204 research outputs found

    Bayesian Probabilistic Numerical Methods in Time-Dependent State Estimation for Industrial Hydrocyclone Equipment

    Get PDF
    The use of high-power industrial equipment, such as large-scale mixing equipment or a hydrocyclone for separation of particles in liquid suspension, demands careful monitoring to ensure correct operation. The fundamental task of state-estimation for the liquid suspension can be posed as a time-evolving inverse problem and solved with Bayesian statistical methods. In this article, we extend Bayesian methods to incorporate statistical models for the error that is incurred in the numerical solution of the physical governing equations. This enables full uncertainty quantification within a principled computation-precision trade-off, in contrast to the over-confident inferences that are obtained when all sources of numerical error are ignored. The method is cast within a sequential Monte Carlo framework and an optimized implementation is provided in Python

    Probabilistic Gradients for Fast Calibration of Differential Equation Models

    Get PDF
    Calibration of large-scale differential equation models to observational or experimental data is a widespread challenge throughout applied sciences and engineering. A crucial bottleneck in state-of-the art calibration methods is the calculation of local sensitivities, i.e. derivatives of the loss function with respect to the estimated parameters, which often necessitates several numerical solves of the underlying system of partial or ordinary differential equations. In this paper we present a new probabilistic approach to computing local sensitivities. The proposed method has several advantages over classical methods. Firstly, it operates within a constrained computational budget and provides a probabilistic quantification of uncertainty incurred in the sensitivities from this constraint. Secondly, information from previous sensitivity estimates can be recycled in subsequent computations, reducing the overall computational effort for iterative gradient-based calibration methods. The methodology presented is applied to two challenging test problems and compared against classical methods

    SOLID-SHELL FINITE ELEMENT MODELS FOR EXPLICIT SIMULATIONS OF CRACK PROPAGATION IN THIN STRUCTURES

    Get PDF
    Crack propagation in thin shell structures due to cutting is conveniently simulated using explicit finite element approaches, in view of the high nonlinearity of the problem. Solidshell elements are usually preferred for the discretization in the presence of complex material behavior and degradation phenomena such as delamination, since they allow for a correct representation of the thickness geometry. However, in solid-shell elements the small thickness leads to a very high maximum eigenfrequency, which imply very small stable time-steps. A new selective mass scaling technique is proposed to increase the time-step size without affecting accuracy. New ”directional” cohesive interface elements are used in conjunction with selective mass scaling to account for the interaction with a sharp blade in cutting processes of thin ductile shells

    Physics-Based Probabilistic Motion Compensation of Elastically Deformable Objects

    Get PDF
    A predictive tracking approach and a novel method for visual motion compensation are introduced, which accurately reconstruct and compensate the deformation of the elastic object, even in the case of complete measurement information loss. The core of the methods involves a probabilistic physical model of the object, from which all other mathematical models are systematically derived. Due to flexible adaptation of the models, the balance between their complexity and their accuracy is achieved

    A probabilistic finite element method based on random meshes: Error estimators and Bayesian inverse problems

    Full text link
    We present a novel probabilistic finite element method (FEM) for the solution and uncertainty quantification of elliptic partial differential equations based on random meshes, which we call random mesh FEM (RM-FEM). Our methodology allows to introduce a probability measure on standard piecewise linear FEM. We present a posteriori error estimators based uniquely on probabilistic information. A series of numerical experiments illustrates the potential of the RM-FEM for error estimation and validates our analysis. We furthermore demonstrate how employing the RM-FEM enhances the quality of the solution of Bayesian inverse problems, thus allowing a better quantification of numerical errors in pipelines of computations

    Fully probabilistic deep models for forward and inverse problems in parametric PDEs

    Get PDF
    We introduce a physics-driven deep latent variable model (PDDLVM) to learn simultaneously parameter-to-solution (forward) and solution-to-parameter (inverse) maps of parametric partial differential equations (PDEs). Our formulation leverages conventional PDE discretization techniques, deep neural networks, probabilistic modelling, and variational inference to assemble a fully probabilistic coherent framework. In the posited probabilistic model, both the forward and inverse maps are approximated as Gaussian distributions with a mean and covariance parameterized by deep neural networks. The PDE residual is assumed to be an observed random vector of value zero, hence we model it as a random vector with a zero mean and a user-prescribed covariance. The model is trained by maximizing the probability, that is the evidence or marginal likelihood, of observing a residual of zero by maximizing the evidence lower bound (ELBO). Consequently, the proposed methodology does not require any independent PDE solves and is physics-informed at training time, allowing the real-time solution of PDE forward and inverse problems after training. The proposed framework can be easily extended to seamlessly integrate observed data to solve inverse problems and to build generative models. We demonstrate the efficiency and robustness of our method on finite element discretized parametric PDE problems such as linear and nonlinear Poisson problems, elastic shells with complex 3D geometries, and time-dependent nonlinear and inhomogeneous PDEs using a physics-informed neural network (PINN) discretization. We achieve up to three orders of magnitude speed-up after training compared to traditional finite element method (FEM), while outputting coherent uncertainty estimates
    • …
    corecore