1 2 2 ...t t t p t p tx x x x aφ φ φ− − −= + + + +  (1) 
where xt,…xt-p are the current and previous values of the series, φ1,…φp are AR coefficients, and {at} is a Gaussian white 
noise error time series with a zero mean. 

2.3 Principal Component Analysis 

PCA is a popular multivariate statistical technique often used to reduce multidimensional data sets to lower 
dimensions33. Given a set of p-dimensional vectors xi (i = 1, …, n) drawn from a statistical distribution with mean x  and 
covariance matrix Σ, PCA seeks to project the data onto a new p-dimensional space with orthogonal coordinates via a 
linear transformation. 

Decomposition of the covariance matrix by singular value decomposition leads to: 

 TV VΣ = Λ  (2) 
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where Λ is a diagonal matrix containing the eigenvalues of Σ ranked in the descending order 2
1σ ≥ … ≥ 2

pσ , and V is a 
matrix containing the corresponding eigenvectors or principal components. The transformation of a data point xi into 
principal components is: 

 ( )T
i i= −z V x x  (3) 

The new coordinates zi are uncorrelated and have a diagonal covariance matrix Λ. Therefore, the entries of zi are linear 
combinations of the entries of xi which explain variances 2

1σ , …, 2
pσ . To reduce the dimensionality, a selection q < p of 

principal components can be used that retains those components that contribute most to the data variance, thus reducing 
the dimension of the data to q. 

2.4 Sammon mapping 

Sammon mapping34 is a nonlinear transformation used for mapping a high dimensional space to a lower dimensional 
space in which local geometric relations are approximated. Consider a set of vectors xi (n = 1, …, n) in a p-dimensional 
space and a corresponding set of vectors yi in a q- dimensional space, where q < p. For visualization purposes q is 
usually chosen to be two or three. The distance between vectors xi and xj in p-dimensional space is denoted by *

ijD  and 
the distance between the corresponding vectors yi and yj in q-dimensional space is ijD . Usually the Euclidean distance is 
used. Mapping is achieved by adjusting the vectors yi to minimize the following error function by steepest descent: 
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2.5 Nearest Neighbor Classification 

NNC is a simple supervised pattern recognition technique35. Given a set of pre-selected and fixed reference or codebook 
vectors mi (i = 1, …, k) corresponding to known classes, an unknown input vector x is assigned to the class which the 
nearest mi belongs. Several distance measures can be used including Manhattan, Euclidean, Correlation and 
Mahalanobis. In this research the Euclidean and Mahalanobis distance measures were used. The Euclidean DE(x,y) and 
Mahalanobis distance DM(x,y) between two vectors x and y can be calculated using: 

 ( ) ( ) ( ) ( ) ( ) ( )1, , ,T T
E MD D −= − − = − −x y x y x y x y x y x yΣ  (5) 

where Σ is the covariance matrix of a distribution. The Mahalanobis distance accounts explicitly for the different scales 
and correlations amongst vector entries and can be more useful in cases where these are significant. 

2.6 Learning Vector Quantization 

LVQ is a supervised machine learning technique designed for classification or pattern recognition by defining class 
borders35. It is similar to NNC in that it uses a set of codebook vectors and searches for the minimum of distances of an 
unknown vector to these codebook vectors as the criterion for classification. However, unlike in NNC where codebook 
vectors are fixed, an iterative procedure is adopted in which the position of the codebook vectors is adjusted to minimize 
the number of misclassifications. Learning of the optimal codebook vector positions can be performed using several 
algorithms. In this study, the Optimized-Learning-Rate LVQ135 algorithm was used. This algorithm has an individual 
learning rate for each codebook vector, resulting in faster training. 

Given a set of initial codebook vectors mi (i = 1, …, k) which have been linked to each class region, the input vector x is 
assigned to the class which the nearest mi belongs, i.e. an NNC task is performed. Let c define the index of the nearest 
codebook vector, i.e. mc. Learning is an iterative procedure in which the position of the codebook vectors is adjusted to 
minimize the number of misclassifications. At iteration step t let x(t) and mi(t) be the input vector and codebook vectors 
respectively. The mi(t) are adjusted according to the following learning rule: 
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where s(t) equals +1 or -1 if x(t) has been respectively classified correctly or incorrectly, and αc(t) is the variable learning 
rate for codebook vector mc: 

 ( ) ( )
( ) ( )

1
1 1

c
c

c

t
t

s t t
−

=
+ −
α

α
α

 (7) 

The learning rate must be constrained such that αc(t) < 1. 

2.7 Self-organizing Maps 

SOM is an unsupervised clustering technique that attempts to create low dimensional projections of high dimensional 
data in which the organizational structure, relative distances between adjacent data points is retained35. SOM is similar to 
LVQ in that the position of the codebook vectors is adjusted iteratively. However, SOM is an unsupervised learning 
algorithm in which adjustment is based on the similarity between input and codebook vectors only and class structure for 
the input is not required. Given a set of reference vectors mi (i = 1, …, k) which have been initialized over the input 
space, the input vector x is assigned to the class which the nearest mi belongs. Let c define the index of the nearest 
reference vector, i.e. mc. During training the mi are adjusted according to the iterative application of the following rule: 

 
( ) ( ) ( ) ( ) ( )
( ) ( )
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c c c
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Where α(t) must satisfy ( )lim 0t tα→∞ =  for convergence. In this investigation, α(l)=0.5/(0.1l+1) was adopted, where l 
was the number of epochs, i.e. number of complete runs though the training data36. 

3. APPLICATION TO 3-STOREY LABORATORY BOOKSHELF STRUCTURE 
The 3-storey experimental bookshelf structure used in this study was approximately 2.1m high and constructed from 
equal angle aluminum column sections and stainless steel floor plates bolted together with aluminum brackets as shown 
in Figure 1. The stainless steel plates were 4mm thick and 650mm × 650mm square. The column sections were 30mm × 
30mm equal angles. Two section thicknesses were used for the columns, either 3.0mm or 4.5mm for the damaged and 
undamaged states respectively. Each column was made of 3 × 0.7m  high segments, rather than one long angle, in order 
to make them easily replaceable for simulation of localized damage at different stories. The structure was instrumented 
with four uniaxial accelerometers, one for measuring the table acceleration and one for each storey. 

Damage was introduced into the structure by replacing the original 4.5mm thick columns of a particular storey with 
3.0mm angles. Four damage states were considered; these were labeled D0, D1, D2 and D3 corresponded to no damage 
(healthy structure), 1st storey damage, 2nd storey damage and simultaneous 1st and 2nd story damage. Figure 2 
schematically shows these four damage states together with the percentage of remaining lateral stiffness. 

The objective of the damage detection study was to classify seismic responses measured in the four damage states and to 
that end eight scaled earthquake records were used to excite the structure. The acceleration time history of each storey 
was modeled using a univariate AR(24) model. 

3.1 Damage classification in the 3-storey bookshelf structure 

Using three univariate AR(24) models, one for each floor, resulted in 72-dimensional vectors of damage sensitive 
features. As a preliminary investigation, to visualize and check the presence of clusters in the data, PCA and Sammon 
mapping were used to create two and three-dimensional projections of the vectors of AR coefficients. The result of the 
two-dimensional projection using Sammon mapping is shown in Figure 3. The Sammon map shows some organization 
of the data into overlapping bands, although no distinct clusters could be drawn. Using three-dimensional mappings did 
not provide a better separation and PCA projection showed no clearly defined clusters with data points from all four 
damage states scattered amongst one another. These preliminary insights indicate that higher dimensional data need to be 
investigated to achieve separation of the AR coefficients from different damage states. Simple visual techniques will 
then be inadequate and more advanced approaches such as NNC, LVQ or SOM are required. 

The two previously described pattern recognition techniques, NNC and LVQ were first used to classify damage into the 
states D0-D3. PCA data reduction techniques only was used due to the markedly higher computational effort required for 
Sammon mapping. 
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a)   b)  

Figure 1. Three-storey bookshelf structure: (a) general view, and (b) dimensions and accelerometer locations. 

 

 

Figure 2. Damage states in 3-storey bookshelf structure showing percentage of lateral stiffness at each storey. 

The feature dimension was reduced to the first 60, 40, 30, 20 or 10 principal components. The 388-point data set, 
consisting of 97 points from each damage state was randomly divided into 300 codebook vectors and 88 testing points, 
ensuring approximately equal numbers of damage features from each damage state (for the testing data these numbers 
were 21 for state D0, 23 for state D1, 21 for state D2, and 23 for state D3, respectively). Five different random sets of 
codebook vectors were considered. Using NNC and averaging the results from five runs, the obtained number of 
misclassifications and percentage errors is given in Table 1 for both the Euclidean and Mahalanobis distance measures. 
The Mahalanobis distance measure outperformed the Euclidean by a considerable margin and adequate results with 6% 
misclassifications were obtained using 20 principal components. Good classification results, 5% or less 
misclassifications, were achieved using more than 30 principal components, while excellent classification, 1% or less 
misclassifications, required 60 principal components. Using the Euclidean distance measure a large number of 
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Table 2.  Number and percentage of misclassifications 
using LVQ and PCA reduced data for 3-storey 
bookshelf structure. 

 

Number of 
principal 

components

Number of codebook vectors 

 30 50 100 
30 0 (0%) 0 (0%) 0 (0%) 
20 4 (5%) 3 (3%) 3 (3%) 
10 17 (19%) 15 (17%) 14 (16%) 

misclassifications were obtained, in excess of 34% misclassifications. The difference in performance between the 
Mahalanobis and Euclidean distance measures could be explained by the fact that the Mahalanobis distance accounts for 
the different scales of each principal component. 

Although NNC performed well, performance could be improved by using a more advanced classification technique such 
as LVQ. The LVQ classification was used with the Mahalanobis distance measure and the PCA dimensionality reduction 
technique. The 388-point data set was again divided into 300 points for training and 88 points for testing. The number of 
codebook vectors was chosen to be 30, 50 or 100.  These were initialized by random selection from the training data set. 
The results averaged from five runs with different initialized codebook vectors are shown in Table 2. The table shows 
that increasing the number of codebook vectors reduced the number of misclassifications. Good classifications were 
obtained when 20 or more principal components were used while excellent classification was achieved using 30 principal 
components. Overall, LVQ performed better than NNC with excellent classifications obtained using 30 principal 
components and much smaller numbers of codebook vectors compared to 60 principal components using NNC. 

Preliminary attempts to use SOM on the data from the 3-storey experimental bookshelf structure failed to deliver 
satisfactory results. 

4. APPLICATION TO ASCE PHASE II EXPERIMENTAL SHM BENCHMARK 
STRUCTURE 

The ASCE Phase II Experimental SHM Benchmark Structure37 is a 4-storey 2-bay by 2-bay steel frame with a 2.5m × 
2.5m floor plan and a height of 3.6m (Figure 4). The columns are B100×9 sections and the floor beams are S75×11 

 
Figure 3. Projection of data from 3-storey bookshelf structure via Sammon mapping. 

 

Table 1.  Number and percentage of misclassifications 
using NNC and PCA reduced data for 3-storey 
bookshelf structure. 

 

Number of 
principal 

components 

Euclidean 
distance 

Mahalanobis 
distance 

60 31 (35%) 1 (1%) 
40 34 (39%) 3 (3%) 
30 30 (34%) 4 (5%) 
20 34 (39%) 5 (6%) 
10 34 (39%) 10 (11%) 
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Figure 4. ASCE Phase II Experimental SHM Benchmark Structure. 
 

Table 3. Damage configurations for ASCE Phase II Experimental SHM Benchmark Structure. 
 

Configuration Damage 
1 No damage 
2 All bracing removed on the E face 
3 Bracing removed on floors 1-4 on a bay on the SE corner  
4 Bracing removed on floors 1 and 4 on a bay on the SE corner 
5 Bracing removed on floors 1 on a bay on the SE corner 
6 All bracing removed on E face and floor 2 on N face 
7 All bracing removed 
8 Configuration 7 + loosened bolts on floors 1-4 on E face N bay 
9 Configuration 7 + loosened bolts on floors 1 and 2 on E face N bay 

sections, all sections are Grade 300 steel. The beams and columns are bolted together. Bracing was added in all bays 
with two 12.7mm diameter threaded steel rods. Additional mass was distributed around the structure to make it more 
realistic. Four 1000kg floor slabs were placed on the 1st, 2nd and 3rd floors, one per bay. On the 4th floor, four 750kg slabs 
were used. Two of the slabs per floor are placed off-centre to increase the coupling between translational and torsional 
motion. 

A total of 9 damage scenarios were simulated on the structure, these involved the removal of bracing and the loosening 
of bolts in the floor beam connections. Table 3 lists the damage states and gives a description of damage. The different 
configurations give a mixture of minor and extensive damage cases. The structure was instrumented with 15 
accelerometers and excited by a shaker with a band-limited 5-50Hz white noise. Univariate AR(30) models were adopted 
and fitted to the acceleration data from each of the 15 accelerometers. This resulted in the dimension of feature (AR 
coefficients) vectors of 450. A data set of 1035 feature vectors was obtained, 115 from each configuration. 

4.1 Damage classification in the ASCE Phase II Experimental SHM Benchmark Structure 

Preliminary investigations showed that using Sammon mapping, see Figure 5, six large-scale clusters could be seen. Two 
of the clusters consisted of configurations 1, 5 and 6, and configurations 3 and 4 with small amount of overlapping 
between these configurations, while the remaining clusters were solely formed by a single configuration. 

For the purpose of damage classification using NNC, the feature dimension was reduced by projection of the data onto 
the first 20, 10, 5 or 3 principal components. The 1035-point data set was randomly divided into 700 codebook vectors 
and 335 testing points, ensuring approximately equal numbers of damage features from each damage state (for the testing 
data these numbers were 39, 36, 35, 39, 40, 36, 37, 32 and 31 for damage configurations 1 through 9, respectively). 
Averaging the results from five runs with different selection of codebook vectors the number of misclassifications and 
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Figure 5. Projection of data from ASCE Phase II Experimental SHM Benchmark Structure via Sammon mapping. 

Table 5. Number and percentage of misclassifications 
using LVQ and PCA reduced data for ASCE Phase II 
Experimental SHM Benchmark Structure. 
 
Number of 
principal 

components

Number of codebook vectors 

 50 100 200 
20 6 (2%) 5 (1%) 4 (1%) 
10 13 (4%) 10 (3%) 6 (2%) 
5 24 (7%) 29 (9%) 23 (7%) 
3 75 (22%) 68 (20%) 67 (20%) 

 

percentage errors is given in Table 4. In this case, similar performance was obtained using both the Euclidian and 
Mahalanobis distance measures. This can be attributed to the fact that the data from different damage configuration 
seems to be well separated. Excellent performance was obtained using only 10 principal components. These results 
represent significant reduction in dimensionally while good accuracy was maintained. 

LVQ classification was applied to PCA-reduced data with the same number of principal components as previously and 
the same sized training and testing data sets were used. The results from NNC showed that performance was similar for 
both distance measures, and hence only the Euclidean distance was chosen for LVQ. The number of codebook vectors 
was either 50, 100 or 200. These were initialized by random selection from the training set. The results obtained from 
averaging the number of misclassifications from five runs are shown in Table 5. The table shows that increasing the 
number of codebook vectors generally resulted in better performance. Excellent performance was obtained using 20 
principal components for 100 and 200 codebook vectors. Good classification was still achieved using 10 principal 
components, however, errors became significant once fewer principal components were used. Overall, performance was 
slightly worse than NNC but achieved with significantly smaller numbers of codebook vectors. 

Unlike in the case of the 3-storey bookshelf structure data, Figure 5 clearly showed the presence of distinct damage 
clusters corresponding to specific damage configurations. This encouraged an attempt to use SOM for unsupervised 
damage classification. Although, SOM was not designed for supervised classification tasks, provided the true 
classification is known the number of points misclassified to each cluster is an appropriate measure of performance. A 

Table 4.  Number and percentage of misclassifications 
using NNC and PCA reduced data for ASCE Phase II 
Experimental SHM Benchmark Structure. 

 
Number of 
principal 

components 

Euclidean 
distance 

Mahalanobis 
distance 

20 1 (0.3%) 1 (0.3%) 
10 5 (1%) 5 (1%) 
5 23 (7%) 24 (7%) 
3 62 (19%) 65 (19%) 
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10D Sammon map was constructed and cluster analysis was performed on the reduced data using SOM with 9 reference 
vectors randomly initialized over the input space and all 1035 available damage features. The classification results have 
been shown in Table 6 in which the assigned cluster and true damage configuration has been given. Clusters 
corresponding to damage configurations 2 and 3 were 100% correctly classified while configurations 4, 7 and 8 gave 
good classifications with between 97% and 99% of success. Configuration 9 was poorly classified with only 3% correct. 
The results show that a total of 221 misclassifications or 21% misclassifications were present, the misclassification of 
samples from configuration 9 to 7 alone responsible for half of the total error. This is a rather surprising outcome, as 
from Figure 5 these two configurations appear to be very well separated, and requires further assessment. Compared to 
supervised classification the result were generally worse as a consequence of providing the classification algorithm with 
less information but still quite promising. 

5. CONCLUSIONS 
SHM and damage detection methods can benefit from the applications of time series analysis techniques, which were 
developed for understanding long, regularly sampled sequences of data. In this study, a damage detection and 
classification method using AR models and NNC, LVQ or SOM statistical pattern recognition algorithm has been 
developed and applied to a simple 3-storey laboratory bookshelf structure and more complex ASCE Phase II 
Experimental SHM Benchmark Structure. Acceleration time histories of the structures in different simulated damage 
cases and under dynamic excitation were recorded and fitted using AR models. The coefficients of these AR models 
were chosen as damage sensitive features. Dimensionality reduction of the damage sensitive feature was achieved via 
PCA and Sammons mapping and served the purpose of visualization of clusters amongst the AR coefficients and 
lessening computational burden of the pattern recognition techniques. Systematic damage classification was studied 
using the NNC and LVQ supervised learning algorithms with either Euclidian or Mahalanobis distance measures, and 
unsupervised SOM algorithm. 

The studies on the 3-storey laboratory structure demonstrated that for localized stiffness reduction of 7% to 10% the AR 
coefficient corresponding to different damage states, when projected on two dimensions, do not form clearly separable 
clusters. However, when the number of principal components used was increased to 60 and 30 respectively, both NNC 
and LVQ with the Mahalanobis distance measure were able to classify damage with no more than approximately 1% of 
misclassifications. The Euclidian measure, on the other hand produced approximately 35% misclassifications. For the 
data from the ASCE Phase II Experimental SHM Benchmark Structure much more clearly delineated clusters of AR 
coefficients were seen in two dimensions. In this case the performance of both distance measures was comparable. The 
results using NNC and LVQ showed that approximately 1% misclassifications could be achieved using 20 principal 
components.  

Unsupervised classification using SOM was attempted for the 3-storey laboratory structure but did not yield satisfactory 
results. In contrast, the application of SOM to the ASCE Phase II Experimental SHM Benchmark Structure showed 
promising results with the majority of damage configurations correctly classified. However, a total of 21% of 
misclassifications was observed, the large overall error caused by selected few damage classifications. 

Table 6. Damage classification using SOM and Sammon mapping reduced data for ASCE Phase II Experimental 
SHM Benchmark Structure 

 

 Cluster
Configuration 1 2 3 4 5 6 7 8 9

1 34 0 0 0 75 6 0 0 0
2 0 115 0 0 0 0 0 0 0
3 0 0 115 0 0 0 0 0 0
4 3 0 0 112 0 0 0 0 0
5 12 0 0 0 103 0 0 0 0
6 11 0 0 0 0 104 0 0 0
7 0 0 0 0 0 0 114 0 1
8 0 0 0 0 0 0 0 113 2
9 0 0 0 0 0 0 111 0 4
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Overall, the results showed that AR coefficients perform well as damage sensitive features, NNC and LVQ are reliable 
tools for damage classification, and significant reductions in the data dimensionality could be achieved whilst 
maintaining good performance. SOM appears to be a promising approach but requires further study. 
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